
Immersive Visualization of the Classical Non-Euclidean Spaces using
Real-Time Ray Tracing in VR

Luiz Velho, Vinicius da Silva, and Tiago Novello
Instituto de Matemática Pura e Aplicada

Fig. 1. Inside view of a three-dimensional torus. The right image includes the simulation of fog to better convey the sense of depth.

Abstract—This paper presents a system for immersive visualization of
the Classical Non-Euclidean spaces using real-time ray tracing. It
exploits the capabilities of the latest generation of GPU’s based on the
NVIDIA’s Turing architecture in order to develop new methods for
intuitive exploration of landscapes featuring non-trivial geometry and
topology in virtual reality.

Index Terms—Ray tracing, VR, Non-Euclidean geometry

1 INTRODUCTION

In late 2018, NVIDIA introduced a new generation of GPUs that ac-
cording to Jensen Huang, the company’s CEO, is a major breakthrough
in the history of the computer graphics industry. The Turing architec-
ture of the RTX GPUs was developed over the past 15 years to make
possible the implementation of ray tracing algorithms in real-time, thus
enabling visualization applications with an unprecedented degree of
photo-realism.

In this paper, we take the challenge of applying the power of this new
generation of RTX GPUs in the exploration of mathematical spaces
that feature non-trivial geometry and topology in virtual reality.

1.1 Motivation
The Turing architecture combines traditional capabilities of the previous
generations GPUs for rasterization (Graphics Pipeline) and compute
(CUDA) with new capabilities for artificial intelligence (Tensor Core)
and ray tracing (RT Core). Overall, these features in aggregate form a
powerful set of complementary resources for the development of new
media applications, not possible until now.

While the most obvious use of the RTX GPUs is for real-time photo-
realistic simulation with applications in entertainment, architecture,
design, etc., there are other areas where this power can open up new

• Luiz Velho is with IMPA. E-mail: lvelho@impa.br.
• Vinicius da Silva is with IMPA. E-mail: dsilva.vinicius@gmail.com.
• Tiago Novello is with IMPA. E-mail: tiago.novello90@gmail.com.

perspectives not imaginable before. One of these areas is the Visual-
ization of Mathematics. In this realm, abstract concepts, such as: high
dimensional spaces; Non-Euclidean geometries; non-trivial topologies
and manifolds, can be made concrete for immersive exploration.

Using Virtual Reality and Ray Tracing it is now possible to create
these Mathematical landscapes for interactive visualization, literally
putting the viewer inside these abstract worlds for an intuitive under-
standing. Such experiences have the potential to allow many insights
with great impact in research and education, among other aspects.

1.2 Contributions
The main contribution of our work is the development of an experimen-
tal platform for the immersive visualization of Non-Euclidean Spaces
using real-time ray tracing. This includes the design and implementa-
tion of an extensive framework for creating interactive experiences in
landscapes that can model different types of three-dimensional mani-
folds/orbifolds.

In addition, in order to test our platform and validate its effectiveness,
we produced a series of virtual reality applications and conducted
informal user studies that give directions for future research.

The system is implemented on top of NVIDIA’s Falcor [2] real-time
rendering framework using DirectX 12 (DXR) on Windows 10. For
that, we relied on a Falcor extension in order to integrate Ray Tracing
with Virtual Reality [13]. To the best of our knowledge, this is the
first project that uses RTX combining real-time ray tracing and virtual
reality for the exploration of abstract mathematical landscapes.

1.3 Structure of the Paper
The paper is structured as follows: Section 2 reviews previous and
related work; Section 3 introduces the basic mathematical concepts
associated with our work; Section 4 presents the method for GPU ray

Graphics Interface Conference 2020
28-29 May
Copyright held by authors. Permission granted to
CHCCS/SCDHM to publish in print and digital form, and
ACM to publish electronically.	

							

tracing of 3D Manifolds/Orbifolds; Section 5 shows examples of exper-
iments and discusses the analysis of our results; Section 6 presents a
quantitative and qualitative analysis of our results; Section 7 elaborates
on possible extensions of our platform and suggests perspectives for
future work; finally Section 8 provides concluding remarks.

2 RELATED AND PREVIOUS WORK

In this section we review previous work for visualization of Non-
Euclidean spaces and report on other related work that are relevant
to our research.

2.1 OpenGL Visualization of Non-Euclidean Spaces
Historically, the main effort for mathematics visualization, particularly
of Non-Euclidean Spaces, took place at the Geometry Center during the
period of 1994 to 1998. This initiative, under the leadership of William
Thurston, resulted in a scientific program to study and disseminate
modern geometry using interactive visualization.

Since Thurston’s personal research focused primarily on hyperbolic
manifolds [14], it was natural that the Geometry Center investigated
the visualization of manifolds and orbifolds. For this purpose, a plat-
form called Geomview [1] was developed. The software was based on
OpenGL and supported interactive viewing in Euclidean, elliptical and
hyperbolic geometries. Geomview featured a plugin architecture that
made possible, among other things, the development of a module for
the visualization of manifolds [7].

2.2 Virtual Reality
Researchers at the Geometry Center, already at that time realized the
potential of Virtual Reality for providing insights into the world of
geometric structures. Therefore, they created simple VR installations to
allow the user, not only to have a glimpse at the visual landscape inside
a 3-manifold, but also to experience the sensation of being immersed
in such an environment. Two of their projects are Mathenautics [10]
and Alice [5].

Another initiative in the direction of using virtual reality for math-
ematics visualization was JReality [16], a Java based 3D scene graph
package designed for mathematical visualization at TU-Berlin. It can
be used for creating immersive views of 3-manifold and relies on JOGL
as a back-end for interactive OpenGL rendering.

2.3 Ray-Tracing
The early work on interactive visualization of Non-Euclidean spaces,
reported above, was based on the traditional OpenGL rasterization
pipeline. Therefore, the rendering algorithms employed a Scene-Based
architecture.

The first work to propose the use of an Image-Based architecture for
visualization of Non-Euclidean spaces using GPUs was from Berger
et al. [3]. Their rendering algorithm exploited programmable compute
shaders and CUDA to implement ray-tracing on the GPU. We take this
seminal work to the next level, exploiting the capabilities of the latest
graphics technology to implement an extensible framework for the
development of virtual-reality exploration of mathematical landscapes.

Currently, the NVIDIA’s Falcor rendering framework [2] provides a
platform based on Vulkan and DirectX 12 that supports many features
for real-time visualization, including OpenVR and DirectX Raytracing.
However, ray tracing and virtual reality do not work in an integrated
way in Falcor. In this work, we integrate ray tracing and virtual reality
in Falcor for enabling the intrinsic visualization of 3-manifolds.

2.4 Metric Neutral
One relevant aspect in the visualization of Non-Euclidean spaces is the
metric implied by the geometry. In this respect, Gunn [8] proposed
a metric-neutral framework that simplifies the rendering of such ge-
ometries. Particularly, it introduces some advances that have an impact
on the architecture of generic Virtual Reality systems — for example,
a metric-neutral algorithm for head-tracking in VR for the different
metric spaces of interest.

Another approach that simplifies the implementation of rendering
applications for Non-Euclidean geometries was proposed by Guimaraes

et al. [6] for two-dimensional manifolds. It is an encapsulation method
to dissociate the application development from the geometric space
in which it will be represented, while at the same time preserving the
intrinsic metric and topological structures of the space.

We extend the approach of Guimaraes et al. from 2D to 3D, in order
to facilitate the development of applications in our framework.

3 NON-EUCLIDEAN SPACES

In this section we introduce the concepts and main results of manifolds
and some special non-manifolds: polyhedral complexes and orbifolds.
We also present the main ingredients for a ray tracing implementation
on such abstract spaces.

3.1 Ray Tracing Requirements
The paper deals with an immersive visualization of spaces modelled
by Non–Euclidean geometries using ray tracing, thus we need at least
three properties:

• Being locally similar to an Euclidean space — that is, a manifold.
This allows us to put the viewer and the scene inside the ambient
as in common approaches: some deformation may be allowed;

• For each point p we need vectors pointing in all directions: the
tangent vectors at p. Moreover, the inner product between two
tangent vector is required. These definitions are used to simulate
effects produced between the lights and the scene objects.

• For a point p and a vector v tangent at p, we should be able
to compute the ray leaving p in the direction of v. Finally, the
intersection between rays and the scene “objects” are required.

Geometric manifolds satisfies the above properties. Such objects are
locally geometrical similar to special spaces called model geometries.
In dimension two, for example, there are exactly three models: Eu-
clidean, hyperbolic, and spherical spaces. In dimension three, there
are five more model geometries, however, in this work we focus on the
(classical) first three spaces. We describe these topics in more details
below. Great texts on this subject are Thurston [14] and Martelli [11].

3.2 Geometric Models
The spaces presented in this section will be very useful to model more
complexes spaces which we should introduce later. The main ingredi-
ents for a ray tracing implementation are also present here.

Definition 1 (Euclidean space). The Euclidean space E3 is R3 en-
dowed with the classical inner product 〈u,v〉E = ux · vx + uy · vy +

uz · vz where u = (ux,uy,uz) and v = (vx,vy,vz) are vectors in R3.
The distance between two points p and q is defined by dE(p,q) =√
〈p−q, p−q〉E. The curve γ(t) = p+ t · v describes a ray leaving

a point p in a direction v. Analogously, for any n > 0 the Euclidean
space En is constructed.

Definition 2 (Hyperbolic space). The Lorentzian inner product of the
vectors v and u in R4 is defined as 〈u,v〉H = uxvx +uyvy +uzvz−uwvw.
The vector space R4 endowed with the Lorentzian product is called
the Lorentzian space. The hyperbolic space H3 is the hyperboloid
{p ∈ R4| 〈p, p〉H = −1} endowed with a special metric dH(p,q) =
cosh−1(−〈p,q〉H), where p and q are two points in H3. Due to its
remarkable similarity to the sphere definition (see next definition), H3

is also known as pseudo-sphere.
A tangent vector v to a point p in H3 satisfies 〈p,v〉H = 0. Moreover,

the tangent space TpH3 coincides with the set {v ∈ R4| 〈p,v〉H = 0}.
The Lorentzian inner product is positive on each tangent space.

Rays in H3 are the intersections between H3 and the planes in R4

containing the origin. For instance, the ray leaving a point p ∈ H3

in a tangent direction v is the intersection between H3 and the plane
spanned by the vectors v and p in E4. Such ray can be parameterized
as r(t) = cosh(t)p+ sinh(t)v.

The space H3 does not contain any straight line, thus its rays can not
be straight. However, it is possible to model H3 in the unit open ball

in R3 — known as Klein model K3— such that in this model the rays
are straight lines. More precisely, each point p ∈H3 is projected in the
space {(x,y,z,w) ∈ R4| w = 1} by considering p/pw, the space K3 is
obtained by forgetting the coordinate w.

The hyperbolic space is a model of a Non-Euclidean geometry, since
it does not satisfy only the Parallel Postulate: given a ray r and a point
p /∈ r, there is a unique ray parallel to r. For a ray r in the hyperbolic
space and a point p /∈ r there are an infinite number of rays going
through p which do not intersect r.

Definition 3 (Elliptic Space). The 3-sphere S3 is the set {p ∈
E4| 〈p, p〉E = 1} endowed with the metric dS(p,q) = cos−1 〈p,q〉E.

As in the hyperbolic case, a tangent vector v to a point in S3 sat-
isfies 〈p,v〉E = 0. The tangent space TpS3 corresponds to the set
{v ∈ E4|〈p,v〉E = 0}. The space TpS3 inherits the Euclidean inner
product of E4.

A ray in S3 passing through a point p in a tangent direction v is the
arc produced by the intersection between S3 and the plane spanned by
v, p, and the origin of E4. Such ray can be parameterized as r(t) =
cos(t)p+ sin(t)v.

Again, the 3-sphere S3 is an example of a Non-Euclidean geometry,
since its fails the Parallel Postulate: given a ray r and a point p /∈ r,
there is a unique ray parallel to r. As the rays in S3 are the big circles,
thus choosing two of then in S2 ⊂ S3, they always intersect in exactly
two points.

3.3 Manifolds
A n-manifold M is a topological space which is locally identical (topo-
logically speaking) to the Euclidean space En; n is the dimension of M.
More precisely, there is a neighborhood of every point in M mapped
homeomorphically to the open ball of En. These maps are called charts
of M. The change of charts between two neighborhoods in M must be
continuous. Thus, informally, the manifold definition generalizes the
concept of Euclidean spaces. This work focus on manifolds of dimen-
sion 3. Examples of 3-manifolds include the Euclidean, hyperbolic,
and spherical spaces.

Straight lines are fundamental objects when working with ray tracing
algorithms, since light travels along them. A manifold M admits a
generalization of such notion, the geodesics. To define them we need
two additional tools. The first is the calculus framework, which is done
by requesting changes of charts in M to be diffeomorphisms — M is
called differentiable. This allows us to define for each point a tangent
space and work with calculus on it. The second tool is the attribution of
an appropriate metric on each tangent space — M is called Riemannian.
Then we can compute angles between vectors in tangent spaces (crucial
in ray tracing), and distances between two points in M. Finally, a
geodesic in M is a curve such that locally it is the shortest path. We use
the term ray instead of geodesics since the paper deals with ray tracing.

4 GPU RAY TRACING OF 3D MANIFOLDS

In this section we present the method for immersive visualization of 3D
manifolds and orbifolds using ray tracing on the GPU. In this respect,
we fully exploit the ray tracing capabilities of RTX platform to design
a framework for exploration of Non-Euclidean spaces that is extensible
and structured to handle effectively interactive application scenarios.

We will discuss first the basic principles of ray tracing in Non-
Euclidean spaces, as well as, the general algorithm in CPU. Then, we
will show how to map the computation to the RTX pipeline and present
the details of GPU implementation.

4.1 Overview of the Method
The ray tracing algorithm is arguably the most natural method to pro-
duce visualizations of the intrinsic space of a 3D manifold/orbifold.
Basically, it is necessary to adapt the traditional ray tracing of the
Euclidean ambient space to take into account both the geometry and
topology of the manifold/orbifold. The first aspect of this task is to
simulate the ray path as it travels inside the space, starting from the
point of observation until it intersects with a visible object. The second

aspect amounts to shading, that computes the illumination and evaluates
the light scattered from the environment in the ray direction. Because
of the non-trivial topology of the manifold/orbifold, the computation of
the ray path requires tracking its orbit over the covering space – this
is done by transporting the ray as it exits and enters the fundamental
domain.

4.2 Algorithm in CPU
Let’s study the basic ray tracing algorithm for polyhedral complexes
that represent manifold/orbifold spaces – and compare it with the tra-
ditional ray tracing of Euclidean space, in order to understand the
differences.

As it can be verified in Algorithm 1, the rays are generated from
the observer’s point of view (lines 1 - 3) and intersected with visible
objects (line 5) and if there is a hit (line 6), shading is done (line 7).

These three steps are present in all ray tracing algorithms including
the traditional one for the Euclidean space. In the case of ray tracing
inside a manifold/orbifold we need extra steps to guide the path of a
ray as it moves through the covering space. These correspond to lines
9, 10 and 12.

We assume that the whole computation has the fundamental domain
as a base, which is modeled by a polyhedron ∆. Therefore, as the
ray hits a face Fi in the boundary of the domain (line 9), we need to
transport it by the action of the corresponding transformation of the
discrete group (line 10).

For practical computational reasons we cannot continue the ray path
indefinitely, thus a maximum level is set to stop the path (line 12).

Note that the most important and critical step is the group action
(line 10), which is dependent of the geometry and topology of the
manifold/orbifold. As such, it is specific for each type of space.

Algorithm 1 Ray Tracing in manifolds/orbifolds
1: for each pixel σ ∈ I do
2: Let p := 0 and v be the direction associated to σ

3: Trace a ray r from (p,v) inside ∆

4: repeat
5: Find closest intersection i(r) with objects O0 in ∆

6: if i(r) 6= /0 then
7: Shade pixel break
8: else
9: Find intersection of r with faces Fi of ∆

10: Compute the new origin p′ and ray r′.
11: end if
12: until i≤ maxlevel
13: end for

4.3 RTX Pipeline
NVidia RTX is a hardware and software platform with support for
real time ray tracing. The ray tracing code of an application using
this architecture consists of CPU host code, GPU device code, and the
memory to transfer data to the Acceleration Structures for fast geometry
culling when intersecting rays with scene objects.

Specifically, the CPU host code manages the memory flow between
devices, sets up, controls and spawn GPU shaders and defines the
Acceleration Structures.

The Acceleration Structure is divided conceptually in two classes:
on one hand, the bottom level Acceleration Structure contains the
rendering primitives (triangles for example); on the other hand, the top
level Acceleration Structure is a hierarchical grouping of bottom level
ones.

Finally, the GPU role is to run instances of the ray tracing shaders in
parallel. This is analogous to the well-established GPU rasterization
rendering pipeline.

However, despite the fact that the GPU rasterization pipeline is
based on programmable shaders (i.e., vertex and pixel shaders), its
structure was not designed for ray tracing. For this reason, before the
introduction of RTX, the implementation of ray tracing algorithms in
GPU using OpenGL was difficult and limited. Essentially, most of the

Fig. 2. Ray Tracing Pipeline - main stages of the RTX GPU computation flow (the numerical labels correspond to line numbers of Algorithm 1).

processing had to be done inside the pixel shader in a monolithic way,
thus preventing scalable implementations using a modular architecture
and also the definition of complex scenes.

In contrast, the ray tracing GPU device code runs under a pipeline
scheme composed of a sequence of stages specifically designed for ray
tracing operations. The goal of the first stages is to generate the rays.
Afterwards, a fixed stage calculates the intersection of the rays with the
scene geometry. Then, the intersection points are reported to the group
of shading stages. Notice that more rays can be created at this point,
resulting in a recursion in the pipeline. The final fixed stage outputs the
generated image.

Each shader can be correlated with the tasks performed by the gen-
eral CPU procedure described in Algorithm 1. The Ray Generation
Shader is responsible for creating the rays (line 1), which are defined
by their origins, directions and the custom user-defined data, called
payloads (line 2). A call to TraceRay() launches a ray (line 3). The
next stage is a fixed traversal of the Acceleration Structure which will
describe only at high level here. This traversal uses an Intersection
Shader to calculate the intersections (line 5). All hits found pass by
tests to verify if they are the closest hit. After no additional hits are
found, the Closest-Hit Shader is called for the closest intersection point
(line 7). In case no hits are found, the Miss Shader is called as a fallback
case. It is important to note that additional rays can be launched in the
Closest-Hit and Miss shaders.

Figure 2 shows a simplified scheme of the pipeline, where the associ-
ation of pipeline stages with the steps of the algorithm are indicated by
the line numbers. More detailed information about RTX Ray Tracing
can be seen in [17] and applications can be found in [9].

The above is the general ray tracing GPU pipeline. In the case of ray
tracing inside a manifold/orbifold we have two classes of objects: i) the
scene objects which are embedded in the space; and ii) the boundary of
the fundamental domain that is represented by the polyhedron ∆. They
are treated differently when mapping the algorithm to the RTX pipeline
— while the scene objects are tested and shaded in the regular way (lines
5 and 7), the boundary of the fundamental domain is used to transport
the rays by the group action (lines 9 and 10). This is implemented with
a custom designed Miss Shader.

Another important point is related to the Acceleration Structure. The
RTX platform defines a hierarchical structure in order to efficiently
guide the intersection of rays with scene objects. Bottom-level cells
store the actual scene geometry while top-level cells hold pointers of
the graph structure. In the diagram of Figure 2, this is encapsulated
by the block for ray intersection (lines 5 and 6). Note however, that
in the algorithm for visualization of manifolds/orbifolds, rays travel
through the covering space entering and exiting the fundamental domain
multiple times, In that respect, the fundamental domain acts as an
special higher-level acceleration structure that defines the topology of
the space.

The above description makes clear that the RTX platform poten-
tially opens up new research directions for ray tracing applications,
with an impact similar to the introduction of programmable shaders.

In particular, for the visualization of non-Euclidean spaces it allows
non-trivial advances related to efficient and modular architectures for
interactive and immersive exploration of scenes with complex geometry
and topology, not possible until now.

4.4 GPU Implementation
The implementation of our visualization platform in GPU is build on top
of Falcor using DirectX 12 on Windows 10. The Falcor development
framework consists of a library with support for DXR at high level and
a built-in scene description format.

We use the software Blender to create the scene objects and model
the fundamental domains, including their boundaries.

The core functionality of our system’s architecture consists of a set
of shaders that are mapped to the RTX GPU pipeline as described above.
In order to make the design of the system extensible and modular, we
have adapted the metric neutral approach of Guimaraes et. al. [6]
to ray tracing and extended it to 3D geometrical structures. In this
context, we have developed generic shaders for each stage of the GPU
ray tracing pipeline that are independent of the geometric structure of
the manifold/orbifold. They are specialized and instanced based on
the metric and topological properties of each individual space. That
includes the model of the fundamental domain.

We now describe the tasks performed by the different shader classes,
as well as, the mathematical operations necessary for the visualization
of non-Euclidean spaces. Note that these operations are dependent of
the Model Geometry being used in the space (i.e., Euclidean, Hyper-
bolic and Elliptic) as discussed in Section 3.

Ray Generation Shader: Creates camera rays. For this purpose it
has to use the isometries of the space to transform the ray origin and
direction to the camera coordinate system.

Intersection Shader: Computes the intersection between the ray
and the scene objects. For this purpose it uses the parametric description
of the ray. Both the ray and objects are defined according to the Model
Geomery.

Closest Hit Shader: Performs the shading operation. This includes
computing the local and global illumination. The local illumination
amounts to direct contribution of light sources that is based on angles
between the light direction and the surface normal, as well as, the
distance to the light. All these operations are performed using the Model
Geometry. Currently, we implemented only local illumination. Global
illumination is a topic for future research as discussed in Section 7.

Miss Shader: Deals with the transport of rays in the covering space,
as they leave and enter the fundamental domain. For this, the rays are
tested for intersection with the boundary of the polyhedron ∆. Here,
both the geometric and topological aspects of the embedding space
have to be taken into account.

The distinction of scene objects and the fundamental domain geome-
try is handled through a feature of Falcor’s scene description, i.e., object
and material ID’s. These two types of entities have different ID’s that
causes the assignment of the appropriate specific shader classes. In this
way, only objects in the scene are processed by the standard ray inter-

section operations, while the polyhedron representing the fundamental
domain is processed only by ray-path propagation mechanism.

In addition, for the development of virtual reality applications, we
employ and extend to Non-Euclidean spaces the Ray-VR algorithm [13]
that implements stereo ray tracing on top of Falcor.

5 EXAMPLES AND RESULTS

In this section we present some expressive output images from our
implementation of the algorithm in GPU using RTX, with examples of
the classical manifolds and orbifolds.

Recall that manifolds are abstract spaces locally similar to the Eu-
clidean space. We present three classical examples — Examples 1, 2,
and 3 — of such spaces with their geometry modeled by the classical
model geometries: Euclidean, hyperbolic, and spherical spaces.

The rays in such spaces have a particular behavior that can be
explained in two ways. Topologically, these space are not simply
connected: their fundamental group is nontrivial. Then by Cartan’s
theorem [4], there is a closed ray for each nontrivial element in the
fundamental group. Algebraically, these spaces are the quotient of the
model geometries by some discrete groups, producing thus a tessel-
lation view inside the model geometry. These arguments explain the
multiple copies of the scene in the examples below.

Orbifolds are modeled locally by quotients of a model geometry by
discrete groups. Let M be a Euclidean, hyperbolic, or spherical space.
The quotient M/Γ of M by a discrete group acting on it could be a
non-manifold. In this case, M/Γ is called an orbifold.

We present two simple orbifold examples: the mirrored cube, and
mirrored dodecahedron — Examples 4, 5.

5.1 Flat Torus
Example 1 (Flat torus). Probably the most famous and easiest example
of a compact 3-manifold is the flat torus T3. Topologically, it is ob-
tained by gluing opposite faces of the unit cube [0,1]× [0,1]× [0,1]⊂
E3. It is easy to check that the neighborhood of each point in T3 is a
3-ball of the Euclidean space. Thus T3 is indeed a 3-manifold.

T3 admits a geometric structure modeled by E3 since it is also the
quotient of the Euclidean space by the group of translation spanned by
(x,y,z)→ (x±1,y,z), (x,y,z)→ (x,y±1,z), and (x,y,z)→ (x,y,z±1).
Thus, the face [0,1]× [0,1]×0 is identified to [0,1]× [0,1]×1 by the
translation map (x,y,z)→ (x,y,z+ 1). The remaining pairs of faces
can be identified in an analogous way. The unit cube is the fundamental
domain of T3.

A ray leaving a point p ∈ T3 in a direction v is parameterized as
r(t) = p+ t · v in E3. For each intersection between r and a face F
of the unit cube, we update p by its correspondent point p−n in the
opposite face, where n is the unit vector normal to F . The ray direction
v does not need to be updated.

Therefore, we have the ingredients for an immersive visualization of
T3 using ray tracing. The scene can be set in the unit cube since it is
the fundamental domain. The rays in T3 can return to the starting point,
providing many copies of the scene. The immersive perception is E3

tessellated by unit cubes: each cube contains one copy of the scene.

Figure 3 provides an immersive visualization of the 3-dimensional
torus T3, presented in Example 1, using the shader described in Sub-
section 4.4. There is only one monkey’s head, the Suzanne classical
Blender mesh, and a unique pair of hands. We attach Suzanne to the
camera. The closed rays produce many scene copies. Algebraically, this
image describes the action of the group of translation in the Euclidean
space which covers T3, explaining thus the copies pattern.

5.2 Hyperbolic Dodecahedron
Example 2 (Seifert-Weber dodecahedral space). To describe a compact
3-manifold with geometric structure modeled by the hyperbolic space
consider a dodecahedron P. Identifying each pair of opposite faces in
P with an addition clockwise rotation of 3π/10 gives rise to a manifold
know as Seifert–Weber dodecahedral space M.

Face pairing produces many identifications, for example, you can
verify that edges are grouped into six groups of five. Thus, it is not

Fig. 3. Immersive view in the 3-dimensional flat torus. The space is obtained by
identifying the opposite faces of a cube (fundamental domain). We use the cube to
set up our scene: a unique mesh (Suzanne) endowed with hands, and the cube’s
edges (colored lines). The face pairing makes the rays that leave a face return from
its opposite face, giving rise to many copies of the scene, tessellating the Euclidean
space.

possible to fit Euclidean geometry into such a manifold, since the
regular Euclidean dodecahedron has a dihedral angle of approximately
116 degrees. The desired dodecahedron should have a dihedral angle
of 72 degrees.

We use the hyperbolic geometry to model the geometry of M. Let the
dodecahedron be centered at the origin of H3. The dihedral angle of the
dodecahedral in the hyperbolic space is smaller than in the Euclidean
case. In fact, with an appropriate scale, the dodecahedron admits a
dihedral angle of 72 degree as desired.

Using Klein’s model of H3, the rays are straight. So to compute a
ray leaving a point p ∈M in a direction v, we use r(t) = p+ tv. For
each intersection between r and a dodecahedron face, we update p and
v through the hyperbolic isometry that produces face pairing above.
This isometry is quite distinct from Euclidean isometries (see [7]).

The immersive perception of M using ray tracing is a tessellation of
H3 by dodecahedra with a dihedral angle of 72 degrees.

Figure 4 illustrates an inside view of Seifert–Weber dodecahedral
space, given in Example 2. Again, there is only one Suzanne endowed
with hands attached to the camera. The image describes the action of a
special discrete group (see Example 2) on the hyperbolic space, which
provides a dodecahedron tessellation of the hyperbolic space.

5.3 Spherical Dodecahedron

Example 3 (Poincaré dodecahedron space). If the opposite faces of
the dodecahedron are identified by a clockwise rotation of only π/5 we
get Poincaré dodecahedron space, a manifold discovered by Poincaré.
This manifold is also known as Poincaré homological sphere since its
first homological group is trivial.

Again, the face pairing forces many identifications. The edges are
grouped into ten groups of three edges. To model the geometry of
such space the dihedral angle of the dodecahedron must be 120. It is
not possible to model with Euclidean geometry. In this case, we use
spherical geometry.

To find the desired dodecahedron we consider it embedded in the
3-sphere. If the dodecahedron is very small its dihedral angle is very
close to the Euclidean dodecahedron. Then, with an appropriate scale,
the dodecahedron dihedral angle equals to 120 degrees.

A ray passing through a point p ∈ S3 in the tangent direction v is
parameterized by r(t) = cos t p+ sin tv. If r intersects a face of the
dodecarehedron we update p and v by the face transformation, which
we discuss in more details below.

Fig. 4. Immersive visualization of Seifert–Weber dodecahedron space. The space
is obtained by identifying, with a rotation of 3π/10, the opposite faces of a special
regular dodecahedron embedded in Klein’s model of hyperbolic space. We use
the dodecahedron to set up our scene: a unique Suzzane with hands and the
dodecahedron’s edges. The face pairing make the rays that leave a face return,
with an additional rotation, from its opposite face, giving rise to many copies of the
scene: a tessellation of the hyperbolic space by rotated dodecahedra.

The immersive visualization of Poincaré dodecahedral space is a
tessellation of S3 by 120 dodecahedra. This is one of the 4-dimensional
polytopes, known as 120-cell and shown for the first time here.

Figure 5 presents an immersive view of Poincaré dodecahedral space
(Example 3). A unique Suzzane with hands and the dodecahedron
edges compose the scene. For a better understanding of the spherical
geometry, we do not attach Suzzane to the camera. Note that as the
distance increases, Suzanne’s size first decreases and then begins to
increase: there is a large Suzanne upside down at scene background.
This image describes the icosahedron group acting on the 3-sphere.

Fig. 5. Immersive visualization in Poincaré dodecahedron space, which is obtained
by identifying, with a rotation of π/5, the opposite faces of a regular dodecahedron
embedded in 3-sphere. We use a parameterization of the spherical dodecahedron
to set our scene: Suzzane with hands and the dodecahedron’s edges. The faces
pairing make the rays that leave a face return, with an additional rotation, from its
opposite face, giving rise to many copies of the scene: a tessellation of sphere, the
4-dimensional regular polytope known as 120-cell, shown here for the first time.

5.4 Mirrored Cube
Example 4 (Mirrored cube). The mirrored cube Q3 is an example
of an orbifold with the geometric structure modeled by E3 through a

special group of reflection Γ. Such group is generated by the reflections
of the planes x =±1, y =±1, and z =±1 in E3. The unit cube is the
fundamental domain of Q3. Each time a ray r intersects a face of the
fundamental domain of Q3 it is reflected, creating a polygonal curve in
Q3: exactly what happened with the lights in a mirrored room. Such
polygonal curve suspends to ray in E3, thus we see a tessellation of E3

by reflected unit cubes when immersed in Q3.

Figure 6 gives an immersive visualization of the mirrored cube,
presented in Example 4. Again, there is a single Suzanne in the scene
attached to the camera. The image is the view of a group of reflection
acting on the Euclidean space.

Fig. 6. Immersive visualization of the mirrored cube, obtained by considering
the faces of a regular cube to be perfect mirrors. A unique mesh (Suzanne) and
the cube’s edges provide the scene. The perfect mirrors make the rays iterate,
producing the sensation of being inside a cube tessellation of Euclidean space.

5.5 Mirrored Dodecahedron
Example 5 (Mirrored dodecahedron). For an example of an orbifold
with a geometric structure modeled by the hyperbolic space, consider
the dodecahedron embedded in H3. Let Γ be the group of reflections
generated by the dodecahedral faces. With an appropriate scale, the
dihedral angle of the dodecahedron reaches 90 degrees. The quotient
H3/Γ is the mirrored dodecahedral space. Γ tessellates H3 with do-
decahedra, each edge has exactly 4 cells.

Figure 7 illustrates an inside view of the mirrored dodecahedron
(Example 5) using the reflection definition in the hyperbolic space.
Suzanne model is attached to the camera. The image is the view of the
group of reflection acting on the Hyperbolic space.

6 ANALYSIS

In this section we present a quantitative and qualitative analysis of the
results developed using our framework. This includes computational
performance, interactivity and space perception.

6.1 Performance
Here we show the experiments to evaluate our algorithm in respect of
performance in current VR devices. The hardware setup consists of
a computer with a NVIDIA GeForce 2080 Ti for RTX Ray Tracing
support and a HTC Vive for VR visualization. The resolution is set to
1512x1680 for each eye, resulting in a total resolution of 3024x3360.
A mono version of the algorithm is used as control. Figure 8 shows the
results.

Our algorithm achieves performances near 80 fps in high resolution
for the Torus, Seifert-Weber and Mirrored Dodecahedra when using 3
or less bounces. This value is near 90 fps, the peak frame rate recom-
mended for VR experiences in Vive, and ensures a smooth experience
for users immersed in those spaces.

Fig. 7. Immersive visualization of the mirrored dodecahedron. This space is
obtained by considering the faces of a hyperbolic regular dodecahedron to be
perfect hyperbolic mirrors. A unique mesh (Suzanne) and the dodecahedron’s
edges provide the scene. The mirrors make the rays iterate in the scene, producing
the sensation of being inside a tessellation, by dodecahedra, of the hyperbolic
space.

167

167

167

91

83

77

77

43

125

83

91

63

59

42

45

22

83

63

63

48

43

29

22

22

Frame rate (frames per second)

Torus

Seifert-Weber
Dodecahedron

Mirrored
Dodecahedron

Poincaré
Sphere

0 50 100 150 200

3 bounces (mono)

3 bounces (stereo)

5 bounces (mono)

5 bounces (stereo)

7 bounces (mono)

7 bounces (stereo)

Performance X Number of ray bounces

Fig. 8. Performance X Number of ray bounces. The algorithm can generate high
resolution stereo images of the spaces, performing up to 80 fps.

6.2 Interaction

To give the user a better perception of the torus and the mirrored room,
we attach, besides Suzanne’s head to the camera, models of the left and
right hands to the left and right controls of the HTC Vive (see Figure 6).
Thus interacting in the fundamental domain provides a better sense of
being immersed in the quotient spaces.

Future works include the motion capture of the user whole body
skeleton, using techniques reminiscent from computer vision and artifi-
cial intelligence [12] (see Figure 9). This will allow to include in the
scene complete avatars of the users, instead of only the head and hands
used in the current implementation.

6.3 Space Perception

In order to produce a better understanding of the space structure we
add the edges of the fundamental domain to the scene. The result gives
a perception of a tessellation of the space.

In the above examples, the complete cell structure of the covering
space is readily apparent since we explicitly marked the boundary of
the fundamental domain, see Figures 3 to 7.

More subtle perception arise if only some static objects are placed
in key landmarks of the domain. Moreover, adding a dynamic behavior
may give a transient or pulsating character to the space (i.e., with

Fig. 9. Pose Detection and Motion Capture: currently Head and Hands are
captured using HTC Vive Headset and Controllers; in future implementations the
user’s pose (indicated by the superimposed skeleton) will be estimated and tracked
by the AI method described in [12].

Fig. 10. Inside view of the mirrored dodecahedron. This is the same space
depicted in Figure 7 without showing the structure of the fundamental domain.

random or periodic motion, respectively). See Figure 10.
In addition, when the viewer is placed inside an opaque cell with a

few openings (e.g., a cube with doors and windows), the perception of
an infinite space changes to that of a maze.

Another important ingredient in the understanding of the space struc-
ture is the scale, which is related to the fundamental domain volume. In
Figures 3 to 5, for example, we are able to see many copies of the fun-
damental domain, which produce, again, the view of its covering space.
However if we consider a fundamental domain sufficiently larger, the
user will be able to visualize mostly the immediate surroundings of

the scene restricted to the fundamental domain. This leads us to the
philosophical question: what is the shape of the Universe? or could we
be living inside a 3D torus?

7 EXTENSIONS AND FUTURE WORK

This work opens many questions related to using virtual reality to vi-
sualize abstract spaces. Basically, if in such spaces we are able to
compute rays and their intersection with embedded objects (submani-
folds, probably), then this opens up many possibilities of exploring the
visualization and interaction in such spaces.

7.1 Applications
For enhanced user experiences in Non-Euclidean spaces, well-designed
tours and games are desired within these spaces.

For a tour, the virtual user body could be attached to an object, an
airplane for example, which is driven by the HTC Vive controllers.
This would allow the user to travel among cells of the covering space.

Extending the tour, a game inside these abstract spaces would pro-
duce “surreal” experience. Since computing rays is our speciality, a
“shooter” game would be a first candidate. Adding some on-off proba-
bilistic rule depending on the cell could give increasing challenge to
the player, based on his/her level in the game. Such application is an
extension of the two dimensional case presented in [6].

There is also the possibility of many users interacting in a same
space. For that, we intend to use the visual motion capture system [12]
mentioned in the previous section and the interaction framework of
Velho et al. [15].

7.2 Illumination, Space and Time Effects
Fog is a technique used in rendering to enhance the space perception
by letting the object shading to be dependent of its distance from the
camera, assuming a participatory medium. Figure 1 (and also Fig. 3)
presents the effects caused when applying fog in the space – its left
side did not received fog, while the right side received.

For a more artistic application, the scene shading could depend on
the cell (thinking that the rays travel in the covering space). Each cell
in the covering space has a code i, j,k ∈ Z, Thus incorporating some
on-off probabilistic rule depending on the integers i, j,k could provide
a special effect to be exploited by artistic control. Also, adding a delay
during the ray tracing would produce a significant time-dependent
effect contributing to an artistic space perception.

In future works we intend to investigate other visual effects with
different illumination and reflection models. We plan to consider to
let the light rays to travel among cells, changing in various ways their
contribution of the scene shading.

As mentioned in Section 4.4 we currently adopt only a local illumi-
nation model for shading. As a consequence, this prevents the use of
global ray tracing effects such as reflection and refraction. Nonetheless,
we have already started some experiments to incorporate path tracing
into our framework. Preliminary results are shown in Figure 11. Unfor-
tunately, the computational performance is not interactive yet and will
require many optimizations.

8 CONCLUSION

In this paper, we introduced real–time immersive ray tracing visualiza-
tion algorithms for classical three-dimensional manifolds and orbifolds.

These algorithms are based on the DXR API and are built on top of
Falcor, NVIDIA’s scientific prototyping framework, which relies on the
power of the new generation of RTX GPUs.

Our contribution includes a complete software platform for the visu-
alization of non-Euclidean spaces featuring an efficient and modular
architecture that allows the exploration of scenes with both complex
geometry and topology, not possible before.

From a theoretical point of view, our framework could be used
to investigate abstract phenomena in geometry and topology of low
dimension. However our work goes beyond this, it establishes new
possibilities for the use of non-Euclidean space in games, art, and in
the dissemination of those exotic abstract spaces.

Fig. 11. Global Illumination effects incorporating path tracing to our visualization
framework. Inside view of the 3-Torus using the scene of Figure 3 with the addition
of an specular sphere, thus the material produces reflections of the ambient.

REFERENCES

[1] N. Amenta, S. Levy, T. Munzner, and M. Phillips. Geomview: a system for
geometric visualization. In Proceedings of the eleventh annual symposium
on Computational geometry, SCG ’95, pp. 412–413. ACM, New York,
NY, USA, 1995. doi: 10.1145/220279.220327

[2] N. Benty, K.-H. Yao, T. Foley, M. Oakes, C. Lavelle, and
C. Wyman. The Falcor rendering framework, 05 2018.
https://github.com/NVIDIAGameWorks/Falcor.

[3] P. Berger, A. Laier, and L. Velho. An image-space algorithm for immersive
views in 3-manifolds and orbifolds. Visual Computer, 2014.

[4] M. P. d. Carmo. Riemannian geometry. Birkhäuser, 1992.
[5] G. K. Francis, C. M. A. Goudeseune, H. J. Kaczmarski, B. J. Schaeffer,

and J. M. Sullivan. Alice on the eightfold way: Exploring curved spaces
in an enclosed virtual reality theatre. In Visualization and Mathematics
III, pp. 305–315, 2003.

[6] F. Guimaraes, V. Mello, and L. Velho. Geometry independent game
encapsulation for non-euclidean geometries. In Proceedings of SIBGRAPI
Workshop of Works in Progress, 2015.

[7] C. Gunn. Discrete groups and visualization of three-dimensional manifolds.
In Proceedings of the 20th annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’93, pp. 255–262. ACM, New York,
NY, USA, 1993. doi: 10.1145/166117.166150

[8] C. Gunn. Advances in Metric-neutral Visualization. In
V. Skala and E. Hitzer, eds., GraVisMa 2010, pp. 17–26.
Eurographics, http://gravisma.zcu.cz/GraVisMa-2010/

GraVisMa-2010-proceedings.pdf, 2010.
[9] E. Haines and T. Akenine-Möller, eds. Ray Tracing Gems. Apress, 2019.

[10] R. Hudson, C. Gunn, G. K. Francis, D. J. Sandin, and T. A. DeFanti.
Mathenautics: using vr to visit 3-d manifolds. In Proceedings of the 1995
symposium on Interactive 3D graphics, I3D ’95, pp. 167–170. ACM, New
York, NY, USA, 1995. doi: 10.1145/199404.199433

[11] B. Martelli. An introduction to geometric topology. arXiv preprint
arXiv:1610.02592, 2016.

[12] L. Schirmer, D. Lucio, L. Velho, and H. Cortes. Tensorpose: Real-time
pose estimation using tensorflow for interactive applications. Technical
Report TR-yy-2019, VISGRAF LAb - IMPA / PUC-Rio, 2019.

[13] V. Silva and L. Velho. Ray tracing virtual reality in falcor : Ray-vr.
Technical Report TR-05-2019, VISGRAF Laboratory - IMPA, 2019.

[14] W. Thurston. The geometry and topology of three-manifolds. Princeton
University, 1979.

[15] L. Velho, L. Carvalho, and D. Lucio. Vr tour: Guided participatory meta-
narrative for virtual reality exploration. Technical Report TR-06-2018,
VISGRAF Lab - IMPA, 2018.

[16] S. Weismann, C. Gunn, P. Brinkmann, T. Hoffmann, and U. Pinkall.
jreality: a java library for real-time interactive 3d graphics and audio. In
ACM Multimedia’09, pp. 927–928, 2009.

[17] C. Wyman, S. Hargreaves, P. Shirley, and C. Barré-Brisebois. Introduction
to DirectX Raytracing. In ACM SIGGRAPH 2018 Courses, Aug. 2018.

http://gravisma.zcu.cz/GraVisMa-2010/GraVisMa-2010-proceedings.pdf
http://gravisma.zcu.cz/GraVisMa-2010/GraVisMa-2010-proceedings.pdf

	Introduction
	Motivation
	Contributions
	Structure of the Paper

	Related and Previous Work
	OpenGL Visualization of Non-Euclidean Spaces
	Virtual Reality
	Ray-Tracing
	Metric Neutral

	Non-Euclidean Spaces
	Ray Tracing Requirements
	Geometric Models
	Manifolds

	GPU Ray Tracing of 3D Manifolds
	Overview of the Method
	Algorithm in CPU
	RTX Pipeline
	GPU Implementation

	Examples and Results
	Flat Torus
	Hyperbolic Dodecahedron
	Spherical Dodecahedron
	Mirrored Cube
	Mirrored Dodecahedron

	Analysis
	Performance
	Interaction
	Space Perception

	Extensions and Future Work
	Applications
	Illumination, Space and Time Effects

	Conclusion

