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SeeSaw: Learning Soft Tissue Deformation
From Laparoscopy Videos With GNNs
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Abstract—A major challenge in image-guided laparo-
scopic surgery is that structures of interest often deform
and go, even if only momentarily, out of view. Methods
which rely on having an up-to-date impression of those
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structures, such as registration or localisation, are under-
mined in these circumstances. This is particularly true for
soft-tissue structures that continually change shape - in
registration, they must often be re-mapped. Furthermore,
methods which require ‘revisiting’ of previously seen ar-
eas cannot in principle function reliably in dynamic con-
texts, drastically weakening their uptake in the operating
room. We present a novel approach for learning to es-
timate the deformed states of previously seen soft tis-
sue surfaces from currently observable regions, using a
combined approach that includes a Graph Neural Network
(GNN). The training data is based on stereo laparoscopic
surgery videos, generated semi-automatically with mini-
mal labelling effort. Trackable segments are first identified
using a feature detection algorithm, from which surface
meshes are produced using depth estimation and delau-
nay triangulation. We show the method can predict the
displacements of previously visible soft tissue structures
connected to currently visible regions with observed dis-
placements, both on patient data and porcine data. Our
innovative approach learns to compensate non-rigidity in
abdominal endoscopic scenes directly from stereo laparo-
scopic videos through targeting a new problem formulation,
and stands to benefit a variety of target applications in
dynamic environments.

Index Terms—Deformation estimation, graph neural net-
work (GNN), laparoscopy, machine learning, minimally inva-
sive surgery, soft tissue deformation, surgical navigation.

I. INTRODUCTION

COMPUTER Assisted Surgery (CAS) encompasses a large
variety of techniques which aid surgical personnel in the

carrying out of surgery. Many of these methods require an
intraoperative model of the surgical site, such as registration with
preoperative data [1], [2], [3], tracking areas of interest [4], [5],
[6], [7] or for path planning in robotic assisted surgery [8], [9].
Keeping such a model up-to-date is a challenging task, especially
in minimally invasive surgery (MIS, where the view is very
limited), whenever soft-tissue is involved (which deforms due to
breathing, heart beat and manual manipulation) or when smoke
and tools obscure the surgical site from view. Furthermore,
structures can deform when they are out of view [10]. In these
cases, feature-tracking or mapping systems can lose track of
parts or all of the surface [11]. In Simultaneous Localisation
and Mapping (SLAM), recovery from such a failure after the
scene has deformed can be extremely difficult.

To tackle these problems, the prediction of the current states
of previously visible or hidden structures has been subject to
research in recent years. Modelling the priors necessary to
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Fig. 1. Typical images from video sequences used to train our model. Instruments can obstruct the view of the tissue or the camera moves
and tissue is no longer visible. Furthermore, pieces of tissue can move in different directions. Blue keypoints within dark regions are those which
can be used for learning. However, for each particular case, only blue points which lie in masked regions (hatched regions in the images of this
figure) are used to calculate a loss. Green and Blue points outside the dark regions are visible points input to the model. Red keypoints are points
unmatched across timepoints. To reflect the different ways structures can be obscured from view, our creation of masks in the data generation
process encompasses the concepts of interpolation and extrapolation. a) Represents a case where a blot on the camera obscures keypoints from
view, b) reflects the case where an instrument occludes a portion of the tissue from view, and lastly, c) imitates the shifting of the camera such that
the field of view doesn’t capture previously seen tissue. This masking is done in a random manner.

do this for soft tissue is very challenging [12]. Relatedly, the
non-rigid reconstruction of dynamic and deforming soft tissue
has been done through modelling with neural fields [13], [14] or
Gaussian splatting [15]. Despite their reconstruction accuracy,
these methods are trained scene-wise and encode temporal de-
formations implicitly in the trained data. In other words, they
do not learn how soft tissue deforms, but rather they learn
the deformation of a particular scene. Therefore they can’t be
used for zero-shot online prediction of tissue deformation out
of the distribution or across scenes. In contrast, the method
we introduce learns to predict displacements, and therefore
deformations, of previously seen soft tissue structures of the
scene and generalises across datasets without fine tuning. More
generally, there exists work on the non-rigid reconstruction of
isolated subjects. Li et al. [16] released 4DComplete, a method
for estimating the motion of occluded regions of moving ob-
jects. Lin et al. introduce OcclusionFusion [17], a dynamic
3D reconstruction method which advances on 4DComplete to
perform in a real-time setting. Efforts towards shape completion,
such as in the domain of Point Cloud Completion [18], [19],
[20], also align well with our task. However, they are often
limited to predefined classes of objects. The case is similar for
Graph Convolutional Autoencoder-based methods [21], [22].
Sanchez-Gonzalez et al. showed that their Graph Network-based
Simulators (GNS) can accurately simulate the behaviours of
several complex materials [23]. Similarly, Pfaff et al. showed
the ability of Graph Neural Network (GNN) methods to sim-
ulate mesh-based structures, including thin cloth [24]. Salehi
& Giannacopoulos introduced ‘PhysGNN’ for estimating de-
formations of brain tissue under specific forces, learned from
Finite Element Method (FEM) simulations of deformed brain
meshes [25].

In estimating soft tissue deformation during laparoscopy,
learning class-level models is inappropriate, and simulating
the human abdominal environment is prohibitively complex.
Instead, we present a novel two-stage method featuring a GNN
which predicts, with respect to the current camera perspective,
the up-to-date positions of previously seen soft tissue regions

which are no longer visible, from partial views of these structures
and while accounting for non-rigid changes realistically. In the
scope of this work, we aim to do so for short-range deformations
(less than 10 mm), which already stands to benefit downstream
methods and applications such as tracking and SLAM. The
method firstly roughly aligns the contents of the surgical scene
at two different timepoints using feature matching and Singular
Value Decomposition (SVD), followed by finely and non-rigidly
compensating the residuals from SVD in a learned realistic
manner using a GNN. Our method takes inspiration from Pfaff
et al. [24], but rather than tackling physics simulation, it esti-
mates the complete current state given the complete initial state
and partial knowledge of the current state. We bypass the need
for simulated data, which is difficult to obtain due to complexity
and therefore laboriousness, by leveraging feature matching and
depth estimation on video data. Training data is generated from
stereo laparoscopic videos of abdominal surgeries (see Fig. 1),
allowing our method to learn a pseudo-physical model for the
prediction of deformations of abdominal soft tissue, directly
from real data.

II. METHODOLOGY

The main novelty in our method is the learning process which
allows us to train our GNN to realistically predict changes in
the scene, including soft-tissue deformation. Although SVD
alignment is an integral part of our overall approach, it is a fixed
component. As such, we focus on details regarding GNN training
and implementation in the methodology. We likewise focus on
the GNN in evaluation, while assessing the contribution of SVD
when appropriate. This study was performed in accordance
with the ethical standards of the Helsinki declaration and its
later amendments. The local Institutional Review Board (ethics
committee at the Dresden University of Technology) reviewed
and approved this study (approval number: BO-EK-140032021)
on the 16th of May 2021. As this is a retrospective study on
routine clinical data, written informed consent was not required.
The trial was registered on clinicaltrials.gov (trial registration
ID: NCT05268432).
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Fig. 2. Exclusion Criteria Examples. Top Left: Trocar and DaVinci UI
elements visible. Top Right: Excessive blood pooling. Bottom Left: Ob-
jects other than instruments present (gauze). Bottom Right: Significant
presence of smoke.

TABLE I
NUMBER OF SEGMENTS PER VIDEO INDEX

A. Data Generation

1) Extraction of Trackable Video Segments: First, we col-
lect segments of video footage where the same structures are in
motion or deforming - these are trackable segments. To do this,
the feature detection algorithm SuperPoint [26] and the feature
matching algorithm SuperGlue [27] were employed. We used
abdominal laparoscopic surgery videos of 12 patients collected
at the University Hospital Carl Gustav Carus Dresden, which
are not publicly available, recorded from a da Vinci surgical
robot with a stereo laparoscope. They ranged in length from
0.16 to 9.12 h (average 4.91 h, median 5.67 h). Across all videos,
8854 trackable segments were identified. Not all segments were
suitable for learning soft tissue deformation, and so were filtered
out according to exclusion criteria such as excessive complexity,
limited soft tissue visibility or substantial pools of fluid (see
Fig. 2). From this pool, 939 filtered segments were obtained
in total, rejecting roughly 90% of examined segments. A break
down of the number of segments per video can be seen in Table I,
where their lengths have a mean and median of 5.5 s± 4.8 s and
4.2 s, respectively.

2) Training Data Setup From Scene-State-Pairs: Using a
random stereo frame of a segment at time tp, we form a mesh
M . Nodes of the mesh, V , are acquired by projecting keypoints,
Ktp , detected in the left image at tp into 3D space with depth
estimated using RAFT-Stereo [28]. The number of nodes in
the mesh is increased to 1000 through Farthest Point Sampling
(FPS) of a depth-map-derived pointcloud. This is done so that
the graph captures more geometric information relating to the
scene. Delaunay triangulation of V gives mesh edges Emesh.

Fig. 3. Illustration of learning problem, based on Graph Process in
Fig. 6. Part of the set of known visible residual displacements is hidden
Uhidden (blue node), causing a prediction to be made for this node. The
error between the predicted (magenta) and known residual displace-
ments (green) Uvis for such nodes is used to train the GNN. Refer to
Fig. 6 for diagram key.

To increase the reach of information, a subset of 121 of the final
1000 nodes in the graph are again sub-selected using FPS and
fully connected to give supplementary edges, Esupp. The full
set of edges, E, is the combination of the sets Emesh and Esupp.

From matches between image keypoints at tp and any other
random frame at tq , and a similar 3D-projection of keypoints
Ktq we obtain a set of primary displacements, d ∈ Dmatch.
Nodes which correspond to matches across timepoints tp and
tq, we term Vmatch. We formulate our learning problem by
artificially partitioning Vmatch into visible, Vvis, and hidden,
Vhidden, learning to predict displacements on hidden nodes.
This is visualised in Fig. 3. In order to maintain an up-to-date
impression of previously visible soft tissue structures from the
current view, it is necessary to estimate these primary displace-
ments for those previously visible structures. We consider these
primary displacements to be composed of a rigid component
(for example, but not limited to, camera movement), R, and
a non-rigid component (soft tissue deformation or otherwise),
NR. To account for the rigid component R, and to ’standardise’
the learning problem for the GNN, we rigidly align the keypoints
separated by the visible subset of Dmatch, Dvis, using Singular
Value Decomposition (SVD).1 Following SVD alignment, we
are left with residual displacements,u ∈ Umatch. These residual
displacements represent NR in our problem setup, and are to
be compensated by the GNN. However, this is not to say that
SVD does not partly account for displacements arising from
deformation. In our learning setup, we thus learn to predict
hidden residual displacements Uhidden from visible residual
displacements Uvis.

Before partitioning, we first identify residual displacements
that are likely to be well-estimated, or trustworthy. Such residual
displacement values are used to backpropagate errors and train

1[Online]. Available: https://github.com/nghiaho12/rigid_transform_3D

https://github.com/nghiaho12/rigid_transform_3D
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Fig. 4. Example image from video, displaying instrument mask (blue)
and dilated depth-derived mask identifying regions with high gradients
in the depth map (red). Both are used to identify nodes which should not
contribute to the loss.

our GNN, with the expectation that they are not outliers. This is
done by exempting nodes located on large gradients in the depth
map, those found to belong to instruments through instrument
segmentation [29] (see Fig. 4), as well as those matched by
SuperGlue [27] with a confidence below a threshold. Nodes
which remain are considered trustworthy. We then partition the
points using three different types of mask, encompassing the
concepts of interpolation and extrapolation (see Fig. 1):

� Blot (interpolation): a circular region centred on a random
visible keypoint.

� Linear Instrument (interpolation): linear segment inter-
secting on a random visible keypoint, with random angle.

� Field of View Shift (extrapolation): edge of image offset
from random corner is occluded.

The pixel-wise radius, width or displacement of the different
mask elements are adjusted such that 80 to 85% of nodes in
Vmatch fall outside the masked elements. Constrained by the
following criteria, these nodes are taken to be the visible nodes,
Vvis (see Fig. 5):

� At least three trustworthy nodes must be allocated to
Vhidden. This is in an effort to mitigate the impact of
learning from an outlier displacement value by increasing
the chance non-outlying values are also present.

� At least 3 matched nodes should be allocated to each con-
tiguous region of the depth map where there is also at least
one trustworthy node. This is to account for the likely case
that different contiguous regions will move more indepen-
dently of one another: without information pertaining to a
certain region, when the GNN estimates residual displace-
ments of unseen nodes of that region, backpropagating
errors from trustworthy residual displacements has the
potential to be similar to the GNN learning from noise.

B. Graph Neural Network

To estimate the non-rigid component, NR, of our problem, we
build a simple GNN framework (illustrated in Fig. 6), inspired
by that in Pfaff et al. [24].

Fig. 5. Illustration of contiguous regions in depth map (indicated by
differing shades of grey), with partitioned nodes Vmatch. Green nodes
are visible, red nodes are invisible, and blue nodes are trustworthy.
Nodes from FPS are not displayed here.

The nodes, V , of graph G have the following information:
x, y, z primary and residual displacement vectors (zero-valued
if node is not visible), as well as a Boolean value indicating if
the node belongs to Vvis. This information is then encoded to a
128-dimensional feature vector using a 2-layer neural network
block, εV , with tanh activations and a skip-connection between
first and last layers.

The edges, E, of graph G, are bidirectional and have the fol-
lowing information: the difference in position between the nodes
they connect, in x, y, z coordinates, as well as the Euclidean
distance between them. A separate encoder, εE , identical to εV
in all but the input dimension, is used to encode information on
edges.

Updates to the nodes and edges are then performed as follows,
and in the following sequence, for L message-passing steps:

eij ← fE (eij ,vi,vj) (1)

vi ← tanh(max
j

(eij)) (2)

Where fE is again a neural network with a skip connection, i
and j are node indices i, j ∈ V , eij is the edge connecting nodes
i and j, and vi and vj are the node features for nodes i and j
respectively.

To obtain the predicted residual displacements onVhidden, an-
other neural network, δV , lastly decodesv ∈ V to 3-dimensional
vectors, i.e. estimated residual displacements û.

C. Model Training

The GNN was implemented in PyTorch, and trained in a
6-fold cross-validation (CV) on approximately 100,000 meshes,
half extrapolation and half interpolation, across the 12 videos: 8
training, 2 validation, 2 testing. We refer to this as the 12-Patient
dataset. The models were trained for 150 epochs on each fold,
with a decaying learning rate from 10−4 to 10−6. Training was
carried out on RTX A5000 GPUs, requiring around 2.5 days per
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Fig. 6. Diagram illustrating the GNN-based approach introduced in this work. A graph, Gin, is received as input with a sparse set of visible
displacements. To this graph, a ‘Graph Process’ is applied, which predicts the displacements of nodes which have no known displacements to
produce the output graph, Gout. The diagram shows this Graph Process, with the structure of the different neural network blocks used, and a
visualisation of a single iteration. The grey shading of ’Message Passing’ illustrates the information reach of five steps of message passing centered
on the purple node, with later steps of message passing corresponding to lighter greys.

fold. Latent feature dimensions for all neural network blocks
was 128, each had 2 layers, and there were 5 message-passing
steps. An L1 loss was used, and any nodes whose target residual
displacement was greater than 3 s.d. above ¯||U ||match (the
mean euclidean norm of all residual displacements Umatch in
the current graph) were excluded from the loss calculation to
further suppress outliers. The GNN runs at 100 Hz per mesh on
a NVIDIA RTX A5000.

III. EVALUATION

In our evaluation, we analyse both the second stage of the
method which our GNN forms, as well as the performance
of the complete SVD-GNN combination. We carry out this
evaluation in terms of compensating residual displacements, U ,
at the level of the second-stage methods (GNN and otherwise),
and ultimately evaluate the method as a whole with regards to
the primary displacements,D. We assess the performance of our
method and the presence of errors in our data generation process
with a set of experiments:

1) Firstly, we investigate the errors relating to depth estima-
tion, which is essential to the training and evaluation of
our method. We inform the rest of our evaluation using
findings here. We first assess the error arising from the
RAFT-Stereo disparity matching algorithm in endoscopic
abdominal scenes using the SCARED dataset [30]. We
additionally gauge the error from depth estimation in
our generated training dataset by assessing the estimated

length of a tool with known dimensions in our dataset,
the Cadiere Forceps.

2) We run the models of each CV fold on their corresponding
test sets and amalgamated the results, which were overall
similar across folds.

3) We evaluate the method using a different dataset from that
which it was trained - the StereoMIS dataset [31].

4) Lastly, we qualitatively inspect the outputs of the model.
Due to the lack of comparable methods, we include two

baselines. Firstly, a naive baseline method, which we refer to as
Neighbour Averaging (NA), averages displacements of adjacent
Vvis graph nodes to provide estimates for neighbouring nodes
in Vunseen. This is done iteratively to propagate predictions
throughout the graph structure. A second method we refer to
as Gaussian-Weighted Averaging (GA), similar to the first,
uses a Gaussian kernel to weight the influence of the visible
displacements on the predictions on the unseen nodes. Here, the
influence is a function of the distance of the node to be predicted
for from the currently visible node. The influence is a function
of the distance, computed with the following equation:

qj,i = e−
‖pi−pj ‖22

2σ2 (3)

where qj,i is the influence of node j on node i, and pi is the
position of node i. Lastly, σ is a constant value for the euclidean
distance which corresponds to one standard deviation. The value
of the constant for each test fold is determined experimentally
using the Optuna optimisation framework [32] from 25 trials
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Fig. 7. Distribution of depth errors of RAFT-Stereo in evaluation on
SCARED dataset. Mean error −4.85 mm ± 2.98 mm, or −7.46% ±
3.72%.

Fig. 8. Image of the da Vinci Cadiere Forceps, with the lumen length
dimension (as we name it) indicated with a red arrow.

and a random sample of approximately 8,000 graphs (10%) of
the combined training and validation sets of each fold.

A. Data Generation Analysis

As the training and evaluation data in this work is generated
from surgical videos, its accuracy is contingent on the algorithms
employed and thus also contains errors. Here, we carry out an
assessment of the depth estimation process, which we consider
most likely to be the main source of positional inaccuracy in the
data. To do so, we firstly evaluate the RAFT-Stereo depth esti-
mation algorithm, which we have employed, on the SCARED
endoscopic depth estimation dataset [30]. Secondly, to get an
impression of the accuracy in the case of our own dataset, we
determine the error in the measured dimensions of the Cadiere
Forceps [33] (see Fig. 8) tools of the DaVinci surgical robot
system, which is found throughout our training data.

1) Evaluation on SCARED: The SCARED dataset [30]
contains 9 sub-datasets acquired from pigs using the da Vinci
Xi system. A structured light illuminator is used in combination
with the stereo endoscope to produce depth information for five
different keyframes in each sub-dataset. Each keyframe consists
of a unique positioning of the stereo endoscope and the struc-
tured light illuminator, together with a set of camera calibration
parameters, the stereo image pair (left and right resolutions of
1280x1024) and the corresponding structured-light-estimated
depth map. Due to errors in the calibration parameters of the
fourth and fifth sub-datasets, we omit these from our evaluation.
In our data generation process (Section II-A) we utilise keypoints
detected with SuperPoint, which themselves are more distinct
features in the image. Due to this, we expect that the estimated
depth for keypoints is likely to be better than for non-textured
regions of the image. To reflect this, we detect keypoints in the
frames of SCARED and provide results only for pixels corre-
sponding to keypoints. The the median and mean absolute errors

TABLE II
CADIERE FORCEPS SEGMENTS

Fig. 9. Histogram of the depth-estimated lengths of the da Vinci
Cadiere Forceps lumen, where the length of the lumen as measured
with calipers is 12.3 mm.

over all of the keypoints in the data were 4.64 mm (or 7.51%)
and 4.97 mm ± 2.78 mm (or 7.68% ± 3.25%), respectively.
Visualisations of the error distributions can be found in Fig. 7.
With reference to the figure, the mean deviation is consistent and
is−4.85 mm. As such, it appears that there is a systematic error
in underestimation. The standard deviation is 2.98 mm, which
we take to be the noise floor in the depth estimation with respect
to our subsequent evaluations.

2) Cadiere Forceps Measurement Evaluation: We follow
up the evaluation of RAFT-Stereo on the SCARED dataset by
obtaining an estimate for the errors in our own complete depth
estimation setup (resulting from the stereo camera calibration
parameters and disparity estimation, together). To do so, we
randomly sample segments from the entire pool of segments
across the 12 videos in our dataset from Section II-A. If the
Cadiere Forceps, and its entire lumen (see Fig. 8), were visible
in the left frame, we randomly sample three frames within the
segment in which the lumen is visible in its entirety. We do this
until we obtain 30 segments across the videos altogether (see
Table II for the segment numbers).

Altogether, this provided 89 left frames (for which there
are stereo pairs), where one frame was dropped due to being
mis-sampled. For all of the 89 left image frames, we mark the
beginning and end points of the measurement in Fig. 8. We then
compute their positions in 3D space using the corresponding es-
timated depth map, and obtain an estimate for the lumen length.
To obtain a reference value, we measure the lumen of the Cadiere
Forceps using a pair of calipers, and find its length to be 12.3 mm.
Through this process, the median and mean depth-estimated
lengths of the lumen were 10.6 mm and 11.0 mm ± 3.10 mm,
respectively. The distribution of the estimated length can be seen
in Fig. 9. The length of the lumen is on average 1.3 mm smaller
than the true value, which, at 10.6%, roughly corresponds to
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Fig. 10. Box plots illustrating the reduction in observed displacements
greater than 3 mm (above depth estimation noise) for extrapolation and
interpolation on our 12-Patient dataset, jointly. Results from SVD alone,
and SVD combined with a subsequent stage (GNN, GA or NA) are
shown. To reduce the size of the figure, only every 100th sample plotted.

a slightly greater under-estimation compared to the SCARED
dataset.

B. Quantitative - Comparison on 12-Patient Dataset
Figs. 11 and 12 show results on the test sets. The error to the

target position is well-minimised by both the baselines and our
GNN when the distance to the nearest visible node is small. This
is supported by the accumulation of points on the diagonal of the
top left heatmap. When the size of the target residual displace-
ment is at the larger end (closer to 10 mm), the GNN performs
worse for d(v) < 0.5 cm. This is because the training data is
dominated by smaller residual displacements (see Fig. 13). As
the distance to the nearest visible node grows, the heatmaps
become more dispersed as making accurate predictions increases
in difficulty. For distances greater than 1.5 cm (bottom-right), the
baseline methods in fact increase the distance to the target node
position. On the other hand, with the exception of target residual
displacements whose magnitudes are less than 1 mm, our method
reduces the distance to the target position throughout almost all
of the examined range. This is the case for both extrapolation
and interpolation.

Ultimately, the purpose of the method is to estimate primary
displacements, D. In this part of the evaluation, with reference
to the noise floor in the depth estimation investigations, we
consider only primary displacements, d ∈ D, which are greater
in magnitude than 3 mm. We present results for extrapolation
and interpolation in Tables III and IV, where results are a ratio
of the final error magnitude ||E|| over the primary displacement
magnitudes ||D|| to account for differences in primary displace-
ment magnitudes. We further illustrate these errors in Fig. 10.
As can be seen, in eliminating the rigid component R of the
D, SVD alone can provide an impression of the positions of
previously seen structures. However, the combination of SVD
with the GNN which we trained is uniformly both most effective,

TABLE III
12-PATIENT DATASET: REMAINING ERROR TO TARGET FOR EXTRAPOLATION

ON PRIMARY DISPLACEMENTS GREATER THAN 3 mm

TABLE IV
12-PATIENT DATASET: REMAINING ERROR TO TARGET FOR INTERPOLATION

ON PRIMARY DISPLACEMENTS GREATER THAN 3 mm

in terms of mean and median, and most reliable, in terms of
standard deviation, across both extrapolation and interpolation
splits.

Comparing the computational demands, which may differ
depending on implementation, the GNN is much faster than
either baseline. It runs at 100 Hz in comparison to 45 Hz
for the simple Neighbour Averaging, and 2 Hz for the more
demanding Gaussian-Weighted Averaging. However, the NA
and GA methods run on the CPU, and could be further opti-
mised. Nevertheless, in its current form, the GNN presents a
clear ’speed’ advantage, making it much more promising for
application to real-world real-time scenarios.

C. Quantitative - Evaluation on StereoMIS

In a similar way to the 12-Patient dataset, we perform an
evaluation on a separate dataset - the StereoMIS dataset [31].
In this dataset, there are stereo endoscopic videos taken from
three pigs using the da Vinci Xi surgical robot. We use the eight
stereo sequences taken from the second pig, as all of the video
data from the first pig contains structures which are not soft
tissue, and data from the third pig is not publicly available. The
images all have resolution 640x512. With this data, we construct
an experiment to assess:

1) Whether our method works on different abdominal soft
tissue data with a different set of camera parameters.

2) The extent to which our method accounts for soft tissue
deformation.

For these purposes, we identify segments in the videos where
the camera is still and where only soft tissue is present in the
scene. To do so, we:

1) Identify periods in time for which there are surgical
instruments in the scene that are completely still and
occupy the same pixels in the camera image - Sknown.
Here, we can be certain that the camera is still because
the da Vinci camera can only be moved separately from
the tools: when the tools are perfectly still in the frame
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Fig. 11. Accuracy of GNN in predicting residual displacements for extrapolation (as illustrated in Fig. 1) at three different ranges of distance to
nearest visible node, d(v). The heatmaps compare the magnitude of the predicted displacement of a node v, ||û(v)||, against that of the ’known’
displacement, ||u(v)||, where colour intensity corresponds to the number of observations. Above each heatmap are plots comparing the average
remaining distance to the target position of a node, i.e. the error, ||Ē(v)||, against the target displacement magnitude. Green lines represent GNN
predictions, whereas red are those of NA, and blue of GA, and dashed lines indicate where the x- and y- axes are equal, i.e. no change in distance
to the target position. Values below the dashed lines indicate improvements.
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Fig. 12. Accuracy of GNN in predicting residual displacements for interpolation (as illustrated in Fig. 1), at three different ranges of distance to
nearest visible node, d(v). The heatmaps compare the magnitude of the predicted displacement of a node v, ||û(v)||, against that of the ’known’
displacement, ||u(v)||, where colour intensity corresponds to the number of observations. Above each heatmap are plots comparing the average
remaining distance to the target position of a node, i.e. the error, ||Ē(v)||, against the target displacement magnitude. Green lines represent GNN
predictions, whereas red are those of the baseline method, and dashed lines indicate where the x- and y- axes are equal, i.e. no change in distance
to the target position. Values below the dashed lines indicate improvements.
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Fig. 13. Histogram plot showing the distribution of the subset of in-
dividual trustworthy displacement magnitudes, ||u(v)||, which were a
part of Vhidden, throughout the entire dataset (all videos). The size
distributions are shown for both before and after these are aligned by
SVD.

the camera must also be still. This results in 10 segments
across 4 videos, with a mean duration of 19.3 s ± 13.6 s.

2) With poses extracted from da Vinci kinematics which ac-
company the videos, we determine the standard deviation
of the camera poses (in rotation and translation) for the
pose sequences in Sknown. We establish thresholds for
stillness three times the size of the standard deviations:
throt and thtrans.

3) Using throt and thtrans, we identify regions where
the camera is still from periods in the pose sequences
where the absolute camera pose did not change more
than the threshold range, resulting in extracted segments
Sextracted.

4) We visually filter the 61 segments obtained in Sextracted

to retain those where there is only soft tissue in the scene,
and also apply the same criteria as in our earlier data
generation step of Section II-A.

5) Due to our finding of inaccuracies in the kinematics pose
sequences, we further visually sort through Sextracted,
retaining only segments where the camera can be said to
be static from visual inspection.

6) This gives us 33 segments across three videos. We further
filter the segments, so that each ultimately retained seg-
ment represents a unique perspective from the endoscope.
This is done by visually identifying the segments from the
same perspective and randomly retaining one. Through
this process, we are left with 11 segments across three
videos, forming Sstill. These segments are on average
5.11 s± 4.47 s in length, with the shortest segment being
2.8 s in length.

We then proceed to use the video segments inSstill in the same
data generation process as Section II-A. In this case, due to the
higher resolution of the images, we increase the total number of
nodes in the graph to 1650, through FPS, to be proportional
with the number of pixels in the image. For each segment,

Fig. 14. Distribution of displacement magnitudes in StereoMIS.

TABLE V
STEREOMIS: REMAINING ERROR TO TARGET FOR EXTRAPOLATION ON

RESIDUAL DISPLACEMENTS

TABLE VI
STEREOMIS: REMAINING ERROR TO TARGET FOR INTERPOLATION ON

RESIDUAL DISPLACEMENTS

we generate one graph, Gs, between two random timepoints
in the segment, s ∈ Sstill. Differently from the standard data
generation, for each graph, we inspect random matches provided
by SuperGlue. We verify matches visually until we have 30
verified matches, Ms, per segment s. This leaves us with 330
visually verified matches, MS , altogether. For each graph Gs,
we generate 30 random extrapolation masks, and 30 random in-
terpolation masks (each centred on a different matched keypoint
in Ms). Altogether, this provides 660 different extrapolation
and interpolation test graphs for the evaluation. Fig. 14 shows
the distributions of the sizes of individual target displacements
across the dataset based on MS . Given that the camera is still,
only soft tissue is visible, and the displacement distributions
shift towards smaller values after SVD is applied, it is safe to
say that SVD partly compensates for the observed soft tissue
deformation.

As before, we evaluate the GNN, Gaussian-Weighted Averag-
ing and Neighbour Averaging methods on the obtained graphs.
Due to the smaller amount of available data for this test data,
we summarise the results for all of the displacements where the
target displacements are greater than 0.25 mm in size. We choose
0.25 mm as this is where the methods begin to make a difference
as seen in Figs. 11 and 12. The remaining error after applying
the three methods is reported as a ratio of the target displacement
size to account for differences in displacement sizes. Results can
be seen in Tables V and VI. Here, it can be seen that the GNN is
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TABLE VII
STEREOMIS: REMAINING ERROR TO TARGET FOR EXTRAPOLATION ON

PRIMARY DISPLACEMENTS GREATER THAN 3 mm

TABLE VIII
STEREOMIS: REMAINING ERROR TO TARGET FOR INTERPOLATION ON

PRIMARY DISPLACEMENTS GREATER THAN 3 mm

most effective and reliable in estimating residual displacements
U , throughout both extrapolation and interpolation.

However, as previously mentioned, the residual displace-
ments U do not fully encompass deformation. In this experi-
mental setup (fixed camera, soft tissue only), the primary dis-
placements D serve this purpose. As in Section III-B, we further
examine the estimation of primary displacements of magnitudes
greater than 3 mm and therefore above the depth estimation noise
floor. Results can be seen in Tables VII and VIII, and Fig. 15.

Except in terms of standard deviation, combining SVD with
the GNN always results in an improvement over solely employ-
ing SVD. With reference to mean and std. dev. of Tables VII
and VIII, our method combining SVD and GNN produces the
greatest and most reliable prediction of primary displacements
greater than 3 mm: with accuracies of 77.9% in extrapolation
and 85.8% in interpolation.

D. Qualitative Results
Figs. 16 and 17 show example outputs from our network.

In Fig. 16 several structures are visible - fatty tissue, and two
other distinct regions which are under manipulation. From in-
specting the displacements, our network clearly identifies the
separate regions of the scene, as these all have displacement
clusters that point in distinct directions. Furthermore, a number
of outlying ’visible’ displacements, which are highlighted by
cyan arrows, are clearly and correctly ignored by the GNN in
making its predictions. This demonstrates our network’s robust-
ness to incorrect feature matching. These are all testaments to the
effectiveness of our data generation scheme, which has allowed
our network to learn to discern the behaviour of soft tissues
from highly complex scenes, learning to take geometric cues
into account which may otherwise be difficult to do.

IV. DISCUSSION

Our assessments of RAFT-Stereo and the depth estimation
processes in Sections III-A1 and III-A2 provide insight into
the errors present in depth estimation, which our method relies
on for obtaining ground truth data. Through these assessments,

Fig. 15. Box plots illustrating the reduction in primary displacements
greater than 3 mm (above depth estimation noise) for extrapolation
and interpolation on StereoMIS, jointly. There are 233 displacements
altogether (100 in extrapolation, 133 in interpolation). Results from SVD
alone, and SVD combined with a subsequent stage (GNN, GA or NA)
are shown.

we find that depth estimation, as a composite of RAFT-Stereo
and stereo camera calibration parameters, appears to slightly
systematically underestimate the depth of points in the stereo
endoscopic scene. To a large extent, it seems that this may be
due to an underestimated baseline value, as when, in separate
experiments, we scale the baseline, the errors are reduced by
more than half across the board on the SCARED dataset. This
suggests that this may be a problem aspect of stereo endoscope
calibration more generally. Another limitation of our method is
the dataset on which is was trained. Using surgeries on only
12 patients from one hospital leaves room for improvement to
generalisation, where having a greater number of surgeries from
a greater diversity of endoscopes and hospitals would deliver a
benefit. Nevertheless, using the finding in our depth estimation
investigations to inform our subsequent experiments and analy-
ses allows us to concretely demonstrate the effectiveness of our
method despite limitations in the training data. Furthermore,
our application of these findings (a noise floor of 3 mm), to a
separate dataset with a different endoscope and camera param-
eters, StereoMIS, evidences the generalisation capability of our
method.

With reference to Figs. 11 and 12, our GNN is more capable of
estimating displacements of regions further from visible nodes
(more than 0.5 cm away) than the baseline methods. One reason
for the worse baseline performances might be that they are more
susceptible to outliers in Uvis. And a second reason is that errors
are propagated throughout their predictions. On the other hand,
our method consistently reduces the error to the target position
for residual displacements above 1 mm in the range from 1 mm
to 10 mm. Beyond this range, our network is less effective due
to lacking training data.

To evaluate the primary displacements on the 12-Patient
dataset, we limit the analysis to primary displacements which
have a magnitude greater than 3 mm. Applying a second stage
(i.e. GNN, GA or NA) after SVD is clearly beneficial to the task
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Fig. 16. Example graph structure output by our method, superimposed on pointcloud of scene. Inputs to the GNN are the green nodes, Vvis,
and the green lines, Uvis. All red nodes are both invisible and untrustworthy. Purple lines are the predicted displacements output by our network.
Cyan arrows point to visible displacements which are outliers, which our network successfully ignores. The mean and median sizes of input residual
displacements are 1.37 mm ± 1.22 mm and 1.13 mm, and those of predicted residual displacements in the output are 1.09 mm ± 0.67 mm and
0.95 mm.

of predicting the displacement of previously seen structures.
Furthermore, with reference to Tables III and IV, we find that
combining SVD with our GNN is highly effective in both
extrapolation and interpolation, and is more effective than any
of the other combinations.

In our experimental design with the StereoMIS dataset, the
endoscopic camera is still and only soft tissue is in view. We see
that in the process of estimating the displacements of previously
seen structures (composed of SVD & GNN together), the method
remains highly effective in predicting primary displacements
greater than 3 mm, roughly 77.9% accuracy in extrapolation
and 85.8% accuracy in interpolation. These results correspond
to our findings on the 12-Patient dataset in the Tables III and IV
of Section III-B. As such, this experiment and the corresponding
results conclusively prove the value of our method in com-
pensating the deformation of soft tissue. Simultaneously, they
demonstrate that SVD has a role in compensating deformation
and restate the value of the approach we have taken, enabling us
to learn the behaviour of soft tissue directly from real surgical
videos.

Our qualitative evaluation concludes our evaluation by illus-
trating our method’s ability to realistically predict displacements
of structures in the surgical scene, and doing so all the while
suppressing the influence of outliers in the input data.

The experiments and subsequent analysis that we have carried
out clearly demonstrate our method’s effectiveness in estimating
the displacements of previously visible structures that fall out
of view as a result of occlusion or otherwise. They show this
through the performance on the scenarios of both extrapolation
and interpolation, where, for short-range displacements, soft
tissue deformation is realistically accounted for. With this, we
see our method as having great potential for integration into a va-
riety of more extended methods with downstream tasks in MIS.
Firstly, our method could provide an inductive bias to tracking
methods where a structure leaving view often terminates the
tracking process, and enable the method to confidently resume
tracking when structure returns to view. Furthermore, having
a realistic prediction for how a tissue structure deforms may
also enhance the tracking process for tracked structures that are
currently in view.
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Fig. 17. Displacement field for the example in Fig. 16, but without the pointcloud and mesh. The network learns to predict the displacement of
separate tissue regions from a subset of trackable displacements. Displacements and nodes are illustrated using same key as in Fig. 6. Cyan
arrows point to visible displacements which are outliers, which our network successfully ignores.

A second task which the method’s capabilities can certainly
benefit is that of registration, where having a good current
impression of organ surfaces, such as that of the liver, is crucial.
In this vein, our method complements SLAM, wherein several
works aim to tackle the challenge of deforming scenes, and
real-time performance is a must. One such effort is that of
MIS-SLAM [34], where an embedded deformation graph is used
to accommodate soft tissue deformation in mapping, by min-
imising an energy function balancing uniformly-applied heuris-
tics of how soft tissue is expected to deform. DefSLAM [35]
and SD-DefSLAM [36] likewise address non-rigid SLAM in
laparoscopy, however do not aim to estimate the current state
of previously visible structures. Three properties of our work
make it ideal for integration into SLAM systems. Firstly, as
the method is based on feature detection, it can comfortably
fit within the keyframe framework of feature-based SLAM.
Secondly, the GNN method itself runs in a real-time fashion. And
lastly, because the method uses whole-image data (not concen-
trating on isolated structures), and learns to handle the associated
complexity of surgical scenes inherently, it is not limited to
functioning on an isolated subject as with other learning-based
methods such as 4DComplete [16] and OcclusionFusion [17].

A SLAM system integrating our method would likely resemble
MIS-SLAM most closely, but with the main difference that
rather than relying exclusively on heuristics to estimate map
deformation, a method that is inherently sensitive to laparo-
scopic scene geometry and soft tissue deformation would feature
in its place.

V. CONCLUSION

This work introduces a novel graph-based method for learning
the behaviour of soft tissue directly from the highly complex
environment of surgical videos, by leveraging advances in fea-
ture detection and depth estimation, and with only minimal
manual input to dataset curation. Our method outperforms the
baselines in both extrapolation and interpolation, throughout
almost the entire dataset. With it clear that the network is capable
of estimating changes in positions of nearby nodes, it is safe to
say that the method can help to provide an updated view of
previously visible areas. In its current form, it makes signifi-
cant headway towards tackling the challenge of non-rigidity in
contexts such as MIS, by standing to supplement or enhance
the functioning of a range of methods such as liver registration,
polyp tracking and SLAM, among other downstream tasks.
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There remain promising avenues for further work, however.
By maximising the variety of displacement sizes the training data
contains (also greater than 10 mm) through improved data gener-
ation and a greater variety of training datasets, the performance
of our method would likely improve. Furthermore, the inclusion
of RGB values from images to the GNN input may benefit the
method’s accuracy through the inference of material properties.
Likewise, including temporal information, through optical flow
or otherwise, also stands to enhance the performance of the
method. Future directions may also include development of a
means to learn how to mesh the scene for best results. Learned
re-meshing in this context could go further, making updates to
the mesh connections upon cutting, by predicting the mesh struc-
ture that best explains observed displacements. By incorporating
a time component, another possibility would be to integrate the
prediction of regular motion of tissues caused by pulsation or
breathing. With these in mind, in the near term, the integration
of the method into a SLAM system will be investigated.
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