
Under review as submission to TMLR

Policy optimization in reinforcement learning for column
generation

Anonymous authors
Paper under double-blind review

Abstract

Column generation (CG) is essential for addressing large-scale linear integer programming
problems in many industrial domains. While its importance is evident, the CG algorithms
face convergence issues, and several heuristic algorithms have been developed to address
these challenges. However, few machine learning and reinforcement learning methods are
available that enhance the existing CG algorithm. This paper introduces a new policy
optimization RL framework to improve the existing DQN-based CG framework, particularly
training time, called PPO-CG. When applied to the Cutting Stock Problems (CSP), our
approach requires merely 20% of the training time observed with the DQN-based method
and only 35% in Vehicle Routing Problems with Time Windows (VRPTW). Our code is
available in this link1.

1 Introduction

Combinatorial optimization problems are widely applied in various industrial domains such as logistics,
telecommunications, and transportation. Solving large-scale optimization problems efficiently is crucial for
practical applications. In integer linear programming (ILP), the column generation (CG) technique is com-
monly used to solve large-scale integer programming problems.

The CG algorithms take advantage of the fact that the optimal solution only needs a part of the entire
column, making it inefficient to consider the entire matrix. To begin with, the CG algorithm selects a
subset of columns from the Master Problem (MP) and solves the relaxed linear programming problem for
the selected columns, called the Restricted Master Problem (RMP). Then, using the dual variable, the CG
algorithm solves the Pricing Problem (PP). The solutions of PP are new columns, which have the potential
to improve the objective function. The procedure continues until there are no more columns to add.

Despite its usefulness, it is well-known that CG algorithms have convergence issues. Several heuristic al-
gorithms have been developed to address these challenges. For a comprehensive overview, please refer to
Lübbecke & Desrosiers (2005); Vanderbeck (2005) and the references within.

With the advancement of machine learning (ML) and reinforcement learning (RL), researchers are increas-
ingly interested in solving combinatorial optimization problems and enhancing existing heuristic algorithms.
For a review of this research domain, we direct readers to Mazyavkina et al. (2021); Bengio et al. (2021);
Cappart et al. (2023). Moreover, recent work by Berto et al. (2023) presents a unified RL framework for
combinatorial optimization problems.

In line with these growing research interests, applying ML or RL to improve existing heuristic algorithms is
gaining significant attention. In Khalil et al. (2017), the authors leveraged supervised learning to enhance the
branch-and-bound heuristic. The research presented in Tang et al. (2020) employed RL to refine the cutting
plane method, yielding performance surpassing that of human-engineered heuristic algorithms. Meanwhile,
Wu et al. (2021) introduced a customized actor-critic approach to improve existing large neighborhood search
algorithms.

1https://anonymous.4open.science/r/PPO-CG/README.md

1

https://anonymous.4open.science/r/PPO-CG/README.md

Under review as submission to TMLR

Compared with other heuristic algorithms, very little literature exists on CG algorithms employing ML or
RL. To the best of our knowledge, Morabit et al. (2021) is an early attempt to use ML to improve CG.
The authors generate multiple columns in each iteration and employ an “expert” system —represented as a
mixed integer linear programming (MILP)— to supervise training column selection of the neural network.
Datasets are collected from the “expert” before this training process. The authors then encode the RMP into
bipartite graphs with column and constant nodes, as introduced by Gasse et al. (2019). The neural network
is trained in a supervised manner to mimic the behavior of the “expert.” A limitation of this approach is
that solving time-consuming MILP problems is essential in the data collection phase.

The RL approach to CG is first proposed by Chi et al. (2022), called RLCG. In Chi et al. (2022), the authors
follow the methodology from Morabit et al. (2021), employing the Deep Q-Network (DQN) algorithm for
node selection. Additionally, they use a GNN as an approximator for the Q-function of the encoded RMP.

We are interested in improving the existing DQN-based approach using different RL algorithms, such as
policy-based algorithms. This work provides an improved version of the RL framework for CG utilizing
Proximal Policy Optimization (PPO), called PPO-CG. In the process, we combine actor and critic networks
with GNN.

We conduct our experiments on two main tasks in the CG algorithms: the Cutting Stock Problems (CSP)
and the Vehicle Routing Problems with Time Windows (VRPTW). Our approach, PPO-CG, requires only
20% of the training time observed in RLCG for the CSP task and 35% for the VRPTW task. Moreover,
the experiment shows that PPO-CG are more robust than RLCG.

In summary, this paper offers the following contributions:

• Introduces a novel RL framework for column generation that, compared to the DQN-based approach,
RLCG, achieves comparable performance and significantly reduces training time for both CSP and
VRPTW tasks.

• Proposes a new method to integrate GNN with the actor-critic network during CG iterations.

2 Related Works

2.1 Basic Column Generation

In this subsection, we begin with the CG method for linear programming (LP) and then discuss how to get
the integer solutions from the LP solution. Let us consider the following MP:

min
x

cT x

s.t. Ax ≤ b, x ≥ 0,
(MP)

where the matrix A ∈ Rn×m, vectors x, c ∈ Rm and b ∈ Rn. If the number of columns m is very large
compared to n, we consider the following RMP

min
x′

(c′)T x

s.t. A′x′ ≤ b, x′ ≥ 0,
(RMP)

where A′ ∈ Rn×m′ , vectors x′, c′ ∈ Rm′ with 1 ≤ m′ ≤ m. Here, The columns of A′ are a subset of the
columns of A. Denoting a dual variable of Equation (RMP) by λ ∈ Rn, we solve the following PP:

δi = c′
i −

󰁛

j

Ajiλj . (PP)

2

Under review as submission to TMLR

Figure 1: Oveall column generation process

If there exists i such that a reduced cost δi < 0, then we add i-th column of A to A′ and iterate this process
until no more column is selected (see Figure 1).

In this work, we address two ILP tasks: CSP and VRPTW. The CG process for ILP is similar to that used
in LP, with only minor modifications. The simplest approach is to round LP solutions up to the nearest
integer. For additional methods, please refer to Appendix C. For details about the ILP formulations of CSP
and VRPTW, refer to Appendix A. Further comments on the CG iteration for these two tasks can be found
in Appendix B.

2.2 Proximal Policy Optimization

The PPO algorithm was introduced in the seminal work by Schulman et al. (2017) as an easy-to-implement
alternative to Trust Region Policy Optimization (TRPO) by Schulman et al. (2015). Recently, a theoretical
study on the convergence of the PPO algorithm is studied in Holzleitner et al. (2021), and a general theoretical
framework that includes PPO is introduced by Fan & Xiao (2022). In this work, we apply PPO to the CG
iteration, and the motivation for choosing PPO is discussed in Section 3.2.

Let us now briefly explain the PPO algorithm. Detailed information and related topics can be found in
Achiam (2018). Let us denote S and A as a state and action space respectively. For an action a ∈ A and a
state s ∈ S, we denote a parameterized policy by πθ = πθ(a|s). Denoting Qπθ for the on-policy action-value
function, the policy value function V πθ and advantage function Aπθ are respectively defined as

V πθ (s) = Ea∼πθ
[Qπθ (s, a)] and Aπθ (s, a) := Qπθ (s, a) − V πθ (s).

In addition, we define the ratio function and clip function as:

r(θ, θold, s, a) := πθ(a|s)
πθold(a|s) and clip(t, tmin, tmax) := max(tmin, min(t, tmax)),

for t, tmin, tmax ∈ R. Then the PPO algorithm updates a parameterized policy πθ by maximizing:

Lclip(θ, θold) = Es,a∼πθold
[min(r(θ)Aπθold (s, a), clip(r(θ), 1 − ε, 1 + ε)Aπθold (s, a))] . (1)

Note that we simplify r(θ) to denote the ratio function, and ε > 0 is a hyperparameter to be determined
later in Section 4.

3 Proposed Methods

In this section, we provide our proposed method, which is motivated by the methods provided in Morabit
et al. (2021) and Chi et al. (2022). The DQN-based approach in Chi et al. (2022) is called RLCG, and we
name our method as PPO-CG.

3.1 Markov decision process formulation

We define the transition map T : S × S × A → R as T (s, s′, a) = P (s′|s, a), denote the reward function by
reward : S × A → R, and represent the discount factor by γ ∈ [0, 1].

3

Under review as submission to TMLR

State S

For each iteration of the CG, we represent the matrix in (RMP) as a bipartite graph composed of column
nodes X and constraint nodes B, as in Gasse et al. (2019). There exists an edge connecting (x, b) ∈ X × B if
the column contributes to the constraint c (see Figure 2). We set the node features depending on the task
as specified in Appendix L.

Figure 2: Each column is represented as the node in column nodes in X , and constraints are represented
as constraint node class B. For instance, if a column x1 contributes to the constraints b1, an edge exists
between x1 and b1.

Action A and Transition T

By solving Equation (PP), we find candidate columns with negative reduced cost. The action is to choose
the next column or node to add to the current RMP or graph (see Figure 3). The maximum number of
candidates at each iteration is also a hyperparameter.

Figure 3: In this example, after PP is solved, there exist three candidates (blue nodes), then choose one
node (green node).

Reward

Since our purpose is to achieve a lower objective function, —we are solving minimizing problem— within
fewer iterations, we set the reward as

rewardt = α

󰀕
objt−1 − objt

obj0

󰀖
− p,

where α > 0 and p > 0 are hyperparameters. The parameter p > 0 is the iteration penalty, giving a negative
reward if the model can not finish iteration after the action is chosen.

3.2 PPO-CG

This subsection introduces the architecture and overall framework of PPO-CG. We begin by explaining
why the PPO algorithm was chosen in the context of CG.

4

Under review as submission to TMLR

Motivations

Let us revisit the DQN algorithm in the CG setting. Note that in the context of CG, the order in which
columns are chosen is not important. Suppose that two trajectories, τ1 = [s0, a0, s0 +a0, a1, s0 +a0 +a1] and
τ2 = [s0, a1, s0 + a1, a0, s0 + a0 + a1], are given. Each action ai implies the choice of a column in matrix A,
and the addition notation denotes the inclusion of the column. If there exist parameters θ1 and θ2 satisfying

a1 = arg max
a

Qθ1(s0, a) and a2 = arg max
a

Qθ1(s0 + a1, a),

a2 = arg max
a

Qθ2(s0, a) and a1 = arg max
a

Qθ2(s0 + a2, a),

then, in the CG iteration, the difference between using Qθ1 and Qθ2 is expected to be very small. The
final objective values are the same, and there might be very few differences in the number of iterations and
execution times because solving PP mostly depends on the problem size and the number of selected columns,
not on the specific choice of the column. We believe this phenomenon can lead to inefficiency in training
and require more resources because we need to update Qθ more frequently, particularly when the number of
actions and states is very large, as in CG.

Furthermore, selecting as few columns as possible is important, so in the training process, we want to use the
information in the trajectory instead of using the replay buffer. To capture these properties of CG, we select
an online, model-free RL algorithm that does not need a replay buffer and is a policy-based RL algorithm
that has both critic and actor networks —based on a previous study (Chi et al., 2022) that shows DQN can
improve traditional CG algorithms— and is easy to implement. The algorithm chosen for this study is the
PPO algorithm, which meets these criteria. Moreover, the PPO algorithm has theoretical support. See, for
instance, (Holzleitner et al., 2021; Fan & Xiao, 2022).

Model architecture

Figure 4: actor and critic networks with input RMPt and RMPt + Ct.

We employ the GNN layers introduced in Morabit et al. (2021) with the actor-network and the critic-network
sharing common layers. We denote t ∈ N∪{0} for the CG iteration step. Let RMPt denote Equation (RMP)
or the corresponding graph. We use RMPt + Ct to represent the graph of Equation (RMP), including all
candidate nodes. Moreover, the notation |Ct| implies the number of candidate nodes. For each t, solving
Equation (PP) gives |Ct| candidate nodes to choose from. Then, we take RMPt and RMPt +Ct as inputs of
PPO-CG. First, RMPt passes through a common layer, followed by the critic-network. Next, RMPt + Ct

passes through the common layer and the actor-network.

5

Under review as submission to TMLR

Both the actor and critic networks have the same structures. Both networks return |Ct|-dimension vectors.
We get the value function V (s) by taking an average of |Ct|-dimension vectors. We get a policy π(a|s) from
the output of the actor-network. Since RMPt and RMPt + Ct have similar graph structures except for the
number of nodes, using a common layer for the actor and critic network seemed natural. See Figure 4 for
the overview of the proposed architecture.

Overall framework

Figure 5: PPO-CG framework.

From the model architecture depicted in Figure 4, we now provide an overall framework of PPO-CG,
summarized in Figure 5. Algorithm 1 describes the training procedure of PPO-CG. Once training PPO-
CG is done, the model only uses the actor-network to choose the next column in the CG iteration in Figure
5. We denote the GNN model described in Figure 4 with parameter θ as PPO-CGθ, and RMPt + at for

Algorithm 1 Triaining procedure
Initialize PPO-CGθold and PPO-CGθ

for problem p = 1, 2, · · · do
RMP0=Initialize(p) ; t = 0;
for epoch = 1 to E do

while True do
Forumate Equation (PP) via duality of RMPt

Get Ct by solving Equation (PP)
if |Ct| = 0 then

Break;
end if
Calculate: advantage function At, action at from PPO-CGθold(RMPt, RMPt + Ct)
Update: RMPt+1 ← RMPt + at, t ← t + 1,

end while
Compute LCLIP (θ) using Equation (1).
Update θ by maximizing LCLIP(θ).
Update θold ← θ

end for
end for

adding the next column at to the current state RMPt.

3.3 Comparision with RLCG

Since our architecture is based on RLCG, it would be great to point out differences made on PPO-CG. In
RLCG, only the actor network is used. Also, it takes only RMPt +Ct as input only uses the actor-network.
The output of the actor-network is considered as an action-value function, Q(s, a). Whereas we take both
RMPt and RMPt + Ct, and the output of the actor is considered as the policy π(a|s) and the average of
the output of critic network is considered as the value function V (s).

6

Under review as submission to TMLR

4 Experiments

In this section, we outline the details of our experimental process. We use TensorFlow 2.13 and the free
version of GurobiPy 10.0.3. RLCG is the baseline method for comparison and the official implementation
available.2 For the hyperparameters used in training RLCG, please refer to Appendix D.

Summary of training process

Since our main contribution is to reduce the training time, we first summarised the time it takes to train
each model in Table 1. More information, such as statistical data and the time consumed for each model to

Table 1: Overall training time for each task and algorithm
Tasks Methods training time(hours)

CSP RLCG 319.9
PPO-CG (ours) 66.8

VRPTW RLCG 47.9
PPO-CG (ours) 16.7

train each instance, can be found in Appendix F. The main reason for the reduction is that, as mentioned in
Section 3.2, the PPO algorithm does not update parameters until each training instance is solved, whereas
in DQN, parameters are updated every time an action is chosen. An additional experiment is conducted in
Appendix H by adjusting the parameter update frequency in RLCG to provide more insight and data.

4.1 CSP tasks

Dataset and machine specification

We train PPO-CG and RLCG using BPPLIB from (Delorme et al., 2018). In the training process, we use
ILP instances with roll length sizes of 50, 100, and 200. The total number of instances is 439. In the test
process, we use ILP instances with roll length sizes of 200 and 750 with 86 and 21 instances, respectively. We
use NVIDIA RTX A5000 24GB GPU with Intel(R) Core(TM) i9-10980XE CPU @ 3.00GHz for this task.
We refer to Appendix E for additional information on train and test dataset.

Hyperparameters & node features

We set the learning rate for both the critic-network and actor-network to be 1e−4, the hidden dimension of
the GNN model is 32, step penalty of p = 10, epoch size E = 20, ε = 1e−2, action candidate size = |Ct| = 10.
We set objective hyperparameter α = 100 and reward decay exponent γ = 0.999. The variable nodes that
belong to X have 9 node features and constraint nodes that belong to B have 2 node features. We refer to
the details of node features in Appendix L.

Test results

We compare test results from our model PPO-CG, DQN-based model RLCG, Greedy method, and expert
methods. We compare each method using three metrics: objective function, time to execute, and number
of iterations. First, we provide test results on roll length n = 200 and n = 750, respectively. Figure 6 and
Figure 7 provide comparison results between PPO-CG. In Figure 8, we provide a boxplot for n = 200 and
n = 750 with two metrics: execution time and number of iterations.

Based on the first column of Figure 6 and Figure 7, there is little difference in the objective value function
across sizes and methods. Therefore, important metrics are execution time and iteration number. As depicted

2https://github.com/khalil-research/RLCG/

7

https://github.com/khalil-research/RLCG/

Under review as submission to TMLR

Figure 6: This plot displays the testing results on problem size n = 200 in CSP, with each of the 86
dots representing the outcome of a test instance. The first column compares the objective value of PPO-
CG against other methods (RLCG, Expert, Greedy). Most points lie on the x = y line, indicating similar
objective values across different methods. The second column compares the number of CG iterations between
PPO-CG and other methods. Points below the y = x line signify that PPO-CG requires fewer iterations.
The third column shows the runtime measured in seconds for each test instance against PPO-CG. Points
below the y = x line indicate that PPO-CG solve the instance faster. Overall, the results indicate that
PPO-CG solves ILP problems faster than Expert but does not outperform the other methods for CSP
problems of size n = 200.

in Figure 8, the Greedy and Expert methods are more effective when n = 200 compared to when n = 750.
Moreover, out of 86 test instances of size 200, the Greedy algorithm outperforms RLCG on 84 instances
and outperforms PPO-CG on 85 instances. Expert outperforms RLCG on 61 instances and outperforms
PPO-CG on 57 instances.

However, for larger problems, n = 750, PPO-CG, and RLCG show significantly better performance in
execution time. On 21 instances RLCG outperforms the Greedy algorithm on 13 instances and the Expert
algorithm on 20 instances. PPO-CG outperforms the Greedy algorithm on 15 instances and outperforms
the Expert algorithm on all instances.

We believe the superior performance of the Greedy algorithm for smaller problem sizes can be attributed to
its independence from the GPU. This independence eliminates data transitions between the CPU and GPU,
resulting in increased efficiency. Meanwhile, the Expert method has the lowest iteration number, but as the
problem size expands, its execution time grows, making it the slowest of the four methods. This increase is
primarily because the Expert method requires solving MILP. For smaller problems, the increment in solving
additional MILP reduces the iteration number, and the execution time increase is not as critical. However,

8

Under review as submission to TMLR

Figure 7: This plot displays the testing results for problem size n = 750 in CSP, with each of the 21 dots
representing the outcome of a test instance. The first column compares the objective value of PPO-CG
against other methods (RLCG, Expert, Greedy), showing that most points lie on the x = y line, indicating
similar objective values across methods. The second column compares the number of CG iterations, showing
that points below the y = x line imply that PPO-CG requires fewer iterations. The third column illustrates
the runtime measured in seconds for each test instance, with points below the y = x line indicating that
PPO-CG solves test instance faster. Overall, PPO-CG solves test instances faster than RLCG on 15 out
of 21 instances, faster than the Expert method for all test instances, and faster than the Greedy method on
15 instances, indicating that PPO-CG outperforms other methods in general.

this benefit diminishes for larger problems. Consequently, for these larger problems, the RL-guided method
demonstrates notable improvements in execution time with smaller variances, even with data transition costs
between CPU and GPU.

4.2 VRPTW tasks

Dataset and Machine specification

We train PPO-CG and RLCG using Solomon benchmark from (Solomon, 1987). In the training process,
we use ILP instances with different types of problems and various numbers of customers. The total number
of instances is 234, but 219 instances are used since the remaining 15 instances take too long to solve. We
use ILP instances with 37 instances in the test process. We use NVIDIA GeForce RTX 4090 for this task
with AMD Ryzen 9 7950X3D 16-Core Processor. We refer to Appendix E for additional information about
the dataset.

9

Under review as submission to TMLR

Figure 8: Boxplot comparing execution time and CG iteration numbers for four methods at n = 200 and
n = 750 in CSP. At n = 200, PPO-CG and RLCG do not perform significantly better than heuristic
methods. In contrast, at n = 750, PPO-CG and RLCG have lower median execution times than the other
two heuristic methods. In addition, we claim that PPO-CG performs better than RLCG given that it has
a lower median number for both metric and smaller interquartile ranges.

Hyperparameters & node features

Many of the hyperparameter settings are similar to CSP. We set the learning rate for both the critic-network
and actor-network to be 1e−4, the hidden dimension of the GNN model is 32, step penalty of p = 10, epoch
size E = 20, ε = 1e−2. Since the heuristic algorithm for solving Equation (PP) in VRPTW does not create
a fixed number of columns, action candidate size |Ct| is not fixed. We set objective hyperparameter α = 0.5
as in the official implementation of RLCG and the reward decay exponent γ = 0.999. The variable nodes
that belong to X have 8 node features, and constraint nodes that belong to B have 2 node features. We refer
to Appendix L for details on node features.

Remark: additional detail

In VRPTW, the heuristic algorithm for solving Equation (PP) takes too much time and does not generate a
fixed number of candidate nodes. For these reasons, we use the argmax argument to choose the next node as
in RLCG, and instead of generating E trajectories, we only generate one trajectory and update parameters
E times. This method has a shorter training time and shows almost similar performance results compared
with creating E numbers of trajectories. For details, we refer to Appendix G. From these observations,
it seems possible to suggest a better direction than the current algorithm. It is likely to be an off-policy
algorithm that utilizes previously used trajectories.

Test results

We compare test results in our model PPO-CG, RLCG, and the Greedy method. As in the CSP task,
we use three metrics to compare each method: objective function, execution time, and number of iterations.
Figure 9 compares each method with PPO-CG. In Figure 9, we excluded an outlier during plotting to show
the overall depiction clearly. The information about the excluded instance is summarized in Table 9. To
enhance clarity, a boxplot is also presented in Figure 10. We claim that PPO-CG performs better than
the other two models as problems get more complicated since average execution time and average iteration

10

Under review as submission to TMLR

Figure 9: This plot displays the testing results for VRPTW, with each of the 36 dots representing the
outcome of a test instance, excluding one extreme case described in Table 9. The first column compares the
objective value of PPO-CG against other methods (RLCG, Greedy), showing that most points lie on the
x = y line, indicating similar objective values across methods. The second column compares the number of
CG iterations, revealing that points below the y = x line signify that PPO-CG requires fewer iterations.
The third column illustrates the runtime measured in seconds for each test instance, with points below the
y = x line indicating that PPO-CG solve each test instance faster. Overall, PPO-CG runs faster than
RLCG on 24 out of 36 instances, faster than the Greedy method on 24 instances, indicating that PPO-CG
generally runs faster than other methods.

Figure 10: Boxplots compare three methods using two metrics: execution time and iteration numbers.
For this task, PPO-CG generally performs better than the other methods in execution time and iteration
numbers, as PPO-CG has the lowest median value for both metrics, but PPO-CG does not have the
interquartile range for execution time.

numbers are lower. However, PPO-CG does not have significantly smaller interquartile ranges, indicating
that our model, PPO-CG, might have a stability issue, which is a topic of future topic.

11

Under review as submission to TMLR

4.3 Convergence Analysis

Figure 11 displays the convergence analysis for CSP and VRPTW test instances. Objective values for each
instance are normalized from 0 to 1, where 1 indicates optimal performance. Bold lines show the mean
objective values across iterations, while shaded areas represent ±1 standard deviation. For CSP, we evaluate
instances of sizes n = 200 and n = 750, showing similar convergence rates for PPO-CG and RLCG. In
contrast, PPO-CG achieves faster convergence in VRPTW. We refer to Appendix M for details.

Figure 11: convergence graph on relative objective values for PPO-CG and RLCG

4.4 Remark on the robustness of RLCG and PPO-CG

We find that RLCG tends to behave like a Greedy algorithm in large-scale problems if hyperparameter-
tuning is not properly done. For details, we refer to Appendix I. This suggests that although RLCG is an
interesting approach, it might not be appropriate for large-scale CG problems.

5 Conclusions, limitations, and future works

This work proposes an improved RL framework for the CG algorithm. Our experiments, focused on two main
tasks —CSP and VRPTW— empirically demonstrate that our model trains faster and exhibits comparable
performance to the DQN-based model developed in Chi et al. (2022).

Our method still takes much time compared in training. The main reason for the time consumption is the
high dependency of this method on solving Equation (PP) and moving data from CPU to GPU. If solving
Equation (PP) takes a long time, then training the RL model also takes a long time, highlighting the need for
further development. From the ablation study reported in Appendix H, for n = 750, solving PP and moving
data to GPU takes 10% of total training time in the CSP problem. In VRPTW, some instances are removed
from the train set because solving PP takes too long. Moreover, since PPO is on-policy learning, PPO-CG
may suffer from sample efficiency, and as mentioned in Appendix G, it is observed that reusing already
explored trajectories in training has the potential for reducing training time but still obtaining comparable
model performance. For the future study, it would be interesting to compare other types of RL algorithms
such as TD3 (Fujimoto et al., 2018), SAC (Haarnoja et al., 2018), IMPALA (Espeholt et al., 2018).

Acknowledgements

We thank the reviewers for their attention and time spent reviewing this manuscript.

References
Joshua Achiam. Spinning Up in Deep Reinforcement Learning. 2018.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization: a
methodological tour d’horizon. European Journal of Operational Research, 290(2):405–421, 2021.

12

Under review as submission to TMLR

Federico Berto, Chuanbo Hua, Junyoung Park, Minsu Kim, Hyeonah Kim, Jiwoo Son, Haeyeon Kim, Joungho
Kim, and Jinkyoo Park. Rl4co: an extensive reinforcement learning for combinatorial optimization bench-
mark. arXiv preprint arXiv:2306.17100, 2023.

Quentin Cappart, Didier Chételat, Elias B Khalil, Andrea Lodi, Christopher Morris, and Petar Velickovic.
Combinatorial optimization and reasoning with graph neural networks. J. Mach. Learn. Res., 24:130–1,
2023.

Alain Chabrier. Vehicle routing problem with elementary shortest path based column generation. Computers
& Operations Research, 33(10):2972–2990, 2006.

Cheng Chi, Amine Aboussalah, Elias Khalil, Juyoung Wang, and Zoha Sherkat-Masoumi. A deep reinforce-
ment learning framework for column generation. Advances in Neural Information Processing Systems, 35:
9633–9644, 2022.

Maxence Delorme, Manuel Iori, and Silvano Martello. Bpplib: a library for bin packifranÃğoisng and cutting
stock problems. Optimization Letters, 12:235–250, 2018.

Guy Desaulniers, Jacques Desrosiers, and Marius M Solomon. Column generation, volume 5. Springer
Science & Business Media, 2006.

Martin Desrochers, Jacques Desrosiers, and Marius Solomon. A new optimization algorithm for the vehicle
routing problem with time windows. Operations research, 40(2):342–354, 1992.

Nasser A El-Sherbeny. Vehicle routing with time windows: An overview of exact, heuristic and metaheuristic
methods. Journal of King Saud University-Science, 22(3):123–131, 2010.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam Doron, Vlad
Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with importance weighted
actor-learner architectures. In International conference on machine learning, pp. 1407–1416. PMLR, 2018.

Jiajun Fan and Changnan Xiao. Generalized data distribution iteration. In International Conference on
Machine Learning, pp. 6103–6184. PMLR, 2022.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-critic
methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combinatorial
optimization with graph convolutional neural networks. Advances in neural information processing systems,
32, 2019.

Michel Gendreau, Jean-Yves Potvin, et al. Handbook of metaheuristics, volume 2. Springer, 2010.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International conference on machine
learning, pp. 1861–1870. PMLR, 2018.

Markus Holzleitner, Lukas Gruber, José Arjona-Medina, Johannes Brandstetter, and Sepp Hochreiter. Con-
vergence proof for actor-critic methods applied to ppo and rudder. In Transactions on Large-Scale Data-and
Knowledge-Centered Systems XLVIII: Special Issue In Memory of Univ. Prof. Dr. Roland Wagner, pp.
105–130. Springer, 2021.

George Ioannou, Manolis Kritikos, and G Prastacos. A greedy look-ahead heuristic for the vehicle routing
problem with time windows. Journal of the Operational Research Society, 52(5):523–537, 2001.

Brian Kallehauge, Jesper Larsen, Oli BG Madsen, and Marius M Solomon. Vehicle routing problem with
time windows. Springer, 2005.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial optimization
algorithms over graphs. Advances in neural information processing systems, 30, 2017.

13

Under review as submission to TMLR

Marco E Lübbecke and Jacques Desrosiers. Selected topics in column generation. Operations research, 53
(6):1007–1023, 2005.

Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. Reinforcement learning for combi-
natorial optimization: A survey. Computers & Operations Research, 134:105400, 2021.

Mouad Morabit, Guy Desaulniers, and Andrea Lodi. Machine-learning–based column selection for column
generation. Transportation Science, 55(4):815–831, 2021.

Alexander Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1998.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy
optimization. In International conference on machine learning, pp. 1889–1897. PMLR, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. arXiv preprint arXiv:1707.06347, 2017.

Marius M. Solomon. Algorithms for the vehicle routing and scheduling problems with time window
constraints. Oper. Res., 35:254–265, 1987. URL https://www.sintef.no/projectweb/top/vrptw/
solomon-benchmark/.

Yunhao Tang, Shipra Agrawal, and Yuri Faenza. Reinforcement learning for integer programming: Learning
to cut. In International conference on machine learning, pp. 9367–9376. PMLR, 2020.

François Vanderbeck. Implementing mixed integer column generation. In Column generation, pp. 331–358.
Springer, 2005.

Laurence A Wolsey. Integer programming. John Wiley & Sons, 2020.

Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Learning large neighborhood search policy for integer
programming. Advances in Neural Information Processing Systems, 34:30075–30087, 2021.

14

https://www.sintef.no/projectweb/top/vrptw/solomon-benchmark/

Under review as submission to TMLR

A Problem description and the ILP formulation of CPS and VRPTW

In this section, we shall provide details on the formulation of the CSP and VRPTW.

CSP

The purpose of the CSP is to cut as few stocks as possible but satisfy the given demand {dj}n
j=1 for each

item. Suppose that the given length of the stock is L, there are n types of items, and for each item, wj

length is required. The formulation of CSP follows from Delorme et al. (2018). We denote u by the number
of all the cutting patterns of the stock. For each item j ∈ {1, · · · , n}, there are dj demands. Denoting aji

by the number of item j in the i-th pattern. Let xi denote the decision variables such that xi = 1 if i-th
pattern is chosen, 0 otherwise. Then, we need to minimize the following integer linear programming:

min
x

u󰁛

i=1
xi

satisfying the following constraints:

u󰁛

i=1
ajixi = dj ,

n󰁛

j=1
ajiwj ≤ L, xi ∈ {0, 1} and aji ≥ 0, integer.

VRPTW

This section summarizes the context presented in Kallehauge et al. (2005). Let C be a set of customers and G
be a directed graph with a number of nodes equal to |C| + 2. We denote the set of vehicles by V. Customers
are represented by 1, 2, · · · , n, and each node in G is denoted by 0, 1, · · · , n + 1. The routing of each vehicle
starts at node 0 and ends at node n + 1. For simplicity, we use the notation N = 0, · · · , n + 1. For every
node i = 1, · · · , n, there is a corresponding customer i with a time window [ai, bi]. Vehicles must arrive at
node i within the time window [ai, bi]. Also, we assume that [a0, b0] = [an+1, bn+1]. The matrices cij and tij

indicate the cost and time, respectively, that a vehicle takes by moving from node i to node j. It is assumed
that cij and tij satisfy the triangle inequality. Let q denote the vehicle’s capacity, and each customer i has a
demand di. We want each customer to be served exactly once and satisfy one’s demand. To formulate ILP,
let us introduce two decision variables, xijk and sik. For each (i, j) ∈ N × N with i ∕= n + 1, j ∕= 0 and i ∕= j,
we define

xijk =
󰀫

1 if vehicle k move from vertex i to vertex j directly,
0 otherwise.

The other decision variable sik denotes the time vehicle k starts to serve customer i. In case i = 0, we
assume that sik = 0, since we assume that a0 = 0. If the vehicle k does not serve the customer i, it is an
irrelevant variable. The ILP formulation for the VRPTW follows:

min
󰁛

k∈V

󰁛

i∈N

󰁛

j∈N
cijxijk

15

Under review as submission to TMLR

such that
󰁛

k∈V

󰁛

j∈N
xijk = 1 ∀i ∈ C,

󰁛

i∈C
di

󰁛

j∈N
xijk ≤ q ∀k ∈ N ,

󰁛

j∈N
x0jk = 1 ∀k ∈ V,

󰁛

i∈N
xihk −

󰁛

j∈N
xhjk = 0 ∀h ∈ C, ∀k ∈ V,

󰁛

i∈N
xi,n+1,k = 1 ∀f ∈ V,

xijk(sik + tij − s + jk) ≤ 0 ∀i, j ∈ N , ∀k ∈ V,

ai ≤ sik ≤bi ∀i ∈ N , ∀k ∈ V,

xijk ∈{0, 1} ∀i, j ∈ N , ∀k ∈ V.

For some discussion regarding VRPTW, we refer to Kallehauge et al. (2005).

B Remarks of CG iteration in CSP and VRPTW

CSP

The CG process of CSP is very similar, as given in Section 2.1, with minor modifications. We take b =
(d1, d2, · · · dn), and in solving (PP), add constraint,

󰁓n
j=1 wjAji ≤ L with the assumtion that Aji belogns

to non negative integer.

VRPTW

Due to its complexity, describing the CG procedure of VRPTW in detail is out of the scope of this paper.
However, we remark that we utilize an open source code 3 an experiment done in RLCG, which is motivated
by the methods provided in Desrochers et al. (1992); Ioannou et al. (2001); Chabrier (2006); El-Sherbeny
(2010).

C Remarks on LP to ILP

The simplest method to get ILP from LP involves solving the LP relaxation of the RMP and PP and rounding
up the results to the nearest integers. However, this method may not always be feasible. Other methods
include branch-and-bound, branch-and-price, cutting planes, and metaheuristics. Details of these methods
are beyond the scope of this work; therefore, we refer to Wolsey (2020); Schrijver (1998); Desaulniers et al.
(2006); Gendreau et al. (2010) for more comprehensive discussions.

D Hyperparameters in training RLCG

In this section, we provide hyperparameters in training RLCG. For the CSP task, we set the learning rate
to be 3e − 4, the hidden dimension of the GNN model is 32, step penalty of p = 10, epoch size E = 5,
α = 100, buffer size 2000 and γ = 0.999. For the VRPTW task, we set the learning rate to be 1e − 3, the
hidden dimension of the GNN model is 32, step penalty of p = 10, epoch size E = 5, buffer size 20000,
α = 0.5 and γ = 0.99.

3https://github.com/SimoneRichetti/VRPTW-Column-Generation/

16

Under review as submission to TMLR

E Additional information about the dataset in the training and testing process

We adopt the procedure outlined in Chi et al. (2022). However, for the sake of completeness, we provide the
details. In the CSP task, we use 160 instances for the length of the roll 50, 160 instances for the length of
the roll 100, and 120 instances for the length of the roll 120. As suggested in Chi et al. (2022), we train both
PPO-CG and RLCG from the easy problems (roll length = 50) to the hard problems (roll length = 200).

For the VRPTW task, we use Solomon (1987) with six differnt types of problems, i.e., C1, C2, R1, R2, RC1,
RC2. For the training, C1, R1, and RC1 types are used with different sizes of customers ranging from six to
eight. In total, there are 240 instances. Due to the time constraints, only 213 instances are used. We refer
to Appendix N for more details on the instances.

F Details on the training process

F.1 Training in CSP tasks

We train our model, PPO-CG, with 439 instances in 66.79 hours, whereas with the same instances, RLCG
takes 319.86 hours. For the comparison in training time for each instance, see Figure 12. We also provide
statistical information about the number of iterations in the training process. See Table 2.

Figure 12: Training time for each instance in CSP

Table 2: Statisctic information about the number of steps in training CSP
Method Problem size µ σ

PPO-CG
50 37.54 8.25
100 68.14 14.01
200 131.06 35.7

RLCG
50 36.3 8.47
100 67.38 16.57
200 133.04 41.46

Note that the average number of steps does not show a dramatic change. However, the time to train each
model has a dramatic difference since RLCG updates its model parameter every step (after Equation (PP
is solved, whereas in PPO-CG, it updates the parameter after the instance is solved. Therefore PPO-CG
takes much less time for training.

17

Under review as submission to TMLR

F.2 Training in VRPTW tasks

Our model, PPO-CG, trains 219 instances in 16.70 hours, whereas RLCG trains the same instance in
47.88 hours. Please refer to Figure 13 for details. In Table 3, we also provide statistical information about
the number of steps taken in the training process.

Figure 13: Training time for each instance

Table 3: Statistic information about the number of steps in training VRPTW
Method µ σ

PPO-CG 29.33 17.89
RLCG 49.49 28.82

We observe that PPO-CG has fewer average iteration steps.

G Comparison between generating a single trajectory and multiple trajectories in
VRPTW task

Training each instance with only one trajectory takes 16.70 hours. On the other hand, generating a new
trajectory every time each trajectory ends, the training time extends to 47.22 hours. We refer to Figure 17
for performance comparison. There are, in total, 37 instances, and as in the comparison presented in Section
42, we exclude one instance with extreme results for clarity. The objective function is identical, and for the
execution time and CG iteration number, PPO-CG with multiple trajectories shows better results. This is
an expected result, given that training with multiple trajectories takes almost three times as much time as
training with one trajectory. However, we believe that improvement in training with the new trajectory is
minimal compared to the training costs except for a few extreme cases.

H Ablation study

This section analyzed the impact of solving PP and updating parameters on learning time. To this end,
we train RLCG after each training instance. Given that the number of epochs is 5 for RLCG and 20

18

Under review as submission to TMLR

Figure 14: Comparison between PPO-CG trained with one trajectory and multiple trajectories in the
VPRTW task.

for PPO-CG, we trained two models with different epoch sizes. We named each model RLCG-E5 and
RLCG-E20 for distinction.

H.1 Comparison in training time and number steps

This subsection reports training time and iteration steps taken during the training process.

Table 4: Overall training time for other algorithm
Task Methods training time(hours)

CSP RLCG 319.9
RLCG-E5 2.8

RLCG-E20 7.0
PPO-CG (ours) 66.8

Table 5: Average training time and iteration step numbers in training CSP for different models
Method Problem size average iteration steps average training time(secs)

PPO-CG
50 37.5 174.5
100 68.1 400.1
200 131.1 1247.9

RLCG
50 36.3 1010.9
100 67.4 1853.6
200 133.0 5825.1

RLCG-E5
50 39.1 10.5
100 68.8 17.1
200 133.1 48.1

RLCG-E20
50 36.1 34.3
100 68.8 49.8
200 133.0 97.4

In Figure 15, we present training time for each training instance without including PPO-CG and RLCG.
In Figure16, we include all models.

H.2 Additional analysis on PP vs parameter updates

To analyze the time taken for learning by solving PP and updating parameters, we assume that the average
time spent on PP and parameter updates is the same for RLCG and RLCG-E5 for same prblem size.

19

Under review as submission to TMLR

Figure 15: Training time for each instance for RLCG-E5 and RLCG-E20

Figure 16: Training time for each instance including all models

Let E be the number of epochs, and we denote s0,i and s1,i for the average step to train problem of size i for
RLCG and RLCG-E5. Let Pi and Ui be the average time it takes to solve (PP) and update parameters
for train instance of size i, and T0,i T1,i denotes the total time it takes to train each problem of size i. We
then have the following equations:

T0,i = Es0,i(Ui + Pi),
T1,i = E(Ui + s1,iPi).

Then, from a simple calculation, we have that

Ui =
󰀕

s1,i

s1,i − 1

󰀖 󰀕
T0,i

Es0,i
− T1,i

Es1,i

󰀖
and Pi = T0,i

Es0,i
− Ui.

From this calculation, we summarize in Table 6 the proportion of time spent on solving PP and parameter
updates in the training process.

H.3 Test results

Finally, we briefly provide test results on PPO-CG, RLCG, RLCG-E5 and RLCG-E20. Showing that
training frequency has an impact on the performance of the model. Also note that there are not many

20

Under review as submission to TMLR

Table 6: Table showing the proportion of time each element during learning in relation to the total.
Method Problem size solve PP (%) update parameters(%)

RLCG
50 0.7 99.3
100 1.1 98.8
200 11.1 88.9

differences in the performance of RLCG-E5 and RLCG-E20, implying that model parameters must be
frequently updated to train DQN models properly. Moreover, as stated in Section 4.1, RL-based models do
not perform well on CSP problems with n = 200, so that in RLCG-E5 and RLCG-E20 can have better
result.

Figure 17: Comparison between PPO-CG, RLCG, RLCG-E5 and RLCG-E20.

21

Under review as submission to TMLR

I Comparison with the Greedy algorithm

In this ablation study, we compare each algorithm with the greedy algorithm on the test data. While running
the greedy algorithm, we compare the action chosen by the greedy algorithm and other RL-based algorithms
at each step to see how similar they are. This demonstrates that the DQN algorithm is very similar to the
Greedy algorithm. The results are summarized in Table 7 and Table 8.

Table 7: Comparison with the Greedy algorithm with other RL-based algorithms on CSP problems. The
third column represents the average percentage of times the action chosen by the RL model matches the
action chosen by the greedy algorithm. The last column represents the point at which the action chosen
by the RL algorithm first differs from that chosen by the greedy algorithm, normalized for each instance.
This normalization accounts for the differing number of steps in each instance. For example, a value of 0.1
indicates that in a sequence of 200 steps, the RL model and the greedy algorithm choose different actions at
the 20-th step.

Method Problem size compare with the Greedy (%) first state is diverges (%)

RLCG
200 90.39% 13.14%
750 95.29% 70.29%

RLCG-E5
200 99.99% 99.09%
750 100.00% 100.00%

RLCG-E20
200 98.99 % 98.12%
750 100.00% 100.00%

PPO-CG
200 10.96% 0.04%
750 13.02% 0.09%

Table 8: Comparison with the Greedy algorithm in VRPTW task. For the explanation on each column, we
refer to the caption in Table 7.

Method compare with the Greedy (%) first state is diverges (%)
RLCG 99.13% 90.13%

PPO-CG 0.05% 4.19%

From the results, we can conclude that RLCG-E5 and RLCG-E20 are almost identical to the greedy
algorithm. RLCG also shows little difference from the greedy algorithm in cases involving larger problem
sizes, such as CSP with n = 750 and VRPTW.

J t-SNE analysis for VRPTW tasks

In this section, we aim to understand the exploration effects of each algorithm. To do this, we use t-SNE.
We use feature vectors to represent each state. Candidate states are marked in gray during each step for
fixed test instances, while the states actually visited are colored. Additionally, the visited states are denoted
in darker colors as they are visited later. The image can be found in Figure 18.

K Excluded test instance for VPTTW

As mentioned in Section 4.2, we exclude one instance since it exhibits too much time. We summarize in
Table 9.

22

Under review as submission to TMLR

Figure 18: This t-SNE image shows that the PPO algorithm converges with fewer trials, indicating that it
has better exploration capabilities for VRPTW tasks.

Table 9: Excluded test instance
Methods Time (hours) CG iteration numbers

RLCG 5.5 153
PPO-CG 7.3 217
Greedy 5.5 153

L Node features on CSP and VRPTW tasks

We use node features to encode information about RMP to the graph. as in Gasse et al. (2019); Chi et al.
(2022). In the CSP task, we set 9 node features for the column nodes and 2 node features for the constraint
nodes. For the column node features, we use

1. reduced cost for each node,

2. number of connected nodes,

3. solution value of RMP corresponding to each column,

4. remaining length of a roll for each pattern,

23

Under review as submission to TMLR

5. number of iterations that each column node stays in the basis,

6. number of iterations that each column stays out of the basis,

7. if the column left the basis on the last iteration or not,

8. if the column entered the basis on the last iteration or not,

9. action node or not.

For the constraint node features, we use

1. dual value or shadow price of (PP),

2. the number of connected nodes.

The node features for the VRPTW task are very similar. For the column node features, the 4-th and 9-th
node features are removed, and the routing cost is added. The constraint node features are the same as CSP.

M Details on convergence analysis in Section 4.3

Suppose we have n test instances, with each instance i containing a list of objective values represented as
vi = [vi,1, . . . , vi,mi], where i = 1, . . . , n, and mi is the number of objective values for the i-th instance. Let
m = maxi mi. Given that both CSP and VRPTW are minimization problems, we normalize each list of
objective values vi as follows:

ṽi = maxk vi,k − vi

maxk vi,k
,

where maxk vi,k is the maximum value in each list, ensuring that 0 ≤ ṽi ≤ 1, with 1 representing the optimal
normalized value.

To standardize the data for analysis, we extend the normalized values ṽi to a length of m by appending the
value 1 to the end of each list until it reaches the maximum length. This adjustment allows us to compute
the average and standard deviation of {ṽi,k}i=1,...,n for each k = 1, . . . , m. These statistics are then used to
draw Figure 11, illustrating the convergence behavior of the algorithms across all test instances.

N Remark on training and testing result per instances

For more details, we added supplementary files in the output folder of the GitHub repository.

24

