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Abstract
We propose using Vision-Language Models (VLMs) for macro placement in chip
floorplanning, a complex optimization task that has recently shown promising
advancements through machine learning methods. We hypothesize that the spatial
reasoning capabilities of VLMs can effectively complement existing learning-
based approaches. In this work, we introduce VeoPlace (Visual Evolutionary
Optimization Placement), a novel framework that uses a VLM to guide the actions
of a base policy by constraining them to subregions of the chip canvas. The VLM
proposals are iteratively optimized through an evolutionary search strategy with
respect to resulting placement quality. On open-source benchmarks, VeoPlace
yields state-of-the-art results on four out of seven benchmark circuits, matching or
exceeding the performance of prior learning-only approaches. Our approach opens
new possibilities for electronic design automation tools that leverage foundation
models to solve complex physical design problems.

1 Introduction
Computer chip floorplanning is a critical step in integrated circuit design, involving strategic ar-
rangement of macros (pre-designed functional blocks like memory arrays, processing units, and
I/O interfaces) on the chip canvas. Determining optimal placement is a complex multi-objective
problem optimizing performance, power, and area (PPA) while respecting constraints such as routing
congestion. Due to the vast combinatorial design space, chip floorplanning requires significant time
from human designers and has driven extensive research on automation.

Automating chip floorplanning has been approached through black-box optimization [33], analytical
methods [23, 8, 25], and learning-based methods [26, 18, 17, 21]. Despite their successes, existing
approaches have a fundamental limitation: because they train policies mapping structured repre-
sentations to placements tabula rasa, they struggle to generalize quickly on unseen blocks. This is
exacerbated by limited data in chip floorplanning. Conversely, human designers rapidly iterate using
high-level prior knowledge and spatial reasoning, quickly improving designs through trial-and-error,
whereas learned models require time-consuming reinforcement learning processes.

For learning-based approaches, optimizing placements on unseen blocks typically requires test-time
interaction [26, 18, 17]. We consider this formulation: for an unseen block and fixed budget of B
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Figure 1: VeoPlace framework overview. The VLM suggests placement regions (1-2) to constrain a low-level
policy (3) for macro placement (4). A history buffer that stores the existing population of placements (5)
facilitates evolutionary in-context improvement, creating a feedback loop to improve placement quality.

(a) adaptec1 (b) adaptec2 (c) bigblue1 (d) bigblue2

Figure 2: Performance scaling of VeoPlace compared to ChiPFormer (pre-trained) across increasing rollouts.
The y-axis shows the HPWL, where lower values indicate better performance. The log-scale x-axis highlights
that VeoPlace (orange) achieves better scaling behavior than ChiPFormer (blue), leading to superior floorplans
as the number of rollouts increases.
placement attempts, what is the best possible placement? We hypothesize that incorporating spatial
intuitions and reasoning about packing, shifting, and grouping can lead to more effective placements
and adaptive improvement from previous attempts.

We propose using vision-language models (VLMs) [6, 30, 28] to augment existing learning-based
floorplanning models [17]. Our method, VeoPlace (Visual Evolutionary Optimization Placement),
uses a hierarchical structure where a high-level VLM planner proposes promising subregions to
a low-level placement policy that autoregressively places macros. Crucially, VLM proposals are
iteratively refined through an evolutionary process, evolving new proposals from high-performing
prior proposals. VeoPlace requires no VLM fine-tuning and uses an independently-trained low-level
policy (ChiPFormer) [17]. Our main contributions are:

• Novel VLM-guided Placement Framework: We introduce VeoPlace, the first approach to
leverage vision-language models for macro placement in chip floorplanning, demonstrating how
foundation models can effectively guide specialized placement algorithms through structured
spatial reasoning without requiring fine-tuning.

• Evolutionary Context Selection Strategy: We develop a novel context selection mechanism
that enables VLMs to iteratively improve placement quality by focusing on geometrically similar
high-performing solutions, outperforming diverse and random selection strategies.

• State-of-the-Art Performance: We demonstrate that VeoPlace achieves superior results on 4 out
of 7 benchmark circuits from ISPD 2005 and ICCAD 2004, which shows significant improvements
in Half-Perimeter Wirelength (HPWL) over prior methods.

2 Related Work
Automated Chip Floorplanning. Automating chip floorplanning has been extensively studied
through analytical methods [23], black-box optimization techniques such as simulated annealing
[39] and genetic algorithms [35], guided black-box methods [33], and learning-based methods
[26, 17, 10]. A prominent class formulates chip floorplanning as reinforcement learning where
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macros are sequentially placed onto a chip canvas [26, 18, 17]. Other approaches learn to refine
existing placements [21, 40]. Our approach generalizes learning-based methods by using a high-level
VLM to guide them at test-time.

Vision-Language Models for Decision-Making. Vision-Language Models (VLMs) trained on
vast text-image datasets contain rich priors valuable for vision-language tasks [9]. VLMs enable
efficient decision-making in robotics, interpreting natural language commands within visual scenes
to guide robot actions or planning [3, 15, 34, 14, 4, 16, 37, 22]. Systems such as SayCan [3] and
RT-2 [4] demonstrate how VLMs translate high-level instructions into actionable plans for low-level
controllers. We leverage similar hierarchical capabilities: the VLM perceives placement images with
performance metrics, analyzes spatial arrangements, and provides bounding regions that constrain
the low-level policy’s action space, creating a division of labor between high-level spatial reasoning
and precise placement execution.

Pairing LLMs with Evolution. Pairing LLMs with evolutionary search has achieved successes in
program generation [31, 13, 24], planning and reasoning [19], scientific discovery [41, 11], robotics
[28], and chip design [29, 42, 40, 33]. VeoPlace adopts an evolutionary framework where the VLM
generates region proposals, which are evaluated and used to inform subsequent proposals. VeoPlace’s
selection strategy focuses on geometrically similar placements to the highest-performing solution
(Section 4), explicitly optimizing within promising local regions—effective in sparse Gaussian
processes [38] and genetic algorithm island models [31, 19, 36, 5].

3 Preliminaries

3.1 Problem Setup

We address macro placement in chip floorplanning, arranging macros M = {m1, . . . ,mN} (defined
by dimensions and connectivity) onto a 2D chip canvas. Connectivity is specified by a netlist
G = (M,E)—a hypergraph where vertices are macros and each hyperedge e ∈ E (called a net)
connects a subset of related macros. The objective is finding placement P = {p1, . . . , pN}, where pi
denotes the coordinates (e.g., bottom-left corner) of macro mi, that optimizes key physical design
metrics. Our primary objective is to minimize estimated wirelength, as it significantly impacts a
chip’s final performance, power, and area (PPA) [23, 26].

Macro placement can be formulated as a sequential decision-making problem, i.e. as a Markov
Decision Process (MDP) [26, 17, 18]. Macros are sequentially placed one by one onto the canvas,
following a pre-determined order such as descending macro area. State st at timestep t encompasses
information about the current partial placement (locations of macros m1, . . . ,mt−1), features of the
current macro mt to be placed, and potentially structural information derived from the netlist G. To
manage the continuous nature of the placement space, the canvas is commonly discretized into a grid
of cells, where action at corresponds to selecting a specific grid cell for placing a reference point
(e.g., the bottom-left corner) of the current macro mt. After all N macros are placed, a terminal
reward R is computed based on the estimated wirelength (often using the Half-Perimeter Wirelength,
HPWL) of the final placement. The total HPWL is calculated by summing the half-perimeter of the
smallest axis-aligned bounding box enclosing all pins connected by each net, over all nets in the
netlist G. The agent’s goal is to learn a policy π(at|st) that maximizes the expected terminal reward
E[R] (or, equivalently, minimizes HPWL).

Inference-time Optimization. Online RL approaches require many environment interactions and
model updates to produce the best possible placements for new netlists. Recent work suggests
that offline RL pre-training can achieve relatively strong zero-shot performance, though also finds
substantial benefit from fine-tuning on a small amount of online interaction [17]. In this work,
we consider an inference-time optimization setting in which we are allowed some fixed budget of
placement evaluations, but do not fine-tune either the VLM or the low-level policy. As Section 5
shows, this can achieve results superior to fine-tuning.

3.2 ChiPFormer

Although our approach is compatible with any learning approach that solves the MDP described
in Section 3.1, we primarily consider ChiPFormer [17] as our low-level policy due to its multi-task
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generality. ChiPFormer consists of an autoregressive Transformer model trained using an offline
Decision Transformer objective [7, 20]. ChiPFormer represents placement sequences using graph
embeddings of the netlist, along with embeddings of states, actions, and returns-to-go, allowing it to
be trained as an offline reinforcement learning agent. ChiPFormer outputs probability distributions
over grid cells for each macro, which can be directly modified by our VLM guidance. Additionally,
it ranks among the most competitive policy-based approaches for macro placement. While ChiP-
Former provides strong baseline performance, it lacks the visual and spatial reasoning capabilities of
human experts. Our VLM-based guidance addresses this limitation by steering ChiPFormer’s action
distributions toward better design choices, significantly improving placement quality even without
fine-tuning the original policy.

4 VeoPlace

Algorithm 1 VeoPlace
Require: V: Vision-language model

π: Stochastic ChiPFormer policy
G: Netlist with macros {m1, ...,mn}
C: Context length
E: Total number of episodes
K: Interval to query the VLM
M : Number of additional rollouts for invalid suggestions

1: Initialize placement population H ← ∅
2: for episode e = 1 to E do
3: Initialize placement Pe ← ∅
4: if e mod K = 0 then
5: context← BUILD_CONTEXT(H,C)
6: {s1, s2, ..., sn} ← V (context, G) {Sample sug-

gestions for all macros}
7: end if
8: for macro mt ∈ {m1,m2, ...,mn} do
9: if suggestion st for mt is valid then
10: pt ∼ π(·|mt, Pe, st) {Use suggested region}
11: else
12: pt ∼ π(·|mt, Pe) {Use original policy}
13: Rollout P ′

e = Pe to end M times
14: H ← H ∪ {(P ′

e, HPWL′
e)}

M
1 {Update

population}
15: end if
16: Pe ← Pe ∪ {(mt, pt)} {Update placement}
17: end for
18: Calculate HPWLe for placement Pe

19: H ← H ∪ {(Pe, HPWLe)} {Update population}
20: end for
21: return H

In this section, we describe VeoPlace, our novel evo-
lutionary framework that harnesses the spatial reason-
ing capabilities of VLMs for chip floorplanning. Veo-
Place iteratively evolves a population of region pro-
posals, using VLM as a variation operator. VeoPlace
integrates VLM proposals to constrain the rollouts of
a low-level placement policy. It consists of two key
components: (1) a simple interface between the VLM
and low-level placement policy, where the VLM sug-
gests bounding boxes that constrain the placement of
each macro on the chip canvas; (2) an evolutionary
search strategy that uses the VLM to iteratively pro-
vide better region proposals conditioned on previous
attempts and the resulting placement quality. This
strategy is implemented using a structured prompt
that is also designed to elicit spatial reasoning from
the VLM. We discuss each of these components in
detail below.

4.1 VLM and Low-Level Policy Interface

VeoPlace is an inference-time evolutionary search
strategy orchestrating interaction between a VLM and
stochastic low-level placement policy π. As shown
in Algorithm 1, VeoPlace iteratively evolves a popu-
lation H of placements by rolling out the policy with VLM proposals and generating new proposals
based on prior attempts and outcomes.

Following ChiPFormer’s process, we generate many candidate placements but additionally leverage
VLM high-level guidance. VeoPlace mixes low-level-only rollouts with VLM-guided rollouts every
K episodes (Algorithm 1, lines 5-7). When querying the VLM, we provide context from the history
buffer H and current netlist G (Section 4.3). The VLM suggests bounding box regions {s1, ..., sn}
for respective macros (Figure 4).

VeoPlace constrains the policy’s actions at timestep t to suggested region st: π(·|mt, Pe, st) (line
10), implemented by masking output logits outside st. This allows VLM regional guidance while
preserving policy control over exact coordinates within regions. Since macros are placed autoregres-
sively, suggestion st may be invalid for t > 1 due to overlapping already-placed macros. Invalid
suggestions default to the original policy: pt ∼ π(·|mt, Pe) (line 12). We additionally roll out M
copies using only the low-level policy to increase data coverage. After completion, each placement’s
quality (e.g., HPWLe) is calculated and (Pe, HPWLe) added to population H (lines 18-19).

4.2 Structured Prompt

VeoPlace prompts a VLM to generate bounding box suggestions {s1, ..., sn} for each macro, condi-
tioned on previous placements and their evaluations {Pi}. We generate suggestions for all macros
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(a) HPWL (Lower is Better) (b) Invalid Suggestions (%) (c) Geometric Diversity Score

Figure 3: Performance comparison of different context building strategies for the adaptec1 benchmark:
(a) half-perimeter wirelength (HPWL), showing that less diverse strategies (Undiverse, Best) achieve
highest performance, (b) percentage of invalid placement suggestions generated by the VLM after
each API call, and (c) geometric diversity scores of the in-context examples. These results demonstrate
that minimizing geometric diversity in context selection directly leads to improved evolutionary
search performance, enabling the VLM to generate higher-quality placement suggestions.

simultaneously to reduce VLM inference cost. Our prompt’s key characteristics are (1) structuring it
to elicit spatial reasoning, and (2) selecting appropriate prior attempts for in-context learning (detailed
in Section 4.3).

VLMs often struggle with macro placement due to information overload and lack of domain-specific
knowledge, producing inconsistent spatial suggestions without proper guidance (see Appendix F.3).
Our structured prompt provides clear objectives, constraints, and standardized formats to transform
general visual reasoning into useful spatial guidance. The prompt includes:

Grid Representation. We use an 84× 84 grid matching ChiPFormer’s resolution [17], with coor-
dinates starting at (0, 0) bottom-left. This enables precise positioning while simplifying integration
with the low-level policy.

Visual Representation. Canvas images show all placed macros with positions and colors, allowing
the VLM to perceive spatial relationships and available space. Figure 4 demonstrates how this visual
information improves placement suggestions.

Context Elements. The prompt includes grid specifications, current macro properties, placement
history with performance metrics, and current macro states. This comprehensive context enables
informed decisions based on both current state and historical performance. A complete example is in
Appendix F.1.

4.3 Selection Strategies for Evolution

The core component of our evolutionary algorithm is prompting the VLM to generate a superior
placement suggestion given a set of prior placements and their evaluations. Because each placement
is represented using hundreds of tokens, only a relatively small number of placements can be provided
to the model while maintaining reasonable inference cost and latency. Hence, we find that the prior
proposals must be carefully selected – given this limited budget, we would like the examples to (1) be
reasonably high-quality, so that the model improves upon already-good placements, and (2) contain
enough relevant information so that the model can effectively deduce better placements via reasoning.

We consider the following candidate strategies for selecting a fixed context of C examples:

1) Most Recent (FIFO): Select the C most recent placements, implementing pure evolutionary
search with temporally ordered examples.

2) Random: Uniformly sample C placements from the history.

3) Best Performing: Select the C highest-quality placements, assuming successful examples encour-
age pattern replication.

4) Diverse: We employ a clustering-based approach to maximize diversity. First, we represent
each placement as a vector in R2T , where T is the number of macros and each macro mi’s (xi, yi)
coordinates are included. We perform K-means clustering with C clusters, then select the best
placement from each cluster. This ensures geometric diversity while favoring high-quality designs.

5) Top Stratified: To minimize diversity, we represent placements as coordinate vectors in R2T and
perform K-means clustering. Unlike the diverse strategy, we focus on a single promising cluster. We
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(a) t = 0 (b) t = T
2

(c) t = T

Figure 4: VeoPlace’s VLM-guided placement on adaptec4. (a) VLM proposes initial regions (t = 0);
policy is unconstrained for macros without valid suggestions. (b) Mid-placement (t = T/2). (c) Final
placement (t = T ), with the policy operating within VLM constraints.
Table 1: HPWL values (×105) obtained by compared methods on seven benchmark circuits for hard
macros only placement (without standard cells). Each result consists of the mean and standard
deviation across three random seeds. The best (smallest) mean value on each circuit is bolded.
The results for MaskPlace, WireMask-EA, and EfficientPlace are taken directly from [10], while
ChiPFormer (Original) results come from [17]. Our reproduction of ChiPFormer shows improved
performance due to training with larger batch sizes and for more iterations (10k epochs). See
Appendix C for complete training details.

Method Type adaptec1 adaptec2 adaptec3 adaptec4 bigblue1 bigblue3 bigblue4

MaskPlace [18] RL 7.62 ± 0.67 75.16 ± 4.97 100.24 ± 13.54 87.99 ± 3.25 3.04 ± 0.06 90.04 ± 4.83 103.26 ± 2.69
WireMask-EA [33] BBO 6.15 ± 0.15 64.38 ± 4.43 58.18 ± 1.04 59.52 ± 1.71 2.15 ± 0.01 59.85 ± 3.39 77.54 ± 0.67
EfficientPlace [10] MCTS + RL 5.94 ± 0.04 46.79 ± 1.60 56.35 ± 0.99 58.47 ± 1.61 2.14 ± 0.01 58.38 ± 0.54 76.63 ± 1.02
ChiPFormer [17] (Original) IL 6.62 ± 0.05 67.10 ± 5.46 76.70 ± 1.15 68.80 ± 1.59 2.95 ± 0.04 72.92 ± 0.32 102.84 ± 0.15
ChiPFormer (Reproduced) IL 7.01 ± 0.08 68.25 ± 1.46 51.92 ± 2.68 26.32 ± 2.27 2.92 ± 0.01 37.99 ± 1.65 63.86 ± 1.54

VeoPlace (Top Stratified) IL+VLM 6.78 ± 0.12 64.00 ± 1.96 51.64 ± 2.92 26.05 ± 1.84 2.90 ± 0.02 36.38 ± 0.42 63.41 ± 1.90

rank clusters by minimum wirelength and sample one cluster using softmax (probability ∝ e−i/τ

for rank i). From the selected cluster, we choose the top C performing layouts, supplementing from
nearby clusters if needed.

Our findings in Section 5 reveal that minimizing geometric diversity (Top Stratified) yields best
performance, suggesting consistency helps VLMs identify relevant placement patterns by allocating
the limited representational budget to the most promising search region [38].

5 Experiments

We evaluate VeoPlace’s ability to harness VLMs to improve chip floorplanning on unseen blocks,
addressing: (Q1) Can VLM guidance improve floorplan quality using only inference? (Q2) How
does VLM guidance complement low-level policies? (Q3) How does context length affect VeoPlace’s
performance?
Experimental Setup. Our evaluation follows [17], using open-source benchmarks from ISPD 2005
[27] and ICCAD 2004 [2, 1]. These vary in complexity with hundreds to thousands of macros and up
to hundreds of thousands of standard cells, providing comprehensive testing across scales. We use a
fixed ChiPFormer model trained using the official implementation1. We set our VLM call interval
K = 512, which means we roll out the pre-trained ChiPFormer policy 512 times before querying
the VLM. At the beginning of each episode, the VLM is queried to acquire region suggestions
(s1, s2, . . .) for each macro (m1,m2, . . .). These suggested regions are then used to guide the policy
during placement decisions. For the VLM, we use Gemini 2.0 Flash with temperature 0.7.

Q1: VLM Guidance Improves Placement Quality. We test whether evolutionary search with
VLMs can effectively tackle macro placement. Table 1 compares VeoPlace against state-of-the-art
methods across benchmark circuits. VeoPlace achieves state-of-the-art HPWL on four out of seven

1https://github.com/laiyao1/chipformer
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(a) adaptec1 (b) adaptec2 (c) adaptec3

Figure 5: Probability mass coverage for VLM guidance strategies. FIFO (blue) shows minimal cover-
age (5-15%), largely diverging from the policy’s learned knowledge, while Top Stratified (orange)
maintains moderate coverage (20-40%), balancing policy knowledge with effective exploration.

benchmarks, demonstrating that VLM guidance effectively enhances placement quality with a fixed
pre-trained policy.

Figure 6: Effect of context length on place-
ment quality for adaptec2. Increasing context
from C = 50 to C = 125 shows small im-
provements in final HPWL.

Q2: VLM Guidance Complements Low-Level Policies.
To evaluate VLM-policy interaction, we define
probability mass coverage as the fraction of the
policy’s original probability distribution within
VLM-suggested regions. Figure 5 shows our Top
Stratified strategy maintains 20-40% coverage across
benchmarks. This moderate coverage indicates
meaningful constraint without excessive restriction.
The guidance neither completely overrides policy
preferences (near 0% coverage) nor simply copies
them (approaching 100%), instead redirecting
attention to underexplored regions and enhancing
design space exploration.

Q3: Effect of Context Length C on VLM Performance.
We analyze how context length C (previous place-
ments shown to VLM) affects quality and cost. Figure 6 shows performance for C ∈ {50, 125}.
Increasing context from C = 50 to C = 125 improves performance on larger netlists like adaptec2,
where more examples help the VLM capture spatial relationships and leverage placement patterns.
Additional context enables identifying sophisticated spatial patterns in complex designs, though
computational cost increases linearly.

6 Conclusion & Discussion

We proposed VeoPlace, an evolutionary framework leveraging vision-language models to enhance
macro placement policies for chip floorplanning, and demonstrated that it can match or exceed
state-of-the-art performance on open-source circuit benchmarks. Our approach broadly underscores
how the general priors in foundation models can complement domain-specific policies.

Due to computational constraints, our instantiation of VeoPlace used relatively few queries to a
medium-sized, off-the-shelf VLM. We expect the performance of VeoPlace to inherit the well-known
scaling properties of foundation models with respect to model size, context length, and inference-time
compute. Similarly, we expect that fine-tuning the high-level VLM with domain-specific data to
offer significant improvements, especially in domains such as chip design in which relevant pre-
training data may be scarce. Future work will extend VeoPlace to global placement by providing the
VLM with post-processed floorplans from tools like DreamPlace [23] that include both macro and
standard cell placements. Since macro initialization significantly impacts global placement quality,
VLM guidance informed by complete circuit layouts could yield more effective macro positioning
strategies.
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A Additional Details

A.1 Macro Coloring

We employ a color-coding strategy to implicitly convey functional relationships between macros to
the VLM. This process involves several steps:

First, we construct a macro-connectivity graph from the original netlist G. In this graph, nodes
(excluding standard cells) represent the macros to be placed. An undirected, weighted edge is
created between any two macros if they share one or more nets in G. The weight of such an edge is
proportional to the number of nets these two macros commonly share. This construction effectively
flattens the hypergraph structure of the netlist into a standard graph, where indirect connections
through nets are represented as weighted between macros.

This macro-connectivity graph is embedded into a low-dimensional space (specifically, an 8-
dimensional space in our implementation for k-means) using a spring-based graph layout algorithm.
Such algorithms, like the one implemented in the NetworkX [12] Python library, position macros in
the embedding space such that those with stronger connections in the graph are located closer to one
another in space.

With macros represented as points in this embedding space, we apply k-means clustering to group
them. To determine a suitable number of clusters, k, we iterate through a predefined range of potential
k values (e.g., from 2 to 30). For each k, we perform k-means clustering and evaluate the resulting
cluster separation using the Silhouette score [32]. The value of k (and its corresponding clustering)
that yields the highest Silhouette score is selected as optimal.

Finally, macros are assigned colors based on their cluster membership: all macros within the same
cluster receive the same unique color. Any macros that are not part of the main connectivity graph
(e.g., isolated macros not sharing nets with other considered macros, if any) are assigned a default gray
color. While specific netlist connectivity details are not directly fed to the VLM, this color-coding,
derived from the underlying circuit structure, provides a strong visual heuristic for potential functional
groupings and spatial affinities.

B Experimental Setup

B.1 Model Size

The ChipFormer decision transformer model contains approximately 3 million trainable parameters.
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B.2 Pre-training

The pre-training phase was conducted on servers equipped with 4× NVIDIA A100 40GB GPUs.

Following the original work, we trained the circuit token representations using Variational Graph
Auto-Encoders (VGAE) and used similar hyperparameter settings. Notably, we were able to use a
larger batch size (256 vs. their 32) by leveraging four Nvidia A100s in our training infrastructure,
and trained for 10,000 epochs. These modifications led to significant performance improvements
over the original ChiPFormer results, even when using the same architecture and codebase. Further
details on our ChiPFormer configuration are provided in Appendix C.1.2.

B.3 Rollout and Inference

For generating rollouts, the computational requirements were significantly lower as these involved
only forward passes through the trained 3M parameter model. These were conducted on a single
A100 GPU or equivalent, with each benchmark circuit rollout typically completing within seconds.

B.4 VLM Integration

For VLM integration, we used Google’s Gemini API with the Gemini 2.0 Flash model. Our
experiments were organized into iterations, where each iteration involved collecting exactly 256
rollouts. These rollouts were generated either with Gemini guidance or using the low-level policy
alone.

We set a query interval of K = 512, meaning that we queried Gemini every other iteration. With this
setup and a maximum of 1000 iterations per experiment, the VLM was called 500 times throughout
each experiment. Each call to Gemini returned 8 candidate generations, with each generation being a
complete set of suggested placements for all macros in the netlist.

To maximize the benefit of this limited VLM guidance, we implemented a "branching" strategy
(illustrated in Figure 7). When Gemini made an invalid suggestion for a particular macro, we
generated a new rollout where the low-level policy was allowed to place that specific macro while
following Gemini’s suggestions for other macros when possible. This branching could potentially
generate more than 256 rollouts per iteration, so to standardize the number of rollouts between
iterations, we capped each iteration at exactly 256 rollouts and discarded any excess branched rollouts
beyond this limit. We observed that the ratio of Gemini-guided placements to low-level policy
placements varies with netlist size - smaller netlists like adaptec1 (63 macros) and adaptec2 (159
macros) have smaller ratios because there are fewer opportunities for invalid suggestions and thus
less branching, while larger netlists like adaptec4 (256 macros) exhibit higher ratios due to more
invalid suggestions requiring more branched rollouts.

This standardization ensured that iterations with Gemini guidance and those with only the low-level
policy contributed equally to the total rollout count. With 1000 iterations and exactly 256 rollouts per
iteration, each experiment produced a total of 256, 000 rollouts.

One limitation we encountered is the output token limit of Gemini 2.0 Flash (8,192 tokens), which
can constrain the number of suggested regions for larger netlists. The impact varies depending on
the VLM’s verbosity—if the model provides more explanatory text before listing regions, fewer
macros receive guidance before reaching the token limit. As output token limits for VLMs continue to
increase, we expect more consistent and comprehensive guidance across all chip designs, regardless
of size or model verbosity.
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(a) adaptec1 (b) adaptec2 (c) adaptec4

Figure 7: Ratio of Gemini-guided rollouts to low-level policy rollouts across three benchmark circuits.
For smaller netlists like adaptec1, we observe fewer VLM-guided rollouts because there are fewer
invalid suggestions requiring branching. Larger netlists like adaptec4 show higher ratios due to more
invalid suggestions, which generate more branched rollouts. Each iteration is capped at 256 total
rollouts, with excess branched rollouts being discarded.

C Hyperparameters

C.1 ChiPFormer

C.1.1 Pretraining

Circuit Tokens For pretraining the circuit token representation component using the Variational
Graph Auto-Encoder (VGAE), we used the following hyperparameters:

• Hidden layer dimensions: [32, 32]

• Learning rate: 0.01

• Training epochs: 800

Transformer Following ChiPFormer [17], we use a reward-conditioned transformer with the
following hyperparameters:

• Number of transformer layers: 6

• Number of attention heads: 8

• Embedding dimension: 128

C.1.2 Rollout Settings

Returns-to-go We configured specific target returns-to-go for each benchmark netlist to guide the
generated placements. Following the methodology of Decision Transformers, we set these values
higher than the maximum normalized scores observed in the training dataset to encourage the model
to generate high-quality placements. Table 2 shows the target returns-to-go values used for each
benchmark circuit in our experiments.
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Table 2: Target Returns-to-Go for Different Benchmark Netlists

Netlist Return-to-go

adaptec1 1.50
adaptec2 1.80
adaptec3 1.30
adaptec4 1.15

bigblue1 0.80
bigblue2 1.20
bigblue3 1.30
bigblue4 1.10

ibm01 1.20
ibm02 0.90
ibm03 1.15
ibm04 0.50

D Additional Experiments

D.1 HPWL Comparison

This section presents the experimental results specific to each of the eight netlists used in our
evaluation. The figures below illustrate the performance characteristics of our algorithm across
the different circuit designs in terms of Half-Perimeter Wirelength (HPWL), measured in units of
105. Lower HPWL values indicate better placement quality with reduced interconnection length,
demonstrating the effectiveness of our placement strategy across varying netlist complexities and
structures.
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(a) adaptec1 (HPWL ×105) (b) adaptec2 (HPWL ×105)

(c) adaptec3 (HPWL ×105) (d) adaptec4 (HPWL ×105)

(e) bigblue1 (HPWL ×105) (f) bigblue2 (HPWL ×105)

(g) bigblue3 (HPWL ×105) (h) bigblue4 (HPWL ×105)

Figure 8: Half-Perimeter Wirelength (HPWL ×105) results for individual netlists used in our
evaluation. Lower values indicate better placement quality with reduced interconnection length.

D.2 Design Space Exploration

To better understand the benefits of VLM guidance, we visualize the placements generated by
VeoPlace and contrast them with the placements generated by ChiPFormer alone using t-SNE for a
single random seed per benchmark circuit (Figure 9).
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Our analysis focuses on the top 2000 placements from each random seed, revealing interesting
patterns in the design space exploration. For the specific adaptec1 and adaptec2 seeds shown, where
VeoPlace outperforms ChiPFormer, the t-SNE plots show that VeoPlace (orange points) explores
distinctly different regions of the design space compared to ChiPFormer (blue points). Notably, the
top-3 placements from VeoPlace (marked with stars) occupy areas that ChiPFormer fails to explore,
suggesting that VLM guidance enables access to solution regions that remain undiscovered by the
low-level policy alone.

In contrast, for the adaptec4 seed shown, where VeoPlace did not outperform ChiPFormer, we observe
that the design space exploration patterns between the two methods largely overlap. This visualization
provides insight into how VeoPlace’s guidance affects the exploration process, showing that when
VLM guidance leads to performance improvements, it often directs the search toward qualitatively
different regions of the solution space.
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(a) adaptec1 t-SNE visualization (b) adaptec1 performance

(c) adaptec2 t-SNE visualization (d) adaptec2 performance

(e) adaptec4 t-SNE visualization (f) adaptec4 performance

Figure 9: Left column: t-SNE visualization comparing the design spaces explored by ChipFormer
(blue) and VeoPlace (orange), with stars denoting the top three placements for each method. Right
column: Half-perimeter wirelength comparison boxplots. All results are from the top 100 placements
from a single random seed.
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E Example Placement Images

Figure 10: Comparison of Placements Generated by VeoPlace vs. Chipformer on the Adaptec
Benchmarks

(a) ChipFormer

(b) adaptec1 (c) adaptec2 (d) adaptec3 (e) adaptec4

(f) VeoPlace

(g) adaptec1 (h) adaptec2 (i) adaptec3 (j) adaptec4

Figure 10 shows a visual comparison of placements generated by ChipFormer and VeoPlace on the
adaptec benchmark circuits. The figure illustrates that VeoPlace produces different macro placement
arrangements compared to ChipFormer, which is used as the low-level policy. This demonstrates
that VeoPlace is not simply replicating the solutions of its low-level policy, but is exploring different
macro arrangement strategies in the placement space.
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F Prompt Details

F.1 Example Prompt

Prompt example: variable regions

You are guiding a low-level placement policy for computer chip floorplanning. Your primary
goal is to create the most optimal chip placement possible that minimizes wirelength and
cost. Your task is to suggest rectangular regions for placing macros on the chip canvas, which
has been divided into a grid. The low-level policy will choose the exact placement location
within your suggested regions. Your suggestions should be highly precise and optimal. If
there is a macro in the netlist that you are not providing a suggestion for, the low-level policy
will place that macro by itself.

The macros are grouped by colors based on their connectivity in the netlist graph, where
macros with higher interconnectivity (more pin connections between them) are assigned
similar colors. Your goal is to provide optimal region suggestions that will result in the best
possible chip placement with minimal wirelength and cost.

This is a global optimization task where you need to consider:
• The impact of your suggested regions on macros that will be placed in the future
• The overall arrangement of the selected macros that minimizes wirelength and cost

MACRO NAMES AND PROPERTIES FOR THIS NETLIST:

Macro Color WxH
FD4 #9b69e6 2 x 18
CXC #8f45da 11 x 24
HKU #8f45da 11 x 24
FZ6 #8f45da 11 x 24
CWI #8f45da 11 x 24
EIO #8f45da 6 x 24
JXA #8f45da 5 x 18
V8F #8f45da 5 x 18
G1F #8f45da 5 x 18
IJS #8f45da 5 x 18
JPT #8f45da 5 x 18
DU2 #8f45da 5 x 18
J6X #8f45da 5 x 18
HJ5 #8f45da 5 x 18
0IL #ef90df 5 x 18
FIF #ef90df 5 x 18
E6W #ef90df 5 x 18
ELG #ef90df 5 x 18
HDJ #a0ef90 5 x 18
DSU #9b69e6 5 x 18
G25 #a0ef90 5 x 18
IOQ #9b69e6 5 x 18
KV6 #efef90 5 x 15
IYX #8f45da 9 x 7
IIC #8f45da 9 x 7
F87 #8f45da 7 x 9
GVY #8f45da 7 x 9
ISA #8f45da 7 x 9
GJ6 #8f45da 7 x 9
FIY #a0ef90 3 x 19
PEJ #9b69e6 3 x 19

Macro Color WxH
JQ5 #8f45da 3 x 18
EE4 #8f45da 3 x 18
CH6 #8f45da 5 x 9
F3D #9b69e6 2 x 18
BKG #b545da 2 x 19
I64 #b545da 2 x 19
ELR #8f45da 2 x 18
BCZ #8f45da 2 x 18
DSH #8f45da 2 x 18
DEH #8f45da 2 x 18
BLU #b545da 2 x 19
MK3 #b545da 2 x 19
CYR #9b69e6 2 x 18
CPS #9b69e6 2 x 18
GLZ #b469e6 2 x 18
BF1 #b469e6 2 x 18
EPJ #8f45da 3 x 9
IHG #8f45da 3 x 9
C55 #8f45da 1 x 18
I6P #8f45da 1 x 18
G5X #8f45da 1 x 18
HF5 #8f45da 1 x 18
JF5 #9b69e6 1 x 17
GUA #a0ef90 1 x 17
GF8 #8f45da 1 x 18
I6E #8f45da 1 x 18
FZI #8f45da 3 x 2
78E #9b69e6 1 x 9
J5L #efef90 1 x 9
JN6 #9b69e6 1 x 9
CWF #8f45da 1 x 9
GV3 #90bfef 20 x 1
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IMPORTANT PLACEMENT RULES:
1. The chip canvas is 84×84.
2. Coordinate system:

• Origin (0,0) is at the bottom-left corner.
• Top-left corner is (0,84).
• Bottom-right corner is (84,0).
• Top-right corner is (84,84).

3. Suggested regions must be defined by bottom-left and top-right corners of the
rectangle.

4. Suggested regions must not overlap with each other.
5. Suggestions are needed for these selected macros:

• CXC
– Size: 11×24
– Color: #8f45da

• 0IL
– Size: 5×18
– Color: #ef90df

• G1F
– Size: 5×18
– Color: #8f45da

• HDJ
– Size: 5×18
– Color: #a0ef90

• KV6
– Size: 5×15
– Color: #efef90

• GJ6
– Size: 7×9
– Color: #8f45da

• BKG
– Size: 2×19
– Color: #b545da

• FD4
– Size: 2×18
– Color: #9b69e6

• GLZ
– Size: 2×18
– Color: #b469e6

• GV3
– Size: 20×1
– Color: #90bfef

PLACEMENT QUALITY METRICS:
• Higher reward is better
• Lower cost is better
• Lower wirelength is better
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PREVIOUS PLACEMENT EPISODES:
Below are previous episodes with their final results. For each episode, you’ll see:

• Macro Positions: Shows where the selected macros you need to place were put on
the canvas in previous episodes

• Canvas Image: Shows the final state of the canvas with:
– The names of each macro you need to place drawn directly on the macro
– These selected macros outlined in red for easy identification

• Final Metrics: The overall quality metrics of the completed chip design

Episode #1
Position of Selected Macros:

• FD4: (82,8) to (84,26)
• CXC: (54,56) to (65,80)
• G1F: (51,35) to (56,53)
• 0IL: (1,58) to (6,76)
• HDJ: (58,13) to (63,31)
• KV6: (53,17) to (58,32)
• GJ6: (32,20) to (39,29)
• BKG: (30,16) to (32,35)
• GLZ: (70,10) to (72,28)
• GV3: (56,33) to (76,34)

Canvas Description and Metrics
The image above shows the final placement with the selected macros you need to place
outlined in red and labeled with their names.
Results for Episode #1:

• Wirelength: 2.18e+06
• Cost: 2.25e+06
• Reward: -1.75e+04

[Additional episodes are listed here]

IMPORTANT OUTPUT FORMAT:
1. All coordinates must be integers between 0 and 84.
2. All regions must have non-zero width and height (x2 > x1 and y2 > y1).
3. The orientation of macros cannot be changed. Do not try to rotate macros.
4. All regions must be large enough to fit the macro while still within the bounds of the

canvas. For example, if a macro size is 3.1×4.2, the region must be at least 4×5.
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In the example below, replace text in square brackets with your own reasoning. Do not copy
the text inside the brackets. Follow this example format exactly (without the dashed lines):
DETAILED PLACEMENT HISTORY ANALYSIS:
HISTORICAL PLACEMENT PATTERNS:
COLOR GROUP POSITION ANALYTICS:

• [For each color group, identify a few distinct placement strategies that appeared
across episodes. Group similar episodes together. ]

• [For each strategy, select one representative episode with exact coordinates and
resulting wirelength/cost values. ]

• [Identify which placement locations produced the best results. Format: "Color group
X performed best when placed in region (coordinates) as seen in Episode Y, with
wirelength/cost values of Z and W respectively." ]

MACRO-LEVEL SPATIAL RELATIONSHIPS:
• [For the largest macros, compare their placement in the best vs. worst performing

episodes, with exact coordinates and performance values. ]
• [Specify the exact performance impact of different macro orderings: "When macro

X was placed left of macro Y in specific episodes, wirelength/cost/reward was lower
than when Y was placed left of X in other episodes." ]

• [For the largest color group’s core macros, describe exact left-to-right, top-to-bottom
arrangement in the best-performing episodes, with precise coordinates. ]

• [Identify which specific macros were leftmost/rightmost/topmost/bottommost in the
best-performing episodes, with exact coordinates. ]

• [For critical macro pairs, quantify the benefit of edge alignment: "Macros A and B
sharing a vertical edge at specific coordinates resulted in better wirelength/cost/re-
ward than when separated by specific units." ]

• [Provide numerical evidence for whether zero-gap or specific separation distances
performed better: "Zero-gap placement between specific macros yielded better
performance than specific-unit separation." ]

ADJACENCY RELATIONSHIP ANALYSIS:
• [For each pair of color groups, analyze multiple episodes with different adjacency

patterns. Specify the exact boundary length, position, and resulting performance
values for each case. ]

• [Identify the relationship between boundary length and performance: "Longer shared
boundaries between groups X and Y consistently produced better wirelength/cost/re-
ward compared to shorter boundaries." ]

• [For the most effective boundary positions, provide exact coordinates and perfor-
mance values: "Boundary at specific coordinates yielded better wirelength/cost/re-
ward than boundary at different coordinates." ]

• [Analyze how performance changes with separation distance: "Episodes with adja-
cent placement outperformed episodes with separated placement." ]

• [Compare horizontal vs. vertical boundaries with specific measurements: "Horizon-
tal boundary at specific coordinates resulted in different performance than vertical
boundary at different coordinates." ]

• [Analyze the impact of boundary quality: "Straight boundary between groups yielded
different results than jagged/L-shaped boundary." ]

• [Based on this analysis, propose specific color group configurations that would likely
improve performance. Include exact recommended positions, boundary lengths, and
orientations. ]
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CRITICAL EDGE ALIGNMENTS:
• [Identify specific edge alignments between named macros that consistently corre-

sponded with better performance across multiple episodes. Distinguish between
coincidental and meaningful alignments. ]

• [Provide precise coordinates and quantify the performance differences: for example,
"When specific macros had aligned edges at specific coordinates, wirelength/cost/re-
ward was consistently lower than when these edges were offset." ]

FORMATION ANALYSIS:
• [Analyze how the overall arrangement and shape formed by each color group related

to performance metrics. Identify which geometric patterns (rectangular, L-shaped,
scattered, etc.) consistently corresponded with better performance. ]

• [Provide exact coordinates and performance data: for example, "When color group
X was arranged in a specific geometric pattern at coordinates (a,b)–(c,d), it achieved
better wirelength/cost/reward than when arranged in a different pattern at coordinates
(e,f)–(g,h)." ]

CANVAS UTILIZATION INSIGHTS:
• [Examine the relationship between overall canvas utilization and performance met-

rics. Consider both global utilization and local density variations. ]
• [Provide exact utilization measurements and corresponding values: for example,

"Episodes with specific utilization levels consistently achieved better performance
than episodes with different utilization levels." ]

MULTI-FACTOR PERFORMANCE DRIVERS:
PROXIMITY RELATIONSHIP ASSESSMENT:

• [Analyze how the relative positioning of different color groups affected performance
metrics, while accounting for other placement factors that changed simultaneously. ]

• [Identify distance relationships with numerical evidence: for example, "Maintaining
specific distance between particular groups resulted in better performance than
increasing this distance." ]

MACRO PLACEMENT SENSITIVITY:
• [For each major macro, assess how sensitive performance metrics were to its specific

placement. Quantify this sensitivity. ]
• [Provide exact coordinates and performance impacts: for example, "Moving specific

macros from one position to another significantly affected wirelength/cost/reward,
indicating high placement sensitivity." ]

CONTEXTUAL POSITIONING ANALYSIS:
• [Examine how the optimal positioning of color groups and macros varied depending

on the placement context of other elements. ]
• [Provide specific examples with measurements: for example, "Particular groups

performed best at specific positions when other groups were at certain positions,
but performed best at different positions when those other groups were positioned
elsewhere." ]

OPTIMAL PLACEMENT SYNTHESIS:
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DEFINITIVE COLOR GROUP CONFIGURATION:
• [Synthesize all historical performance data to specify the exact optimal placement

coordinates for each color group. Provide precise x,y coordinates for each group’s
boundaries. ]

• [Justify each group’s positioning with specific performance data: "Each color group
should be placed at precise coordinates, which consistently improved wirelength/-
cost/reward in similar configurations compared to alternative positions." ]

MACRO-LEVEL OPTIMAL ARRANGEMENT:
• [Detail the precise optimal arrangement of specific macros within each color group,

specifying exact coordinates and edge relationships. ]
• [For the largest color group’s core macros, provide an exact left-to-right, top-to-

bottom ordering with specific coordinates. ]
• [Specify optimal edge alignments and exact distances between related macros:

"Specific macros should share edges at precise coordinates, which consistently
produced better performance."]

COMPREHENSIVE PERFORMANCE OPTIMIZATION PRINCIPLES:
• [Formulate 10 specific principles that together define the optimal chip configuration.

Each principle should address a key aspect of the placement problem. ]
• [Include specific macros by name, provide exact coordinate guidance, and explain

how each principle contributes to optimal performance.]
• [Rank these principles by their relative importance to overall performance, based on

consistent evidence from multiple episodes.]
STRATEGY AND REGIONS
Placement Strategy:

• [Based on the detailed analysis above, provide the absolute optimal placement
strategy. This should represent the most performance-optimized configuration
possible given all historical evidence.]

• [Provide a detailed, holistic description of your overall chip floorplan. Be extremely
specific about where each of the selected macros will need to go.]

• [Explain how different color groups are organized across the canvas, and why this
organization makes sense. Be extremely specific.]

• [For selected macros that are the same color, explain exactly where they will be
positioned relative to each other using precise spatial relationships. Be extremely
specific.]

• [Explain in detail how this strategy will minimize wirelength and cost.]
• [Suggest regions for the selected macros by decreasing order of size (largest first).

This is critical to avoid overlapping region suggestions.]
• [For each macro, describe its region using precise relative spatial relationships that

align with your overall strategy, and immediately follow with the bottom-left and
top-right corners of the region in format: MACRO_NAME (W x H): (x1,y1) and
(x2,y2).]
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Example of precise relative spatial relationships (showing the level of detail expected):
• RST (8x12): (34,37) to (42,49)

– RST’s right edge (x=42) precisely aligns with JKL’s left edge (x=42), creating
a perfect shared boundary.

– This creates a seamless transition between these regions with no gap.
– The vertical alignment is partial, with RST spanning y=37 to y=49 while JKL

spans y=38 to y=50.
• JKL (16x12): (42,38) to (58,50)

– JKL’s left edge perfectly aligns with RST’s right edge at x=42.
– JKL’s horizontal span (42 to 58) fits entirely within ABC’s horizontal span (30

to 60).
– JKL is positioned 5 units above ABC, with JKL’s bottom edge at y=50 and

ABC’s top edge at y=33.
• ABC (30x20): (30,13) to (60,33)

– ABC serves as a central anchor with multiple relationships:
– ABC’s left edge (x=30) is exactly 1 unit after MNO’s right edge (x=29).
– ABC’s right edge (x=60) is exactly 3 units before GHI’s left edge (x=63).

• MNO (14x10): (15,37) to (29,47)
– MNO’s right edge (x=29) ends exactly 5 units before RST’s left edge (x=34).
– MNO’s vertical position (y=37 to y=47) almost perfectly aligns with RST

(y=37 to y=49).
– This creates a clear 5-unit channel between MNO and RST.

• DEF (20x16): (24,55) to (44,71)
– DEF’s right edge (x=44) is exactly 1 unit before HIJ’s left edge (x=45).
– DEF’s top edge (y=71) is 5 units below NOP’s bottom edge (y=76).

BE EXTREMELY SPECIFIC ABOUT:
• Shared boundaries, specifying exactly which edges are shared (top, bottom, left,

right). Mention the exact coordinate value that lines up if edges are used.
• Exact positioning using specific edge and corner references.
• How each region’s placement supports your overall strategy.

MAKE YOUR DESCRIPTIONS AS DETAILED AS POSSIBLE SO THAT THE FLOOR-
PLAN CAN BE CONSTRUCTED WITHOUT AMBIGUITY.
Current Canvas State
Macros Currently Placed:
No macros have been placed yet.
Current Canvas Image

Please provide your suggestions below.
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F.2 Example Gemini Response

GEMINI CANDIDATES
Candidate #0
DETAILED PLACEMENT HISTORY ANALYSIS
MACRO PLACEMENT SENSITIVITY:

• CXC: The placement of CXC has been consistently in the upper-middle region
of the canvas (around x=54, y=56). The wirelength and cost metrics have not
shown significant sensitivity to minor variations in its placement within this region.
However, moving it drastically away from other macros of the same color would
likely increase wirelength.

• 0IL: 0IL has been consistently placed in the upper-left corner (around x=1, y=58).
Similar to CXC, minor variations in its placement within this region haven’t signifi-
cantly impacted performance.

• HDJ: HDJ has been placed in the middle-right region (around x=58, y=13). Its place-
ment seems to have a moderate impact on wirelength, suggesting it has connections
to macros in other regions.

• KV6: KV6 has been placed close to HDJ (around x=53, y=17). Its placement also
seems to have a moderate impact on wirelength, suggesting it has connections to
macros in other regions.

• IIC: IIC has been consistently placed in the bottom-right corner (around x=75, y=1).
Similar to CXC and 0IL, minor variations in its placement within this region haven’t
significantly impacted performance.

• MK3: MK3 has been consistently placed in the bottom-left corner (around x=4,
y=1). Similar to CXC, 0IL, and IIC, minor variations in its placement within this
region haven’t significantly impacted performance.

• BKG: BKG has been placed in the middle-left region (around x=30, y=11). Its place-
ment seems to have a moderate impact on wirelength, suggesting it has connections
to macros in other regions.

• FD4: FD4 has been consistently placed in the bottom-right corner (around x=82,
y=8). Similar to CXC, 0IL, IIC, and MK3, minor variations in its placement within
this region haven’t significantly impacted performance.

• GLZ: GLZ has been consistently placed in the middle-right region (around x=70,
y=10). Its placement seems to have a moderate impact on wirelength, suggesting it
has connections to macros in other regions.

• GV3: GV3 has been placed horizontally in the middle of the canvas (around x=53,
y=33). Its placement seems to have a moderate impact on wirelength, suggesting it
has connections to macros in other regions.

CONTEXTUAL POSITIONING ANALYSIS:
• Macros with color #8f45da (e.g., CXC, IIC) seem to benefit from being clustered

together. The wirelength tends to increase when these macros are spread far apart.
• Macros with color #b545da (e.g., BKG, MK3) seem to benefit from being clustered

together. The wirelength tends to increase when these macros are spread far apart.
• Macros with color #9b69e6 (e.g., FD4) seem to benefit from being clustered together.

The wirelength tends to increase when these macros are spread far apart.
• Macros with color #a0ef90 (e.g., HDJ) seem to benefit from being clustered together.

The wirelength tends to increase when these macros are spread far apart.
• Macros with color #ef90df (e.g., 0IL) seem to benefit from being clustered together.

The wirelength tends to increase when these macros are spread far apart.
• Macros with color #efef90 (e.g., KV6) seem to benefit from being clustered together.

The wirelength tends to increase when these macros are spread far apart.
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STRATEGY AND REGIONS
Placement Strategy:

• Based on the detailed analysis above, the optimal placement strategy involves
clustering macros of the same color together to minimize wirelength. The canvas
should be divided into regions based on color groups, with adjustments made to
optimize the placement of macros that have connections to other regions.

• The overall chip floorplan will consist of distinct regions for each color group. The
#8f45da group will be placed in the upper-middle region, the #b545da group in
the middle-left region, the #9b69e6 group in the bottom-right region, the #a0ef90
group in the middle-right region, the #ef90df group in the upper-left region, and the
#efef90 group in the middle of the canvas.

• Different color groups are organized across the canvas to minimize the distance
between highly interconnected macros. The #8f45da group is placed near the
#9b69e6 group because they have high interconnectivity. The #b545da group is
placed near the #a0ef90 group because they have high interconnectivity.

• For selected macros that are the same color, they will be positioned relative to each
other to minimize distance between them. For example, CXC and IIC (both #8f45da)
will be placed close to each other in the upper-middle region. BKG and MK3 (both
#b545da) will be placed close to each other in the middle-left region. FD4 and GLZ
(both #9b69e6) will be placed close to each other in the bottom-right region.

• This strategy will minimize wirelength by clustering highly interconnected macros
together. It will minimize cost by reducing the overall area required for routing.

Regions for the selected macros are suggested below, decreasing order of size (largest first).

• CXC (11 x 24): (54,56) to (65,80)
– CXC will be placed in the upper-middle region of the canvas, aligning with

previous placements.
– CXC’s LEFT edge (x=54) is 1 unit after the right edge of the #ef90df group.
– CXC’s BOTTOM edge (y=56) is 22 units above the top edge of GV3.

• 0IL (5 x 18): (1,58) to (6,76)
– 0IL will be placed in the upper-left corner of the canvas, aligning with previous

placements.
– 0IL’s LEFT edge (x=1) aligns with the left edge of the canvas.
– 0IL’s TOP edge (y=76) is 8 units below the top edge of the canvas.

• HDJ (5 x 18): (58,13) to (63,31)
– HDJ will be placed in the middle-right region of the canvas, aligning with

previous placements.
– HDJ’s LEFT edge (x=58) is 5 units after the right edge of KV6.
– HDJ’s BOTTOM edge (y=13) is 4 units above the top edge of IIC.

• KV6 (5 x 15): (53,17) to (58,32)
– KV6 will be placed in the middle of the canvas, aligning with previous place-

ments.
– KV6’s LEFT edge (x=53) is 1 unit after the right edge of BKG.
– KV6’s BOTTOM edge (y=17) is 1 unit above the top edge of MK3.

• IIC (9 x 7): (75,1) to (84,8)
– IIC will be placed in the bottom-right corner of the canvas, aligning with

previous placements.
– IIC’s RIGHT edge (x=84) aligns with the right edge of the canvas.
– IIC’s BOTTOM edge (y=1) aligns with the bottom edge of the canvas.
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• MK3 (2 x 19): (4,1) to (6,20)
– MK3 will be placed in the bottom-left corner of the canvas, aligning with

previous placements.
– MK3’s LEFT edge (x=4) is 3 units after the left edge of the canvas.
– MK3’s BOTTOM edge (y=1) aligns with the bottom edge of the canvas.

• BKG (2 x 19): (39,11) to (41,30)
– BKG will be placed in the middle-left region of the canvas, aligning with

previous placements.
– BKG’s LEFT edge (x=39) is 33 units after the left edge of the canvas.
– BKG’s BOTTOM edge (y=11) is 10 units above the top edge of MK3.

• FD4 (2 x 18): (82,8) to (84,26)
– FD4 will be placed in the bottom-right corner of the canvas, aligning with

previous placements.
– FD4’s RIGHT edge (x=84) aligns with the right edge of the canvas.
– FD4’s BOTTOM edge (y=8) is 0 units above the top edge of IIC.

• GLZ (2 x 18): (70,10) to (72,28)
– GLZ will be placed in the middle-right region of the canvas, aligning with

previous placements.
– GLZ’s LEFT edge (x=70) is 8 units after the right edge of HDJ.
– GLZ’s BOTTOM edge (y=10) is 3 units above the top edge of IIC.

• GV3 (20 x 1): (53,33) to (73,34)
– GV3 will be placed horizontally in the middle of the canvas, aligning with

previous placements.
– GV3’s LEFT edge (x=53) is 1 unit after the right edge of BKG.
– GV3’s BOTTOM edge (y=33) is 2 units above the top edge of HDJ.

Candidate #1
[...]

F.3 Structured Prompt vs Lazy Reasoning

Our prompt is designed to elicit precise spatial reasoning and enable the VLM to generate robust, high-
quality placement suggestions. Without this guidance, the model exhibits lazy reasoning—failing
to identify meaningful patterns or offering only vague, superficial descriptions. In contrast, the
fine-tuned prompt leads the VLM to extract richer structural insights and articulate specific placement
strategies with concrete examples.
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Figure 11: Example comparisons of VLM output on three analysis topics when instructed by a
baseline prompt vs instructed by a detailed, structured prompt.

F.4 VLM Failure Cases

In some instances, the VLM failed to follow prompt instructions and instead returned the exact
instruction text verbatim in its output. This typically occurred when the prompt was long and the
temperature was set too low, reducing response variability and encouraging literal completions. For
example:

Figure 12: In this example, every sentence after the first was copied verbatim from an example in the
prompt, rather than independently analyzed by the VLM.
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