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Abstract

Feature importance metrics are critical for inter-
preting machine learning models and understand-
ing the relevance of individual features. However,
real-world data often exhibit missingness, thereby
complicating how feature importance should be
evaluated. We introduce the distinction between
two evaluation frameworks under missing data: (1)
feature importance under the full data, as if every
feature had been fully measured, and (2) feature
importance under the observed data, where miss-
ingness is governed by the current measurement
policy. While the full data perspective offers in-
sights into the data generating process, it often
relies on unrealistic assumptions and cannot guide
decisions when missingness persists at model de-
ployment. Since neither framework directly in-
forms improvements in data collection, we addi-
tionally introduce the feature measurement impor-
tance gradient (FMIG), a novel, model-agnostic
metric that identifies features that should be mea-
sured more frequently to enhance predictive per-
formance. Using synthetic data, we illustrate key
differences between these metrics and the risks of
conflating them.

1. Introduction
Feature importance metrics play a crucial role in supervised
machine learning, offering a means to evaluate the impact of
individual features on a model’s performance. A subset of
these metrics, known as global feature importance metrics
(Ewald et al., 2024), determine the value of including a
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feature in the prediction model, typically given a certain
baseline of other features. These metrics help clarify the
relevance of features in applications like medical decision-
making, where they can provide insights into the diagnostic
and prognostic value of medical tests (Yoo et al., 2025;
Rai et al., 2024; Ma et al., 2023). In practice, however,
particularly in clinical contexts, features are often measured
inconsistently, leading to missing values (Zamanian et al.,
2024). This raises important questions about how to define
and interpret feature importance in such scenarios.

To ground our discussion, we present three simplified sce-
narios in heart attack diagnosis, each illustrating a distinct
perspective on how to reason about feature importance in
the presence of missing data:

Scenario 1: A biomedical researcher aims to under-
stand the intrinsic relationship between troponin levels, a
biomarker typically measured via a blood test, and the oc-
currence of heart attacks - independent of hospital testing
protocols. Using a retrospective dataset with missing values,
the researcher is interested in feature importance as if every
feature had been fully measured.

Scenario 2: A machine learning engineer develops a heart
attack prediction model and evaluates the relevance of tro-
ponin levels. Given a retrospective dataset with missingness,
the model is to be trained for deployment in a setting where
such missingness will persist due to unchanged hospital
testing protocols. The engineer is thus interested in fea-
ture importance under the current missingness where
features sometimes assume a special value “?” representing
missingness.

Scenario 3: Since troponin tests are costly and time-
consuming, but provide valuable diagnostic information,
an analyst seeks to optimize their use after deploying the
prediction model. The analyst wants to understand how
prediction performance would change if troponin was mea-
sured more frequently. They are thus interested in feature
importance under an increase in measurement probabil-
ity.

In this work, we examine how feature importance metrics
can be defined and estimated in such scenarios. To clar-
ify the structure of the problem, we organize our analysis
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around the classical three-step framework of statistical in-
ference: (i) Estimand definition, which entails specifying
the target parameter to be computed; (ii) Identification,
which assesses whether the estimand can be expressed as a
function of the observed data; and (iii) Estimation, which
concerns how the estimand is calculated from the observed
data.

We find that current practices for reporting feature impor-
tance metrics in scenarios with missing data lack rigor across
all three steps:

• Estimands are not clearly specified: When transition-
ing from a fully observed dataset to one with missing
data, the target parameter - i.e. the feature importance
metric - must be redefined to reflect the data structure.
In current practice, analysts do not report based on
which data the feature importance is calculated. For ex-
ample, is the metric intended to reflect the importance
of features in the observed data with missingness, or in
the full data that would have been available had there
been no missingness?

• Identification assumptions are not stated, and identi-
fication is not performed: Analysts often fail to spec-
ify the necessary assumptions required for identifica-
tion. This includes independence assumptions about
the missingness process, such as whether data are as-
sumed to be Missing Completely at Random (MCAR),
Missing at Random (MAR), or Missing Not at Random
(MNAR) (Bhattacharya et al., 2020; Nabi et al., 2020;
Mohan & Pearl, 2021). It also includes the positiv-
ity assumption (Petersen et al., 2012), which ensures
sufficient overlap in feature availability across subpop-
ulations. As a result, it remains unclear under which as-
sumptions the reported feature importance metrics hold
true. Examples of this issue can be found in Yoo et al.
(2025); Rai et al. (2024); Ma et al. (2023); Beld et al.
(2024); Peng et al. (2023); Guan et al. (2023); Zhou
et al. (2023); Qi et al. (2022); Xie et al. (2023); Bao
et al. (2023); Yang et al. (2022); Zhang et al. (2023).

• Estimation methods are often biased: A variety of
methods are used in practice to handle missing data
when computing feature importance metrics, includ-
ing but not limited to mean/median/zero imputation
(Zhuang et al., 2023; Lucini et al., 2023; Ishii et al.,
2023; Huang et al., 2023; Danilatou et al., 2022), condi-
tional mean imputation (Vo et al., 2024), complete case
analysis (Zhang et al., 2022), and multiple imputation
(Peng et al., 2023; Guan et al., 2023; Qi et al., 2022;
Xie et al., 2023; Chen et al., 2023; Zeng et al., 2023). It
is often unclear to which estimand these methods corre-
spond to and whether they introduce bias. For instance,
some methods implicitly assume that the missing fea-

ture contains no or excessive information, leading to
distorted feature importance estimates. Consequently,
reported metrics may misrepresent the true underlying
importance of features.

To address the lack of estimand specification, we introduce
the distinction between two concepts: (1) Full data feature
importance metrics, which refer to the ground truth data
had there been no missingness, and (2) Observed data fea-
ture importance metrics, which refer to the observed data
and thus analyze feature importance in the context of the
current measurement policy. We illustrate the implications
of these two perspectives using a simple yet practical fea-
ture importance metric: the leave-one-covariate-out (LOCO)
metric (Lei et al., 2018).

We then turn to the problem of identification. While ob-
served data feature importance metrics are directly identifi-
able from the observed data distribution, the identification
of full data feature importance metrics relies on strong - and
often unrealistic - assumptions. In particular, we examine
the role of the positivity assumption, which can critically
limit the reliability of estimation in practice.

Next, we address the problem of estimation by reviewing
commonly used approaches for computing feature impor-
tance metrics under missing data. We classify these methods
according to the estimands they target and assess their abil-
ity to produce unbiased results under various missingness
mechanisms. We demonstrate that estimation results can
differ drastically between full data and observed data fea-
ture importance metrics. For instance, consider a costly
or invasive medical test that provides a highly informative
feature: if performed for every patient, the feature would
be an excellent predictor, yielding high full data feature
importance. However, due to cost constraints, it is rarely
conducted in practice - leading to a much lower observed
data feature importance.

While full data and observed data feature importance met-
rics are appropriate for the questions posed in Scenarios 1
and 2, they fall short in addressing Scenario 3, where the
goal is to assess a features importance under changes in
the measurement process. To fill this gap, we introduce the
feature measurement importance gradient (FMIG), a
novel, model-agnostic, and computationally efficient esti-
mand. FMIG quantifies the sensitivity of prediction perfor-
mance to small increases in the measurement probability of
a given feature. Unlike full data feature importance metrics,
FMIG does not require a positivity assumption, making it
more robust and practically applicable in real-world settings
with high rates of missingness.
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2. Related Methods
In Appendix A, we provide an overview of feature im-
portance metrics. In the following, we discuss related ap-
proaches for assessing feature importance and the closely
related problem of feature selection in the presence of miss-
ing data.

2.1. Estimand Specification

To the best of our knowledge, no prior studies have explicitly
differentiated between observed and full data feature impor-
tance metrics. However, some papers incidentally report
both types of metrics because they use multiple methods -
some of which align with observed data feature importance
metrics and others with full data feature importance - with-
out noticing the difference in the underlying estimands (Vo
et al., 2024; Srinivasan et al., 2016; Rai et al., 2024). The
same issue arises in feature selection (Fan et al., 2023; Mera-
Gaona et al., 2021; Ergul Aydin & Kamisli Ozturk, 2024).
Notably, only Hapfelmeier (2012) acknowledged that mul-
tiple imputation addresses a different question than their
proposed method, but the difference in estimands remained
unexplored. In contrast, our work is the first to formally
define these concepts and clarify their implications.

2.2. Identification

Challenges related to estimating feature importance or per-
forming feature selection under different missingness mech-
anisms, such as MCAR, MAR, and MNAR, have been dis-
cussed in some studies (Vo et al., 2024; Hapfelmeier, 2012;
Srinivasan et al., 2016; Fan et al., 2023; Beld et al., 2024;
Zhao & Long, 2017), but MNAR remains particularly un-
derexplored (Zhao & Long, 2017). Many papers fail to
specify the missingness assumptions under which their re-
ported metrics are valid (Yoo et al., 2025; Rai et al., 2024;
Ma et al., 2023; Beld et al., 2024; Peng et al., 2023; Guan
et al., 2023; Zhou et al., 2023; Qi et al., 2022; Xie et al.,
2023; Bao et al., 2023; Yang et al., 2022; Zhang et al., 2023).
Moreover, no prior work has, to the best of our knowledge,
addressed the role of the positivity assumption in the context
of feature importance metrics under missing data.

2.3. Estimation

Various studies have investigated methods for estimating
feature importance metrics (Vo et al., 2024; Srinivasan
et al., 2016) or conducting feature selection (Gunn et al.,
2023; Seijo-Pardo et al., 2018; 2019; Mera-Gaona et al.,
2021; Hu et al., 2021; Genossar et al., 2024; Ergul Aydin
& Kamisli Ozturk, 2024; Doquire & Verleysen, 2012) in
the presence of missing data. These approaches include
imputation-based methods (Zhao & Long, 2017; Vo et al.,
2024; Seijo-Pardo et al., 2018; 2019) and methods that in-

trinsically handle missing data (Vo et al., 2024). Among
imputation-based methods, conditional mean imputation
and similar approaches like KNN-imputation (Smit et al.,
2022) or SVD imputation are commonly used (Srinivasan
et al., 2016; Hapfelmeier, 2012; Ergul Aydin & Kamisli Oz-
turk, 2024; Smit et al., 2022), but introduce bias (Seijo-
Pardo et al., 2018).

In contrast, multiple imputation (MI) is recognized as an
unbiased method for estimating feature importance under
missing data (Moons et al., 2006). However, prior work has
emphasized that the label must be included in the imputa-
tion model to ensure validity (Moons et al., 2006). Despite
this recommendation, it is still common in practice to ex-
clude the label (Srinivasan et al., 2016; Hapfelmeier, 2012;
Ergul Aydin & Kamisli Ozturk, 2024; Zeng et al., 2023).

While these methods have been analyzed in various studies,
no work has systematically categorized them based on the
type of feature importance metric they compute - whether
observed data or full data feature importance. In addition
to this categorization, we identify which estimation meth-
ods introduce bias, further clarifying their limitations and
appropriate applications.

2.4. Action Importance Metrics in Reinforcement
Learning and Causal Inference

The feature measurement importance gradient (FMIG), in-
troduced in this work, quantifies how predictive perfor-
mance would change if the probability of measuring a given
feature were slightly increased. This metric frames the mea-
surement process as a decision-making problem, where the
decision is whether to measure a feature in a specific context
defined by the already-measured features. This perspective
naturally aligns with concepts in reinforcement learning
(RL) and causal inference, which study the importance of
actions and their effects.

Shapley values, which are widely used in feature impor-
tance evaluation (Lundberg & Lee, 2017), have been also
applied in RL to assess the importance of individual actions
(Beechey et al., 2023). Concepts like the credit assignment
problem in RL (Pignatelli et al., 2024), which focus on
attributing rewards to specific actions, highlight related chal-
lenges in quantifying the importance of actions and suggest
potential connections to feature measurement tasks.

FMIG also shares a conceptual link with incremental propen-
sity score interventions introduced by Kennedy (2019),
which provide an interpretable framework for analyzing the
effects of small changes in action probabilities (propensity
scores). We adapt this idea to the setting of feature mea-
surement and, by focusing only on the gradient, simplify
estimation while retaining an interpretable metric.
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3. Full Data and Observed Data Feature
Importance Metrics

In this section, we introduce notation, define the full data
and observed data LOCO metrics, and discuss identification
and estimation. We consider a classification setting, but our
results naturally extend to regression.

3.1. Notation

We define the key variables and functions as follows:

• Observed features: X ∈ (R ∪ {”?”})d , where X i rep-
resents the value of the i-th feature. If X i = ”?”, the
feature is missing; otherwise, X i ∈ R.

• Missingness indicators: R ∈ {0,1}d , where Ri = 1 in-
dicates that feature X i is observed, and Ri = 0 indicates
it is missing.

• Ground truth features: X(1) ∈ Rd , representing the
true values of all features, had they all been observed.
Using potential outcome notation (Rubin, 2005), X(1),i
denotes the value of feature X i , potentially contrary to
fact, had Ri = 1. We obtain:

X i =

¨

X(1),i if Ri = 1,

”?” if Ri = 0.
(1)

• Label: Y ∈ {0,1, . . . , K − 1}, the categorical outcome
associated with the feature set X , where K is the number
of possible classes. We do not consider label missing-
ness in this work.

• Missingness process: π: Rd × {0,1, . . . , K − 1} →
[0,1]2

d
, representing the mechanism that determines

the missingness indicator R. In the most general case
π(R|X(1), Y ) depends on both the ground truth features
X(1) and the label Y .

• Classifier: fcl : (R ∪ {”?”})d × {0,1}d → [0,1]K , de-
fines a mapping from the observed features and miss-
ingness indicators to the label probabilities. While X
already encodes missingness through the presence of
"?" values, we explicitly include the missingness indica-
tors R in the notation to emphasize the dependence on
the missingness pattern. Using missingness indicators
in the classifier is common practice in many settings
(Van Ness et al., 2023; Singh et al., 2021).

• Loss function: L : {0,1, . . . , K −1}× [0,1]K → R, de-
fines a loss function, for example cross entropy, for the
classifier fcl based on the true labels and the predicted
label probabilities.

We further let X− j , R− j , X(1),− j denote the reduced dimen-
sion observed features, missingness indicators and ground
truth features when feature j is excluded. Similarly, we
let fcl,− j : (R ∪ {”?”})d−1 × {0,1}d−1 → [0,1]K denote the
classifier that excludes information from feature j.

3.2. Estimand Definition: Full Data and Observed Data
LOCO Metrics

For full data, the LOCO metric for feature j evaluates as
follows.

Full data LOCO:

LOCOF D
j =E

�

L
�

Y, fcl,− j(X(1),− j , R− j = ~1)
��

−E
�

L
�

Y, fcl(X(1), R= ~1)
�� (2)

Here, the full data LOCO metric measures the expected
loss difference if feature j is excluded compared to if it is
included, with all other features fully observed.

In contrast, the observed data LOCO metric evaluates as
follows.

Observed data LOCO:

LOCOOD
j =E

�

L
�

Y, fcl,− j(X− j , R− j)
��

−E [L (Y, fcl(X , R))]
(3)

It differs from LOCOF D
j in that it replaces the ground truth

features X(1) with their observed proxies X and the missing-
ness indicators R, which embeds the feature importance in
the context of the measurement policy that was used in the
acquisition of the dataset. The observed data LOCO metric
LOCOOD

j thus quantifies the loss difference when feature
j is excluded compared to if it is included, but only when
measured under the current measurement policy, with other
features partially observed under their respective measure-
ment policies.
Remark 3.1. Note that the observed data LOCO metric,
LOCOOD

j , does not capture the contrast in loss that would
occur if feature j were no longer measured. We intro-
duce an alternative estimand, termed leave-one-covariate-
unmeasured (LOCU), which describes this scenario in detail
in Appendix B. The LOCU metric coincides with LOCOOD

only under certain restrictive independence assumptions
about the missingness process.

3.3. Identification

The observed data LOCO metric is already identified, mean-
ing it is expressed as a function of the observed data. This is
not the case for the full data LOCO metric, which depends
on the unobserved ground truth features X(1). To identify the
full data LOCO metric, missing data identification methods
can be applied. Generally, the following assumptions are
required:

Stable Unit Treatment Value Assumption (SUTVA): This
assumption ensures that the counterfactual feature values are
well-defined, as described by Eq. 1. Specifically, it requires
that the observed features are equal to the counterfactual
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features when R = 1. Additionally, it assumes that data
points do not interfere with one another - specifically, that
missingness in one instance is not influenced by the features
or missingness indicators of other instances.

Independence assumptions about the missingness process:
These assumptions describe the relationship between the
missingness process π and the data:

• Missing Completely at Random (MCAR): The miss-
ingness process is independent of both observed and
unobserved data, π(R|X(1), Y ) = π(R).

• Missing at Random (MAR): The missingness process
depends only on the observed data.

• Missing Not at Random (MNAR): The missingness
process may depend on unobserved data, such as the
ground truth features X(1).

Positivity assumption: The positivity assumption requires
that π(R= ~1 | X(1), Y )> 0 for all X(1), Y with p(X(1), Y )>
0. In essence, it ensures that for every ground truth data
point, there is a positive probability that it is fully observed.
The positivity assumption is particularly critical in many
real-world settings, as it is often violated. Consider, for
example, a time-series medical prediction setting. The as-
sumption requires that for every patient, there is a chance
that all medical tests are being performed jointly and at
every time point - a scenario that is rarely, if ever, met in
practice. As a result, full data feature importance metric
estimates become highly unreliable in such contexts.

3.4. Estimation

In the following, we categorize various estimation methods
for both full data and observed data feature importance
metrics. Note that feature importance is defined relative to
a given classifier fcl , and thus reflects the true importance
of a feature only to the extent that the classifier accurately
captures the relationship between X and Y .

3.4.1. Estimation of the Full Data LOCO Metric

Inverse probability weighting (Seaman & White, 2013) and
multiple imputation (Sterne et al., 2009) are widely used
methods from the missing data literature for estimating full
data target parameters. They can thus also be used to com-
pute the full data LOCO metric. Both approaches recon-
struct samples from the ground truth distribution p(X(1), Y ),
enabling the estimation of full data LOCO metrics.

Inverse-Probability Weighting (IPW): The IPW estimator
reconstructs samples from the complete cases by applying
appropriate weights. Using Bayes’ rule, the ground-truth

distribution is expressed as:

p(X(1), Y ) =
p(R= ~1, X(1), Y )

π(R= ~1 | X(1), Y )
.

This formulation is valid if the propensity score π(R =
~1 | X(1), Y ) = p(R = ~1 | X(1), Y ) is identifiable, as p(R =
~1, X(1), Y ) = p(R = ~1, X , Y ) is already a function of the
observed data. When the missingness mechanism is MCAR,
this estimator simplifies to complete case analysis.

Multiple Imputation (MI): The MI estimator reconstructs
p(X(1), Y ) by decomposing X(1) into its observed compo-
nents Xo

1 and missing components Xm, as follows:

p(X(1), Y ) =
∑

R

p(Xm | Xo, Y, R)p(Xo, Y, R).

Here, p(Xo, Y, R) corresponds to the observed data, while
p(Xm | Xo, Y, R) must be identified and estimated.

To ensure unbiased estimation, the imputation model must
thus include the label Y as an input. This was also verified in
experiments (Moons et al., 2006). However, this introduces
a practical concern: if the imputation model is misspecified,
the imputed values may contain excessive information about
Y , potentially leading to inflated prediction performance
estimates.

To mitigate this risk, practitioners often exclude Y from
the imputation model (Srinivasan et al., 2016; Hapfelmeier,
2012; Ergul Aydin & Kamisli Ozturk, 2024). Imputing Xm
using p(Xm | Xo, R) assumes Xm ⊥⊥ Y | Xo, R, implying that
missing features contribute no additional information for
predicting Y beyond Xo and R. Such a practice effectively
dismisses the potential importance of missing features be-
fore the computation even begins, rendering the approach
fundamentally flawed.

3.4.2. Estimation of the Observed Data LOCO Metric

Estimating observed data feature importance metrics is more
straightforward because the observed data LOCO metric is
already identified. The primary requirement is ensuring
that the classifier can appropriately handle missing values.
Crucially, when assessing observed data feature importance
metrics, no additional information should be introduced for
the missing feature. This can be achieved either by applying
the classifier directly (if it supports "?" values) or by using
simple imputation methods (e.g., mean or median imputa-
tion) that do not inject additional predictive information. In
the case of imputation, it is particularly important to include
the unchanged missingness indicators R in the classifier’s
input to preserve the informativeness of the missingness

1Xo differs from X because X contains placeholders (e.g., "?"
for missing values) that encode information about R.
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pattern. While mean imputation is often considered a biased
approach (Mera-Gaona et al., 2021), this is true only when
a full data feature importance method is of interest. For
observed data feature importance, mean imputation remains
unbiased. A more rigorous mathematical justification for
this result is provided in Appendix C.

Other popular approaches to estimate feature importance
metrics can handle missing data intrinsically. These include
for example tree-based methods such as XGBoost (Vo et al.,
2024; Chen & Guestrin, 2016) and are often based on a
principle known as missingness incorporated in attributes
(MIA) (Twala et al., 2008). These methods merely handle
the missing values within the classification and do not imag-
ine counterfactual, "what if everything had been observed",
scenarios. They are therefore also included in the observed
data feature importance category.

3.4.3. Biased Estimation Methods

A common but highly problematic approach to computing
feature importance metrics is conditional mean imputation.
This method replaces missing values with

E[Xm | Xo, Y, R],

or, more commonly (when Y is excluded), with

E[Xm | Xo, R].

While this simplification may appear reasonable, it intro-
duces substantial bias when the goal is to estimate either
full data or observed data feature importance metrics. We
provide a detailed mathematical justification for a range of
feature importance metrics in Appendix C and offer some
intuition below.

Including Y may create a deterministic relationship between
Y and the imputed values, potentially allowing a classifier
to exploit this relationship and achieve artificially high pre-
diction accuracy. Excluding Y , on the other hand, can still
introduce a deterministic relationship between Xm and Xo,
thereby transferring predictive information from Xo to the
imputed values. This severely skews feature importance
estimates. This method is thus neither suited to estimate full
data, nor observed data feature importance metrics. Note
that the same holds for all similar imputation methods that
do not model the full density for the imputed features. This
includes for example KNN-imputation (Zhang, 2012) which
is also frequently used to report feature importance under
missing data (Zhou et al., 2023).

In conclusion, when using imputation for the estimation of
LOCOF D and LOCOOD, the missing values must be imputed
in a manner consistent with the classifiers respective "work-
ing conditions." For LOCOF D, the classifier operates under
full data availability. Therefore, missing values must be im-
puted using samples from the full data distribution. When

done correctly, LOCOF D is evaluated on a dataset that mir-
rors the original dataset as if no missingness had occurred.
In this case, the classifier can leverage the imputed values to
potentially improve performance. For LOCOOD, evaluation
occurs under conditions where missingness is present. Since
the observed data already reflects the classifier’s working
conditions, no imputation is required. However, one may
opt for impute-then-regress classifiers, where imputation
serves purely as a means to handle missing values elegantly.
In such cases, the imputation step does not introduce ad-
ditional information beyond what is already present in the
observed input features.

Remark 3.2. While the LOCO metrics in Eqs. 2 and 3 are
valid for any classifier fcl , the choice of training method is
essential for interpretability. Classifiers must be trained for
the specific conditions under which they will be deployed.
To evaluate observed data feature importance metrics, the
classifier must perform optimally in the presence of miss-
ing data. In contrast, full data feature importance metrics
require a classifier trained for settings where all features are
available. The implications of this distinction are discussed
in Appendix D.

4. Feature Measurement Importance Gradient
The observed data and full data LOCO metrics assess the im-
pact of completely omitting X j or X(1), j from the prediction
model, providing an "all-or-nothing" perspective on feature
importance. However, in practice, improving predictive per-
formance often requires more fine-grained considerations.
Rather than asking whether a feature is important in abso-
lute terms, a more actionable question is: which feature,
if measured more frequently, would yield the greatest im-
provement in prediction performance? For instance, if we
could increase the measurement frequency of certain fea-
tures, how should we prioritize them to maximize predictive
gains? Answering this question provides practical guidance
for optimizing data collection strategies.

To address this, we introduce the feature measurement im-
portance gradient (FMIG), a novel metric that quantifies
how prediction performance changes with small increases
in the measurement probability of a given feature. We for-
malize FMIG by defining perturbation interventions on the
measurement policy and discuss its identification and esti-
mation.

Specifically, FMIG captures the sensitivity of predictive
performance to marginal changes in measurement proba-
bility. To this end, we introduce a perturbation δ j to the
current measurement policy π, increasing the probability of
measuring feature j. We denote the perturbed policy as πδ j

.

Given this perturbation, we can determine the gradient of
the negative loss with respect to the perturbation to rank
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features in their importance:

Feature Measurement Importance Gradient (FMIG) G j:

G j = ∇δ j
E
h

−L
�

Y, fcl(X(πδ j
), R(πδ j

))
�i
�

�

�

δ j=δ∗j
(4)

where δ∗j is the value of δ j that represents no perturbation.
Here, X(πδ j

) and R(πδ j
) denote the counterfactual observed

features and missingness indicators, had the perturbed policy
πδ j

been applied. We take the gradient with respect to
the negative loss so that the FMIG quantifies the expected
reduction in loss when the feature is measured slightly more
frequently and thus leads to positive feature importances.

4.1. Measurement Process Assumptions

The definition of interventions on the measurement policy
relies on the data’s measurement process. Here, we consider
a special MAR process. Features are measured sequentially,
where the measurement of feature j depends on all prior
missingness indicators and observed features.

Under these assumptions, the measurement policy factorizes
as:

π(R|X(1), Y ) =
d
∏

i=1

πi(Ri |Ri−1, X i−1), (5)

where Ri−1 ≡ {R1, . . . , Ri−1}, X i−1 ≡ {X1, . . . , X i−1} and we
let R0 ≡ {} and X 0 ≡ {} .

4.2. Measurement Policy Interventions

To define perturbation interventions, we leverage the factor-
ization from Eq. 5:

πδ j
(R|X(1), Y ) =

= π j,δ j
(R j |R j−1, X i−1)

d
∏

i=1;i 6= j

πi(Ri |Ri−1, X i−1).

Here, the intervention modifies the measurement policy only
for feature j. We adapt the perturbation from incremental
propensity score interventions (Kennedy, 2019), defined as:

π j,δ j
=

δ j π j

δ j π j + 1−π j
, for 0< δ j <∞,

where π j ≡ π j(R j = 1|R j−1, X j−1). The parameter δ j is the
odds ratio of the intervention:

δ j =
π j,δ j

/(1−π j,δ j
)

π j/(1−π j)
=

oddsπ j,δ j
(R j = 1|R j−1, X j−1)

oddsπ j
(R j = 1|R j−1, X j−1)

.

Values of δ j < 1 correspond to a decrease in the probability
of measuring feature j, while δ j > 1 increases the probabil-
ity. When δ j = δ∗j = 1, the original measurement policy is
recovered: π j,δ j=1 = π j .

4.3. Identification

Using the perturbation interventions, the feature measure-
ment importance gradient G j can be identified as follows:
Lemma 4.1. (Identification of the Feature Measurement
Importance Gradient (FMIG))
Under SUTVA and the assumption about the missingness
process from Eq. 5, the feature measurement importance
gradient (FMIG) for feature j is identified as:

G j = ∇δ j
E
h

−L
�

Y, fcl(X(πδ j
), R(πδ j

))
�i
�

�

�

δ j=1

= E
�

−L (Y, fcl(X , R)) (−1)1−R j (1−π j(R j |R j−1, X j−1))
�

.

The proof is provided in Appendix E. It demonstrates why,
unlike full data feature importance metrics, the FMIG does
not require a positivity assumption due to the chosen per-
turbation. This allows for far more reliable estimation in
real-world settings with high fractions of missing values.

4.4. Estimation

The functional G j , as identified in Lemma 4.1, is straightfor-
ward to estimate. It requires only the measurement policy
of the feature of interest to be learned. An estimator is given
by:

Ĝ j = Ên

�

−L (Y, fcl(X , R)) (−1)1−R j (1− π̂ j(R j |R j−1, X j−1))
�

,

where Ên is the empirical mean over a dataset of size n, and
π̂ j is a model learned to approximate π j . When using flexi-
ble machine learning models for π̂ j , these should be trained
on a separate data split. To restore full data efficiency, a
cross-fitting scheme can be employed (Chernozhukov et al.,
2018).

We extend the theory of the feature measurement importance
gradient to time-series settings in Appendix F. In this setting,
each feature is assumed to be measured at fixed time points,
with predictions made for a time-series label at each time
point.

5. Experiments
Missing data estimation methods cannot be tested on real-
world data with real missingness due to the unavailability
of ground truth features X(1). To address this limitation, we
perform a series of synthetic experiments to illustrate the
differences between feature importance metrics, the impact
of positivity violations, and the significance of appropriate
estimation methods.

5.1. Experiment Design

We consider a time-series prediction task where features
X t ∈ (R∪ {”?”})d (t ∈ {1,2, 3}) are used to predict labels

7
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A) Experiment 1: MCAR B) Experiment 2: MNAR
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Figure 1. Comparison of feature importance metrics (ground truth estimates). A) Experiment 1: The full data LOCO metric increases from
X1 to X3, reflecting the features’ growing predictive importance. However, the observed data LOCO remains flat because the increasing
predictive value is offset by higher missingness rates from X1 to X3. B) Experiment 2: Due to MNAR missingness (X(1),3→ R1, R2), the
observed data LOCO of X3 is further reduced because the missingness mechanism induces correlations between X(1),3 and X1, X2 via R1,
R2. Confidence intervals were computed using the non-parametric bootstrap with 50 samples.

Y t at each time step. We use an "impute-then-regress" clas-
sifier with zero imputation and a temporal convolutional
network (TCN) (Bai et al., 2018). Missingness mechanisms
(MCAR, MNAR) are introduced at varying missingness
rates across experiments. Full experimental details are pro-
vided in Appendix G. Additionally, Appendix H presents an
experiment highlighting the importance of training classi-
fiers appropriately for the metric under evaluation.

5.2. Synthetic Experiments and Results

Experiment 1: Rarely measured variables have reduced
observed data feature importance

Design: We evaluate three variables with increasing predic-
tive importance but decreasing measurement probabilities
under an MCAR scenario: p(Rt

1 = 1) = 0.75, p(Rt
2 = 1) =

0.5, p(Rt
3 = 1) = 0.3.

Results: While the full data LOCO reflects the increas-
ing predictive importance from X1 to X3, the observed data
LOCO remains flat (Figure 1A). This occurs because the
gains in predictive performance from more informative fea-
tures are counteracted by their higher missingness rates. The
experiment illustrates how observed data feature importance
metrics lead to different conclusions than full data feature
importance metrics.

Experiment 2: Informative missingness affects observed
feature importance

Design: Using the same dataset as Experiment 1, we sim-
ulate MNAR missingness where X t

(1),3 influences missing-
ness of features at subsequent time points. Average miss-
ingness probabilities remain equal to Experiment 1 with
p(Rt

1 = 1)≈ 0.75, p(Rt
2 = 1)≈ 0.5, p(Rt

3 = 1) = 0.3.

Results: Figure 1B) shows that the full data LOCO remains
unchanged. However, the observed data LOCO of X(1),3

decreases as its information is "leaked" into correlated vari-
ables (R1, R2). The experiment highlights how informative
missingness redistributes feature importance in observed
data.

Experiment 3: Positivity violations introduce bias in
estimation

Design: Using the same dataset as Experiment 1, we sim-
ulate stronger MCAR missingness: p(Rt

1 = 1) = 0.4,
p(Rt

2 = 1) = 0.2, p(Rt
3 = 1) = 0.1. This results in a

near-complete absence of fully observed cases, effectively
violating the positivity assumption.

Results: Figure 2 illustrates biases in estimating compo-
nents of the full data LOCO metric. The complete case
analysis, which is generally unbiased under MCAR, pro-
duces unbiased estimates in Figure 2A) for Experiment 1.
However, in Experiment 3, where the positivity assump-
tion is violated, the complete case estimator exhibits strong
bias (Figure 2B). These results highlight the limitations of
standard estimation methods for the full data LOCO metric
when positivity is violated.

Experiment 4: FMIG provides additional insights

Design: We evaluate three variables with equal full data
feature importance, using an MCAR mechanism. We have
p(Rt

1 = 1) = 1, p(Rt
2 = 1) = 0.5 and a constant feature

X(1),3 with p(R1
3 = 1) = 1 and p(Rt

3 = 1) = 0.5 for t ≥ 2.

Results: Figure 3 illustrates the FMIG metric is zero for
X1 as it is already fully observed. FMIG is positive for
X2 which could, if measured more often, improve predic-
tion performance. Measuring the constant X(1),3 multiple
times provides no predictive improvement. Since the ad-
ditional feature measurement is completely uninformative,
the FMIG even becomes slightly negative. The insight that
measuring X(1),3 more often will not improve prediction per-
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A) Experiment 1: Valid positivity assumption B) Experiment 3: Violated positivity assumption
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Figure 2. Effects of the positivity assumption violations on the estimation of full data LOCO components. The plot shows estimates using
different estimators for E

�

−
∑T

t=1 L
�

Y t , fcl(X t
(1), Rt = ~1)

��

(denoted as "All features") and E
�

−
∑T

t=1 L
�

Y t , fcl,− j(X t
(1),− j , Rt

− j = ~1)
��

for each feature (denoted as "All features, except X1", "All features, except X2", and "All features, except X3"). A) Experiment 1: Under a
valid positivity assumption, the complete case estimator provides an acceptable estimate of the ground truth. B) Experiment 3: Under
violations of the positivity assumption, the complete cases analysis provides a biased estimate of the ground truth. Note that the classifiers
used to evaluate feature importance metrics were trained on the observed data from each experiment. As a result, even the ground truth
estimates differ slightly, with a lower loss in Experiment 1 due to less missingness during classifier training. Confidence intervals were
computed using the non-parametric bootstrap with 50 samples.

Experiment 4: MCAR with constant 𝑋3
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Figure 3. X(1),3 is constant and fully observed at t = 1, but less
frequently at later times. The feature measurement importance
gradient FMIG is low for this feature, even though it has high
observed data and full data feature importance.

formance is not apparent from observed or full data LOCO
metrics, but only from the FMIG.

6. Discussion & Conclusion
In this work, we examined feature importance in the pres-
ence of missing data. Full data feature importance metrics,
which assume no missingness, offer insights into the data-
generating process but are often difficult to estimate and
impractical when missingness persists at deployment. To
address this, we introduced observed data feature impor-
tance metrics, which assess importance under a given mea-
surement policy and highlighted key differences between
these metrics, categorizing estimation methods based on

their target estimands.

Neither observed nor full data feature importance directly
informs data collection. To address this, we introduce the
feature measurement importance gradient (FMIG), a novel
metric that identifies which features, if measured more fre-
quently, would yield the greatest improvement in predictive
performance. Synthetic experiments illustrate the distinct
insights these metrics provide, emphasizing the need for
tailored approaches in missing data settings. FMIG is thus
not an alternative to the observed data or full data LOCO
metrics, but an additional tool to assess the importance of a
feature under a change in measurement probability.

While FMIG provides information on which features should
be measured more frequently, it does not prescribe an opti-
mal measurement policy. Active feature acquisition (AFA)
(von Kleist et al., 2025; 2023), on the other hand, explic-
itly balances measurement costs against predictive value to
derive optimal policies. FMIG thus complements AFA by
identifying features worth prioritizing for optimization.

Our experimental evaluation is limited to synthetic data.
Demonstrating the usefulness of feature importance metrics
in real-world settings particularly where prior knowledge or
separately collected, fully observed datasets are available is
an important direction for future work. Such demonstrations
could highlight the practical relevance of these metrics and
inform their application in domains with varying measure-
ment constraints.
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A. Background on Feature Importance Metrics
Feature importance metrics can be categorized into local and global approaches (Ewald et al., 2024). Local metrics focus on
explaining individual predictions, while global metrics provide insights into the aggregate importance of features in the
prediction process. This work centers on global, model-agnostic methods that can be applied to any predictive model.

Feature importance metrics assign an importance value to each feature, reflecting its contribution to prediction performance.
Beyond their role in explaining model behavior, feature importance metrics are often used to derive reliable, population-level
insights about the data-generating process. They are also closely linked to feature selection methods, as both seek to evaluate
the relevance of features within a predictive model. In scenarios involving missing data, the challenges faced in assessing
feature importance and selecting features often overlap, allowing similar methodologies to be applied across these tasks.

The field of feature importance metrics is dominated by three main approaches (Ewald et al., 2024). Permutation feature
importance evaluates the impact of randomly permuting a features values on model performance. It is model-agnostic and
widely used for its simplicity but may underestimate feature importance when features are highly correlated. Marginalization-
based methods assess importance by marginalizing out the feature of interest, often requiring strong assumptions about the
data-generating process to be valid. Finally, model refitting methods compare model performance before and after removing
specific features. Techniques like LOCO (Lei et al., 2018) fall into this category, directly assessing the dependency of
predictions on a given feature.

B. The Leave-One-Covariate-Unmeasured (LOCU) Metric
In this appendix, we introduce an alternative estimand to the observed data LOCO metric, LOCOOD. Unlike LOCOOD,
which evaluates the impact of leaving one covariate out of the input to the classifier, this new metric considers the scenario
where the measurement of a covariate is entirely omitted.

We denote this alternative metric as leave-one-covariate-unmeasured (LOCU). It is defined as follows:

LOCU:

LOCU= E
�

L
�

Y, fcl(X(− j), R(− j))
��

−E [L (Y, fcl(X , R))] ,

where X(− j) denotes the counterfactual value X would have taken if R j = 0. This represents a scenario where all features
are measured according to the current measurement policy, except for feature j, which is no longer measured. LOCU thus
quantifies the change in prediction loss if feature j is omitted from measurement. This can provide valuable insights for data
collection decisions. For instance, in medical settings, if a particular test is costly, the metric can help assess the impact of
discontinuing the test on prediction performance.

LOCU differs from the observed data LOCO metric LOCOOD in cases where the measurement process of other features
depends on the measurement of feature j (i.e., there are causal arrows from R j to other missingness indicators). For example,
suppose feature i is measured only if a test on feature j yields a positive result. In this situation, omitting the measurement
of feature j would also prevent the measurement of feature i, potentially leading to a more substantial change in prediction
performance.

While causal inference methods can be used to identify and estimate LOCU in such scenarios, this aspect is considered
outside the scope of this work.

C. Proofs for Unbiased Estimation Results for the LOCO Metrics
In this Appendix, we add mathematical proofs that complement the discussion about estimation for LOCOOD and LOCOF D.
We define θ as a general estimand and θ̂ as its corresponding estimator. The bias of the estimator is given by:

Bias(θ̂ ) = E[θ̂]− θ .

Our results extend to a broader class of full data feature importance metrics of the form:

θ F D = E
�

g({ fcl,s(X(1),s, Rs = ~1) : s ∈ S }, Y )
�

,
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where g can be any function and S represents the set of all feature subsets. This definition encompasses a wide range of
metrics, including LOCO and Shapley values. Notably, Shapley values can be expressed as a weighted average of LOCO
values across submodels (Verdinelli & Wasserman, 2023). Additionally, we consider observed data feature importance
metrics θOD of the same form, with X(1),s and Rs = ~1 replaced by Xs and Rs.

C.1. Conditional Mean Imputation for Full Data Feature Importance Metrics

Firstly, we demonstrate that conditional mean imputation results in biased estimation of full data feature importance metrics.
Our analysis is based on the formulation used for the unbiased multiple imputation estimator:

θ F D =
∑

X(1),Y

g({ fcl,s(X(1),s, Rs = ~1) : s ∈ S }, Y )p(X(1), Y )

=
∑

Xm,Xo ,Y,R

g({ fcl,s(Xm∧s, Xo∧s, Rs = ~1) : s ∈ S }, Y )p(Xm|Xo, Y, R)p(Xo, Y, R),

where p(Xm|Xo, Y, R) represents the imputation density. When the imputation model is learned, one can apply Monte Carlo
integration to obtain an unbiased estimator θ̂ F D for θ F D.

Conditional mean imputation, however, simplifies the above expression to:

θ F D ≈
∑

Xm,Xo ,Y,R

g({ fcl,s(E[Xm∧s|Xo, Y, R], Xo∧s, Rs = ~1) : s ∈ S }, Y )p(Xo, Y, R),

which assumes that the expectation operator can be pulled inside the functions g and fcl . This assumption is only valid if
both functions are linear, which is generally not the case. Consequently, the use of conditional mean imputation introduces
bias.

C.2. Mean and Conditional Mean Imputation for Observed Data Feature Importance Metrics

Next, we demonstrate that mean imputation (or a broader class of imputation methods) does not introduce bias for observed
data feature importance metrics θOD. Since θOD is defined as a function of the classifier fcl , the reported feature importance
metric reflects classifier-specific importance rather than a general global measure.

A commonly used class of classifiers, referred to as impute-then-regress classifiers (Le Morvan et al., 2021), first impute the
missing values and subsequently classify. If the classifier is sufficiently flexible and the dataset is large enough, the choice
of imputation method becomes inconsequential, as no new information is introduced. Thus, any classifier that maps Xs and
Rs to Y can be used, including those employing mean imputation, without inducing bias.

However, this conclusion holds only if imputation is performed within the classifier itself using only its input features. If
conditional mean imputation is applied to the entire dataset before choosing the subset for the classifier, bias arises. Let the
imputed features be:

X ′i =

¨

X i if Ri = 1,

Ên[X i |Xo, R= ~1] if Ri = 0.

In this case, the imputed variable X ′i effectively becomes a function of other features, X ′i ≡ f (Xo, R= ~1). The resulting bias
in the estimator is given by:

Bias(θ̂OD) = E[θ̂OD]− θOD

= E
�

Ên[g({ fcl,s(X
′
s , Rs) : s ∈ S }, Y )]

�

−E
�

g({ fcl,s(Xs, Rs) : s ∈ S }, Y )
�

.
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This bias is generally nonzero because X ′s depends on all features rather than just Xs. Consequently, applying conditional
mean imputation before classification results in biased estimates.

D. Impact of Classifier Training on LOCO Metrics
The LOCO metrics in Eqs. 2 and 3 highlight the importance of aligning classifier training with the conditions of deployment.
Specifically:

Full data feature importance metrics require a classifier f F D
cl designed to handle fully available features:

f F D
cl (X(1), R= ~1) = p(Y | X(1), R= ~1).

Observed data feature importance metrics require a classifier f OD
cl capable of handling missing data:

f OD
cl (X , R) = p(Y | X , R).

Training these classifiers introduces unique challenges. For f F D
cl , the absence of X(1) in the training data creates a missing

data problem, complicating the training process. In contrast, training f OD
cl involves dealing with missing values (”?”) in X .

While some models inherently handle missing data (Twala et al., 2008), a common alternative is to impute missing values.
However, this approach can introduce discontinuities, which hinder the learning process.

To address these challenges, "impute-then-regress" classifiers (Le Morvan et al., 2021) provide an effective solution. These
classifiers leverage the following decomposition:

f OD
cl (X , R) = p(Y | Xm = E[Xm | Xo, R], Xo, R).

Here, missing values (Xm) are replaced with their conditional expectations based on observed values Xo (and missingness
indicators R). This imputation is intrinsic to the classifier and differs from post hoc imputation used during feature importance
evaluation. Conditional mean imputation is often a practical and effective choice in this context.

The improper training of classifiers can introduce additional bias in LOCO metric estimations, particularly for full data
feature importance metrics when f OD

cl is used instead of f F D
cl . These biases are exacerbated in missing data scenarios such

as MAR and MNAR, compared to MCAR. Awareness of these limitations is crucial for ensuring robust and interpretable
feature importance assessments.

E. Proof of Lemma 4.1
In this appendix, we prove Lemma 4.1 which states the form of the feature measurement importance gradient.

Proof. The gradient simplifies as follows:

G j = ∇δ j
E
h

−L
�

Y, fcl(X(πδ j
), R(πδ j

))
�i
�

�

�

δ j=1
=

∗1= ∇δ j

∑

R,Y,X(1)

−L (Y, fcl(X , R))πδ j
(R|X(1), Y )p(X(1), Y )

�

�

�

�

�

δ j=1

=

=
∑

R,Y,X(1)

−L (Y, fcl(X , R))
d
∏

i=1

πi(Ri |Ri−1, X i−1)∇δ j
π j,δ j

(R j |R j−1, X j−1)

�

�

�

�

�

δ j=1

p(X(1), Y ) =

∗2=
∑

R,Y,X(1)

−L (Y, fcl(X , R))
d
∏

i=1

πi(Ri |Ri−1, X i−1)π j(R j |R j−1, X j−1)(−1)1−R j (1−π j(R j |R j−1, X j−1))p(X(1), Y ) =

= E
�

−L (Y, fcl(X , R)) · (−1)1−R j (1−π j(R j |R j−1, X j−1))
�

.

with the following explanations:
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In ∗1) we use the g-formula (Robins, 1986), which requires the SUTVA assumption, exchangeability (ensured by the
MAR assumption) and in general positivity. The last assumption of positivity is, however, always guaranteed due to the
form of our intervention. Positivity in general necessitates that ∀r j , r j−1, x j−1 with p(R j−1 = r j−1, X j−1 = x j−1) > 0 and
π j,δ j

(R j = r j |R j−1 = r j−1, X j−1 = x j−1) > 0, that we must also have π j(R j = r j |R j−1 = r j−1, X j−1 = x j−1) > 0. This
always holds, as setting with π j = 0 yield

π j,δ j
=

δ j · 0
δ j · 0+ 1− 0

= 0,

settings with π j = 1 give

π j,δ j
=

δ j · 1
δ j · 1+ 1− 1

= 1.

and settings with π j ∈ (0,1) imply

π j,δ j
=

δ j ·π j

δ j ·π j + 1−π j
> 0

since δ j ·π j > 0, and δ j ·π j + 1−π j > 0 holds.

In ∗1), we also use sums for the integrals to keep notation simple, but for continuous X one can replace the sums with proper
integrals.

In ∗2), we used the following simplifications of the gradient of the perturbed measurement policy. We first look at the case
R j = 1:

∇δ j
π j,δ j

(R j = 1|R j−1, X j−1)
�

�

�

δ j=1
= ∇δ j

δ j ·π j

δ j ·π j + 1−π j

�

�

�

�

δ j=1

∗2.1=
π j(δ j ·π j + 1−π j)− (δ j ·π j) · (π j)

(δ j ·π j + 1−π j)2

�

�

�

�

δ j=1

=

=
π j(1−π j)

(δ j ·π j + 1−π j)2

�

�

�

�

δ j=1

= π j(1−π j)

where ∗2.1) follows from the quotion rule of differentiation.

For R j = 0, we find:

∇δ j
π j,δ j

(R j = 0|R j−1, X j−1)
�

�

�

δ j=1
= ∇δ j

(1−π j,δ j
(R j = 1|R j−1, X j−1))

�

�

�

δ j=1
= − ∇δ j

π j,δ j
(R j = 1|R j−1, X j−1)

�

�

�

δ j=1
=

= −π j(1−π j) = −
�

1−π j(R j = 0|R j−1, X j−1)
�

π j(R j = 0|R j−1, X j−1)

Bringing both together, we find the transformation in ∗2) and thus completes the proof.

F. Feature Measurement Importance Gradient for Time-series Settings
In this appendix, we extend the feature measurement importance gradient to time-series settings. For time-step t , we denote
the observed features as X t ∈ (R∪ {”?”})d and all features up to time t as X t = {X 1, . . . , X t}. The time-dependent label
is Y t ∈ {0,1}. A classifier predicts Y t at each time step. This classifier is f t

cl(X
t , Rt), where Rt denotes the missingness

indicators up to t.

We redefine the FMIG for the time-series settings as:

Feature Measurement Importance Gradient (FMIG) G j:

G j = ∇δ j
E

�

T
∑

t=1

−L
�

Y t , f t
cl(X

t
(πδ j

), Rt
(πδ j

))
�

�

�

�

�

�

�

δ j=δ∗j

(6)

where δ∗j is the value of δ j that represents no perturbation.
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F.1. Measurement Process Assumptions

We make the following assumptions about the factorization of the missingness process:

π(R|X(1), Y ) =
T
∏

t=1

πt(Rt |Rt−1, X t−1), (7)

where we assume the multivariate missingness indicators further factorize into conditionally independent terms:

πt(Rt |Rt−1, X t−1) =
d
∏

i=1

πt
i (R

t
i |R

t−1, X t−1). (8)

We thus assume that at each time-point, the measurement of feature i will depend on all observed features in the past.

F.2. Measurement Policy Interventions

To redefine perturbation interventions for the time-series setting by now jointly intervening on a feature at all time-steps. We
obtain:

πδ j
(R|X(1), Y ) =

T
∏

t=1

πt
j,δ j
(Rt

j |R
t−1, X t−1)

d
∏

i 6= j

πt
i (R

t
i |R

t−1, X t−1). (9)

where each individual intervention follows the same odds ratio parameterization as in the main body.

F.3. Identification

Using the perturbation interventions, the feature measurement importance gradient G j can be identified for the time-series
setting as the following corollary states:

Corollary F.1. (Identification of the Feature Measurement Importance Gradient (FMIG) for Time-series Settings)
Under SUTVA and the assumptions about the missingness process from Eqs. 7 and 8, the feature measurement importance
gradient (FMIG) for feature j is identified as:

G j = ∇δ j
E

�

T
∑

t=1

−L
�

Y t , f t
cl(X

t
(πδ j

), Rt
(πδ j

))
�

�

�

�

�

�

�

δ j=1

= E

�

T
∑

t=1

−L
�

Y t , f t
cl(X

t , Rt)
�

·

�

t
∑

k=1

(−1)1−Rk
j (1−πk

j (R
k
j |R

k−1, X k−1)

��

(10)
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Proof. The gradient simplifies as follows:

G j = ∇δ j
E

�

T
∑

t=1

−L
�

Y t , f t
cl(X

t
(πδ j

), Rt
(πδ j

))
�

�

�

�

�

�

�

δ j=1

=

= ∇δ j

∑

R,Y,X(1)

T
∑

t=1

−L
�

Y t , f t
cl(X

t
(πδ j

), Rt
(πδ j

))
�

πδ j
(R|X(1), Y )p(X(1), Y )

�

�

�

�

�

δ j=1

=

∗1=
∑

R,Y,X(1)

T
∑

t=1

−L
�

Y t , f t
cl(X

t , Rt)
�

�

∇δ j

t
∏

τ=1

πτj,δ j
(Rτj |R

τ−1, X τ−1)

�

�

�

�

�

δ j=1

� t
∏

τ=1

d
∏

i=1

πτi (R
τ
i |R

τ−1, X τ−1)p(X(1), Y ) =

∗2=
∑

R,Y,X(1)

T
∑

t=1

−L
�

Y t , f t
cl(X

t , Rt)
�

t
∑

k=1

 

t
∏

τ=1,τ6=k

πτj,δ j
(Rτj |R

τ−1, X τ−1)∇δ j
πk

j,δ j
(Rk

j |R
k−1, X τ−1)

�

�

�

�

�

δ j=1





·
t
∏

τ=1

d
∏

i=1

πτi (R
τ
i |R

τ−1, X τ−1)p(X(1), Y ) =

∗3=
∑

R,Y,X(1)

T
∑

t=1

−L
�

Y t , f t
cl(X

t , Rt)
�

t
∑

k=1

�

t
∏

τ=1

πτj (R
τ
j |R
τ−1, X τ−1)(−1)1−Rk

j

�

1−πk
j (R

k
j |R

k−1, X k−1)
�

�

·
t
∏

τ=1

d
∏

i=1

πτi (R
τ
i |R

τ−1, X τ−1)p(X(1), Y ) =

=
∑

R,Y,X(1)

T
∑

t=1

−L
�

Y t , f t
cl(X

t , Rt)
�

t
∑

k=1

�

(−1)1−Rk
j

�

1−πk
j (R

k
j |R

k−1, X k−1)
��

·
t
∏

τ=1

πτj (R
τ
j |R
τ−1, X τ−1)

d
∏

i=1

πτi (R
τ
i |R

τ−1, X τ−1)p(X(1), Y ) =

= E

�

T
∑

t=1

−L
�

Y t , f t
cl(X

t , Rt)
�

·

�

t
∑

k=1

(−1)1−Rk
j (1−πk

j (R
k
j |R

k−1, X k−1)

��

.

with the following explanations:

In ∗1), we used the fact that only the part of π that models missingness for feature j depends on the gradient. We further use
the fact that

∑T
t=1−L

�

Y t , f t
cl(X

t , Rt)
�

is independent of any missingness indicators Rτ with τ > t.

In ∗2), we apply the product rule of differentiation.

In ∗3), we leverage the same simplification of ∇δ j
πk

j,δ j
(Rk

j |R
k−1, X τ−1) as was used in Appendix E for the simpler static

feature setting.

G. Experiment Details
In this appendix, we provide a detailed description of the experimental setup, including the data generation process,
missingness mechanisms, training configurations, and the methods used to estimate feature importance metrics. These
details align with the experiments presented in Section 5 and Figures 1, 2, 3 and 4.

G.1. Experiment Setup

The experiments are based on a synthetic time-series dataset with three features (d = 3) and three time-points (T = 3). For
time-step t, we denote the observed features as X t ∈ (R∪ {”?”})d and all features up to time t as X t = {X 1, . . . , X t}. The
time-dependent label is Y t ∈ {0,1}. A classifier predicts Y t at each time step, and for the observed data, this classifier is
f OD
cl (X

t , Rt), where Rt denotes the missingness indicators up to t.
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The data generation process is defined as follows. Features X t
(1),i are independent across dimensions and generated

recursively:

X t
(1),i =

¨

γiX
t−1
(1),i + (1− γi)εt

i , if t > 1,

εt
i , if t = 1,

where εt
i ∼N (0,σ = 1) and γi controls the temporal dependence for feature i. We let X 0

(1) ≡ ~0. Labels Y t are binary and
determined as:

p(Y t = 1) =

¨

1, if
∑

i WiX
t
(1),i +

∑

i WiX
t−1
(1),i > 0,

0.2, otherwise.

This label distribution simulates a scenario where not all data points are equally easy to classify. Parameters W represent
feature importances, which vary across experiments. We generate 100,000 data points and split them into 30% for training
the classifier, 30% for training the measurement policy, and 40% for testing.

G.2. Missingness Mechanisms

The missingness process in these experiments follows an MCAR or MNAR scenario. For the MNAR case, the missingness
probabilities are modeled as:

π(Rt
i = 1|X t−1

(1) ) = σ(α1 +α2X t−1
(1) ),

where σ denotes the logistic function. In this example, X t−1
(1) directly influences the missingness of Rt

i , making the process
MNAR. The exact missingness probabilities used in each experiment are summarized in Table 1.

G.3. Training and Evaluation

We used an "impute-then-regress" classifier (Le Morvan et al., 2021) with zero imputation and a temporal convolutional
network (TCN) (Bai et al., 2018) to classify labels Y t . The classifier uses four layers, with 32 channels per layer, a batch
size of 2,000, dropout rate of 0.2, and a learning rate of 0.001.

Feature importance is evaluated using the observed and full data LOCO and the feature measurement importance gradient
(FMIG). When we report the full data LOCO metric and do not mention the estimation method, it refers to the ground
truth feature importance, as computed from the complete dataset without missingness. Binary cross-entropy is used as the
loss function when calculating the LOCO metrics and the FMIG. We report confidence intervals using the nonparametric
bootstrap with 50 samples. However, due to computational cost, we do not retrain the classifier for each bootstrap iteration.
As a result, the confidence intervals may be overly optimistic.

G.4. Experiment Configurations

The detailed configurations for each experiment, including the data-generating process parameters (W,γ) and missingness
mechanisms (π), are provided in Table 1.

H. Experiment Regarding Classifier Training Procedures
To illustrate the impact of proper classifier training, we modified the design of Experiment 3 by training the classifier on both
the observed dataset (denoted as f OD

cl ) and the full dataset (denoted as f F D
cl ). This experiment, conducted under a violation of

the positivity assumption and a high percentage of missingness, demonstrates how improper classifier training affects feature
importance metrics. The results, shown in Figure 4, reveal that classifiers trained on observed data yield lower full-data
LOCO metrics compared to those trained on the full dataset. Importantly, both LOCO metrics were evaluated on the ground
truth dataset without missingness, highlighting how improper training introduces additional bias on top of the bias already
inherent in estimating full data LOCO metrics from observed data. The consequences are expected to be even stronger for
MAR and MNAR missingness scenarios, compared to this MCAR experiment.

These findings underscore the critical importance of aligning classifier training with the target metric to ensure accurate and
meaningful feature importance evaluations. In practice, however, full alignment is often unfeasible due to the absence of
ground truth data. Nonetheless, being aware of this limitation is crucial, as it allows for adjustments of training approaches
to mitigate its consequences.
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Experiment Data-Generating Process Missingness Mechanisms

Exp 1 W1 =
1
6 ; γ1 = 0.2

W2 =
2
6 ; γ2 = 0.2

W3 =
3
6 ; γ3 = 0.2

π(Rt
1 = 1) = 0.75

π(Rt
2 = 1) = 0.5

π(Rt
3 = 1) = 0.3

Exp 2 W1 =
1
6 ; γ1 = 0.2

W2 =
2
6 ; γ2 = 0.2

W3 =
3
6 ; γ3 = 0.2

π(Rt
1 = 1|X t−1

(1),2) = σ(1.7− 3.0X t−1
(1),2)

π(Rt
2 = 1|X t−1

(1),2) = σ(−3.0X t−1
(1),2)

π(Rt
3 = 1) = 0.3

Exp 3 W1 =
1
6 ; γ1 = 0.2

W2 =
2
6 ; γ2 = 0.2

W3 =
3
6 ; γ3 = 0.2

π(Rt
1 = 1) = 0.4

π(Rt
2 = 1) = 0.2

π(Rt
3 = 1) = 0.1

Exp 4 W1 =
1
3 ; γ1 = 0.2

W2 =
1
3 ; γ2 = 0.2

W3 =
1
3 ; γ3 = 1.0

π(Rt
1 = 1) = 1.0

π(Rt
2 = 1) = 0.5

π(R1
3 = 1) = 1.0; π(Rt

3 = 1) = 0.5 (for t > 1)

Table 1. Experiment-specific details of the data-generating processes and missingness mechanisms.

Fe
at

ur
e

im
po

rt
an

ce

𝑋1 𝑋2 𝑋3
Features

Influence of the Classifier on Feature Importance

Figure 4. Impact of classifier training on feature importance: The full data LOCO metric derived from a classifier trained on observed
data underestimates feature importance compared to a classifier trained on ground-truth data without missingness. Both LOCO metrics
are estimated on the ground truth data.
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