
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ADVERSARIALLY ROBUST GRAPH CLASSIFICATION:
A POOLING-BASED DEFENSE FRAMEWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) have shown great success across various domains
but remain vulnerable to adversarial attacks. While most defense methodology fo-
cuses on node classification and enhancing robustness during training, this work
shifts the focus to graph classification and inference-time defenses. We theoreti-
cally show that the final pooling operation, that is required for graph-level tasks,
can have an impact on the graph classifier’s underlying robustness. Based on this
analysis, we propose a pre-pooling operation, called R-Pool (Robust-Pooling),
which is based a novel filtering mechanism using Gaussian Mixture Models
(GMMs) to detect and exclude nodes heavily impacted by attacks, thereby enhanc-
ing robustness at inference time. Our framework can be used with any pooling
operation and any underlying model, and does not require re-training the model
nor adapting its architecture. Our experiments demonstrate that this approach ef-
fectively mitigates adversarial effects while maintaining a balance between clean
and attacked accuracy. Through extensive evaluations on state-of-the-art adver-
sarial attacks, we show that the proposed framework significantly improves the
robustness of the underlying GNNs in graph classification tasks compared to other
available post-hoc defense methods.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Kipf & Welling, 2017; Xu et al., 2019b; Veličković et al., 2018)
have emerged as a robust framework for learning representations of nodes and graphs, demonstrating
notable success across a wide range of real-world applications. These models, which generalize neu-
ral network architectures to handle graph-structured data, have been successfully applied in critical
domains such as protein function prediction (Kearnes et al., 2016), antibiotic resistance prediction
(Qabel et al., 2022), session-based recommendation systems (Wu et al., 2019b) and lately tabular
data (Alkhatib et al., 2023). Despite their success, recent studies (Günnemann, 2022) have high-
lighted the vulnerability of GNNs to adversarial perturbations, small and deliberately introduced
changes in the adjacency matrix or node features that can lead to incorrect predictions. These at-
tacks pose significant challenges for the reliable deployment of GNNs, particularly in critical sectors
such as healthcare. In response, a growing body of research has focused on characterizing these vul-
nerabilities through various adversarial attack strategies (Dai et al., 2018; Zügner et al., 2018), while
simultaneously advancing defense mechanisms (Wu et al., 2019a; Zhang & Zitnik, 2020) to mitigate
these risks and improve the robustness of GNN models.

Existing research predominantly focuses on node-classification tasks, with comparatively limited
attention given to robustness analysis in the context of graph-classification tasks (Jin et al., 2021).
Although both node-level and graph-level tasks rely on the message-passing propagation mecha-
nism (Gilmer et al., 2017), graph-level tasks introduce additional complexity, requiring the gener-
ation of a global graph representation for input graphs of varying sizes and topologies. In such
tasks, the pooling mechanism (Cai et al., 2021; Duvenaud et al., 2015) plays a critical role, as it
consolidates the node representations obtained from the propagation step into a smaller graph or a
single vector. Pooling operations generally fall into two main categories (Liu et al., 2022). The first,
hierarchical pooling (Cai et al., 2021), incrementally reduces the graph size, ultimately producing
the graph representation for downstream tasks. The second, flat pooling (Duvenaud et al., 2015),
directly constructs a graph-level representation in a single step by aggregating node representations,
as seen in techniques like sum-pooling. This work specifically focuses on the latter category, ex-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

amining commonly used flat pooling operations such as sum, average, and max pooling, which are
favored in the graph literature for their simplicity and effectiveness.

While most existing approaches to adversarial defense concentrate on modifying the message-
passing scheme—through mechanisms such as attention (Zhang & Zitnik, 2020), adjusting
weights (ABBAHADDOU et al., 2024) or pre-processing the adjacency matrix (Wu et al., 2019a),
our work takes a different approach by theoretically investigating the impact of the pooling operation
on the overall robustness of the model. Specifically, we aim to understand how the choice of pooling
method influences adversarial robustness. Additionally, the majority of methods focus on enhancing
robustness during the training phase, with relatively few addressing robustness at inference time.
This latter perspective is becoming increasingly important with the growing interest in foundation
models, where the model is pre-trained, and the goal is to adapt it to downstream tasks while ensur-
ing its adversarial resilience. To the best of our knowledge, this work is the first to explore the effect
of pooling operations on the adversarial vulnerability of models in graph classification, specifically
at inference time.

In this work, we begin by introducing the concept of adversarial attacks in the context of graph-
based models, followed by a formalization of a graph classifier’s robustness. This formal framework,
which derives an upper bound on the model’s expected adversarial risk, enables us to quantify the
model’s vulnerability within a defined neighborhood. We then apply this formalization to conduct a
theoretical analysis of the robustness of various pooling operations, extracting their corresponding
upper bounds. Building on these theoretical insights, we propose Robust-Pooling (“R-Pool”), an
incremental component that can be integrated with any existing pooling operation to enhance the
model’s robustness at inference time. Our theoretical findings suggest that certain nodes in the graph
are more prone to accumulating adversarial perturbations in their final representations. To address
this, the proposed framework aims to mitigate the impact of these perturbations by filtering out such
nodes. Specifically, the proposed method consists of fitting a Gaussian Mixture Models (GMMs)
to node representations and using an out-of-distribution score (Morteza & Li, 2022) to detect nodes
heavily impacted by adversarial attacks, excluding them prior to the pooling operation. Although
this filtering may lead to a loss of information for the downstream classification task, our experiments
demonstrate that with an appropriate threshold, a balance between clean and adversarial accuracy
can be achieved. Finally, we validate our theoretical contributions through extensive experimental
evaluations, using state-of-the-art graph-classification adversarial attacks. The results confirm the
validity and practical value of the proposed framework. The contributions of this work can be
summarized as follows:

• We theoretically analyze how various pooling operations impact a model’s underlying ro-
bustness in the case of graph classification.

• We then introduce “R-Pool”, a novel filtering mechanism, based on fitting Gaussian Mix-
ture Models (GMMs) and using an out-of-distribution score to detect and exclude nodes
heavily impacted by adversarial attacks, thereby enhancing robustness during inference.

• We validate experimentally the efficiency of the proposed framework, demonstrating im-
proved robustness against adversarial attacks in graph-classification tasks while maintain-
ing a balance between clean and adversarial accuracy.

2 RELATED WORK

There has been growing interest in adversarial attacks targeting Graph Neural Networks
(GNNs) Zügner et al. (2018); Dai et al. (2018). Various attack methods have been proposed de-
pending on the attack setting, which may assume full access to the model’s architecture and training
data (white-box) or limit the attacker to model queries or surrogate models (black-box). Most attacks
frame the problem as an optimization task, with solutions ranging from PGD-based methods (Xu
et al., 2019a) to meta-gradient approaches (Zügner & Günnemann, 2019) and reinforcement learning
strategies (Dai et al., 2018). While much of the literature focuses on node classification, with some
methods like PGD adaptable to graph classification, few approaches are specifically tailored to this
task. For instance, Wan et al. (2021) employ Bayesian optimization, and Dai et al. (2018) explore
several strategies, including reinforcement learning, gradient-based attacks, and genetic algorithms,
where graph modifications evolve through a population-based approach guided by a fitness function.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

On the defense side, recent efforts have emerged to protect GNNs from adversarial attacks. Some
approaches focus on pre-processing the adjacency matrix to improve robustness. For example, Wu
et al. (2019a) use Jaccard similarity to filter out adversarial edges, while Entezari et al. (2020) apply
SVD decomposition to denoise the adjacency matrix before feeding it into the model. Other defenses
target the structure of the GNN itself. Zhang & Zitnik (2020) introduce edge pruning through an
attention mechanism to remove vulnerable connections, while ABBAHADDOU et al. (2024) and
Ennadir et al. (2024) propose modifications to the message-passing scheme to reduce the impact
of adversarial perturbations. Moreover, adversarial training methods, such as those presented by
Gosch et al. (2024), have been developed to increase the model’s resilience by explicitly training the
GNN with adversarially perturbed graphs. Additionally, a growing interest in exploring robustness
certificates (Zügner & Günnemann, 2019; Bojchevski & Günnemann, 2019) have emerged such as
randomized smoothing (Bojchevski et al., 2020). However, most of these defense techniques are
tailored to node classification tasks and have limited direct application to graph classification.

Our work takes a different direction by focusing specifically on the graph classification task, which
has received comparatively less attention in adversarial defense literature. In particular, we investi-
gate the role of pooling operations in determining the robustness of GNNs. Pooling, a key operation
in graph classification models, has not been thoroughly studied in terms of its influence on adver-
sarial vulnerability, especially during inference time. This paper aims to fill that gap by offering
a theoretical analysis of how pooling affects model robustness. To our knowledge, this is the first
work to explore this aspect in the context of graph classification, contributing a novel perspective to
the ongoing research in adversarial attacks on GNNs.

3 PRELIMINARIES

Before continuing with our contribution, we introduce some fundamental concepts and notations.

Notation and Setup. Let G = (V,E) be a graph where V is its set of vertices and E its set of
edges. We denote by n = |V | and m = |E| the number of vertices and number of edges, respectively
and N (v) = {u : (v, u) ∈ E} the set of neighbors of a node v ∈ V . The degree of a node is equal
to its number of neighbors, i. e., |N (v)| for a node v ∈ V . A graph is commonly represented by
its adjacency matrix A ∈ Rn×n, where the (i, j)-th element of the adjacency matrix is equal to the
weight of the edge between the i-th and j-th node of the graph and a weight of 0 in case the edge
does not exist. In some settings, the nodes of a graph might be annotated with feature vectors. We
use X ∈ Rn×D to denote the node features where D is the feature dimensionality. The feature of
the i-th node of the graph corresponds to the i-th row of X.

Message Passing GNNs. A GNN model consists of a series of neighborhood aggregation layers
which use the graph structure and the nodes’ feature vectors from the previous layer to generate
new representations for the nodes. Specifically, GNNs update nodes’ feature vectors by aggregating
local neighborhood information. Suppose we have a GNN model that contains T neighborhood
aggregation layers. Let also h

(0)
v denote the initial feature vector of node v, i. e., the row of matrix

X that corresponds to node v. At each iteration (t > 0), the hidden state h
(t)
v of a node v is updated

as follows:

a(t)v = AGGREGATE(t)
({

h(t−1)
u : u ∈ N (v)

})
h(t)
v = COMBINE(t)

(
h(t−1)
v ,a(t)v

)
,

where AGGREGATE is a permutation invariant function that maps the feature vectors of the neigh-
bors of a node v to an aggregated vector. This aggregated vector is passed along with the previous
representation of v (i. e., h(t−1)

v) to the COMBINE function which combines those two vectors and
produces the new representation of v.

Pooling Operation. After T iterations of neighborhood aggregation, to produce a graph-level rep-
resentation, GNNs apply a permutation invariant readout function to the feature vectors of all nodes
of the graph as follows:

hG = READOUT
({

h(T)
v : v ∈ V

})
,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Our study focuses on the Flat Pooling Family which directly generated a graph-level representation
in one step (e. g., sum operator, mean operator and max operator).

4 ON THE ROBUSTNESS OF POOLING OPERATIONS

This work focuses on the robustness of the graph classification task within the broader context of
graph representation learning, with a particular emphasis on understanding the impact of pooling op-
erations on model robustness. We begin by discussing the concept of robustness in graph classifiers,
followed by a formal mathematical definition of model robustness. Finally, we provide theoretical
insights into the robustness of widely-used flat pooling operations, offering a deeper understanding
of their behavior under adversarial attacks.

4.1 ADVERSARIAL GRAPH ROBUSTNESS

Given an input graph (with its corresponding node attributes), graph-level classification aims to learn
a function that predicts a property of interest related to the graph. Let’s therefore consider our set of
input graphs {(G1, X1, y1), . . . , (GN , XN , yN)} ∈ (G,X ,Y)N considered to be sampled from an
underlying distribution D defined on (G,X ,Y). Graph classification aims to find the graph-classifier
f : (G,X) → Y minimizing the classification risk w.r.t D, which is defined as:

R[f] := E(G,X,y)∼D[1{f(G,X) ̸= y}].

In this work, we focus on the black-box evasion attack setting, where we consider that the user cannot
access/modify the trained and static victim model f : (G,X) → Y or the training dataset. For our
theoretical insights, we follow the same definition as the one provided in the work, by adapting it to
the case of graph-classification. Specifically, let’s consider an input graph (G,X) ∈ (G×X) with its
corresponding label y ∈ Y , an adversarial attack aims to degrade the performance of the considered
victim model by finding a graph G̃ and its corresponding features X̃ within the the input graph’s
neighborhood for which the predicted classification is different from the original classification of the
consider graph input (G,X). In this perspective, assessing the adversarial risk of a classifier consists
of analyzing the input graph’s neighborhood by quantifying the “chances” (in terms of expectancy)
of finding an adversarial graph that is similar to input graph and for which the model’s output is
different than the original output. For a given input graph’s neighborhood defined by a threshold ϵ,
this expected risk robustness quantification can be formulated as follows:

Rϵ[f] = E
(A,X)∼D

(Ã,X̃)∈Nϵ(A,X)

[dY(f(Ã, X̃), f(A,X))], (1)

where we consider dY = ∥.∥2 as a distance within our output space Y . Additionally, Nϵ(A,X) =

{(Ã, X̃) : dA,X ([A,X], [Ã, X̃]) < ϵ} denotes the input graph’s considered neighborhood defined
by our attack/perturbation budget ϵ. We simply consider the following graph distance that reflects
both the structure and the node features:

dA,X ([A,X], [Ã, X̃]) = min
P∈Π

{∥A− PÃPT ∥2 + ∥X − PX̃∥2},

with Π being the set of permutation matrices. In the case of un-attributed graphs, the previous
distance resolves to using only the first part related to the adjacency matrices.

Typically, from the previous formulation, from a defense perspective, we aim to have the smallest
possible value, meaning that within the considered perturbation budget, the distance in term of output
of the attacked graph and the clean graph is not very big. Hence, we would expect the two of them
to have the same classification, which reflects the failure of the attack. Deriving the precise expected
distance, as defined in Equation (1), is challenging. However, an effective and more manageable
approach is to establish an upper-bound on this risk. By deriving such upper-bound, users can
gain a comprehensive understanding of the GNN’s susceptibility to adversarial attacks and make
informed assessments of its robustness based on the specific task at hand. For example, in certain
scenarios like social networks, where a limited number of successful attacks may not have severe
consequences, a larger upper-bound on the adversarial risk might be tolerable. While in other more
sensitive areas, such as financial applications, we need to aim for a much tighter upper-bound to

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

control the confidence level of the adversarial risk. From this perspective, Definition 4.1 introduces
the notion of a GNN’s robustness.
Definition 4.1. (Adversarial Robustness). The graph-based function f : (A,X) → Y is said to be
(ϵ, γ) − robust if its adversarial risk is upper-bounded i. e., Rϵ[f] ≤ γ with respect to the chosen
graph distances in the input and output measurable sets.

As previously precised by the work, the definition rather approaches the adversarial problem from
an ”average perspective”, where we analyze the whole neighborhood rather than ”worst-case”, in
which the focus is on a single adversary that results in the most harmful performance. Note that, if f
is (ϵ, γ)− ”robust”, then it is also (ϵ, γ)− ”worst-case robust”. The complete difference between
worst-case and average case have been thoroughly studied previously in the literature.

4.2 ON THE ROBUSTNESS OF FLAT POOLING OPERATIONS

Having established a formal definition and framework for robustness in the case of graph classifica-
tion, we now apply this framework to examine the robustness of commonly used pooling operations.
In this context, we focus on two well-established message-passing models, which are instances from
the general perspective provided in Section 3 : Graph Convolutional Networks (GCNs) and Graph
Isomorphism Networks (GINs).

To improve the quality of graph-level representations, various pooling mechanisms have been pro-
posed in the literature, which can be broadly categorized into Flat Pooling and Hierarchical Pooling.
In this study, we focus on three widely used flat pooling methods, typically the Sum, Average, and
Max pooling (Duvenaud et al., 2015). These methods directly generate a graph-level representation
in a single step by aggregating node embeddings. While our theoretical analysis focuses on these
specific pooling operations, we consider that our theoretical analysis can be easily expanded to take
into account other available pooling operations within the Flat pooling sub-family.

Our analysis covers both node feature-based adversarial attacks, which modify node attributes to
change model predictions, and structural perturbations, where adversaries alter the graph’s structure
by adding or removing edges to achieve their goal.
Theorem 4.2. Let f : (G,X) → Y denote a graph-based function composed of L GCN layers,
where the weight matrix of the i-th layer is denoted by W (i). Further, let d0,1 be a graph distance.
For adversarial attacks only targeting node features of the input graph, with a budget ϵ, we have:

• If f is Max-pooling based classifier, then f is d0,1-(ϵ, γ) robust with:

γ =
∏L

l=1 | W (l) | maxu∈V ŵuϵ.

• If f is Sum-pooling based classifier, then f is d0,1-(ϵ, γ) robust with:

γ =
∏L

l=1 | W (l) |
∑

u∈V ŵuϵ.

• If f is Average-pooling based classifier, then f is d0,1-(ϵ, γ) robust with:

γ = ϵ
|V |
∏L

l=1 | W (l) |
∑

u∈V ŵu,

with ŵu denoting the sum of normalized walks of length (L− 1) starting from node u.

Theorem 4.2 provides the respective upper bounds on the different considered pooling operations.
The derived bound depends on two main factors. The first factor relates to the model itself, where
we observe the norm of the weights. The second factor is associated with the underlying structure of
the input graph. When subject to targeted attacks, we find that the Average and Sum pooling oper-
ations consistently demonstrate vulnerability to adversarial manipulation. In contrast, Max pooling
exhibits variable robustness. Specifically, it can be more resilient if the targeted attack happens to
affect a node that is not the most connected (in terms of walks). However, it can become signifi-
cantly more vulnerable if the attack targets the most connected node, which is likely in scenarios
such as gradient-based attacks, as these focus on nodes with the highest impact. In the case of more
global, non-targeted attacks, the effect on Max pooling can be expected to be less pronounced than

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

on Average and Sum pooling. This is because Max pooling accumulates the effect through only
one node, while the others accumulate the effects of all nodes. Overall, our analysis suggests that
there isn’t a universally more robust pooling operation. Rather, the relative robustness depends on
the specific attack setting and the different types of attacks employed. This underscores the im-
portance of considering the anticipated threat model when selecting an appropriate pooling strategy
for GNNs in adversarial environments. We note that while this latter study is focusing on GCN, a
similar approach can be applied for GINs.
Theorem 4.3. Let f : (G,X) → Y be composed of L GIN-layers (with its internal parameter
ζ = 0) and let W (i) denote the weight matrix of the i-th MLP layer. We consider the input node
feature space to be bounded i. e., ∥X∥2 < B for some B ∈ R. For node feature-based attacks, with
a budget ϵ, the function f is (d0,1, ϵ)–robust with

• If f is Max-pooling based classifier, then f is d0,1-(ϵ, γ) robust with:

γ =
∏L

l=1∥W (l)∥ [B × L×maxu∈V deg(u) + ϵ] .

• If f is Sum-pooling based classifier, then f is d0,1-(ϵ, γ) robust with:

γ =
∏L

l=1

∥∥W (l)
∥∥ [2B × L× |E|+ |V |ϵ] .

• If f is Average-pooling based classifier, then f is d0,1-(ϵ, γ) robust with:

γ =
∏L

l=1

∥∥W (l)
∥∥ [2B×L×|E|

|V | + ϵ
]
,

with | E | being the number of edges and | V | the number of nodes.

Similar to the case of GCN, the computed upper-bounds reveal the impact of the pooling oper-
ation on the model’s underlying adversarial robustness depending on the input graph’s structure.
Specifically, for the sum pooling, the perturbation scales with the total number of edges and nodes,
indicating that larger and denser graphs are more susceptible to adversarial feature perturbations.
In contrast, average pooling normalizes this effect by the number of nodes, potentially reducing the
overall sensitivity in larger graphs. In the case of max pooling, it seems that it depends on the max-
imum node degree, suggesting that graphs with highly connected nodes may be more vulnerable
to attacks targeting those nodes. Overall, both in the case of GCN and GIN, the theoretical results
show that choosing appropriate pooling strategies can have an effect of the model’s robustness.

5 ROBUST POOLING THROUGH FILTERING

From Section 4.2, it appears that for different pooling operations, the upper bound is dependent
on the underlying graph’s structure. This observation aligns with the intuitive understanding of
message-passing mechanisms, which propagate information within node neighborhoods. In this
context, when an attack is injected into certain nodes, its effect propagates to others. Consequently,
nodes that are more “influential” in terms of their interactions with other nodes have a higher prob-
ability of being affected by the attack, which in turn impacts nodes within their neighborhood,
resulting in a compounded effect.

These insights suggest a direct and straightforward defense method: discarding the more highly
connected nodes within the graph to mitigate their cumulative attack effect. Similar approaches have
been proposed in the literature, employing pre-processing techniques such as Jaccard Similarity or
SVD decomposition. However, these methods have primarily been applied to node classification
tasks, where graphs are typically large, and discarding a number of nodes does not necessarily result
in significant information loss. In contrast, graph classification often deals with smaller graphs,
where highly connected nodes are crucial for the downstream task, and their removal could lead to
substantial information loss, equivalent to reduced clean accuracy which is very important since a
priori we do not know if the graph is attacked or not. Therefore, finding the right trade-off between
clean and attacked accuracy is important.

Given these considerations, we propose an alternative solution based on post-message-passing filter-
ing. Specifically, after propagating the messages (e. g., using convolutions in the case of GCN (Kipf

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

& Welling, 2017)), the result is a matrix X ∈ Rn,e, where n is the number of nodes and e is the em-
bedding dimension. We suppose that the resulting node representations follow a certain distribution
D. Consequently, when subject to adversarial attacks, some of these node representations may ex-
hibit anomalous behavior, which is likely to be out-of-distribution with respect to D. This approach
is particularly practical for small graphs, where retaining all nodes ensures that information relevant
to the downstream task is preserved through the message-passing scheme.

Given a trained model, which we consider static, we introduce a filtering mechanism prior to the
pooling operation. Specifically, for an input graph G with n nodes, we consider its node represen-
tation X and aim to partition the set of nodes into two subsets: a set of non-affected nodes N and a
set of affected nodes M. Assuming the distribution D, the first set can be viewed as in-distribution
points and the second set as out-of-distribution points. Based on this perspective, we approximate
the distribution D using a finite mixture of k components, in particular with a Gaussian Mixture
Model (GMM), which serves as a universal approximator for a wide range of density functions. The
process involves estimating the GMM parameters, i.e., the component weight ηj , the mean µj and
covariance matrix Σj , for each j = 1, . . . , k for each input graph using the node representation
X , implemented via the Expectation-Maximization (EM) algorithm. After computing the optimal
parameter values, we adopt an approach similar to that proposed in (Morteza & Li, 2022), an OOD
detection method. For each node u with representation xu, we compute a score, denoted as the
Gaussian mixture based energy measurement (GEM), which can be expressed as

s(u) = log
k∑

j=1

ηjexp(−1

2
(xu − µj)

⊤Σj(xu − µj)),

where xu represents the node representation of node u. Given a threshold value λ, we employ the
GEM score to determine whether a node u has been subjected to an attack, consequently supporting
our decision to retain or discard it. Our implementation computes the threshold λ based on the quan-
tile values of the calculated scores. This approach has demonstrated superior adaptability compared
to a rigid threshold, particularly given the heterogeneity in graph sizes prevalent in our datasets.
Formally, we classify a node u as u ∈ N based on its score s(u) comapred to λ. It is noteworthy
that (Morteza & Li, 2022) provide theoretical insights into the performance characteristics of the
GEM methodology, which is out of this work’s scope. We additionally note that while in this work,
we have chosen to work with the GEM score, any other OOD score could be used. After processing
all the nodes and deciding on the set of nodes to be kept N and to discard M, we proceed with
the classical pooling function to produce the final graph representation. We refer to the proposed
filtering scheme as R-pool and as it can be seen from its construction, it is adaptable to any pooling
e. g., sum, mean or max.

The primary advantage of our method lies in its model-agnostic nature, operating independently of
the underlying Graph Neural Network (GNN) architecture. R-Pool accepts any node representation
X as input, regardless of whether it is generated by GCN, (Kipf & Welling, 2017), GIN (Xu et al.,
2019b), GAT (Veličković et al., 2018), or any other method. It then performs adaptive node filtering
to produce a refined set of node representations. This universality ensures broad applicability across
various GNN frameworks without necessitating modifications to the original model architecture or
retraining procedures. Our approach is particularly relevant in the context of Foundation Models,
where the pre-trained nature of the model makes it prohibitively costly to re-train for adapting the
message-passing scheme or implementing adversarial training. By operating at inference time, R-
Pool offers a practical solution for enhancing robustness without the computational and resource
overhead associated with model re-training.

Complexity of the Method The main computational complexity of our method is concentrated in
the Expectation-Maximization algorithm used for estimating the GMM’s parameters. The EM algo-
rithm is an iterative process comprising two main steps: the Expectation (E) step and the Maximiza-
tion (M) step. In the E-step, for each data point, we compute the probability of it being generated
by each component of the model, given the current parameter estimates. The M-step then updates
these parameters to maximize the expected log-likelihood based on the probabilities calculated in
the E-step. The algorithm’s convergence rate and the quality of the resulting fit are partially depen-
dent on the number of iterations. In our implementation and experimental results, we observed that
a relatively small number of iterations (between 100 and 200) yielded satisfactory results (both in
terms of clean and attacked accuracy). A comprehensive time and complexity analysis is provided
in Appendix D.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

6 EXPERIMENTAL RESULTS

In this section, we aim to validate the validity of our proposed R-Pool when subject to adversarial
attacks and using real world datasets. We start by give details about the experimental settings we
will be following and then we will report and analyze the performance of our proposed approach in
comparison to other available methods.

6.1 EXPERIMENTAL SETUP

Datasets. Consistent with our theoretical analysis, this section focuses on the graph classification
task. We base our evaluation on the standard graph dataset derived from bioinformatics (PROTEINS,
NCI1) and from social networks (IMDB-BINARY) (Morris et al., 2020). We note that the social
network graphs are unlabeled, while all other graph datasets come with either node labels or node
attributes. We take those labels/attributes into account when available and we otherwise use the
node’s degree as its node features. To mitigate the impact of randomness during training, each
experiment was repeated 10 times, using the public train/validation/test splits provided in the work
(Errica et al., 2020).

Attacks. To evaluate the effectiveness of our proposed R-Pool defense method, we consider four
adversarial attack strategies: (i) Random Attack, which performs random searches by randomly
adding or deleting edges in the input graph; (ii) Genetic Attack (Dai et al., 2018), which modifies
graph structures using evolutionary computing principles by evolving a population of candidate
solutions through selection, crossover, and mutation to generate adversarial examples; (iii) Gradient-
Based Attack (PGD) (Dai et al., 2018), which greedily adds or deletes edges based on the magnitude
of gradients computed with respect to the input graph. For all attacks, we set a perturbation budget
of ϵ = 0.3, allowing the modification of up to 30% of the edges in the input graph.

Architecture. For all our experiments, a 2-layers GCN classifier with identical hyperparameters and
activation functions was employed. The models were trained using the cross-entropy loss function,
and consistent values for the number of epochs and learning rate were maintained across all analysis
with the Adam optimizer (Kingma & Ba, 2015). Further implementation details can be found in Ap-
pendix E and the code implementation to replicate our experiments is provided in the supplementary
material and would be available on GitHub upon publication.

Baselines. As discussed in Section 2 , few methods exist for defending against adversarial attacks
on graph classification tasks, particularly at inference time (post-hoc methods). To evaluate our
proposed R-Pool defense, we compare it against two main baselines: (i) Pre-processing techniques,
where the adjacency matrix is pre-processed to remove nodes identified as malicious; specifically, we
employ the Jaccard similarity approach (Wu et al., 2019a). (ii) Randomized Smoothing (Bojchevski
et al., 2020), which involves adding random noise to the input graph and making predictions based
on a majority vote over multiple noisy samples. We evaluate the methods based on two key metrics.
First, the clean accuracy, which measures the method’s performance on unperturbed graphs; this is
particularly important for post-hoc methods since, in practice, we may not know whether a graph
has been attacked. Second, we consider the attacked accuracy.

6.2 EXPERIMENTAL RESULTS

Table 6.2 reports the clean and attacked graph classification accuracy of our proposed R-Pool and
other considered benchmarks. A primary observation is that R-Pool maintains clean accuracy com-
parable to the baseline GCN, in contrast to some alternatives such as pre-processing approaches
which often compromise clean accuracy. This finding validates our hypothesis discussed in Section
5, where we argued for the filtering after the message-passing scheme rather than before. Based on
this approach, our proposed R-Pool preserves the flow of relevant information within node repre-
sentations, thereby maintaining the relevant elements for the downstream graph classification task.

When subject to adversarial attacks, our proposed framework demonstrates robust performance,
often surpassing or matching the considered benchmarks. In the case of the labeled PROTEINS
dataset, R-Pool outperforms other baselines in two out of three attack scenarios, showcasing its
robustness against various adversarial perturbations. For the NCI1 dataset, R-Pool exhibits per-
formance comparable to randomized smoothing. Interestingly, while the pre-processing technique

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Clean and Attacked classification accuracy (± standard deviation) of the considered base-
lines on different benchmark graph classification dataset when subject to adversarial attacks. The
best accuracy in each setting and each dataset is typeset in bold.

Attack Dataset PROTEINS NCI1 IMDB-BINARY

Clean

GCN 73.2 ± 0.4 64.6 ± 0.3 58.9 ± 0.2
+ Random Smoothing 74.7 ± 0.3 64.9 ± 0.5 53.3 ± 0.5
+ Pre-processing 71.9 ± 0.7 60.1 ± 0.4 -
+ Ours 75.1 ± 0.4 63.7 ± 0.9 57.4 ± 0.4

PGD

GCN 57.1 ± 0.8 37.2 ± 0.3 53.0 ± 0.4
+ Random Smoothing 62.8 ± 1.3 40.3 ± 0.6 51.8 ± 0.7
+ Pre-processing 59.3 ± 0.7 50.3 ± 0.2 -
+ Ours 64.6 ± 1.1 43.6 ± 0.5 55.7 ± 0.9

Random

GCN 68.8 ± 0.9 22.3 ± 0.6 54.2 ± 0.3
+ Random Smoothing 70.3 ± 0.8 25.3 ± 0.7 54.8 ± 0.6
+ Pre-processing 64.3 ± 0.9 37.3 ± 0.4 -
+ Ours 70.6 ± 1.2 23.1 ± 0.8 56.4 ± 0.8

Genetic

GCN 63.4 ± 0.8 18.4 ± 0.5 52.4 ± 0.6
+ Random Smoothing 67.9 ± 0.7 22.1 ± 0.4 52.9 ± 0.7
+ Pre-processing 61.7 ± 0.5 35.8 ± 0.5 -
+ Ours 67.8 ± 0.9 22.3 ± 0.6 53.2 ± 0.9

yields the highest attacked accuracy for NCI1, it does so at the cost of significantly reduced clean
accuracy, which is a trade-off that may be undesirable in many real-world applications where main-
taining performance on unperturbed data is crucial. This observation underscores the importance of
considering both clean and attacked accuracy when evaluating defense mechanisms. Additionally,
for the unlabeled IMDB-BINARY dataset, where the Jaccard-based method can’t be used due to
the absence of node features and randomized smoothing underperforms, R-Pool shows particular
promise. This demonstrates the effectiveness of our method with different graph datasets, including
those lacking node attributes. Overall, R-Pool demonstrates a good ability to balance clean accu-
racy and robustness against adversarial attacks, a characteristic not consistently observed in other
techniques such as pre-processing.

7 CONCLUSION AND LIMITATIONS

In this work, we have demonstrated that the choice of pooling operation in graph classification tasks
can significantly influence a model’s adversarial robustness. Our comprehensive study of three main
flat pooling methods revealed that their effectiveness varies across different settings, highlighting the
importance of context-specific selection. Building on these theoretical insights, we concluded that
filtering nodes after the message-passing scheme but before the pooling operation could enhance
robustness. This led to the development of R-Pool, a novel approach that employs Gaussian Mixture
Models (GMMs) and an out-of-distribution score to rank nodes and filter out those deemed vulner-
able. The proposed method can be adapted to different architectures and doesn’t require re-training
the model and can directly be employed in the inference time. Through extensive experimental val-
idation across various graph classification datasets, we have demonstrated the efficacy of R-Pool in
comparison to existing baselines.

The limitations of this work can be categorized into two main areas. Firstly, our study focused
exclusively on flat pooling methods, and therefore extending the analysis to hierarchical pooling
represents an important step to demonstrate the universality of our approach. Secondly, the current
proposed filtering method, R-Pool, is inherently ”post-hoc” in nature. This approach offers a new
perspective on the inference time defense, which is important with the current surge of Founda-
tion models. A natural progression of this work would be the development of end-to-end trainable
methods that integrate robustness considerations directly into the model’s training phase, potentially
leading to more adversarial robust graph classifiers.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Yassine ABBAHADDOU, Sofiane ENNADIR, Johannes F. Lutzeyer, Michalis Vazirgiannis, and
Henrik Boström. Bounding the expected robustness of graph neural networks subject to node
feature attacks. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=DfPtC8uSot.

Amr Alkhatib, Sofiane Ennadir, Henrik Boström, and Michalis Vazirgiannis. Interpretable graph
neural networks for tabular data. arXiv preprint arXiv:2308.08945, 2023.

Aleksandar Bojchevski and Stephan Günnemann. Certifiable robustness to graph perturbations,
2019. URL https://arxiv.org/abs/1910.14356.

Aleksandar Bojchevski, Johannes Klicpera, and Stephan Günnemann. Efficient robustness certifi-
cates for discrete data: Sparsity-aware randomized smoothing for graphs, images and more, 2020.
URL https://arxiv.org/abs/2008.12952.

Chen Cai, Dingkang Wang, and Yusu Wang. Graph coarsening with neural networks. arXiv preprint
arXiv:2102.01350, 2021.

Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Adversarial Attack
on Graph Structured Data. In Proceedings of the 35th International Conference on Machine
Learning, pp. 1115–1124, 2018.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel,
Alan Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning
molecular fingerprints. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 28. Curran Associates, Inc.,
2015. URL https://proceedings.neurips.cc/paper_files/paper/2015/
file/f9be311e65d81a9ad8150a60844bb94c-Paper.pdf.

Sofiane Ennadir, Yassine Abbahaddou, Johannes F Lutzeyer, Michalis Vazirgiannis, and Henrik
Boström. A simple and yet fairly effective defense for graph neural networks. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 38, pp. 21063–21071, 2024.

Negin Entezari, Saba A Al-Sayouri, Amirali Darvishzadeh, and Evangelos E Papalexakis. All you
need is low (rank) defending against adversarial attacks on graphs. In Proceedings of the 13th
international conference on web search and data mining, pp. 169–177, 2020.

Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A Fair Comparison of Graph
Neural Networks for Graph Classification. In 8th International Conference on Learning Repre-
sentations, 2020.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International Conference on Machine Learning, pp.
1263–1272. PMLR, 2017.

Lukas Gosch, Simon Geisler, Daniel Sturm, Bertrand Charpentier, Daniel Zügner, and Stephan
Günnemann. Adversarial training for graph neural networks: Pitfalls, solutions, and new direc-
tions. Advances in Neural Information Processing Systems, 36, 2024.

Stephan Günnemann. Graph neural networks: Adversarial robustness. In Graph Neural Networks:
Foundations, Frontiers, and Applications, pp. 149–176. Springer, 2022.

Wei Jin, Yaxing Li, Han Xu, Yiqi Wang, Shuiwang Ji, Charu Aggarwal, and Jiliang Tang. Adver-
sarial attacks and defenses on graphs. SIGKDD Explor. Newsl., pp. 19–34, 2021.

Steven Kearnes, Kevin McCloskey, Marc Berndl, Vijay Pande, and Patrick Riley. Molecular graph
convolutions: moving beyond fingerprints. Journal of Computer-Aided Molecular Design, 30(8):
595–608, 2016.

10

https://openreview.net/forum?id=DfPtC8uSot
https://arxiv.org/abs/1910.14356
https://arxiv.org/abs/2008.12952
https://proceedings.neurips.cc/paper_files/paper/2015/file/f9be311e65d81a9ad8150a60844bb94c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/f9be311e65d81a9ad8150a60844bb94c-Paper.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), San Diega, CA, USA, 2015.

Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional Net-
works. In International Conference on Learning Representations (ICLR), 2017.

Chuang Liu, Yibing Zhan, Jia Wu, Chang Li, Bo Du, Wenbin Hu, Tongliang Liu, and Dacheng Tao.
Graph pooling for graph neural networks: Progress, challenges, and opportunities. arXiv preprint
arXiv:2204.07321, 2022.

Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. arXiv preprint
arXiv:2007.08663, 2020.

Peyman Morteza and Yixuan Li. Provable guarantees for understanding out-of-distribution detec-
tion. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 7831–7840,
2022.

Aymen Qabel, Sofiane Ennadir, Giannis Nikolentzos, Johannes F Lutzeyer, Michail Chatzianastasis,
Henrik Boström, and Michalis Vazirgiannis. Structure-aware antibiotic resistance classification
using graph neural networks. In NeurIPS 2022 AI for Science: Progress and Promises, 2022.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph Attention Networks. In ICLR, 2018.

Xingchen Wan, Henry Kenlay, Robin Ru, Arno Blaas, Michael A Osborne, and Xiaowen
Dong. Adversarial attacks on graph classifiers via bayesian optimisation. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neu-
ral Information Processing Systems, volume 34, pp. 6983–6996. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/38811c5285e34e2e3319ab7d9f2cfa5b-Paper.pdf.

Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, and Liming Zhu. Adversarial
examples for graph data: Deep insights into attack and defense. In Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, pp. 4816–4823, 2019a.

Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. Session-based Rec-
ommendation with Graph Neural Networks. In Proceedings of the 33rd AAAI Conference on
Artificial Intelligence, pp. 346–353, 2019b.

Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong, and Xue Lin.
Topology attack and defense for graph neural networks: An optimization perspective. arXiv
preprint arXiv:1906.04214, 2019a.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph Neural
Networks? In 7th International Conference on Learning Representations, 2019b.

Xiang Zhang and Marinka Zitnik. Gnnguard: Defending graph neural networks against adversarial
attacks. Advances in Neural Information Processing Systems, 33:9263–9275, 2020.

Daniel Zügner and Stephan Günnemann. Adversarial attacks on graph neural networks via meta
learning. In 7th International Conference on Learning Representations, 2019.

Daniel Zügner and Stephan Günnemann. Certifiable robustness and robust training for graph con-
volutional networks. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. ACM, jul 2019. doi: 10.1145/3292500.3330905. URL
https://doi.org/10.1145%2F3292500.3330905.

Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on neural networks
for graph data. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 2018.

11

https://proceedings.neurips.cc/paper_files/paper/2021/file/38811c5285e34e2e3319ab7d9f2cfa5b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/38811c5285e34e2e3319ab7d9f2cfa5b-Paper.pdf
https://doi.org/10.1145%2F3292500.3330905

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A APPENDIX

B PROOF OF THEOREM 4.2

Theorem 4.2 Let f : (G,X) → Y denote a graph-based function composed of L GCN layers,
where the weight matrix of the i-th layer is denoted by W (i). Further, let d0,1 be a graph distance.
For adversarial attacks only targeting node features of the input graph, with a budget ϵ, we have:

• If f is Max-pooling based classifier, then f is d0,1-(ϵ, γ) robust with:

γ =
∏L

l=1∥W (l)∥maxu∈V ŵuϵ

• If f is Sum-pooling based classifier, then f is d0,1-(ϵ, γ) robust with:

γ =
∏L

l=1∥W (l)∥
∑

u∈V ŵuϵ

• If f is Average-pooling based classifier, then f is d0,1-(ϵ, γ) robust with:

γ = ϵ
|V |
∏L

l=1∥W (l)∥
∑

u∈V ŵu

with ŵu denoting the sum of normalized walks of length (L− 1) starting from node u.

Proof. In this proof, we consider that f is a graph-function that is based on L layers of GCN. We
recall taht the GCN message-passing propagation is formulated for a node u as

h(ℓ)
u = σ(ℓ)(Σ

v∈N (u)
⋃
{u}

W (ℓ)h
(ℓ−1)
v√

(1 + du)(1 + dv)
) (2)

where W (ℓ) ∈ Rdℓ−1×dℓ is the learnable weight matrix with dℓ being the embedding dimension of
layer ℓ and σ(ℓ) is the activation function of ℓ-th layer. We recall that h(0) = X ∈ Rn×d is set to the
initial node features.

Similar to the work (ABBAHADDOU et al., 2024), we denote X as the original node features and
denote by X ′ the perturbed adversarial features. We consider a node u ∈ V , we denote by hu its
representation in the clean graph and h′

u its representation in the attacked graph. We consider that
the activation functions (σ(ℓ))1≤ℓ≤L are nonexpensive (1-Lipschitz continuous). From the work, we
have the following result:

∥h(L)
u − h′(L)

u′ ∥ ≤
L∏

l=1

∥W (l)∥2∥ Σ
v∈N (u)

⋃
{u}

Σ
j∈N (v)

⋃
{v}

. . .

Σ
z∈N (y)

⋃
{y}

Xu −X ′
u√

(1 + du)(1 + dw)(1 + dj) . . . (1 + dy)
√
(1 + dz)

∥

≤
L∏

l=1

∥W (l)∥ŵuϵ

with ŵu being the sum of normalized walks of length (L− 1) starting from node u.

The previous results gives us an idea about the behavior of each node’s representation when attacked.
In the case of graph classification, an additional pooling operation is added, Specifically:

h
(L)
graph = Pool

(
{h(L)

u }u∈V

)
Hence this proof’s goal is to analyze the following quantity:

∥h(L)
graph − h′(L)

graph∥

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Let’s consider the Sum-pooling operation, that can be written as:

h
(L)
graph =

∑
u∈V

h(L)
u

We have the following:

∥h(L)
graph − h′(L)

graph∥ =

∥∥∥∥∥∑
u∈V

(
h(L)
u − h′(L)

u

)∥∥∥∥∥
≤
∑
u∈V

∥h(L)
u − h′(L)

u ∥ (Triangle Inequality)

≤
∑
u∈V

(
L∏

l=1

∥W (l)∥

)
∥ŵu∥ϵ

=

(
L∏

l=1

∥W (l)∥

)
ϵ
∑
u∈V

ŵu

For the case of the Average-pooling operation, that can be written as:

h
(L)
graph =

1

|V |
∑
u∈V

h(L)
u

We have the following analysis:

∥h(L)
graph − h′(L)

graph∥ =

∥∥∥∥∥ 1

|V |
∑
u∈V

(
h(L)
u − h′(L)

u

)∥∥∥∥∥
≤ 1

|V |
∑
u∈V

∥h(L)
u − h′(L)

u ∥ (Triangle Inequality)

≤ 1

|V |

(
L∏

l=1

∥W (l)∥

)
ϵ
∑
u∈V

ŵu

In the case of Max-pooling:

∣∣∣[h(L)
graph]k − [h′(L)

graph]k

∣∣∣ ≤ max
u∈V

∣∣∣[h(L)
u]k − [h′(L)

u]k

∣∣∣
≤ max

u∈V
∥h(L)

u − h′(L)
u ∥

≤

(
L∏

l=1

∥W (l)∥

)
max
u∈V

ŵuϵ

By taking into account the expectancy (as shown in Definition 1), we get the desired results.

C PROOF OF THEOREM 4.3

Theorem 4.3 Let f : (G,X) → Y be composed of L GIN-layers (with its internal parameter ζ = 0)
and let W (i) denote the weight matrix of the i-th MLP layer. We consider the input node feature
space to be bounded i. e., ∥X∥2 < B for some B ∈ R. For node feature-based attacks, with a budget
ϵ, the function f is (d0,1, ϵ)–robust with

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

• If f is Max-pooling based classifier, then f is d0,1-(ϵ, γ) robust with:

γ =
∏L

l=1∥W (l)∥ [B × L×maxu∈V deg(u) + ϵ]

• If f is Sum-pooling based classifier, then f is d0,1-(ϵ, γ) robust with:

γ =
∏L

l=1

∥∥W (l)
∥∥ [2B × L× |E|+ |V |ϵ]

• If f is Average-pooling based classifier, then f is d0,1-(ϵ, γ) robust with:

γ =
∏L

l=1

∥∥W (l)
∥∥ [2B×L×|E|

|V | + ϵ
]

with | E | being the number of edges and | V | the number of nodes.

Proof. In this proof, we consider that f is based on L GIN-layers (with a parameter ζ = 0, usually
denoted as ϵ). The GIN message-passing propagation process can be written for a node u as:

h(ℓ+1)
u = T (ℓ+1)((1 + ζ)h(ℓ)

u + Σ
v∈N (u)

h(ℓ)
v)

with T denoting a Neural Networks (a MLP) for example and ζ denotes the parameter of the GIN.
We recall that h(0) = X ∈ Rn×d is set to the initial node features.

Similar to the previous proof, we base our proof on previous work (ABBAHADDOU et al., 2024),
we denote X as the original node features and denote by X ′ the perturbed adversarial features.
We consider a node u ∈ V , we denote by hu its representation in the clean graph and h′

u its
representation in the attacked graph. We consider that the activation functions (σ(ℓ))1≤ℓ≤L are
nonexpensive (1-Lipschitz continuous).

We use the same assumptions as the one considered in (ABBAHADDOU et al., 2024). Specifically,
we consider that the input feature space H0 is bounded, thus each hidden space Hi of the iterative
process of message passing is bounded and let B = max

ℓ≤L
Bℓ be its global maximum bound. We

additionally consider that GIN-parameter ζ ≈ 0 (which is very frequent in the literature). We have
therefore the following result:

∥h(ℓ+1)
u − h′(ℓ+1)

u′ ∥≤
L∏

l=1

∥W (l)∥[B × L× deg(u) + ϵ]

From this perspective, let’s consider the case of graph classification, where we start by the sum-
pooling operation:

∥∥∥h(L)
G − h′(L)

G

∥∥∥ =

∥∥∥∥∥∑
u∈V

(
h(L)
u − h′(L)

u

)∥∥∥∥∥
≤
∑
u∈V

∥∥∥h(L)
u − h′(L)

u

∥∥∥ (by the triangle inequality)

≤
L∏

l=1

∥∥∥W (l)
∥∥∥∑

u∈V

[B × L× deg(u) + ϵ]

=

L∏
l=1

∥∥∥W (l)
∥∥∥[B × L×

∑
u∈V

deg(u) + |V |ϵ

]
.

In the case of undirected graph, since
∑

u∈V deg(u) = 2|E|, we have:

∥∥∥h(L)
G − h′(L)

G

∥∥∥ ≤
L∏

l=1

∥∥∥W (l)
∥∥∥ [2B × L× |E|+ |V |ϵ]

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Similar for the case of Average-pooling, we have:

∥∥∥h(L)
G − h′(L)

G

∥∥∥ =
1

|V |

∥∥∥∥∥∑
u∈V

(
h(L)
u − h′(L)

u

)∥∥∥∥∥
≤ 1

|V |
∑
u∈V

∥∥∥h(L)
u − h′(L)

u

∥∥∥
≤

L∏
l=1

∥∥∥W (l)
∥∥∥ [2B × L× |E|

|V |
+ ϵ

]
.

In the case of Max-pooling operation, we have the following:

∥∥∥h(L)
G − h′(L)

G

∥∥∥ ≤
L∏

l=1

∥∥∥W (l)
∥∥∥ [B × L×max

u∈V
deg(u) + ϵ

]
.

By taking into account the expectancy (as shown in Definition 1), we get the desired results.

D TIME COMPLEXITY ANALYSIS

As explained in Section 5, the main computational complexity of our method is concentrated in the
EM algorithm used for estimating the GMM’s parameters. The EM algorithm is an iterative process
and hence the complexity mainly depends on the number of iterations that have been chosen. For
our experimentation, we have seen that 100 iterations was a good number to reach a satisfactory
accuracy. In table 2, we provide a time complexity comparison of our R-Pool to other considered
baselines on the used graph classification datasets.

Table 2: Mean training time analysis (in s) of a our R-Pool in comparison to the other considered
benchmarks on the graph classification datasets.

DATASET GCN RANDOMZIED SMOOTHING PRE-PROCESSING R-POOL

PROTEINS 0.001 0.014 0.037 0.013
NCI1 0.008 0.019 0.01 0.015
IMDB-BINARY 0.0007 0.013 - 0.011

E EXPERIMENTAL DETAILS

E.1 DATASETS

For our experimentation, we mainly used the classical graph datasets derived from bioinformatics
and chemoinformatics (PROTEINS, NCI1) and social networks (IMDB-BINARY) (Morris et al.,
2020). We used the public folds and the experimental setting that was provided by the work Errica
et al. (2020). Details about the dataset are provided in Table 3.

E.2 IMPLEMENTATION DETAILS

Our implementation is available in the supplementary materials (and will be publicly available af-
terwards). It is built using the open-source library PyTorch Geometric (PyG) under the MIT license
(Fey & Lenssen, 2019) and DGL in the case of the genetic and random attacks. We leveraged the
publicly available implementation of both the attacks and the benchmarks. The experiments have
been run on both a NVIDIA A100 GPU.

For all the attacks, we set the number of attack epochs to 100 and in a “re-wiring” mode, meaning
that the attack can either add/delete an edge.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 3: Statistics of the graph classification datasets used in our experiments.

DATASET #GRAPHS #NODES #EDGES #CLASSES

IMDB-BINARY 1000 19.77 96.53 2
NCI1 4110 29.87 32.30 2
PROTEINS 1113 39.06 72.82 2

For all our experiments, we employed a 2-layer convolutional architecture (consisting of two itera-
tions of message passing and updating) stacked with a Multi-Layer Perception (MLP) as a readout
using the Adam Optimizer Kingma & Ba (2015). We train the model for 100 epochs (as this was
sufficient to reach the state-of-the art accuracy for these models) and we use a learning rate of 1e−02.

16

	Introduction
	Related Work
	Preliminaries
	On the Robustness of Pooling Operations
	Adversarial Graph Robustness
	On the robustness of Flat Pooling Operations

	Robust Pooling through Filtering
	Experimental Results
	Experimental Setup
	Experimental Results

	Conclusion and Limitations
	Appendix
	Proof of Theorem 4.2
	Proof Of Theorem 4.3
	Time Complexity Analysis
	Experimental Details
	Datasets
	Implementation Details

