
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

STEERABLE GENERATIVE MODELING OF PLAYING
STYLE AT SCALE

Anonymous authors
Paper under double-blind review

ABSTRACT

There has been a growing interest in using AI to model human behavior, particu-
larly in domains where humans interact with this technology. While most existing
work models human behavior at an aggregate level, our goal is to model behavior
at the individual level. Recent approaches to behavioral stylometry—or the task of
identifying a person from their actions alone—have shown promise in domains like
chess, but these approaches are either not scalable (e.g., fine-tune a separate model
for each person) or not generative, in that they cannot actually generate any actions.
We address these limitations by framing behavioral stylometry as a multi-task learn-
ing problem—where each task represents a distinct person—and use parameter-
efficient fine-tuning (PEFT) methods to learn an explicit style vector for each
person. Style vectors are generative: they selectively activate shared “skill” param-
eters to generate actions in the style of each person. They also induce a latent space
that we can interpret and manipulate algorithmically. In particular, we develop a
general technique for style steering that allows us to steer a player’s style vector
towards a desired property. We apply our approach to two very different games, at
unprecedented scales: chess (47,864 players) and Rocket League (2,000 players).

1 INTRODUCTION

Contemporary machine learning systems hold the promise of making a wide array of technologies
more accessible and useful. Many of these systems are far more capable than the average person
on domains for which they were trained, but they can often still be made more useful by better
understanding how humans approach these same tasks. Rather than focusing on maximizing raw
performance, such an understanding can help identify areas for improvement in humans, develop
better AI partners or teachers, and create more enjoyable experiences. AI that solely aims to solve
a task optimally often fails in these respects, because they tend to be difficult to interpret, provide
limited instructional value, and can be awkward to interact with.

A common method for capturing human behavior is behavioral cloning (BC), a form of imitation
learning (Schaal, 1996) that applies supervised learning to fixed demonstrations for a given task.
BC has been used in various domains, such as supply chains (Kurian et al., 2023), legal cases (Ma
et al., 2021), robotics (Florence et al., 2022), and self-driving vehicles (Pomerleau, 1988). Recently,
BC has seen increasing use in gaming, reaching impressive performance in games such as Counter-
Strike (Pearce & Zhu, 2022), Overcooked (Carroll et al., 2019), Minecraft (Schäfer et al., 2023),
Bleeding Edge (Pearce et al., 2024; Kanervisto et al., 2025), and chess McIlroy-Young et al. (2020).

These works focus on modeling human behavior in aggregate, motivated by goals like developing
better AI partners or training tools. This paper argues that such goals are better served by modeling
human behavior at the individual level, allowing us to tailor solutions to an individual’s specific needs
(e.g., creating an AI training partner that targets an individual’s weaknesses). To that end, recent work
in chess has shown the most promise. McIlroy-Young et al. (2020) used BC to create a set of models
called Maia that mimic human play at nine skill levels. They then fine-tuned these models on data
from 400 individual players to create a personalized model per player (McIlroy-Young et al., 2022b).
Using these models, the authors perform behavioral stylometry, where the goal is to identify which
person played a given query set of games: they apply each of the 400 models to the query set and
select the one with the highest move-matching accuracy. In follow-up work, McIlroy-Young et al.
(2021) propose a more scalable approach—training a Transformer-based embedding on the games of
each player. They perform stylometry across 2,844 players by embedding the query set of games and
matching it to the closest player’s corresponding embedding.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Comparison of different approaches for player modeling. We combine the best of previous
methods while providing novel capabilities.

Criterion
Maia-MHR

(Ours)
Embedding (e.g.,

McIlroy-Young et al. (2021))
Personalized Models (e.g.,

McIlroy-Young et al. (2022b))
Generative

√ × √

Efficient Training
√ √ ×

Efficient Stylometry
√ √ ×

Player Synthesis
√ × ×

Player Steering
√ × ×

These methods have varying merits, as summarized in Table 1. The individualized approach creates
a generative model for each player that can play in their style, but it is not scalable—adding a new
player requires fine-tuning a separate model—and it provides only a crude notion of stylometry (move
matching). The embedding approach scales much better—it learns a single-vector representation
of each player, and uses few-shot learning to embed new players in this space—but it cannot generate
actions and hence cannot reason about behavior in practice.

An ideal solution would combine these properties to obtain a generative and scalable representation.
Our key insight for achieving this is to view behavioral stylometry as a multi-task learning problem,
where each task represents an individual person. The goal is to generalize across an initial set
of players while supporting few-shot learning of new players. To do this efficiently, we leverage
recent advances in parameter-efficient fine-tuning (PEFT) (Ponti et al., 2023; Caccia et al., 2023).
Specifically, we augment an existing BC model with a set of shared Low Rank Adapters (LoRAs) and
a routing matrix that specifies a distribution over these adapters for each player. Unlike approaches
that train a separate LoRA for each task, this modular design allows players to softly share parameters
in a fine-grained manner. We apply this adapter framework to two very different gaming models:
a modified version of the Maia model for chess, and a Transformer-based model for Rocket League,
a 3D soccer video game played by cars in a caged arena. We chose these games because they have
a large, public collection of human games that span a diversity of skill levels and styles.

We start by creating a base BC model for each of these domains (which, incidentally, outperforms
the state-of-the-art BC models in each domain). We then apply our adapter framework to the frozen
model and fine-tune it: this encourages the adapters to learn different latent skills, while each row
of the routing matrix learns a weight distribution over these skills. We call these rows style vectors,
as they capture the underlying characteristics of each player’s behavior. Style vectors are versatile
and powerful. They support few-shot learning which enables stylometry at scale. They induce a
generative model for each player that we can run and observe. Importantly, because style vectors are
compact and generative, we can interpret and manipulate them algorithmically. We leverage these
properties to develop a general, human-interpretable technique for style steering that identifies players
who exhibit a desired style property, and steers a new player towards—or away from—that property.

In summary, we make the following contributions:

1. We develop an adapter framework to model individual human behavior and create a style vector
for each player. We show that style vectors can be combined, interpolated, and steered in an
interpretable way.

2. We apply our adapter framework and conduct behavioral stylometry at an unprecedented
scale—47,864 players in chess and 2,000 in Rocket League. Our stylometry framework enables
gradient-based search in the latent space, yielding orders-of-magnitude efficiency gains over
prior work. Notably, it requires no stylometry-specific losses, allowing us to preserve full
move-generation capabilities.

3. We present novel capabilities of style vectors, including a method to steer player styles to
strengthen (human-interpretable) attributes of their gameplay. We show the generality of style
steering by applying it to a very different domain: image generation for 10,177 celebrities.

2 BACKGROUND AND FRAMING

We frame behavioral stylometry and per-player generative modeling as a multitask learning problem.
In multitask learning (Caruana, 1997; Ruder et al., 2019), we are given a collection of tasks T =(
T1, . . . , T|T |

)
, where each task Ti is associated with a dataset Di =

{
(x1, y1), ..., (xni , yni)

}
.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Multitask learning exploits the similarities among related tasks by transferring knowledge among
them; ideally, this builds representations that are easily adaptable to new tasks.

The premise of this paper is that modeling individual human behavior from a pool of players can
be interpreted as a multitask learning problem. Specifically, each task Ti consists of modeling the
behavior of a specific player i. A dataset Di corresponds to the sequence of game actions taken by
player i, where each (x, y) tuple denotes a game state x and the action y that player i took in this
state. We use the notion of tasks and players interchangeably.

2.1 PARAMETER-EFFICIENT FINE-TUNING

Popularized in NLP, parameter-efficient fine-tuning (PEFT) (Houlsby et al., 2019; Hu et al., 2022;
Liu et al., 2022) has emerged as a scalable solution for adapting Large Language Models to several
downstream tasks. Indeed, standard finetuning of pretrained LLMs requires updating (and storing)
possibly billions of parameters for each task. PEFT methods instead freeze the pretrained model and
inject a small set of trainable task-specific weights, or “adapters.”

One such approach is the use of Low Rank Adapters (LoRA) (Hu et al., 2022), which modify linear
transformations in the network by adding a learnable low-rank shift

h =
(
W0 +∆W

)
x =

(
W0 +ABT

)
x. (1)

Here, W0 ∈ Rd×d are the (frozen) weights of the pre-trained model, and A,B ∈ Rd×r the learnable
low-rank parameters of rank r ≪ d. With this approach, practitioners can trade-off parameter
efficiency with expressivity by increasing the rank r of the transformation.

2.2 POLYTROPON AND MULTI-HEAD ADAPTER ROUTING

Standard PEFT methods such as LoRA can adapt a pretrained model for a given task. In multitask
settings, training a separate set of adapters for each task is suboptimal, as it does not enable any
sharing of information, or transfer, across similar tasks. On the other hand, using the same set of
adapters for all tasks risks negative interference (Wang et al., 2021) across dissimilar tasks. Polytropon
(Ponti et al., 2019) (Poly) addresses this transfer/interference tradeoff by softly sharing parameters
across tasks. That is, each Poly layer contains 1) an inventory of LoRA adapters

M = {A(1)B(1), . . . , A(m)B(m)}
with m ≪ |T |, and 2) a task-routing matrix Z ∈ R|T |×m, where Zτ ∈ Rm specifies task τ ’s

distribution over the shared modules. This formulation allows similar tasks to share adapters, while
allowing dissimilar tasks to have non-overlapping parameters. The collection of adapters M can be
interpreted as capturing different facets of knowledge, or latent skills, of the full multitask distribution.

At each forward pass, Poly LoRA adapters for task τ are constructed as

Aτ =
∑
i

αiA
(i); Bτ =

∑
i

αiB
(i), (Poly)

where αi = softmax(Z [τ])i denotes the mixing weight of the i-th adapter in the inventory, and
A(i),B(i),Aτ ,Bτ ∈ Rd×r. Here, the τ -th row of the routing matrix Z is effectively selecting
which adapter modules to include in the linear combination. In our setting, where each task consists
of modeling an individual, Z [τ] specifies which latent skills are activated for user τ ; we call this
their style vector. As per Eqn 1, the final output of the linear mapping modified with a Poly LoRA
adapter becomes h =

(
W0 +Aτ (Bτ)T

)
x.

In Poly, the module combination step is coarse as only linear combinations of the existing modules
can be generated. Caccia et al. (2023) propose a more fine-grained module combination approach,
called Multi-Head Routing (MHR), which is what we use in our work. Similar to Multi-Head Attention
(Vaswani et al., 2017), the input dimension of A (and output dimensions of B) are partitioned into h
heads, where a Poly-style procedure occurs for each head. The resulting parameters from each head
are then concatenated to recover the full input/output dimensions. See A.2.

Routing-only fine-tuning. While LoRA adapters can reduce parameter costs from billions to
millions, training the adapters for each new task can still be prohibitive when dealing with thousands
of tasks. To this end, Caccia et al. (2023) proposed routing-only fine-tuning, where after an initial
phase of pre-training, the adapter modules are frozen, and only the routing parameters Z are learned
for a new task. We use this method for few-shot learning.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

game state
p(action|x)

possible actions

player style vector
skill inventory

+Wpretrained

Base Model Layer

 LoRA

A BT
active player’s style vector

players

skills

or …

La
ye

r N

skill inventory

La
ye

r 1

…

Base Model

Figure 1: (left) Our overall architecture. We augment a base model with a set of MHR adapters and
a routing matrix composed of each player’s style vector. (right) Detailed view of an MHR layer,
showing a skill inventory of adapters shared across players. The player’s style vector specifies which
skills are active (in this case, the first and third) to generate the final low-rank weight shift that is
applied to the (frozen) base model layer.

3 ML METHODOLOGY

We detail our methodology for creating a generative model of individual behavior that enables our
style analyses. We start with a base model and apply the MHR adapter framework to it, and then
discuss model training and evaluation.

3.1 MODEL ARCHITECTURE

For chess, we follow McIlroy-Young et al. (2022b) and use the Squeeze-and-Excitation (S&E)
Residual Network (Hu et al., 2018) as a base model, but with a deeper and wider configuration
(see A.6). The total parameter count for chess is 15.7M. For Rocket League, we use the GPT-2
architecture from Radford et al. (2019), using a linear projection layer from the game state to the
hidden dimensionality in lieu of any embedding layers. The total parameter count for Rocket League
is 87.7M. For architectural specifics (e.g., attention heads, layer counts, hidden dimensions), see A.8.

To enable user-based adaptation, we incorporate the MHR adapters described in §2.2 into our base
models, as shown in Fig. 1. For chess, we attach MHR adapters to each linear transformation used for
channel-wise rescaling, for an additional 5M parameters. For Rocket League, we attach adapters to
the fully connected layers of each transformer block, resulting in an additional 13.8M parameters.
For all MHR adapter layers within a model, we share the same routing style vector. For specific details
on adapter hyperparameters, see A.3.

3.2 DATA COLLECTION AND PARTITIONING

We use data from the largest open-source online chess platform, Lichess.org (Duplessis, 2021), which
boasts a database of over 4.8 billion games. We collected Blitz games played between 2013 and
2020 inclusive—these are games with 3 or 5 minutes per side, optionally with a few seconds of
time increment per move—and applied the same player filtering criteria as McIlroy-Young et al.
(2022b). The resulting dataset comprises 47,864 unique players and over 244 million games. (See
A.6 for a discussion on data imbalance.) For Rocket League, we collect data from a large open-source
replay database, Ballchasing.com (CantFlyRL, 2024). We use 2.2 million 1v1 replays from 2015 to
mid-2022, totalling several decades of human gameplay-hours. A.8 contains detailed information
about the state and action space of the Rocket League game environment and data, along with the
processing required to utilize the data.

We divide the set of players into a few subsets to support our training methodology. The base player
set comprises all data and is used to train the base models. The fine-tuning player set is used to
fine-tune the MHR architecture shown in Fig. 1. (For both, we split each player’s data into 80/10/10
for train/test/validation.) The few-shot player set is used for few-shot learning based on a reference
set of 100 games per player. For our chess experiments, to enable a direct comparison with prior
work, we create an additional fine-tuning player set consisting of the same 400 players from those
studies. Currently, we treat each player’s data holistically, but in principle one could partition a player
in different ways to analyze their playing style (see A.9).

3.3 MODEL TRAINING AND EVALUATION

Base model pretraining. We pre-train our base Maia model for chess using data from a base player
set of all 47,864 players. Here, no player conditioning is performed during training, and no adapters
are used. We treat this as a classification task of predicting human move y made in chess position x,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

given a datapoint (x, y). We use the same loss functions and evaluation criteria as the original Maia
work: Maia’s policy head uses a cross entropy loss while the value head uses MSE; the output of the
policy head is used to evaluate the model’s move-matching accuracy.

We train our Rocket League model using a base player set of over 800,000 players, though the vast
majority of players have 5 games or fewer. We discretize the actions into 3 bins for throttle, steer,
pitch, yaw, and roll, as most of this data is close to 0, -1, or 1. We use binary outputs for jump, boost,
and handbrake. A next-move prediction is labelled correct if and only if all the outputs are correct.

MHR fine-tuning. To train the MHR LoRA adapters, we adopt the methodology used in Caccia et al.
(2023): namely, we freeze the base model and fine-tune the MHR layers and routing matrix using data
from a fine-tuning player set. Recall that the routing matrix Z has a row (style vector) for each player
in the fine-tuning set. Following Ponti et al. (2019), we use a two-speed learning rate, where the style
vector learning rate is higher than the adapter learning rate.

For chess, we use two fine-tuning player sets in our experiments, creating two separate MHR-Maia
models. The first set comprises all 47,864 players and is used to evaluate behavioral cloning and
stylometry at very large scale. The second set is comprised of the same 400 players used by McIlroy-
Young et al. (2022b), which we use to compare few-shot learning and stylometry results. For Rocket
League, we train an MHR-Rocket model on a fine-tuning set of 2,000 players with 100 games each.

Few-shot learning. To perform few-shot learning on our MHRmodels, we perform the “routing-only
fine-tuning” described in § 2.2 that freezes all MHR LoRA adapters. Given a new player, we add a
(randomly-initialized) row to Z and fine-tune it on the player’s reference set of games, eventually
learning a style vector for the player while keeping other learning machinery fixed. Using this
representation, we can generate sequences in the style of the corresponding player on held-out games
and evaluate move-matching accuracy, as described above. To perform stylometry, if the player is a
seen player (i.e., part of the fine-tuning set), then a matching style vector already exists in Z, and
we can find it using cosine similarity. Otherwise, if the player is unseen, then we simply repeat the
few-shot learning process on a query set of games (from the same player), and compare this new style
vector to the entries in Z. In general, the number of reference/query games required for few-shot
learning is low (see Figure 10, A.6).

For chess, (unless stated otherwise), all of our few-shot experiments use the MHR-Maia model fine-
tuned on the 400-player set from McIlroy-Young et al. (2022b). For Rocket League, the few-shot
player set consists of 1,000 of the 2,000-player set used to fine-tune MHR-Rocket.

Evaluation. We evaluate a fine-tuned MHRmodel in two ways. First, we measure its move-matching
accuracy, similar to how we evaluate the base models. However, since our MHR models provide
a generative model for each player (conditioned on their style vector), we can separately evaluate
each player’s model by applying it to their test set. We then average these per-player accuracies to
determine the overall move-matching accuracy for the model.

Our second evaluation method uses the model to perform behavioral stylometry among all players
in the fine-tuning set. To do this, we leverage our few-shot learning methodology. That is, given a
query set of games from some player, we learn a new style vector in Z for those games via few-shot
learning, and compare this vector to every other vector in Z using cosine similarity. We then output
the player with the highest cosine similarity. In domains that focus on authenticating individuals (e.g.,
biometrics), ROC curves and related metrics are used. Our results can be re-interpreted in this way
(see Figure 12 in the appendix).

4 STYLE METHODOLOGY

The style vectors in Z give us a starting point for comparing player styles. For example, our
stylometry method above uses the cosine similarity between vectors to determine how similar or
different players are.

Style vectors can also be learned for different partitions of a player’s dataset, or even for a merged
dataset comprising multiple players. The latter is notable because it actually creates a new (human-
like) playing style that has never been seen before. This suggests a general approach to synthesizing
new styles: interpolate between existing players using a convex combination of their style vectors.
To determine the playing strength of a newly synthesized player, we can simulate games between
them and the players they are derived from, by conditioning the MHR model on their respective style
vectors. The results of these games yield a win rate, which can be converted to a strength rating.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: Top-1 stylometry accuracy results. Query players are the game sets sampled from anonymous
players that we would like to identify from the pool of all known candidate players. Game count
is the number of games used to identify each query player. Random (%) indicates the chance of
choosing the correct player when randomly sampling, and defines how difficult the task is. Numbers
for McIlroy-Young et al. (2022b) and McIlroy-Young et al. (2021) are borrowed from their respective
papers; the same 400 player dataset is used across all comparisons.

Method Query players Candidates Games Random (%) Acc. (%)

Prior work comparison
McIlroy-Young et al. (2022b) 400 400 100 0.25 98.0
McIlroy-Young et al. (2021) 400 400 100 0.25 99.5
MHR-Maia 400 400 100 0.25 99.8
McIlroy-Young et al. (2022b) 400 400 30 0.25 94.0
MHR-Maia 400 400 30 0.25 98.8

Scaling experiments
MHR-Maia (seen) 10000 47864 100 0.002 94.4
MHR-Maia (unseen few-shot) 10000 10000 100 0.01 87.6
McIlroy-Young et al. (2021)

(unseen few-shot) 578 2844 100 0.035 79.1

Currently, our advanced style synthesis techniques focus on chess, where simulating games is cheap
and evaluation heuristics are standardized. Rocket League simulations are too costly at present for
this, and there are no standardized heuristics, but in principle the same methodology can be applied.

In order to make style comparisons more interpretable, we draw inspiration from the concept probing
technique used to analyze AlphaZero (a deep reinforcement learning chess engine) (McGrath et al.,
2022). We use a set of human-coded heuristic functions found in Stockfish (a traditional chess engine)
to evaluate a player’s model. These functions capture concepts such as: king danger, bishop pair
utilization, material imbalance, and so on. By invoking a player’s model on a fixed set of chess
positions, we can measure the change in the heuristic functions before and after their chosen move,
and use this to summarize how much emphasis the player places on the corresponding concept.

Combining the above methods, we propose a simple but general method for steering a player’s style
towards a specific, human-interpretable attribute a (e.g., king danger), while limiting the changes
to other attributes (so as to preserve their style). We summarize this method in Algorithm 1. We
first collect a set of players X who exhibit high values for attribute a—determined, for example,
by running their generative models on a fixed set of game states. We extract the common direction
among these players, by averaging their style vectors and subtracting the population average. This
yields a style delta vector that can be added to any player’s style vector to elicit the desired change.

5 EXPERIMENTS

We show that MHR-Maia matches prior methods in chess stylometry and behavior cloning at scale,
extends to Rocket League for both stylometry and move prediction, enables analysis and control of
player styles, which generalizes beyond gaming to personalized, steerable image generation.

5.1 BEHAVIORAL STYLOMETRY

We evaluate MHR-Maia on behavioral stylometry, where the goal is to identify which player (from a set
of known candidate players) produced a given set of games, we refer to this as a query player or query
dataset. We compare against two prior methods: (i) individual model fine-tuning (McIlroy-Young
et al., 2022b), which trains a separate Maia model for each player and predicts by selecting the model
with highest move-matching accuracy on the query set, and (ii) a Transformer-based embedding
method (McIlroy-Young et al., 2021), which embeds players into a 512-dimensional style space and
matches query embeddings to candidate players. The former is computationally prohibitive, requiring
one model per player and inference on each query set; in Rocket League, this would imply tens of
trillions of tokens. The latter is purely discriminative, unable to create new styles or play the game.

Our hybrid approach combines the strengths of both. We fit a new style vector on the query games
using efficient MHR adapters (§ 5.2), then use this vector like an embedding for scalable style search
via cosine similarity. For seen chess players, we sample 10,000 players and fit vectors from 100 of

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

their games. For unseen few-shot players, we train MHR-Maia on the 400-player dataset of McIlroy-
Young et al. (2022b), sample 10,000 held-out players, fit vectors from 100 of their games, and apply
the same procedure to their queries. As shown in Table 2, MHR-Maia achieves 87.6% accuracy on a
large set of unseen players, outperforming McIlroy-Young et al. (2021) (79.1%) despite their smaller
candidate pool of 2,844 players. Additionally, when increasing the candidate player set from 400 to
47,864 players, MHR-Maia’s accuracy drops by only 5.4%.

25 50 100 500 1000 5000 10000
Game Count

57

58

59

60

61

62

Ac
cu

ra
cy

 (%
)

Maia Accuracy
MHR-Maia Accuracy

Figure 2: Move matching accuracy at various
game counts of the individual models (Maia)
and our method (MHR-Maia). MHR-Maia is
within 1% accuracy of individual model fine-
tuning using 1% of the compute cost.

We extend this evaluation to Rocket League, marking
(to our knowledge) the first stylometry study in this
domain. Using our few-shot methodology, we com-
pute style vectors for 1,000 query players drawn from
5-minute 1v1 matches, and identify each against a
2,000-player candidate pool, with 100 training games
each. MHR-Rocket attains 86.7% accuracy, demon-
strating robustness even in a complex environment.

In contrast, training individual models per player
proved infeasible: 1,000 players would require 2 mil-
lion player comparisons, or inference over tens of
trillions of tokens. An initial trial with 20 players
and 100 games per player yielded 0% stylometry ac-
curacy; scaling to 1,000 games per player (model
training and query set) improved accuracy only to
50%—far below MHR-based style vectors. These
results suggest that while individual models can suc-
ceed in structured domains like chess, they struggle
in complex environments such as Rocket League, where the vast state space produces high variance
and frequent out-of-distribution samples. By training a single shared model, MHR-Rocket is able to
exploit the full dataset without splitting it into disjoint per-player subsets, enabling efficient use of
training data to learn each player’s style.

5.2 MOVE GENERATION

A key feature of our MHR models is that they are generative. We compare the efficacy of our method
to using individually fine-tuned models for each player. We can not compare to the Transformer-based
embedding method because it is incapable of generating moves. Full fine-tuning generally results in
slightly improved performance compared to PEFT methods, albeit at much higher cost.

Nevertheless, Figure 2 shows that MHR-Maia performs comparatively well, achieving within 1%
accuracy of individual model fine-tuning over a wide range of game counts. We achieve this using
roughly 1% of the compute cost per player, as follows. On an A100 80GB GPU, training individual
models required roughly 20 A100-minutes per player on average; thus, training on the full 47,864
player dataset would require thousands of A100-hours. In contrast, training MHR-Maia on the full
dataset required roughly 7 A100-days, or around 12-13 A100-seconds per player, an improvement of
nearly two orders of magnitude. Similar to Caccia et al. (2023), we found the training of style vectors
to be relatively robust to the choice of hyperparameters; we discuss this in more detail in A.11.

The inference costs were roughly equal, with MHR-Maia being marginally more expensive due to
the added parameters. The 47,864 player MHR-Maia model achieves a move prediction accuracy
of 59.0%, while our base model achieves 54.4%. We further stress-test our method’s generative
capabilities and stylometry performance in A.7, where we consider players of the same skill level
and show that we can still distinguish between their styles accurately.

For Rocket League, we compare the next move prediction of our base model (trained on over 800,000
players) with MHR-Rocket (fine-tuned on 2,000 players), to show that player-based conditioning
via style vectors generates better predictions. We find that MHR-Rocket increases the next move
prediction accuracy from 53.4% to 56.6%, matching the performance of individual model fine-tuning
(56.6%, random performance being 0.05%).

5.3 ANALYSIS OF STYLE VECTORS

We explore the consistency of our style vectors within a player’s data. We also compare playing
styles using interpretable metrics, and generate new styles by averaging existing style vectors.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

mobility

mid game

threats

mid game

king danger

bishop pairs

0.8

0.6

0.4

0.2

passed pawns mid

game

 end game

eval

imbalance

Player A

Player B

Interpolated

Figure 3: The style of an interpolated
player (green) shown with the two com-
ponent players (blue and red).

bishop pairs

threats
mid game

mobility
mid game

king danger passed pawns
mid game

imbalance

 end game
 eval

0.2
0.4

0.6
0.8

Player 1
Player 2
Player 3
Player 4
Player 5

Figure 4: Comparing different player
styles using human-interpretable evalua-
tion metrics.

Consistency within a player’s data. When a player’s dataset is split into disjoint subsets, the
resulting style vectors remain highly similar (Figure 7), showing that MHR captures player-specific
traits regardless of how the data is partitioned. It should be possible to train multiple vectors per player
to capture different game settings or sections per game, as we find that MHR-Maia and MHR-Rocket
are not particularly sensitive to partitioning. To assess diversity, we sampled 5 random players,
evaluated their move choices in 217 positions, and report averaged Stockfish metrics in Figure 4. We
provide further details on these experiments in A.5.

Merged players. When merging two players’ datasets and retraining a style vector for them, we
show that the resulting vector closely matches a simple average of the original players’ vectors
(Figure 8). This shows that style vectors can be combined to create intermediate player styles without
retraining. As a case study, we average the style vectors of two randomly sampled players and
evaluate 4096 games using Stockfish heuristics: we find that the new player (green) lies between the
component styles (red, blue) of the original players (Figure 3).

5.4 SYNTHESIS OF NEW STYLES

We investigate applications of style synthesis that can help humans improve: interpolating weaker
player styles to stronger ones, and steering player styles along human-interpretable properties.

Interpolating between players. We show that interpolating between the style vectors of a weaker
and stronger player results in new players whose skill levels also interpolates between the players.
Here, we take 100 pairs of weak and strong player style vectors and gradually interpolate between
them as (1− λ)uw + λus, 0 ≤ λ ≤ 1, where uw and us are the respective vectors. For each value of
λ, we simulate 1,000 games between the interpolated player and us, the stronger player. Figure 5
plots the win rate of the interpolated players as a function of λ for each pair of players. This plot
shows that the win rate increases in a roughly linear fashion as lambda increases, starting low and
eventually winning roughly half the time, which is what we would expect from two players with the
same style vectors. This allows us to create a continuous range of skill levels, unlike current models
such as McIlroy-Young et al. (2020).

Steering player style. We can directly control the playing style of a player using the steering
method described in §4. Using the human-interpretable Stockfish heuristics, we identify players in
our chess dataset with high (> 2 std) bishop pair utilization, and similarly players with high king
danger. We use these player sets to compute style delta vectors corresponding to these attributes, and
then simply add the delta vectors to 2,000 randomly sampled players’ existing style vectors. Figure 6
shows the change (normalized by the standard deviation for that attribute) in these players’ Stockfish
evaluations after adding the style delta vectors. We see that the player’s style is steered towards the
attribute in question, with modest impact on other attributes.

To examine whether our steering approach generalizes beyond gaming, we use our MHR framework
to fine-tune Stable Diffusion 1.5 (Rombach et al., 2022) on the CelebA dataset (Liu et al., 2015), and
apply the same delta-vector procedure to steer (edit) the generated images. We compare our approach
to several popular image editing methods and show that it performs quite favorably (see A.4).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

W
in

 R
at

e

2.0

1.5

1.0

0.5

0.0
attack bishop pair mobility king danger pawns eg

Manipulating King danger
Manipulating Bishop pair

Style attributes

Di
ffe

re
nc

e
in

 s
td

.

Figure 5: Win rate as randomly chosen weaker
players are interpolated towards randomly cho-
sen stronger players.

Figure 6: Using our style steering method to
increase two Stockfish attributes (separately)
for 2,000 random players.

6 OTHER RELATED WORK

Stylometry and player style modeling. Originally used for author attribution via statistical analysis
of text (Tweedie et al., 1996; Neal et al., 2017), stylometry has found broad application in tasks like
handwriting recognition (Bromley et al., 1993), speaker verification (Wan et al., 2018), identifying
programmers from code (Caliskan-Islam et al., 2015), determining age/gender from blog posts
(Goswami et al., 2009), and identifying authors of scientific articles (Bergsma et al., 2012). In the
context of gaming (covered in the introduction), stylometry is closely related to playstyle modeling,
where the goal is to associate a player with a reference style, such as by building agents with different
playstyles and finding the closest behavioral match (Holmgård et al., 2014), or gathering gameplay
data and applying methods like clustering (Ingram et al., 2022), LDA (Gow et al., 2012), Bayesian
approaches (Normoyle & Jensen, 2015), and sequential models (Valls-Vargas et al., 2015) to group
players with similar styles. Kanervisto et al. (2021) characterizes an agent’s behavior by analyzing
the states that an agent sees (not actions). Khandelwal et al. (2024) fine-tunes a language model
to predict verbalized user behaviors. Unlike our work, these approaches either focus on aggregate
playstyles, or do not learn generative models of behavior that can be conditioned on an individual.

Our method for style synthesis is inspired by earlier work on vector arithmetic with embed-
dings (Church, 2017), and recent work on steering multiask models with task vectors (Ilharco
et al., 2023). Our steering method is reminiscent of Radford et al. (2016), which manipulates the
model’s latent space to generate images containing specific attributes. Recently, Dravid et al. (2024)
achieved similar results on CelebA by training LoRAs and manipulating their weights.

Parameter-efficient adaptation. Adapter based methods inject (and update) new parameters within
a pretrained model while keeping the backbone fixed. Houlsby et al. (2019) defines an adapter as a
two-layer feed-forward neural network with a bottleneck representation. Similar approaches have
been used for cross-lingual transfer (Pfeiffer et al., 2020). Adapters have also been used in vision
based multitask settings (Rebuffi et al., 2017). More recently, Ansell et al. (2022) propose to learn
sparse masks and compose them to enable zero-shot transfer. Hu et al. (2022) learn low-rank shifts
on the original weights, and (Liu et al., 2022) learns an elementwise multiplier of the pretrained
model’s activations. Adapters have also been used in multitask settings. Chronopoulou et al. (2023)
independently trains adapters for each task, and merges parameters of relevant tasks to transfer to
new ones. Soft prompts (Lester et al., 2021) append learnable tokens to natural language sequences.
Vu et al. (2021) learns a collection of soft prompts for multitask training sets that can be applied to
new tasks.

7 CONCLUSION

We show that individual player behavior can be modeled at very large scale in games as different as
chess and Rocket League. We cast this problem in the framework of multi-task learning and employ
modular PEFT methods to learn a shared set of skills across players, modulated by a distinct style
vector. We use style vectors to perform stylometry, analyze player styles, and synthesize and steer
new styles. Our style methodology shows promise in domains outside of gaming, such as in image
editing, which we plan to explore further in future work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 ETHICS STATEMENT

All players used in our submission have been anonymized and no personally identifying information
is shown. Our data is collected from sources that make it clear to players that their data will be made
public for use by the community. Prior work has analyzed the risks and benefits of models trained to
mimic individual style in McIlroy-Young et al. (2022a).

REFERENCES

Alan Ansell, Edoardo Ponti, Anna Korhonen, and Ivan Vulić. Composable sparse fine-tuning
for cross-lingual transfer. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 1778–1796, Dublin, Ireland, May
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.125. URL
https://aclanthology.org/2022.acl-long.125.

Shane Bergsma, Matt Post, and David Yarowsky. Stylometric analysis of scientific articles. In
Proceedings of the 2012 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, pp. 327–337, 2012.

Rolv-Arild Braaten. Rl-rpt - rocket league replay pre-training. https://github.com/Rolv-Arild/replay-
pretraining, 2022.

Manuel Brack, Felix Friedrich, Katharina Kornmeier, Linoy Tsaban, Patrick Schramowski, Kristian
Kersting, and Apolinário Passos. Ledits++: Limitless image editing using text-to-image models,
2024. URL https://arxiv.org/abs/2311.16711.

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah. Signature verifi-
cation using a” siamese” time delay neural network. Advances in neural information processing
systems, 6, 1993.

Lucas Caccia, Edoardo Maria Ponti, Zhan Su, Matheus Pereira, Nicolas Le Roux, and Alessandro
Sordoni. Multi-head adapter routing for cross-task generalization. In A. Oh, T. Naumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information
Processing Systems, volume 36, pp. 56916–56931. Curran Associates, Inc., 2023.

Aylin Caliskan-Islam, Richard Harang, Andrew Liu, Arvind Narayanan, Clare Voss, Fabian Ya-
maguchi, and Rachel Greenstadt. De-anonymizing programmers via code stylometry. In 24th
USENIX security symposium (USENIX Security 15), pp. 255–270, 2015.

CantFlyRL. Ballchasing.com. https://ballchasing.com/, 2024.

Micah Carroll, Rohin Shah, Mark K Ho, Tom Griffiths, Sanjit Seshia, Pieter Abbeel, and Anca
Dragan. On the utility of learning about humans for human-ai coordination. Advances in neural
information processing systems, 32, 2019.

Rich Caruana. Multitask learning. Machine learning, 28:41–75, 1997.

Alexandra Chronopoulou, Matthew Peters, Alexander Fraser, and Jesse Dodge. AdapterSoup:
Weight averaging to improve generalization of pretrained language models. In Findings of the
Association for Computational Linguistics: EACL 2023, pp. 2054–2063, Dubrovnik, Croatia, May
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-eacl.153. URL
https://aclanthology.org/2023.findings-eacl.153.

Kenneth Ward Church. Word2vec. Natural Language Engineering, 23(1):155–162, 2017.

Amil Dravid, Yossi Gandelsman, Kuan-Chieh Wang, Rameen Abdal, Gordon Wetzstein, Alexei A.
Efros, and Kfir Aberman. Interpreting the weight space of customized diffusion models, 2024.
URL https://arxiv.org/abs/2406.09413.

Thibault Duplessis. Lichess. http://lichess.org, 2021. Accessed: 2021-01-01.

Lucas Emery. Rlgym - the rocket league gym. https://rlgym.org/, 2021.

10

https://aclanthology.org/2022.acl-long.125
https://arxiv.org/abs/2311.16711
https://aclanthology.org/2023.findings-eacl.153
https://arxiv.org/abs/2406.09413

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Pete Florence, Corey Lynch, Andy Zeng, Oscar A Ramirez, Ayzaan Wahid, Laura Downs, Adrian
Wong, Johnny Lee, Igor Mordatch, and Jonathan Tompson. Implicit behavioral cloning. In
Conference on Robot Learning, pp. 158–168. PMLR, 2022.

Sumit Goswami, Sudeshna Sarkar, and Mayur Rustagi. Stylometric analysis of bloggers’ age and
gender. In Proceedings of the International AAAI Conference on Web and Social Media, volume 3,
pp. 214–217, 2009.

Jeremy Gow, Robin Baumgarten, Paul Cairns, Simon Colton, and Paul Miller. Unsupervised modeling
of player style with lda. IEEE Transactions on Computational Intelligence and AI in Games, 4(3):
152–166, 2012.

Christoffer Holmgård, Antonios Liapis, Julian Togelius, and Georgios N Yannakakis. Evolving
personas for player decision modeling. In 2014 IEEE Conference on Computational Intelligence
and Games, pp. 1–8. IEEE, 2014.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
NLP. In International Conference on Machine Learning, pp. 2790–2799, 2019. URL http:
//proceedings.mlr.press/v97/houlsby19a/houlsby19a.pdf.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 7132–7141, 2018.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi,
and Ali Farhadi. Editing models with task arithmetic. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
6t0Kwf8-jrj.

Branden Ingram, Benjamin Rosman, Clint van Alten, and Richard Klein. Play-style identification
through deep unsupervised clustering of trajectories. In 2022 IEEE Conference on Games (CoG),
pp. 393–400. IEEE, 2022.

Anssi Kanervisto, Tomi Kinnunen, and Ville Hautamäki. General characterization of agents by states
they visit, 2021. URL https://arxiv.org/abs/2012.01244.

Anssi Kanervisto, David Bignell, Linda Yilin Wen, Martin Grayson, Raluca Georgescu, Sergio Val-
carcel Macua, Shan Zheng Tan, Tabish Rashid, Tim Pearce, Yuhan Cao, Abdelhak Lemkhenter,
Chentian Jiang, Gavin Costello, Gunshi Gupta, Marko Tot, Shu Ishida, Tarun Gupta, Udit Arora,
Ryen W. White, Sam Devlin, Cecily Morrison, and Katja Hofmann. World and human action
models towards gameplay ideation. Nature, 638(8051):656–663, February 2025.

Ashmit Khandelwal, Aditya Agrawal, Aanisha Bhattacharyya, Yaman K Singla, Somesh Singh,
Uttaran Bhattacharya, Ishita Dasgupta, Stefano Petrangeli, Rajiv Ratn Shah, Changyou Chen, and
Balaji Krishnamurthy. Large content and behavior models to understand, simulate, and optimize
content and behavior, 2024. URL https://arxiv.org/abs/2309.00359.

Dony S. Kurian, V. Madhusudanan Pillai, J. Gautham, and Akash Raut. Data-driven imitation
learning-based approach for order size determination in supply chains. European Journal of
Industrial Engineering, 17(3):379–407, 2023. URL https://ideas.repec.org/a/ids/
eujine/v17y2023i3p379-407.html.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 3045–3059, Online and Punta Cana, Dominican Republic, November 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.243. URL https:
//aclanthology.org/2021.emnlp-main.243.

11

http://proceedings.mlr.press/v97/houlsby19a/houlsby19a.pdf
http://proceedings.mlr.press/v97/houlsby19a/houlsby19a.pdf
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=6t0Kwf8-jrj
https://openreview.net/forum?id=6t0Kwf8-jrj
https://arxiv.org/abs/2012.01244
https://arxiv.org/abs/2309.00359
https://ideas.repec.org/a/ids/eujine/v17y2023i3p379-407.html
https://ideas.repec.org/a/ids/eujine/v17y2023i3p379-407.html
https://aclanthology.org/2021.emnlp-main.243
https://aclanthology.org/2021.emnlp-main.243

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and Colin
Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context learning,
2022. URL https://arxiv.org/abs/2205.05638.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of International Conference on Computer Vision (ICCV), December 2015.

Luyao Ma, Yating Zhang, Tianyi Wang, Xiaozhong Liu, Wei Ye, Changlong Sun, and Shikun Zhang.
Legal judgment prediction with multi-stage case representation learning in the real court setting.
In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’21, pp. 993–1002. ACM, July 2021. doi: 10.1145/3404835.3462945.
URL http://dx.doi.org/10.1145/3404835.3462945.

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin
Bossan. Peft: State-of-the-art parameter-efficient fine-tuning methods. https://github.
com/huggingface/peft, 2022.

Thomas McGrath, Andrei Kapishnikov, Nenad Tomašev, Adam Pearce, Martin Wattenberg, Demis
Hassabis, Been Kim, Ulrich Paquet, and Vladimir Kramnik. Acquisition of chess knowledge in
alphazero. Proceedings of the National Academy of Sciences, 119(47):e2206625119, 2022.

Reid McIlroy-Young, Siddhartha Sen, Jon Kleinberg, and Ashton Anderson. Aligning superhuman
ai with human behavior: Chess as a model system. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 1677–1687, 2020.

Reid McIlroy-Young, Yu Wang, Siddhartha Sen, Jon Kleinberg, and Ashton Anderson. Detecting
individual decision-making style: Exploring behavioral stylometry in chess. Advances in Neural
Information Processing Systems, 34:24482–24497, 2021.

Reid McIlroy-Young, Jon Kleinberg, Siddhartha Sen, Solon Barocas, and Ashton Anderson. Mimetic
models: Ethical implications of AI that acts like you. In Proceedings of the 2022 AAAI/ACM
Conference on AI, Ethics, and Society, pp. 479–490, 2022a.

Reid McIlroy-Young, Russell Wang, Siddhartha Sen, Jon Kleinberg, and Ashton Anderson. Learning
models of individual behavior in chess. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 1253–1263, 2022b.

Tempestt Neal, Kalaivani Sundararajan, Aneez Fatima, Yiming Yan, Yingfei Xiang, and Damon
Woodard. Surveying stylometry techniques and applications. ACM Computing Surveys (CSuR), 50
(6):1–36, 2017.

Aline Normoyle and Shane Jensen. Bayesian clustering of player styles for multiplayer games. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment,
volume 11, pp. 163–169, 2015.

Tim Pearce and Jun Zhu. Counter-strike deathmatch with large-scale behavioural cloning. In 2022
IEEE Conference on Games (CoG), pp. 104–111. IEEE, 2022.

Tim Pearce, Tabish Rashid, Dave Bignell, Raluca Georgescu, Sam Devlin, and Katja Hofmann.
Scaling laws for pre-training agents and world models, 2024. URL https://arxiv.org/
abs/2411.04434.

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Sebastian Ruder. MAD-X: An Adapter-based
framework for multi-task cross-lingual transfer. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 7654–7673, November 2020.
URL https://aclanthology.org/2020.emnlp-main.617.

Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in neural
information processing systems, 1, 1988.

Edoardo Maria Ponti, Helen O’Horan, Yevgeni Berzak, Ivan Vulić, Roi Reichart, Thierry Poibeau,
Ekaterina Shutova, and Anna Korhonen. Modeling language variation and universals: A survey on
typological linguistics for natural language processing. Computational Linguistics, 45(3):559–601,
2019. URL https://watermark.silverchair.com/coli_a_00357.pdf.

12

https://arxiv.org/abs/2205.05638
http://dx.doi.org/10.1145/3404835.3462945
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://arxiv.org/abs/2411.04434
https://arxiv.org/abs/2411.04434
https://aclanthology.org/2020.emnlp-main.617
https://watermark.silverchair.com/coli_a_00357.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Edoardo Maria Ponti, Alessandro Sordoni, Yoshua Bengio, and Siva Reddy. Combining parameter-
efficient modules for task-level generalisation. In Proceedings of the 17th Conference of the Euro-
pean Chapter of the Association for Computational Linguistics, pp. 687–702, Dubrovnik, Croatia,
May 2023. Association for Computational Linguistics. URL https://aclanthology.org/
2023.eacl-main.49.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. In International Conference on Learning Represen-
tations, 2016.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision, 2021. URL https:
//arxiv.org/abs/2103.00020.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Learning multiple visual domains with
residual adapters. Advances in neural information processing systems, 30, 2017.

RLBot. Rlbot. https://github.com/RLBot/RLBot, 2017.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 10684–10695, June 2022.

Sebastian Ruder, Matthew E. Peters, Swabha Swayamdipta, and Thomas Wolf. Transfer learning
in natural language processing. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Tutorials, pp. 15–18, Minneapolis,
Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-5004.
URL https://aclanthology.org/N19-5004.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation, 2023. URL
https://arxiv.org/abs/2208.12242.

SaltieRL. Carball. https://github.com/SaltieRL/carball, 2024.

Stefan Schaal. Learning from demonstration. Advances in neural information processing systems, 9,
1996.

Lukas Schäfer, Logan Jones, Anssi Kanervisto, Yuhan Cao, Tabish Rashid, Raluca Georgescu, Dave
Bignell, Siddhartha Sen, Andrea Treviño Gavito, and Sam Devlin. Visual encoders for data-efficient
imitation learning in modern video games, 2023.

Fiona J Tweedie, Sameer Singh, and David I Holmes. Neural network applications in stylometry:
The federalist papers. Computers and the Humanities, 30:1–10, 1996.

Josep Valls-Vargas, Santiago Ontanón, and Jichen Zhu. Exploring player trace segmentation for
dynamic play style prediction. In Proceedings of the AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, volume 11, pp. 93–99, 2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017. URL
http://arxiv.org/abs/1706.03762.

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou, and Daniel Cer. Spot: Better frozen model
adaptation through soft prompt transfer. arXiv preprint arXiv:2110.07904, 2021.

Li Wan, Quan Wang, Alan Papir, and Ignacio Lopez Moreno. Generalized end-to-end loss for speaker
verification. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 4879–4883. IEEE, 2018.

13

https://aclanthology.org/2023.eacl-main.49
https://aclanthology.org/2023.eacl-main.49
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://aclanthology.org/N19-5004
https://arxiv.org/abs/2208.12242
http://arxiv.org/abs/1706.03762

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Zirui Wang, Yulia Tsvetkov, Orhan Firat, and Yuan Cao. Gradient vaccine: Investigating and
improving multi-task optimization in massively multilingual models. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
F1vEjWK-lH_.

XLabs-AI. flux-ip-adapter-v2. Hugging Face model repository, 2024. URL https://
huggingface.co/XLabs-AI/flux-ip-adapter-v2. Trained on resolutions 512×512
(150k steps) and 1024×1024 (350k steps); Apache-2.0 license.

Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao Li. On the continuity of rotation
representations in neural networks, 2020.

14

https://openreview.net/forum?id=F1vEjWK-lH_
https://openreview.net/forum?id=F1vEjWK-lH_
https://huggingface.co/XLabs-AI/flux-ip-adapter-v2
https://huggingface.co/XLabs-AI/flux-ip-adapter-v2

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Rocket LeagueChess

Figure 7: Cosine similarity between style vectors from different partitions of the same player (red)
versus across players (blue). Vectors from a single player are markedly more similar, confirming that
player styles are unique and identifiable regardless of data partitioning.

Rocket LeagueChess

Figure 8: Cosine similarity between averaged style vectors of two players and vectors learned on their
merged datasets (red) versus across all players (blue), showing that style vectors can be combined to
create intermediate player styles without retraining.

A APPENDIX

A.1 ICLR LARGE LANGUAGE MODEL USAGE

Large language models (LLMs) were used to ensure grammatical correctness in some sections of the
paper, and all outputs were thoroughly vetted and edited prior to being used.

A.2 MULTI-HEAD ADAPTER ROUTING

In Poly, the module combination step remains coarse, as only linear combinations of the existing
modules can be generated. Caccia et al. (2023) propose a more fine-grained module combination
approach, referred to as Multi-Head Routing (MHR). Similar to Multi-Head Attention (Vaswani et al.,
2017), the input dimension of A (and output dimensions of B) are partitioned into h heads, where
a Poly-style procedure occurs for each head. The resulting parameters from each head are then
concatenated, recovering the full input (and output) dimensions. This makes the module combination
step piecewise linear, with a separate task-routing matrix Z learned for each head.

Formally, a MHR layer learns a 3-dimensional task-routing tensor Z ∈ R|T |×|M|×h. The 2D slice
Z:,:,k ∈ R|T |×|M| of the tensor Z denotes the distribution over modules for the k-th head, and
W [k] ∈ R d

h×r the k-th partition along the rows of the matrix W ∈ Rd×r. The adapter parameters
Aτ ∈ Rd×r for task τ , and for each adapter layer, are computed as (similarly for Bτ):

Aτ
k =

∑
j

αi,k ·Aj [k] with Aτ
k ∈ R

d
h×r, (MHR)

Aτ = concat(Aτ
1 , . . . ,A

τ
h),

where αi,k = softmax(Z[τ,:,k])i. Importantly, the number of LoRA adapter parameters does
not increase with the number of heads. Only the task-routing parameters linearly increase with h
for MHR vs. Poly. However, this cost is negligible as the parameter count of the routing matrices is
much smaller than for the LoRA modules themselves.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 9: Images generated by steering Stable Diffusion 1.5 (Rombach et al., 2022) fine tuned with
our method on the CelebA (Liu et al., 2015) dataset. We compare against using DreamBooth (Ruiz
et al., 2023) on the original image and modifying the prompt, along with popular image editing
methods LEDITS++ (Brack et al., 2024), and Flux-IP-Adapter (XLabs-AI, 2024).

A.3 ADAPTER SETUP

In chess, for every linear transformation in the MLP used for channel-wise rescaling, we add an MHR
layer built of LoRA adapters. with rank 16, for a total of 12×2 = 24 MHR layers. We use an adapter
inventory of size 32 and a multi-head routing strategy with 8 heads. Therefore, for each user we
must learn 32×8 = 256 routing parameters as their style vector; this yields 5M additional parameters.
For Rocket League, we attach the adapters to the fully connected layer of each transformer block,
resulting in 12 MHR layers of LoRAs with rank 16. We use an inventory size of 16 and 64 heads. This
yields 13.8M additional parameters. To facilitate interpretability and style analysis, we use the same
routing (style vector) across all MHR layers.

A.4 STEERING DIFFUSION MODELS

To address questions about the generalizability of our method, we applied the exact style delta vector
computation and steering algorithm outlined in § 4 to steer the outputs of an image generation
diffusion model in a fine-grained manner. Specifically, we fine-tune style vectors for 10,177 identities
from the CelebA Faces With Attributes dataset (Liu et al., 2015), using Stable Diffusion 1.5 (Rombach
et al., 2022) as our base model. We then compute “No Beard,” “Smiling,” and “Black Hair” style
delta vectors using cosine similarities between images and their corresponding CLIP embeddings
(Radford et al., 2021). Figure 9 shows sample generations with and without steering, where the
leftmost images are unaltered.

We compare against several strong baselines: DreamBooth (Ruiz et al., 2023) with LoRA using the
scripts in Mangrulkar et al. (2022), Flux IP Adapter (XLabs-AI, 2024), and LEDITS++ (Brack et al.,
2024). For DreamBooth, we fine-tune on the original image and modify the prompt (e.g., “with no
beard,” “smiling,” “with black hair”). DreamBooth elicits the desired changes for “Smiling” and
“Black Hair,” but not “No Beard,” and often alters unrelated aspects of the image. Flux IP Adapter
and DreamBooth both change the style and subject significantly, reducing faithfulness to the source.
LEDITS++ is able to elicit “Smiling,” but despite trying extensive tuning of prompts and parameters,
it fails for “No Beard” and “Black Hair.”

In contrast, our method consistently produces all three edits while remaining faithful to the original
image, achieving more granular control with minimal unintended changes. Importantly, these results
are obtained without tailoring our algorithm to the image domain: we simply reuse the same delta-
vector computation from chess stylometry. Despite the low fidelity of the CelebA images (128×128
resolution), our approach edits the images effectively, demonstrating both robustness and generality.
We leave further application of this work in the image editing space for future work, as we believe
that it would benefit from a more focused and in-depth analysis.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

10 25 50 100 500 1000
Games

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
sin

e
Si

m
ila

rit
y

Figure 10: Cosine similarity of style vectors trained with varying game sizes compared to a style
vector trained with 10,000 games, run on 50 players.

A.5 EXPANDED STYLE VECTOR CONSISTENCY ANALYSIS

We first partition 50 players’ datasets into disjoint subsets. We use 50 splits for chess and 20 for
Rocket League. The subsets are sampled across a wide range of dates, opposing players, and playing
sessions. We then train a style vector on every split, and compare these vectors using cosine similarity.
We find that vectors corresponding to the same player are significantly more similar to each other
than the general population, visualized in Figure 7. This suggests that our MHR models are able to
associate distinct style characteristics with each player. These characteristics can be learned with
relatively few games, as shown in Figure 10 and A.6.

A.6 CHESS ARCHITECTURE/DATA

Our base Maia architecture follows McIlroy-Young et al. (2022b) and uses the Squeeze-and-Excitation
(S&E) Residual Network of (Hu et al., 2018). At every residual block, channel information is
aggregated across spatial dimensions via a global pooling operation. The resulting vector is then
processed by a 2-layer MLP, with a bottleneck representation compressing the number of channels
by r. The output of this MLP is a one-dimensional vector used to scale the output of the residual
block along the channel dimension. We use 12 residual blocks containing 256 filters, and a bottleneck
compression factor of r = 8. We note that this differs from the base Maia model in McIlroy-Young
et al. (2022b), which uses 64 filters and 6 residual blocks. The input is a 112-channel 8×8 image
representation of the chess board; the output is the predicted move encoded as a 1858-dimensional
one-hot vector. The total parameters is 15.7M.

While our dataset has a median game count of 3,479 games, many players may have as few as 10-50
games, implying some degree of data imbalance. Our evaluation of few-shot learning shows that 100
games is sufficient to learn the style vector of an unseen player. However, one might still ask how
accurately such a style vector is given a very small number of games. To explore this, we first split a
player into disjoint sets of 10, 25, 50, 100, 500, and 1,000 games. We then train a style vector on
each set. As a baseline, we train a style vector on 10,000 games and track the cosine similarity of
the smaller-set style vectors relative to this baseline vector. We show the results in Figure 10. The
single-tailed P-value for the similarity of a vector trained with just 10 games to one trained on all
games for that player is roughly 0.02.

A.7 SIMILAR ELO TESTING

To further test robustness, we evaluate stylometry performance among players with similar Elo ratings.
We sample 100 players rated ∼1300 and 100 players rated ∼1700, and perform few-shot learning
using MHR-Maia on 100 games each. Stylometry accuracy remains high even in this challenging
setting: with 100 query games and 100 query players (4,000 total players per Elo bucket), the 1300
group achieves 100% top-1 identification accuracy and the 1700 group 99%. Move-matching accuracy
also remains strong within Elo buckets (Table 3), with self-games consistently outperforming other-
player games, reflecting the ability of our method to capture subtle stylistic signals even among
players with similar skill level.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 3: Move-matching accuracy on players of similar Elo.

Elo Bucket Eval Group Top-1 Acc (%) Top-3 Acc (%)
1300 Self 57.48 83.89
1300 Others 50.50 78.38
1700 Self 59.95 85.88
1700 Others 53.46 81.16

A.8 ROCKET LEAGUE ARCHITECTURE/DATA

For Rocket League, we use the GPT-2 architecture from Radford et al. (2019) with a dimensionality
of 768, 12 attention heads, and 12 layers. The input is a 49-dimensional vector with game physics
information; the output is 8 heads: 5 with [-1, 0, 1] bins and 3 binary heads for a total of 1944 action
combinations. The model has no embedding layer, as the game datapoints are passed directly as
tokens after processing. The total parameters is 87.7M.

Our 1v1 replays dataset was scraped over the course of several weeks from the Ballchasing.com API
using the Grand Champion subscription tier, though the API does have a slower free tier. This API
yields raw game replays, which are uploaded by users either manually or using a community-made
plugin for the game. The replays are in a binary format which must be parsed using community-made
projects such as Carball (SaltieRL, 2024).

The Carball library allows us to convert the binary replay format to a more standard CSV format,
which we save to a Cloud binary blob storage. The data present in both is a lossy reconstruction
of game states, and requires some processing to be usable. In particular, the data is sampled at an
inconsistent rate (varying between 24hz and 27hz), contains repeated physics ticks, and is missing
action data for aerial controls (pitch, yaw, roll).

We resolve the issue of sampling rate and repeated ticks by removing repeated ticks, and doing a
time-weighted resampling and interpolation to a standard 10hz for model training, though we found
that 30hz also works well. Note that the actual game physics ticks occur at 120hz, so any value
aligned with this should work. Without these changes, the model performs extremely poorly and is
unable to navigate the arena.

We resolve the issue of missing aerial controls through the physics-based solver present in the Carball
library. The estimation of these controls is not perfect, but it is sufficient for our purposes. Some
previous community work has used inverse dynamics (Braaten, 2022) trained from rollouts of in-game
bots to solve for these actions, though we opted to not use this due to the inconsistency in replay data
sampling.

The data returned by the CSVs are fairly large, messy, and inconsistent. We apply the following
transformations to the dataframe to bring the values closer to 0:

• Divide position by 2300

• Divide linear velocity by 23000

• Divide angular velocity by 5500

• Divide boost by 255

• Encode rotation Euler angles according to Zhou et al. (2020)

Additionally, when turning the data into tokens for use in our model, we add in an extra dimension to
represent the team, and concatenate the opponent’s data points along with the position, linear and
angular velocity of the ball. We complete all of these transformations at runtime.

We also have to align the data returned by the simulators for Rocket League with the data used to
train the model, RLBot (RLBot, 2017) and RLGym (Emery, 2021). Along with including an extra
dimension to represent the team, we apply the following transformations to all samples obtained from
the game:

• Divide position by 2300

• Divide linear velocity by 2300

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

br
on

ze
-1

br
on

ze
-2

br
on

ze
-3

sil
ve

r-1
sil

ve
r-2

sil
ve

r-3
go

ld
-1

go
ld

-2
go

ld
-3

pl
at

in
um

-1
pl

at
in

um
-2

pl
at

in
um

-3
di

am
on

d-
1

di
am

on
d-

2
di

am
on

d-
3

ch
am

pi
on

-1
ch

am
pi

on
-2

ch
am

pi
on

-3
gr

an
d-

ch
am

pi
on

gr
an

d-
ch

am
pi

on
-1

gr
an

d-
ch

am
pi

on
-2

gr
an

d-
ch

am
pi

on
-3

su
pe

rs
on

ic-
le

ge
nd

Rank

0.00

0.05

0.10

%

Rocket League Rank Distribution

Figure 11: Skill distribution of Rocket League players in our dataset.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC (AUC = 0.87)

Figure 12: ROC Curve of Rocket League player detection. To generate this curve, any output other
than the actual player is treated as an incorrect prediction.

• Divide angular velocity by 5.5

• Divide boost by 100

The skill distribution of the players in our dataset can be found in Figure 11. After parsing and
processing, each Rocket League game state is a vector holding the player’s 3D position, linear and
angular velocity, boost remaining, rotation, and team; we also include the opponent’s state and the
position, linear and angular velocity of the ball. Given a game state, we must predict the user’s
throttle, steer (while grounded), pitch, yaw, roll (while aerial), jump, boost, and handbrake.

A.9 IMPLICIT STATIONARITY ASSUMPTIONS

Most prior work in chess stylometry assumes that a player’s style is stationary over time and across
gameplay situations. In practice, however, style may vary with the opponent, the chosen opening, or
the stage of the game (opening, middlegame, endgame). For example, McIlroy-Young et al. (2021)
show that removing the first 15 moves (the opening) reduces identification accuracy, suggesting that
openings disproportionately influence style detection. Our approach does not rely on stationarity
or handcrafted splits: in principle, one could partition a player’s data into openings, middlegames,
endgames, or even opponent defenses or time-of-day effects, and train distinct style vectors for each.
Despite treating players holistically, we are able to capture the peculiarities of individual style and
perform stylometry with high accuracy, directly comparable to prior holistic baselines.

Regardless, to test how strongly non-stationarity affects stylometry, we randomly sampled 20 players
with at least two years of data. For each, we fine-tuned the base Maia model on the first 20% of
their games, then evaluated move-matching accuracy on subsequent time windows (Figure 13). We
observe a downward trend in accuracy as styles shift over time, but performance never falls below

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 13: Accuracy of a model fine-tuned on data before a cutoff date, tested on much later dates.
The efficacy of a personalized model is strong, even after years of continued playtime.

that of the base Maia model. This suggests that while certain elements of style evolve, others remain
consistent enough to support strong prediction accuracy even in the presence of temporal drift.

A.10 STYLE STEERING METHOD

Algorithm 1 Style Delta Vector computation
Input:
X : Style vectors of top-k players for attrib. a;
P : Style vectors of all players in population
Output ∆a: Style delta vector for attr. a

Va = mean(X,axis = ‘players’)
VP = mean(P,axis = ‘players’)
∆a = Va − VP

Returns ∆a

A.11 HYPERPARAMETER SENSITIVITY FOR STYLE VECTOR TRAINING

We did a small search over a few of the hyperparameters for the architecture early on in the project,
and found that the main deciders are: (1) LoRA size (MHR heads, rank), (2) using a shared routing
matrix, and (3) learning rate for the routing matrix. The other hyperparameters should not be a
significant concern as long as they are chosen reasonably. Increasing the number of skills can
help produce more granular feature decompositions, but we find that the other parameters are more
important for performance. We use a rank of 16 as that was the smallest adapter that did not result in
significant underfitting. Using a shared routing matrix helps to create a more interpretable skill space,
and increasing the routing matrix learning rate is crucial for training efficiency. We believe that our
performance would improve by increasing the number of LoRA heads significantly, but we prefer to
preserve computational cost for practicality reasons at these player scales.

20

	Introduction
	Background and Framing
	Parameter-efficient fine-tuning
	Polytropon and Multi-Head Adapter Routing

	ML Methodology
	Model architecture
	Data collection and partitioning
	Model training and evaluation

	Style methodology
	Experiments
	Behavioral Stylometry
	Move generation
	Analysis of style vectors
	Synthesis of new styles

	Other Related Work
	Conclusion
	Ethics Statement
	Appendix
	ICLR Large Language Model Usage
	Multi-Head Adapter Routing
	Adapter Setup
	Steering Diffusion Models
	Expanded Style Vector Consistency Analysis
	Chess Architecture/Data
	Similar Elo Testing
	Rocket League Architecture/Data
	Implicit Stationarity Assumptions
	Style Steering Method
	Hyperparameter sensitivity for Style Vector training

