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ABSTRACT

Data-efficient reinforcement learning(RL) requires deep exploration. Thompson
sampling is a principled method for deep exploration in reinforcement learning.
However, Thompson sampling need to track the degree of uncertainty by main-
taining the posterior distribution of models, which is computationally feasible only
in simple environments with restrictive assumptions. A key problem in modern
RL is how to develop data and computation efficient algorithm that is scalable
to large-scale complex environments. We develop a principled framework, called
HyperFQI, to tackle both the computation and data efficiency issues. HyperFQI
can be regarded as approximate Thompson sampling for reinforcement learning
based on hypermodel. Hypermodel in this context serves as the role for uncer-
tainty estimation of action-value function. HyperFQI demonstrates its ability for
efficient and scalable deep exploration in DeepSea benchmark with large state
space. HyperFQI also achieves super-human performance in Atari benchmark
with 2M interactions with low computation costs. We also give a rigorous per-
formance analysis for the proposed method, justifying its computation and data
efficiency. To the best of knowledge, this is the first principled RL algorithm that
is provably efficient and also practically scalable to complex environments such as
Arcade learning environment that requires deep networks for pixel-based control.
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Figure 1: This figure investigates the relationship between the required training data and the model
parameters for achieving human-level performance using various algorithms. The evaluation is con-
ducted using IQM Agarwal et al. (2021) on 26 Atari games. The x-axis represents the amount of
training data required to achieve human-level performance, measured in 1.0 IQM. The × indicates
that the algorithm fails to reach human-level performance with the corresponding amount of train-
ing data. The ⋆ denotes that our proposed algorithm, HyperFQI, achieves human-level performance
with minimal parameters and relatively little training data.

1 INTRODUCTION

In reinforcement learning (RL), intelligent exploration relies on decisions that are driven not only by
expectations but also by epistemic uncertainty (Osband et al., 2019b). Actions are taken to resolve

1



Under review as a conference paper at ICLR 2024

epistemic uncertainty not only based on immediate consequences but also on what will be observed
over subsequent time periods, a concept known as deep exploration (Osband et al., 2019b). One
popular exploration scheme in RL is Thompson Sampling (TS), which makes decisions based on
a posterior distribution over models (Thompson, 1933; Russo et al., 2018). A basic form of TS
involves sampling a model from the posterior and selecting an action that optimizes the sampled
model.

However, generating exact posterior samples is computationally tractable only for simple environ-
ments, such as tabular MDPs with Dirichlet priors over transition probability vectors (Osband et al.,
2013). For complex domains, approximations are necessary (Russo et al., 2018). In order to ad-
dress this need, Osband et al. (2019b) developed randomized least-squares value iteration (RLSVI).
RLSVI aims to approximate sampling from the posterior over the optimal value function without
explicitly representing the distribution. The algorithm achieves this by randomly perturbing a prior
and an accumulated dataset and fitting a point estimate of the value function to this perturbed prior
and data. The induced randomness from these perturbations leads to deep exploration, improving
data efficiency (Osband et al., 2019b).

While RLSVI avoids the explicit maintenance of a posterior distribution, it still requires computa-
tionally intensive operations to generate a new point estimate for each episode. These computations
do not leverage previously computed point estimates and therefore cannot be incrementally updated.
Ensemble sampling has been proposed as an alternative approach to approximate RLSVI’s perfor-
mance. It involves maintaining a set of point estimates, with each estimate updated incrementally
as data accumulates (Osband et al., 2016; 2019b). Nevertheless, maintaining an ensemble of com-
plex models can be computationally burdensome. Furthermore, to obtain a good approximation of
the posterior distribution, the ensemble size needs to grow significantly with the complexity of the
distribution (Dwaracherla et al., 2020; Osband et al., 2021; Li et al., 2022a; Qin et al., 2022).

Alternatively, instead of maintaining an ensemble of models, one can learn a hypermodel. A
hypermodel can be used to generate approximate posterior samples, as discussed in prior works
(Dwaracherla et al., 2020; Li et al., 2022a). This approach shows promise, but it requires a repre-
sentation that can be more complex than a point estimate of the value function. The computational
requirements and the number of parameters needed for this representation, however, lack theoretical
understanding.

None of these algorithms have been shown to be computationally efficient, data efficient and scalable
at the same time. In particular, RLSVI is data efficient but it is neither computationally efficient
nor scalable. Ensemble Osband et al. (2016) or previous hypermodel-related approaches (Li et al.,
2022a) are computationally tractable to scale to complex environment with deep networks but they
are not data efficient enough and also have no theoretical guarantees. This paper aims to develop a
principled RL algorithm that is both computationally and data efficient and also scalable to large-
scale complex environments.

1.1 CONTRIBUTIONS

We propose a novel algorithm, called HyperFQI, that combines the benefits of RLSVI and
hypermodel-based approaches. HyperFQI is based on the fitted Q-iteration (FQI) algorithm (Ernst
et al., 2005; Mnih et al., 2015), which is a batch RL algorithm that learns a Q-function by fitting a
regression model to a dataset of state-action-reward-state tuples. HyperFQI maintains a hypermodel
that can be used to generate approximate posterior samples and carefully designs a way to sample
from hypermodel for both training and action selection.

• HyperFQI is the first algorithm in the literature solving DeepSea at a large scale up to 1002

states, see details in Section 4.1.

• HyperFQI is also the first one achieving human-level performance in Atari games, when
considering both data and computation efficiency, see details in Figure 1 and Section 4.2.

• We provide a rigorous performance analysis for the proposed method in Section 5, justify-
ing its computation and data efficiency. HyperFQI achieves the Bayesian regret bound of
order Õ(H2

√
|X ||A|K) for finite horizon MDPs with H horizon, |X | states, |A| actions,

and K episodes, sharing the same order with famous RLSVL (Osband et al., 2019b) and
PSRL (Osband & Van Roy, 2017). The additional computation burden of HyperFQI than
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single point estimate is only logarithmic in |X | and |A| and episode number K, i.e. the
additional dimension is M = Õ(log(|X ||A|K)). The analysis is enabled by our novel
probability tools in Appendix G, which maybe of independent interest.

To the best of knowledge, this is the first principled RL algorithm that is provably efficient and also
practically efficiently scalable to complex environments such as DeepSea with large state space and
Arcade learning environment. We believe this work serves as a bridge for theory and practice in
reinforcement learning.

2 PRELIMINARY

2.1 REINFORCEMENT LEARNING

We consider the episodic RL setting in which an agents interacts with an unknown environment
over a sequence of episodes. We model the environment as a Markov decision problem (MDP)
M = (S,A, R, P, sterminal, ρ), where S is the state space, A is the action space, terminal ∈ S
is the terminal state, and ρ is the initial state distribution. For each episode, the initial state S0

is drawn from the distribution ρ. In each time period t = 1, 2, . . . within an episode, the agent
observes a state St ∈ S. If St ̸= sterminal, the agent selects an action At ∈ A, receives a re-
ward Rt+1 ∼ R (· | St, At), and transitions to a new state St+1 ∼ P (· | St, At). An episode
terminates once the agent arrives at the terminal state. Let τ be the termination time of a generic
episode, i.e., Sτ = sterminal. Note that τ is a stopping time in general. To illustrate, we denote
the sequence of observations in episode k by Ok = (Sk,0, Ak,0, Rk,1, . . . , Sk,τk−1, Ak,τk−1, Rk,τk)
where Sk,t, Ak,t, Rk,t+1 are the state, action, reward observed at t-th time period of the k-th episode
and τk is the termination time at episode k. We denote the history of observations made prior to
episode k byHk = (O1, . . . ,Ok−1).

A policy π : S → A maps a state s ∈ S to an action a ∈ A. For each MDP M with state space S
and action space A, and each policy π, we define the associated state-action value function as:

Qπ
M (s, a) := EM,π

[
τ∑

t=1

Rt | S0 = s,A0 = a

]
where the subscript π next under the expectation is a shorthand for indicating that actions over the
whole time periods are selected according to the policy π. Let V π

M (s) := Qπ
M (s, π(s)). We say a

policy πM is optimal for the MDP M if πM (s) ∈ argmaxπ V
π
M (s) for all s ∈ S . To simplify the

exposition, we assume that under any MDP M and any policy π, the termination time τ < ∞ is
finite with probability 1.

The agent is given knowledge about S,A, sterminal, and ρ, but is uncertain about R and P . The
unknown MDP M , together with reward function R and transition function P , are modeled as
random variables with a prior belief. The agent’s behavior is governed by a RL algorithm alg which
uses the history of observationsHk to select a policy πk = alg(S,A,Hk) for the k-th episode. The
design goal of RL algorithm is to maximize the expected total reward up to episode K

E[]M, alg

[
K∑

k=1

τk∑
t=1

Rk,t

]
= E[]M, alg

[
K∑

k=1

V πk

M (sk,0)

]
. (1)

where the subscript alg under the expectation indicates that policies are generated through algorithm
alg. Note that the expectations in both sides of Equation (1) is over the stochastic transitions and re-
wards under the MDP M , the possible randomization in the learning algorithm alg. The expectation
in the LHS of Equation (1) is also over the randomness in the termination time τk.

2.2 HYPERMODEL

We build RL agents based on the hypermodel framework (Li et al., 2022a; Dwaracherla et al., 2020;
Osband et al., 2021). Hypermodel is a function f parameterized with θ, receiving input x ∈ Rd and
an random index ξ ∈ RM from reference distribution Pξ, making predictions fθ(x, ξ) ∈ R. We aim
to capture the uncertainty via the variation over the hypermodel predictions by the random index ξ.

3



Under review as a conference paper at ICLR 2024

Hypermodel parameter θ is trainable to adjust its uncertainty representation when seeing more data.
The reference distribution Pξ remain fixed throughout the training. For example, linear-Gaussian
model is a special case of hypermodel with parameter θ = (A, µ) with reference distribution Pξ =
N(0, IM ), where fθ(x, ξ) = ⟨x, µ + Aξ⟩. In this case fθ follows a Gaussian distribution with
mean µ and covariance AA⊤. Ensemble of M neural networks gθ1 , . . . , gθM is also a special
case of hypermodel with parameter θ = (θ1, . . . , θM ) ∈ Rd×M with reference distribution Pξ =
U(e1, . . . , eM ) being uniform distribution over one-hot vectors, where fθ(x, ξ) = g⟨θ,ξ⟩(x). In
general, the hypermodel fθ(·) can be any function, e.g. neural networks, transforming the reference
distribution Pξ to arbitrary distribution. We adopt a class of hypermodel that can be represented as
an additive function

fθ(x, ξ)︸ ︷︷ ︸
“Posterior” Hypermodel

= fL
θ (x, ξ)︸ ︷︷ ︸

Learnable function

+ fP (x, ξ)︸ ︷︷ ︸
Fixed prior model

(2)

The prior model fP represents the prior bias and uncertainty and has NO trainable parameters. The
learnable function is initialized to output value near zero and is then trained by fitting the data.
The resultant sum fθ produces reasonable predictions for all probable values of ξ. Variations of
a prediction fθ(x, ·) as a function of ξ indicate the epistemic uncertainty estimation. The prior
model fP (·, ξ) can be viewed as a prior distribution of the true model f∗, which is the true function
that generates the data. The hypermodel fθ(·, ξ) can be viewed as a trained approximate posterior
distribution of the true model f∗ given the data. Similar decomposition in Equation (2) is also used in
(Dwaracherla et al., 2020; Osband et al., 2021; Li et al., 2022a). We will discuss the implementation
details and clarify the importance of difference between our work and prior works in Appendix A.

3 ALGORITHM

We now develop a novel DQN-type algorithm for large-scale RL problems with value function ap-
proximation, called HyperFQI. HyperFQI uses a hypermodel to maintain a probability distribu-
tion over the action-value function and aims to approximate the posterior distribution of Q∗ := Qπ∗

M .
The hypermodel in this context is a function fθ : S ×A×Ξ→ R parameterized by θ ∈ Θ and Ξ is
the index space. Hypermodel is then trained by minimizing the loss function motivated by fitted Q-
iteration (FQI), a classical method (Ernst et al., 2005) for value function approximation. HyperFQI
selects the action based on sampling indices from reference distribution Pξ and then taking the ac-
tion with the highest value from hypermodels applying these indices. This can be viewed as an
value-based approximate Thompson sampling via Hypermodel.

Alongside the learning process, HyperFQI maintains two hypermodels, one for the current value
function fθ and the other for the target value function fθ− . HyperFQI also maintains a buffer of
transitions D = {(s, a, r, s′, z)}, where z ∈ RM is the algorithm-generated perturbation random
vector sampled from the perturbation distribution Pz. For a transition tuple d = (s, a, r, s′, z) ∈ D
and given index ξ, the temporal difference (TD) error for hypermodel is

ℓγ,σ(θ; θ−, ξ−, ξ, d) =

(
fθ(s, a, ξ)− (r + σξ⊤z+ γmax

a′∈A
fθ−(s′, a′, ξ−(s′)))

)2

(3)

where θ− is the target parameters, and the σ is a hyperparameter to control the injected noise by
algorithm. ξ− is the target index mapping such that ξ−(s) one-to-one maps each state s ∈ S to a
random vector from Pξ, all of which are independent with ξ.1 The algorithm update the hypermodel
for value function by minimizing

Lγ,σ,β(θ; θ−, ξ−, D) = Eξ∼Pξ
[
∑
d∈D

1

|D|ℓ
γ,σ
z− (θ; θ−, ξ−(s′), ξ, d)] +

β

|D| ∥θ∥
2 (4)

where β ≥ 0 is the prior regularization parameter. Note the target hypermodel is necessary for
stabilizing the optimization and reinforcement learning process, as discussed in target Q-network
literature (Mnih et al., 2015; Li et al., 2022b). We optimize the loss function Equation (4) using
stochastic gradient descent (SGD) with a mini-batch of data D̃ and a batch of indices Ξ̃ from Pξ.

1To clarify, the random vector ξ−(s) remains the same vector if we do not resample the mapping ξ−.
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That is, we take gradient descent with respect to the sampled version of loss

L̃(θ; θ−, ξ−, D̃) =
1

|Ξ̃|
∑
ξ∈Ξ̃

∑
d∈D̃

1

|D̃|
ℓγ,σ(θ; θ−, ξ−, ξ, d)

+
β

|D| ∥θ∥
2 (5)

We summarize the HyperFQI algorithm: At each episode k, HyperFQI samples an index map-
ping ξk from the index distribution Pξ and then take action by maximizing the associated hyper-
model fθ(·, a, ξk(·)), which we call index sampling (IS) action selection.2 This can be viewed as an
value-based approximate Thompson sampling. The algorithm updates the hypermodel parameters
θ in each episode according to Equation (5), and updates the target hypermodel parameters θ− pe-
riodically. The algorithm also maintains a replay buffer of transitions D, which is used to sample a
mini-batch of data D̃ for training the hypermodel.

Algorithm 1 HyperFQI for RL

1: Input: Initial parameter θinit, Hypermodel for value fθ(s = ·, a = ·, ξ = ·) with dist. Pξ.
2: Initialize θ = θ− = θinit, train step j = 0 and buffer D
3: for each episode k = 1, 2, . . . do
4: Sample index mapping ξk ∼ Pξ

5: Set t = 0 and Observe Sk,0 ∼ ρ
6: repeat
7: Select Ak,t = argmaxa∈A fθ(Sk,t, a, ξk(Sk,t))
8: Observe Rk,t+1 and Sk,t+1 from environment
9: Sample zk,t+1 ∼ Pz and D.add((Sk,t, Ak,t, Rk,t+1, Sk,t+1, zk,t+1))

10: Increment step counter t← t+ 1
11: θ, θ−, j ← update(D, θ, θ−, ξ− = ξk, t, j)
12: until St = sterminal

13: end for

This algorithm offers several advantages over existing methods. First, it is computationally efficient
due to the nature of incremental update and scalable to large-scale problems. Second, it is compatible
with existing deep RL algorithms and can be used as a drop-in replacement for the Q-network in
DQN-type methods. Finally, it is easy to implement and can be applied to a wide range of problems.

4 EXPERIMENTAL STUDIES

This section evaluates the efficiency and scalability of our HyperFQI. Our experiments on the
DeepSea demonstrate its high data and computation efficiency, achieving polynomial performance.
We also showcase the scalability of our approach by successfully processing large-scale states with
a size of 1002. In addition, we evaluate the scalability using the Atari games, where our Hyper-
FQI performs exceptionally well in processing states with pixels. Furthermore, our approach can
achieve human-level performance with remarkable data and computation efficiency in Atari games.
To highlight, HyperFQI is (1) the first algorithm in the literature solving DeepSea at a large scale
up to 1002 states, and (2) also the first one achieving human-level performance in Atari games,
considering both data and computation efficiency.

4.1 COMPUTATIONAL RESULTS FOR DEEP EXPLORATION

We demonstrate the exploration effectiveness of our HyperFQI using DeepSea, a reward-sparse
environment that demands deep exploration. DeepSea offers only two actions: moving left or right;
see Appendix B. The agent receives a reward of 0 for moving left, and a penalty of −(0.01/N) for
moving right, where N denotes the size of DeepSea. The agent earns a reward of 1 upon reaching the
lower-right corner of the DeepSea, making it optimal for the agent to continuously move towards the
right and get the total return 0.99. We repeat all the experiments with different 10 seeds on DeepSea.

2To clarify, the random vector ξk(s) remains the same vector within the episode k.
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Figure 2: Experimental results on DeepSea. The y-axis represents the number of episodes required
to learn the optimal policy for a specific problem size. The symbol × indicates that the algorithm
was unable to solve the problem within 10e3 episodes. (a) The performance of various baselines. We
have not included the performance of DoubleDQN (Van Hasselt et al., 2016) and BootDQN (Os-
band et al., 2018), as both algorithms were unable to solve DeepSea-20 within 10e3 episodes (see
Appendix C.1 for detailed results). (b) The performance of different variants with our HyperFQI.

Baselines Result: We define the Time to Learn(N) := mean{K|R̄K ≥ 0.99}, which serves as an
evaluation metric for algorithm performance on DeepSea with size N . The R̄K represents the total
return obtained by the agent after K episodes of interaction, and we assess R̄K 100 times. Overall,
the Time to Learn(N) indicates the number of episodes needed to learn the optimal policy. As
shown in Figure 2(a), our HyperFQI can achieve superior performance compared to other baselines.
Based on the structure of DeepSea, we can deduce that discovering the optimal policy requires at
least N2/2 episodes, as all accessible states must be traversed. Our experiments demonstrate that
our HyperFQI can achieve the optimal policy within the aforementioned episodes range, which fully
demonstrates the data efficiency of our algorithm.

Notably, HyperDQN (Li et al., 2022a), which has demonstrated effective deep exploration, only can
learn the optimal policy for a DeepSea-20 within 10e3 episodes. These results provide evidence
for the effectiveness of our network structure and suggest that the update method used in HyperFQI
enhances the model’s ability to capture uncertainty and promote effective exploration. Our approach
samples multiple indexes for each state rather than each batch, leading to more accurate expecta-
tion estimation compared to HyperDQN. Additionally, our method has a more efficient network
initialization than HyperDQN. For a detailed comparison, please refer to the Appendix A.1.3.

The ENNDQN, which was adapted from Osband et al. (2023), struggles to solve DeepSea as its
size increases. Compared to our approach, ENNDQN includes the original input as a component
of the final ENN layer’s input. Both HyperFQI and ENNDQN share the same feature network,
and the parameters in our output layer (hypermodel) remain constant when scaling up the problem.
However, the ENN layer requires a greater number of parameters and computational workload,
especially as the problem’s scale increases. In the case of DeepSea-20, the number of parameters
in the ENN layer is almost 20 times larger than our hypermodel. These findings demonstrate that
the network architecture of our HyperFQI can enhance both computational efficiency and scalability
when dealing with large scale problem.

Variants of HyperFQI: We can produce various variants based on the framework of HyperFQI,
including HyperFQI-OIS, which employs optimistic index sampling (OIS) action selection (refer
to Appendix A.1.2 for details). Furthermore, we substitute the Gaussian distributional index with
a one-hot index under two different action selections, resulting in HyperFQI-OH and HyperFQI-
OIS-OH. In Figure 2(b), we compare the performance of different variants of our approach. Our
HyperFQI-OIS impressively outperforms HyperFQI by utilizing optimistic index sampling action
selection to achieve more optimistic estimates, which can enhance exploration. The OIS method
does not increase much computation as we set the dimension M to 4. We observed that HyperFQI-
OH is not effective in DeepSea as the Gaussian distributional index provides superior expectation
estimation compared to the one-hot index. However, subsequent experiments show that increasing
the dimension of the one-hot index can improve exploration.
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Ablation Study: We consider how the dimension M of the index affects our methods. Figure 3
demonstrates that increasing the M of the one-hot index can lead to improved estimation of expec-
tations, which in turn can enhance exploration. HyperFQI-OIS also can result in better performance
when using the one-hot index with M = 16, which is shown in Appendix C.1. On the other hand,
increasing the dimension of the Gaussian distributional index can actually hurt the algorithm’s per-
formance because it becomes more difficult to estimate the expectation in Equation (5) under Pξ

higher index dimension. However, there are ways to mitigate this problem. For a given dimension
M , increasing the number of indices |Ξ̃| of Equation (5) during the update phase can result in more
accurate estimates, as demonstrated in Appendix 6. However, this comes at the cost of increased
computation, which slows down the algorithm. To strike a balance between performance and com-
putation, we have chosen M = 4 and |Ξ̃| = 20 as our default hyper-parameters. In addition, we have
also investigated the effect of other hyper-parameters on our methods, as shown in Appendix C.1.
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Figure 3: Ablation results under different index dimension M .

4.2 ATARI RESULTS

We assess the computational complexity of various methods on the Arcade Learning Environ-
ment (Bellemare et al., 2013) using IQM (Agarwal et al., 2021) as the evaluation criterion. An
IQM score of 1 indicates that the algorithm’s performance is comparable to that of a human. We
examine our HyperFQI with six baselines: DQN (Nature) (Van Hasselt et al., 2016), Rainbow (Hes-
sel et al., 2018), DER (Van Hasselt et al., 2019), HyperDQN (Li et al., 2022a), BBF (Schwarzer
et al., 2023) and EfficientZero (Ye et al., 2021). Specially, the EfficientZero is a state-of-the-art
model-based method, while the others are value-based methods.

Figure 1 illustrates the relationship between model parameters and the amount of training data re-
quired to achieve human-level performance. Our HyperFQI achieves human-level performance with
minimal parameters and relatively little training data, outperforming other methods. Notably, the
Convolutional layers in our model are the same as those in Rainbow and account for only a small
fraction (about 13%) of the overall model parameters. This suggests that the Fully Connected layers
dominate the computational complexity of the model, and as we know, the computational complex-
ity of a Fully Connected layer is directly proportional to the number of parameters. In fact, our
model employs the first Fully Connected layer with just 256 units, which is even fewer than DQN
(Natural). Consequently, our HyperFQI offers superior computational performance due to having
fewer parameters in the Fully Connected layer than other baselines.

We assessed various variants of our HyperFQI on 26 Atari games using 2 million training data, and
we presented their performance in Table 1. In addition, we implemented our version of DDQN,
named DDQN (ours), using the same hyper-parameters and network initialization scheme as our
HyperFQI. In comparison, We report the results of vanilla DDQN† from Hessel et al. (2018). Our
results show that DDQN (ours) outperforms DDQN† due to the increased data efficiency provided by
our hyper-parameters and network initialization. Furthermore, our HyperFQI demonstrates superior
performance compared to DDQN, as HyperFQI includes an additional hypermodel that enables deep
exploration in Atari games. Additional, our findings indicate that all methods performed similarly,
implying that the OIS method or one-hot vector do not generate significant differences in complex
networks such as Convolutional layers. More detailed results for each Atari game are available

7



Under review as a conference paper at ICLR 2024

IQM Median Mean

DDQN† 0.13 (0.11, 0.15) 0.12 (0.07, 0.14) 0.49 (0.43, 0.55)
DDQN (ours) 0.70 (0.69, 0.71) 0.55 (0.54, 0.58) 0.97 (0.95, 1.00)
HyperFQI 1.22 (1.15, 1.30) 1.07 (1.03, 1.14) 1.97 (1.89, 2.07)
HyperFQI-OH 1.28 (1.21, 1.35) 1.13 (1.10, 1.18) 2.03 (1.93, 2.15)
HyperFQI-OIS 1.15 (1.09, 1.22) 1.12 (1.02, 1.18) 2.02 (1.91, 2.16)
HyperFQI-OIS-OH 1.25 (1.18, 1.32) 1.10 (1.04, 1.17) 2.02 (1.93, 2.12)

Table 1: Performance profiles of our HyperFQI with different variant.

in Appendix C.2, where we visualize the relative improvement compared to other baselines and
the learning curve of our variants. The results demonstrate the better exploration efficiency of our
HyperFQI than Rainbow and the robustness of all our variants across all Atari games.

5 ANALYSIS

In this section, we try to explain the intuition behind the HyperFQI algorithm and how it achieves
efficient deep exploration. We also provide a regret bound for HyperFQI in finite horizon time-
inhomoegeneous MDPs. First, we describe the HyperFQI algorithm in Algorithm 1 when specified
to tabular problems.

Tabular HyperFQI. Let fθ(s, a, ξ) = µsa+m⊤
saξ+µ0,sa+σ0z

⊤
0,saξ where θ = (µ ∈ RSA,m ∈

RSA×M ) are the parameters to be learned, and z0,sa ∈ RM is a random vector from Pz and µ0,sa, σ0

is a prior mean and prior variance for each (s, a). The regularizer in Equation (4) becomes β∥θ∥2 =
β
∑

s,a

(
µ2
sa + ∥msa∥2

)
. Let the set Ek,sa record the time index the agent encountered (s, a) in

the k-th episode Ek,sa = {t : (Sk,t, Ak,t) = (s, a)} . Let Nk,sa =
∑k−1

ℓ=1

∑H−1
t=0 1(Sℓ,t,Aℓ,t)=(s,a)

denoting the counts of visitation for state-action pair (s, a) prior to episode k.

Closed-form incremental update. Let β = σ2/σ2
0 . Then, given the dataset D = Hk and target

noise ξ− before episode k, HyperFQI in Algorithm 1 with γ = 1 would yield the following closed-
form backward iterative procedure θ

(t+1)
k = (µ

(t+1)
k ,mk) → θ

(t)
k = (µ

(t)
k ,mk) for all t = H −

1, H − 2, . . . , 0,

mk,sa =
σ
∑k−1

ℓ=1

∑
t∈Eℓ,sa

zℓ,t+1 + βσ0z0,sa

Nk,sa + β
,∀(s, a) ∈ S ×A (6)

µ
(t)
k,sa =

∑k−1
ℓ=1

∑
t∈Eℓ,sa

y
(t+1)
k,ξ− + βµ0,sa

Nk,sa + β
,∀(s, a) ∈ S ×A (7)

where y
(t+1)
k,ξ− = Rk,t+1 +maxa′∈A f

θ
(t+1)
k

(Sk,t+1, a
′, ξ−).

5.1 HOW DOES HYPERFQI DRIVES EFFICIENT DEEP EXPLORATION?

In this section, we highlight the key components of HyperFQI that enable efficient deep exploration.
We consider a simple example (adapted from (Osband et al., 2019b)) to understand the HyperFQI’s
learning rule in Equations (4) and (5) and the role of hypermodel, and how they together drive
efficient deep exploration.
Example 5.1. Consider a fixed horizon MDP M with four states S = {1, 2, 3, 4}, two actions
A = {up, down} and a horizon of H = 6. Let H be the list of all transitions observed so far, and
let Hs,a = ((ŝ, â, r, s′) ∈ H : (ŝ, â) = (s, a)) contain the transitions from state-action pair (s, a).
Suppose |H4,down| = 1, while for every other pair (s, a) ̸= (4, down), |Ds,a| is very large, vir-
tually infinite. Hence, we are highly certain about the expected immediate rewards and transition
probabilities except for (4, down). Assume that this is the case for all time periods t ∈ {0, 1, . . . , 5}.

8
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HyperFQI produces a sequence of action-value functions f0, f1, . . . f5. In Figure 4, each triangle in
row s and column t contains two smaller triangles that are associated with action-values of up and
down actions at state s. The shade on the smaller triangle shows the uncertainty estimates in the
ft(s, a, ξ), specifically the variance Varξ (ft(s, a, ξ)). The dotted lines show plausible transitions,
except at (4, down). Since we are uncertain about (4, down), any transition is plausible. We will

t=0 t=1 t=2 t=3 t=4 t=5

Time periods

s=1

s=2

s=3

s=4

St
at

es

Figure 4: Example to illustrate how HyperFQI achieves deep exploration. We can see the propaga-
tion of uncertainty from later time period to earlier time period in the figure. Darker shade indicates
higher degree of uncertainty.

show how HyperFQI efficiently computes the uncertainty propagation backward in time, which can
be visualized as progressing leftward in Figure 4. Also, we will show the ability to estimate the de-
gree of uncertainty drives deep exploration. This can be explained by the incremental closed-form
update in tabular setting described in Equations (6) and (7). A key property is that, with logarithmi-
cally small additional dimension M , hypermodel can approximate the posterior distribution of the
optimal Q∗-values with low computation cost. This is formalized in the following.
Lemma 5.2 (Approximate posterior variance). For mk defined in Equation (6) with z ∼
Uniform(SM−1). For any k ≥ 1, a good event Gk(s, a) is defined as

Gk(s, a) =
{
∥mk(s, a)∥2 ∈

(
σ2

Nk,sa + β
,

3σ2

Nk,sa + β

)}
.

Then the joint event ∩(s,a,k)∈S×A×[K]Gk(s, a) holds w.p. at least 1− δ if M ≃ log(SAK/δ).

5.2 REGRET BOUND

Denote the regret of a policy πk over episode k by ∆k := EM,alg[V
π∗

M (sk,0) − V πk

M (sk,0)], where
π∗ is an optimal policy for M . The goal of the agent is equivalent to minimizing the expected
total regret up to episode K, Regret(K, alg) := Ealg

∑K
k=1 ∆k, where the subscript alg under the

expectation indicates that policies are generated through algorithm alg. Note that the expectation in
Equation (12) is over the random transitions and rewards, the possible randomization in the learning
algorithm alg, and also the unknown MDP M based on the agent designer’s prior beliefs. Finally, we
show that, with the help of hypermodel approximation property in Lemma 5.2, HyperFQI achieves
efficient deep exploration in finite horizon time-inhomogeneous MDPs. This is formalized in the
following theorem.
Theorem 5.3 (Regret bound of HyperFQI). Consider an HyperFQI with an infinite buffer, greedy
actions and with tabular representation. Under Assumptions E.1 and E.2 with β ≥ 3, if the tabular
HyperFQI is applied with planning horizon H , and parameters with (M,µ0, σ, σ0) satisfying M ≃
log(|X ||A|HK), (σ2/σ2

0) = β, σ ≥
√
3H and µ0,s,a = H , then for all K ∈ N,

Regret(K,HyperFQI) ≤ 18H2
√

β|X ||A|K log+(1 + |X ||A|HK) log+

(
1 +

K

|X ||A|

)
, (8)

where log+(x) = max{1, log(x)}.
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Remark 5.4. The Assumption E.1 is common in the literature of regret analysis, e.g. (Osband et al.,
2019b; Jin et al., 2018). The relationship between two set S and X is described in Assumption E.1.
The Assumption E.2 is common in the Bayesian regret literature (Osband et al., 2013; 2019b; Os-
band & Van Roy, 2017; Lu & Van Roy, 2019). Our regret boundO(H2

√
|X ||A|K) matches the best

known Bayesian regret bound in the literature, say RLSVI (Osband et al., 2019b) and PSRL (Os-
band & Van Roy, 2017) which while our HyperFQI provide the computation and scalability benefit
that RLSVI and PSRL do not have. We believe the HyperFQI algorithm provides a bridge for the
theory and practice in RL.
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A HyperFQI ALGORITHM DETAILS

In this section, we describe more details of the proposed HyperFQI. First, we describe the general
treatment for the update function (in line 11 of HyperFQI) in the following Algorithm 2. Then,
in Appendix A.1, we provide the implementation details of HyperFQI with deep neural network
(DNN) function approximation. We want to emphasize that all experiments done in this article is
using Option 1 with DNN value function approximation. In Appendix A.2, we describe the closed-
form update rule (Option 2) when the tabular representation of the value function is exploited. Note
that the tabular version of HyperFQI is only for the clarity of analysis and understanding.

Algorithm 2 update

1: Input: bufferD, θ, θ−, ξ−, agent step t, train step j
2: if t mod training freq = 0 then
3: repeat
4: Obtain θ by optimizing the loss Lγ,σ,β(θ; θ−, ξ−, D) in Equation (4):

– Option (1) with gradient descent w.r.t. the mini-batch sampled loss Equation (5);
– Option (2) with closed-form solution in Equations (6) and (7).

5: Increment j ← j + 1
6: if j mod target update freq = 0 then
7: θ− ← θ
8: end if
9: until j mod sample update ratio × training freq = 0

10: end if
11: Return: θ, θ−, j.

A.1 FUNCTION APPROXIMATION WITH DEEP NEURAL NETWORKS

Here we describe the implementation details of HyperFQI with deep neural networks and the main
difference compared to baselines.

A.1.1 NETWORK ARCHITECTURE OF HYPERFQI

In our implementation, we only apply hypermodel to the output layer of our network, which will
not result in much parameters and provide better expectation estimate. Suppose the hidden layers
in neural networks forms the nonlinear feature mapping ϕw(·) with parameters w. Our hypermodel
takes the random index ξ ∈ RM from reference distribution Pξ and outputs the weights for out-
put layer. It’s worth to note that our hypermodel only outputs the weights but not bias for output
layer, which is indicated by following equation with trainable θ = {A, b, w} and fixed parameters
{A0, b0, w0}

fν(x, ξ) = ⟨Aξ + b, ϕw(x)⟩︸ ︷︷ ︸
Learnable fL

ν (x,ξ)

+ ⟨A0ξ + b0, ϕw0
(x)⟩︸ ︷︷ ︸

Fixed prior fP (x,ξ)

= ⟨Aξ, ϕw(x)⟩︸ ︷︷ ︸
σL
θ (x,ξ)

+ ⟨A0ξ, ϕw0
(x)⟩︸ ︷︷ ︸

σP (x,ξ)

+ ⟨b, ϕw(x)⟩︸ ︷︷ ︸
µL
θ (x)

+ ⟨b0, ϕw(x)⟩︸ ︷︷ ︸
µP (x)

. (9)

Through our formulation ( 9), HyperFQI can accurately estimate the learnable mean µL
θ (x), which

relies solely on the original input x, and the variation prediction σL
θ (x, ξ), which is dependent on

both the original input x and random index ξ. This allows our hypermodel to capture uncertainty
better, without being influenced by other components that may only depend on the random index ξ
like HyperDQN (Li et al., 2022a). The fixed prior model also offers prior bias and prior variation
through the functions µP (x) and σP (x, ξ). This priormodel is NOT trainable so that it will not bring
much computation, and designed to provide better exploration in the early stage of training. We use
Xavier Normal method to initialize our entire network except the part of priormodel which is cor-
responding to hypermodel. For the initialization of prior model, we follow the method described in
Dwaracherla et al. (2020). In this way, each row of priormodel is sampled from the unit hypersphere,
which guarantees that the output of priormodel can follow a desired Gaussian distribution.
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A.1.2 TRAINING DETAILS FOR HYPERFQI

For better expectation estimate, we sample multiple random indexes for each state and compute the
empirical expectation in update stage. We let |Ξ̃| denote the number of random indexes for each
state. For continuous or uncountable infinite state space, we just sample independent ξ− for each
data tuple d in the mini-batch.

We tuned the some hyper-parameters on our HyperFQI and listed them in Table 2, and other hyper-
parameters for Atari games are the same as Rainbow Hessel et al. (2018). Notice that we use a
single configuration for all Atari games we test. Also we use a single configuration for the deepsea
environments with variant sizes.

Hyper-parameters Atari Setting DeepSea Setting

discount factor γ 0.99 0.99
learning rate 0.001 0.001
minibatch size |D̃| 32 128
index dim M 4 4
# Indices |Ξ̃| for approximation 20 20
n-step target 5 1
target network freq 5 4
sample update ratio 1 1
training freq 1 1
hidden units 256 64
min replay size for sampling 2,000 steps 128 steps
memory size 500,000 steps 1000000 steps

Table 2: Hyper-parameters of our HyperFQI

As per the framework of HyperFQI, we can generate various variants. By default, a Gaussian distri-
bution is used for Pξ, but this can be changed to a one-hot index, referred to as HyperFQI-OH.

The action selection and computation of Q-target can also be modified by sampling multiple indexes
and computing multiple Q-values for each action under one exact state. The optimal action is then
selected based on these multiple Q-values. This variant is called HyperFQI-OIS and is described in
the following.

Optimistic Index Sampling. To make agent’s behavior more optimistic, in each episode k, we
can sample NOIS indices ξk,1, . . . , ξk,NOIS

and take action by maximizing the associated hyper-
model fk(·, a) = maxn∈[NOIS] fθ(·, a, ξk,n), which we call optimistic index sampling (OIS) action
selection.

In the hypermodel training part, for any transition tuple d = (s, a, r, s′, z), we also sample multiple
indices ξ−1 , . . . , ξ−NOIS

and modify the target computation in Equation (3) as

r + σξ⊤z+ γmax
a′∈A

max
n∈[NOIS]

fθ−(s′, a′, ξ−n ).

This modification in target computation boosts uncertainty propagation from later states to earlier
states, which is beneficial for deep exploration. We call this variant HyperFQI-OIS.

A.1.3 DIFFERENCE COMPARED TO PRIOR WORKS

There are several methods which have similar structure as our HyperFQI but fail to achieve good
performance as ours.

HyperModel (Dwaracherla et al., 2020) employs hypermodels to represent epistemic uncertainty and
facilitate exploration. However, the use of hypermodels over entire networks leads to an extensive
number of parameters and optimization challenges. As a result, applying HyperModel (Dwaracherla
et al., 2020) to address large-scale problems such as Atari games can be extremely difficult. Our
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HyperFQI only apply hypermodel to the output layer, which provide better exploration and efficient
computation in large scale problem.

HyperDQN (Li et al., 2022a) shares a similar structure with our HyperFQI and has shown promising
results in exploration. Nevertheless, it falls short in handling the DeepSea environment, which de-
mands deep exploration. We have improved HyperDQN by simplifying our hypermodel, as shown
in equation (9). Our HyperFQI estimates the mean µ solely based on the original input x, and esti-
mates the variation σ based on both the original input x and a random index ξ. However, HyperDQN
use hypermodel to generate the both weights and bias for output layer, resulting in some redundant
components, such as functions that depend solely on the random index ξ or functions that depend
only on the parameters of the hypermodel. These components lack a clear semantic explanation,
rendering HyperFQI unsuitable for estimating uncertainty. Additionally, we apply NpS indexes to
each transition in update stage to improve the expectation estimate, whereas HyperDQN only ap-
plies them to batch transitions. We have found that initializing the hypermodel with Xavier Normal
can improve optimization. The combination of these factors leads to our HyperFQI outperforming
HyperDQN on both DeepSea and Atari, as demonstrated in Section 4.

The ENN approach, as described in Osband et al. (2023), shows promise for capturing epistemic
uncertainty and has demonstrated efficiency on various tasks. We have implemented the ENNDQN
by their description on bsuite (Osband et al., 2019a). Except for the update method and network
structure, other settings are the same as our HyperFQI. In the update stage, they use “stop gradi-
ent” between feature layers and final ENN layers. For the network structure, they concatenate the
original input x, feature ϕ(x) and random index ξ as the input for the ENN layer, and use ensemble
priormodel for ENN layer but don’t have priormodel for feature network. The network structure
leads to larger parameters when processing tasks at a large scale, causing significant computation
and optimization challenges. As shown in Section 4.1, ENNDQN performs well on DeepSea-20 but
struggles with larger scale of the problem. This difficulty arises because the input x in DeepSea has
a dimension of N2, which is too large for the ENN layer to handle. We designed our HyperFQI to
take only a random index ξ as input, resulting in a more efficient computation with fewer parameters.

A.2 TABULAR SETTING

In this section, we try to explain the intuition behind the HyperFQI algorithm and how it achieves
efficient deep exploration. We also provide a regret bound for HyperFQI in finite horizon time-
inhomoegeneous MDPs in Appendix E. First, we describe the HyperFQI algorithm in Algorithm 1
when specified to tabular problems.

Tabular HyperFQI. Let fθ(s, a, ξ) = µsa+m⊤
saξ+µ0,sa+σ0z

⊤
0,saξ where θ = (µ ∈ RSA,m ∈

RSA×M ) are the parameters to be learned, and z0,sa ∈ RM is a random vector from Pz and µ0,sa, σ0

is a prior mean and prior variance for each (s, a). The regularizer in Equation (4) becomes β∥θ∥2 =
β
∑

s,a

(
µ2
sa + ∥msa∥2

)
. Let the set Ek,sa record the time index the agent encountered (s, a) in

the k-th episode Ek,sa = {t : (Sk,t, Ak,t) = (s, a)} . Let Nk,sa =
∑k−1

ℓ=1

∑H−1
t=0 1(Sℓ,t,Aℓ,t)=(s,a)

denoting the counts of visitation for state-action pair (s, a) prior to episode k.

Closed-form incremental update. Let β = σ2/σ2
0 . Then, given the dataset D = Hk and target

noise ξ− before episode k, HyperFQI in Algorithm 1 with γ = 1 would yield the following closed-
form backward iterative procedure θ

(t+1)
k = (µ

(t+1)
k ,mk) → θ

(t)
k = (µ

(t)
k ,mk) for all t = H −

1, H − 2, . . . , 0,

mk,sa =
σ
∑k−1

ℓ=1

∑
t∈Eℓ,sa

zℓ,t+1 + βσ0z0,sa

Nk,sa + β
,∀(s, a) ∈ S ×A (10)

µ
(t)
k,sa =

∑k−1
ℓ=1

∑
t∈Eℓ,sa

y
(t+1)
k,ξ− + βµ0,sa

Nk,sa + β
,∀(s, a) ∈ S ×A (11)

where y
(t+1)
k,ξ− = Rk,t+1 +maxa′∈A f

θ
(t+1)
k

(Sk,t+1, a
′, ξ−).
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Hyper-parameters Finite MDP with Horizon H

target network freq 1
sample update ratio 1
training freq H

Table 3: Hyper-parameters of our Tabular-HyperFQI

B ENVIRONMENT SETTINGS

In this section, we describe our environment used in experiments. We firstly use the DeepSea to
demonstrate the exploration efficiency of our HyperFQI. DeepSea is a reward-sparse environment
that demands extensive exploration (see Figure 5). The environment under consideration has a dis-
crete action space consisting of two actions: moving left or right. During each run of the experiment,
the action for moving right is randomly sampled from Bernoulli distribution for each row. Specif-
ically, the action variable takes binary values of 1 or 0 for moving right, and the action map is
different for each run of the experiment. The agent receives a reward of 0 for moving left, and a
penalty of −(0.01/N) for moving right, where N denotes the size of DeepSea. The agent will earn
a reward of 1 upon reaching the lower-right corner. The optimal policy for the agent is to learn to
move continuously to the right. The sparse rewards and states present in this environment effectively
showcase the exploration efficiency of our method without any additional complexity.

For the experiments on the Atari games, we evaluate our HyperFQI on 26 of the 55 games from
the full ALE suite. We utilized the standard wrapper provided by OpenAI gym. For example, we
terminated each environment after a maximum of 108K steps without using sticky actions. For
further details on the settings used for the Atari games, please refer to the Table 4.

Figure 5: Illustration for DeepSea.

Hyper-parameters Setting

Grey-scaling True
Observation down-sampling (84, 84)
Frames stacked 4
Action repetitions 4
Reward clipping [-1, 1]
Terminal on loss of life True
Max frames per episode 108K

Table 4: Detailed settings for Atari games

C ADDITIONAL RESULTS

This section presents additional results for our HyperFQI algorithm. We demonstrate its robustness
through ablation experiments on DeepSea. Moreover, we provide detailed results for each environ-
ment of Atari, highlighting the superiority of our approach over other baselines.

C.1 RESULTS ON DEEPSEA

In Section 4.1, we noted that a larger M in the Gaussian distributional index can harm the algo-
rithm’s performance due to increased difficulty in estimating the expectation. To address this, we
can increase the number of indices |Ξ̃| of Equation (5) during the update stage for each state in the
batch, thereby improving the estimation of expectation. As shown in Figure 6 for M = 16, increas-
ing |Ξ̃| can lead to better performance. However, some seeds with |Ξ̃| = 80 still do not work well
for M = 16. To achieve accurate estimation of expectation, |Ξ̃| should grow exponentially with M ,
but this comes at the cost of increased computation, slowing down the algorithm. To balance per-
formance and computation, we have chosen M = 4 and |Ξ̃| = 20 as our default hyper-parameters,
which have demonstrated superior performance in Figure 2.
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Figure 6: Ablation results under different |Ξ̃|.
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Figure 7: Ablation results under different σ.

In addition, we have also investigated the effect of the σ of Equation (3) on our methods, as shown in
Figure 7. Our HyperFQI is not sensitive to this hyper-parameter, and we have selected σ = 0.0001
as our default hyper-parameters.

We observed that HyperFQI-OIS method performs better when using Gaussian distributional index,
but not with one-hot index in Figure 2(b). This is because M = 4 cannot accurately estimate the
expectation when using one-hot index. However, We observed that HyperFQI with one-hot index
achieves good performance when M = 16 in Figure 3(b). Thus, we evaluated the efficiency of
HyperFQI-OIS with one-hot index when M = 16. As shown in Figure 8, with an appropriate M
for one-hot index, our OIS actually achieves better performance. Through these experiments, we
demonstrated the superiority of HyperFQI-OIS in both Gaussian distributional and one-hot index.
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Figure 8: Results on DeepSea with one-hot index. In this experiment, we set M = 16.

To further illustrate the data efficiency of HyperFQI, we conducted a comparison with additional
baselines on DeepSea. Specifically, we included BootDQN with a randomized prior function (Os-
band et al., 2018) as a baseline, and reproduced the results using https://github.com/
google-deepmind/bsuite referring to it as BootDQN w. prior. We also applied optimistic
index sampling (OIS) to this baseline, referred to as BootDQN-OIS w. prior. BootDQN-OIS can be
regarded as an implementation of LSVI-PHE (Ishfaq et al., 2021) with DNN.3 For both bootstrapped
methods, we firstly set the number of ensembles to 4, consistent with the dimension of index used
in HyperFQI. As depicted in the Figure 9(a), BootDQN w. prior fails to solve DeepSea with size
20 within 10e3 episodes. Although OIS enhances exploration, BootDQN-OIS w. prior knowledge
solves DeepSea with size 20 with in few seeds but fails in DeepSea with size 30. Furthermore, we
compared our HyperFQI method to bootstrapped methods using 16 ensemble networks, as illus-
trated in Figure 9(b). While increasing the number of ensembles improves exploration, it remains
insufficient for solving DeepSea with large size. In contrast, our HyperFQI approach efficiently
solves DeepSea with just 4 dimensions of index, demonstrating its superiority.

3As we do not find the official implementation of LSVI-PHE (Ishfaq et al., 2021) anywhere. We use results
of BootDQN-OIS to represent the performance of LSVI-PHE.
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Figure 9: Compare results on DeepSea with more baselines.

C.2 RESULTS ON ATARI

We demonstrated the efficiency of our HyperFQI in handling data and computation in Section 4.2.
Here, we present comprehensive results on each environment to further establish the superiority of
our approach.

In Table 5, we present the best score achieved in each environment with 2M steps. Our experimental
protocol includes evaluating the best model 200 times for each seed, after completing training for
each Atari game. We then calculate the average score from these 200 evaluations as the score for
each seed. Finally, we calculate and report the average score across 20 seeds as the final score for
each Atari game. The scores for Rainbow and DDQN are obtained from Hessel et al. (2018), which
were based on 200M Frames. Specifically, we extracted the first 20M steps from these results to
compare them with our HyperFQI. For HyperDQN, we refer to the results from (Li et al., 2022a)
and similarly extracted the first 20M steps for comparison purposes. The DER was executed us-
ing the popular implementation available at https://github.com/Kaixhin/Rainbow. We
conducted all experiments with 20 different seeds and computed the average best score with the best
policy during training.

We also present the relative improvement of our HyperFQI in comparison to other baselines for each
game, which is determined by the given following equation as per (Wang et al., 2016).

relative improvement =
proposed− baseline

max(human, baseline)− human

Our classification of environments into three groups, namely “hard exploration (dense reward)”,
“hard exploration (sparse reward)” and “easy exploration”, is based on the taxonomy proposed
by Bellemare et al. (2016). The overall results are illustrated in Figure 10, Figure 11, Figure 12
and Figure 13.

Our HyperFQI algorithm exhibits significant improvement compared to DoubleDQN, DER, and Hy-
perDQN in environments with “easy exploration”, and overall it performs better in all environments.
This indicates that HyperFQI has better generalization and exploration abilities. On the other hand,
when compared to Rainbow, our algorithm performs better in environments which are in the group of
“hard exploration (dense reward)”, demonstrating our superior deep exploration capabilities. How-
ever, in the case of Freeway, which belongs to the “hard exploration (sparse reward)” group, both
HyperFQI and Rainbow achieve similar optimal scores (as shown in Table 5), suggesting no signif-
icant improvement in this environment. Overall, our HyperFQI showcases better generalization and
exploration efficiency.

Figure 14 illustrates the learning curve for each game. Our HyperFQI has shown superior perfor-
mance in comparison to DDQN (ours), attributed to the incorporation of a hypermodel that enhances
exploration in Atari games. Additionally, our HyperFQI variants demonstrated stable and efficient
learning, as indicated by the results. The learning curves of these variants exhibit remarkable sim-
ilarity, indicating the robustness of our HyperFQI on Atari games. However, our experiments have
demonstrated that the HyperFQI-OIS outperforms the others in DeepSea, which necessitates deep
exploration. Furthermore, it is worth highlighting that the learning curve of our algorithm continues
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Game Random Human DDQN DER Rainbow HyperDQN HyperFQI

Alien 227.8 7127.7 722.7 1642.2 1167.1 862.0 1830.2
Amidar 5.8 1719.5 61.4 476.0 374.0 140.0 800.4
Assault 222.4 742.0 815.3 488.3 2725.2 494.2 3276.2
Asterix 210.0 8503.3 2471.1 1305.3 3213.3 713.3 2370.2
BankHeist 14.2 753.1 7.4 460.5 411.1 272.7 430.3
BattleZone 2360.0 37187.5 3925.0 19202.5 19379.7 11266.7 29399.0
Boxing 0.1 12.1 26.7 1.7 69.9 6.8 74.0
Breakout 1.7 30.5 2.0 6.5 137.3 11.9 54.8
ChopperCommand 811.0 7387.8 354.6 1488.9 1769.4 846.7 2957.2
CrazyClimber 10780.5 35829. 53166.5 36311.1 110215.8 42586.7 121855.8
DemonAttack 152.1 1971.0 1030.8 955.3 45961.3 2197.7 5852.0
Freeway 0.0 29.6 5.1 32.8 32.4 30.9 32.2
Frostbite 65.2 4334.7 358.3 3628.3 3648.7 724.7 4583.9
Gopher 257.6 2412.5 569.8 742.1 4938.0 1880.0 7365.8
Hero 1027.0 30826.4 2772.9 15409.4 11202.3 9140.3 12324.7
Jamesbond 29.0 302.8 15.0 462.1 773.1 386.7 951.6
Kangaroo 52.0 035.0 134.9 8852.3 6456.1 3393.3 8517.1
Krull 1598.0 2665.5 6583.3 3786.7 8328.5 5488.7 8222.6
KungFuMaster 258.5 22736.3 12497.2 15457.0 25257.8 12940.0 23821.2
MsPacman 307.3 6951.6 1912.3 2333.7 1861.1 1305.3 3182.3
Pong -20.7 14.6 -15.4 20.6 5.1 20.5 20.5
PrivateEye 24.9 69571.3 37.8 900.9 100.0 64.5 171.9
Qbert 163.9 13455.0 1319.4 12345.5 7885.3 5793.3 12021.9
RoadRunner 11.5 7845.0 3693.5 14663.0 33851.0 7000.0 28789.4
Seaquest 68.4 42054.7 367.6 662.0 1524.7 370.7 2732.4
UpNDown 533.4 11693.2 3422.8 6806.3 39187.1 4080.7 19719.2

Table 5: The best score over 200 evaluation episodes for the best policy in hindsight (after 2M steps)
for Atari games. The performance of the random policy and the human expert is from dqn zoo (Quan
& Ostrovski, 2020).
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Figure 10: Relative improvement of HyperFQI compared with DoubleDQN

to rise in certain environments, indicating that our HyperFQI can achieve even better performance
with additional training.

In addition, we demonstrated the superiority of our approach on the 8 hardest exploration Atari
games with more baselines. We utilized the released results of AdamLMCDQN (Ishfaq et al., 2023),
LangevinAdam (Ishfaq et al., 2023), and HyperDQN (Li et al., 2022a) on Atari. Additionally, we
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Figure 12: Relative improvement of HyperFQI compared with HyperDQN

adopted SANE (Aravindan & Lee, 2021) as our new baseline, which leverages a variational distribu-
tion to approximate the posterior. To reproduce the outcomes, we employed the official implementa-
tion of SANE. Given the time and resource constraints, we trained both HyperFQI and SANE with 5
different seeds, up to a limit of 2M steps. The Figure 15 indicates that our HyperFQI outperformed
other baselines on 5 out of 8 games. For Solaris and Venture, we anticipate that providing more train-
ing time can further improve the performance of our HyperFQI. Overall, these results demonstrate
the effectiveness and exploration ability of our HyperFQI in complex observation environments.
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Figure 13: Relative improvement of HyperFQI compared with Rainbow
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Figure 14: Learning curve for each game. All variants exhibit remarkable similarity, indicating the
robustness of our HyperFQI on Atari games.
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Figure 15: Comparative results on 8 hardest exploration games.
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D PROBABILISTIC FORMALISM

One of the difficulties in the analysis is to deal with the sequential dependence structure among the
random variables generated from the reinforcement learning problems. We define some important
concept that would be useful in the analysis.

Let (Ω,F , (Ft)t≥0,P) be a complete filtered probability space.
Definition D.1 (Adapted process). For an index set I of the form {t ∈ N : t ≥ t0} for some t0 ∈ N,
we say a stochastic process (xt)t∈I is adapted to the filtration (Ft)t∈I if each xt is Ft-measurable.
Definition D.2 ((Conditionally) σ-sub-Gaussian). We first describe the property associated with
one-dimensional random variable. Second, we describe the generalization in high-dimension ran-
dom vector.

• Random variables

– We say a random variable x is σ-sub-Gaussian if

E[exp(λx)] ≤ exp

(
λ2σ2

2

)
, ∀λ ∈ R.

– Let (xt)t≥1 ⊂ RM be a stochastic process adapted to filtration (Ft)t≥1. Let σ =
(σt)t≥0 be a stochastic process adapted to filtration (Ft)t≥0. We say the process is
(xt)t≥1 is conditionally σ-sub-Gaussian if

E[exp(λxt) | Ft−1] ≤ exp

(
λ2σ2

t−1

2

)
, a.s. ∀λ ∈ R.

Specifically for the index t+1, we can say xt+1 is (Ft-conditionally) σt-sub-Gaussian.
If σt is a constant σ for all t ≥ 0, then we just say (conditionally) σ-sub-Gaussian.

• Random vectors

– For random vector x or vector process (xt)t≥1, we say it is σ-sub-Gaussian is for
every fixed v ∈ SM−1 if the random variable ⟨v,x⟩ or stochastic process ⟨v,xt⟩ is
σ-sub-Gaussian.

Definition D.3 (Almost sure unit-norm). We say a random vector x is almost sure unit-norm if
∥x∥2 = 1 almost surely.
Definition D.4 (cx-bounded process). For an index set I of the form {t ∈ N : t ≥ t0} for some
t0 ∈ N, the stochastic process (xt)t∈I is cx-bounded if x2

t ≤ cx almost surely for all t ∈ I .

E REGRET BOUND

Denote the regret of a policy πk over episode k by

∆k := EM,alg[V
π∗

M (sk,0)− V πk

M (sk,0],

where π∗ is an optimal policy for M . The goal of the agent is equivalent to minimizing the expected
total regret up to episode K

Regret(K, alg) := Ealg

K∑
k=1

∆k, (12)

where the subscript alg under the expectation indicates that policies are generated through algorithm
alg. Note that the expectation in Equation (12) is over the random transitions and rewards, the
possible randomization in the learning algorithm alg, and also the unknown MDP M based on the
agent designer’s prior beliefs.
Assumption E.1 (Finite-horizon time-inhomogeneous MDPs). We consider a problem class that
can be formulated as a special case of the general formulation in Section 2. Assume the state space
factorizes as S = S0 ∪ S1 ∪ S2 ∪ · · · ∪ SH−1 where the state always advances from some state
st ∈ St to st+1 ∈ St+1 and the process terminates with probability 1 in period H . For notational
convenience, we assume each set S0 = . . . = SH−1 = X contains an equal number of elements
that is X . That is |S| = |X |H .
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We study the regret of HyperFQI under the following Bayesian model for the MDP M .
Assumption E.2 (Independent Dirichlet prior for outcomes). For each (s, a) ∈ S ×A, the outcome
distribution is drawn from a Dirichlet prior

Psa ∼ Dirichlet(α0,sa)

for α0,sa ∈ RS
+ and each Psa is drawn independently across (s, a). Assume there is β ≥ 3 such that

1⊤α0,sa = β for all (s, a).

A key observation that enable the regret analysis is that hypermodel can approximate the posterior
distribution of the optimal Q∗-values with low computation cost. This is formalized in the following.
Lemma E.3 (Approximate posterior variance (restated)). For mk defined in Equation (6) with z ∼
Uniform(SM−1). For any k ≥ 1, a good event Gk(s, a) is defined as

Gk(s, a) =
{
∥mk(s, a)∥2 ∈

(
σ2

Nk,sa + β
,

3σ2

Nk,sa + β

)}
.

Then the joint event ∩(s,a,k)∈S×A×[K]Gk(s, a) holds w.p. at least 1− δ if M ≃ log(SAK/δ).

To prove Lemma 5.2, we develop a new probability tools for sequential random projection in Ap-
pendices F and G. This is a technical contribution, which maybe of independent interest. Once
the approximation lemma is established, the rest proof can be reduced to the Bayesian analysis of
RLSVI in Osband et al. (2019b).

We want to emphsize a key argument that enables efficient deep exploration is the stochastic opti-
mism of HyperFQI.
Definition E.4 (Stochastic optimism). A random variable X is stochastically optimistic with respect
to another random variable Y , written X ≥SO Y , if for all convex increasing functions u : R→ R

E[u(X)] ≥ E[u(Y )].

We show that HyperFQI is stochastic optimistic in the sense that it overestimates the value of each
action in expectation. This is formalized in the following lemma.
Proposition E.5. If Assumption E.2 holds and HyperFQI is applied with parameters parameters
(M,µ0, σ, σ0) satisfying M ≃ log(SAK), (σ2/σ2

0) = β, σ ≥
√
3H and mins,a µ0,s,a ≥ H ,

fθk(s, a, ξ) |Hk ≥SO Q∗
M (s, a)|Hk. (13)

for any history Hk and state-action pair (s, a) ∈ S0 ×A given the event Ak defined in Lemma 5.2
holds.

F PROOF OF THE KEY APPROXIMATE POSTERIOR LEMMA 5.2

Now we provide the key theorem that enable the whole analysis. This is a novel probabil-
ity tool for sequential random projection. We use short notation for [n] = {1, 2, . . . , n} and
T = {0, 1, . . . , T} = {0} ∪ [T ].
Theorem F.1 (Sequential random projection in adaptive process). Let (Ft)t≥0 be a filtration. For
any fixed ε ∈ (0, 1) any fixed s ∈ R+, let s ∈ RM be an F0-measurable random vector satisfies
E[∥s∥2] = s2 and |∥s∥2 − s2| ≤ (ε/2)s2.

Let (zt)t≥1 ⊂ RM be a stochastic process adapted to filtration (Ft)t≥1 such that it is
√

c0/M -sub-
Gaussian and each zt is unit-norm. Let (xt)t≥1 ⊂ R be a stochastic process adapted to filtration
(Ft−1)t≥1 such that it is cx-bounded. Here, c0 and cx are absolute constants.

If the following condition is satisfied

M ≥ 16c0(1 + ε)

ε2

(
log

(
1

δ

)
+ log

(
1 +

cxT

s2

))
,

we have, with probability at least 1− δ

∀t ∈ T , (1− ε)

(
s2 +

t∑
i=1

x2
i

)
≤ ∥s+

t∑
i=1

xizi∥2 ≤ (1 + ε)

(
s2 +

t∑
i=1

x2
i

)
.
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Remark F.2. We say this is an “sequential random projection” argument because one can relate
Theorem F.1 to the traditional random projection setting where Π = (z1, . . . , zT ) ∈ RM×T is
a random projection matrix and x = (x1, . . . , xT )

⊤ ∈ RT is the vector to be projected. When
s = 0 and s = 0, this is essentially an analog of distributional JL lemma (discribed in Lemma H.3)
while the traditional JL lemma are NOT handle the sequential dependence structure in our setup.
Therefore, Theorem F.1 also an innovation in the literature of random projection and sequential
analysis.
Remark F.3. The unit-norm condition in the Theorem F.1 is easy to remove. Then, more distribution
of random vectors can be covered in our probability framework. We leave it for the future work.

Example F.4 (Stylized stochastic process satisfying the condition in Theorem F.1.). If s is a random
vector that is independent with all following random variables and (zt)t≥1 are i.i.d random vec-
tors, each sampled from U(SM−1). The stochastic process (xt)t≥1 has the following dependence
structure with the process (zt)t≥1:

• xt is dependent on s, x1, z1, . . . , xt−1, zt−1.

• zt is independent of s, x1, z1, . . . , xt−1, zt−1, xt

Define the filtration (Ft)t≥0 where Ft = σ(s, x1, z1, . . . , xt, zt, xt+1). From Example I.2, we

notice z∼U(SM−1) is (1/
√
M)-sub-Gaussian random vector. Thus, (zt)t≥1

i.i.d.∼ U(SM−1) is a
stochastic process adapted to (Ft)t≥1 and is 1/

√
M -sub-Gaussian and unit-norm.

Proof of Lemma 5.2. Take a look at the formula in Equation (6) and apply Theorem F.1 with se-
quence (zℓ,t)ℓ≥1,≥H−1t≥0 and (xℓ,t)ℓ≥1,≥H−1t≥0 s.t. xℓ,t = σ1t∈Eℓ,sa

and s = βσ0z0,sa, s = βσ0

for each state action pair (s, a) ∈ S × A. Then taking union bound over the set S × A yields the
results.

G PROOF OF SEQUENTIAL RANDOM PROJECTION

In this section, we describe our technical innovation in a probability statement for sequential random
projection. Based on a novel and careful construction of stopped process that controls the deviation
behavior of the good event on concentration, we adopt the method of mixtures (Peña et al., 2009)
in self-normalized process to derive a probability tool stated in Theorem F.1. This bound is new to
the whole literature of random projection and also sequential analysis, which may be of independent
interest.

First, we state a Peña et al. (2009) type self-normalized bound that would be useful to prove our
main theoretical contribution of sequential random projection in Theorem F.1.

Theorem G.1 (Any-time self-normalized concentration bound). Let (Ft)t≥0 be a filtration and
{(At, Bt), t ≥ 1} be a sequence of pairs of random variables satisfying that for all λ ∈ R{

exp

(
λAt −

λ2

2
B2

t

)
,Ft, t ≥ 1

}
is a supermartingale with mean ≤ 1. (14)

Then, for any fixed positive sequence (Lt)t≥1, with probability at least 1− δ

∀t ≥ 1, |At| ≤

√√√√2 (B2
t + Lt) log

(
1

δ

(B2
t + Lt)

1/2

L
1/2
t

)
(15)

The proof of Theorem G.1 can be found in Appendix G.2.

G.1 SEQUENTIAL RANDOM PROJECTION ARGUMENT IN THEOREM F.1

Before dig into the proof, we identify some important sequence structure and also clarity our proof
idea in a intuitive level.
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G.1.1 PREPARATION FOR THE PROOF OF THEOREM F.1

For t ∈ T , let the short notation be

Yt = ∥s+
t∑

i=1

xizi∥2 −
(
s2 +

t∑
i=1

x2
i

)
.

and St = s2 +
∑t

i=1 x
2
i . Our key observation is that for any t ∈ [T ]

∥s+
t∑

i=1

xizi∥2 = ∥s+
t−1∑
i=1

xizi + xtzt∥2

= ∥s+
t−1∑
i=1

xizi∥2 + 2

(
s+

t−1∑
i=1

xizi

)⊤

xtzt + x2
t∥zt∥2

and thus we have the following relationship between Yt and Yt−1

Yt − Yt−1 = 2xtz
⊤
t (s+

t−1∑
i=1

xizi) + x2
t

(
∥zt∥2 − 1

)
.

Since zt is unit-norm, we can further simplify the exposition

Yt − Yt−1 = 2xtz
⊤
t (s+

t−1∑
i=1

xizi). (16)

Another key observation is that the difference term in Equation (16) depends on the (s+
∑t−1

i=1 xizi)
that is Ft−1-measurable. We can control the deviation of the difference Yt − Yt−1 by if we already
have information in the history-dependent term. Intuitively, once the concentration behavior is bad,
it is highly possible to be bad for the later time index. To mathematically formalize this intuition,
we introduce a definition of good event and stopping time for analysis.
Definition G.2 (Good event). For each time t ∈ T , we introduce the good event Et under which
the strongly concentration behavior is guaranteed, suppose ε ∈ (0, 1),

Et(ε) =

{
(1− ε)

(
s2 +

t∑
i=1

x2
i

)
≤ ∥s+

t∑
i=1

xizi∥2 ≤ (1 + ε)

(
s2 +

t∑
i=1

x2
i

)}
.

With short notation,
Et(ε) = {|Yt| ≤ εSt} .

We also define the stopping time as the first time the bad event happens, i.e. the good event in
Definition G.2 violates.
Definition G.3 (Stopping time). For any fixed ε, we define the stopping time

τ(ε) = min{t ∈ T : ¬Et(ε)}.

Based on the stopping time, we construct a stopped process. For t ∈ [T ], define the stopped
difference term

Xτ
t = (Yt − Yt−1)1t≤τ (17)

such that the process (Xτ
t )t≥1 is adapted to the filtration (Ft)t≥1.

Claim G.4. The stopping time τ defined in Definition G.3. Let (Xτ
t )t≥1 be the stochastic process

defined in Equation (17) which is adapted to (Ft)t≥0. Let Aτ
t =

∑t
i=1 X

τ
i . Further denote (Bτ

t )
2 =∑t

i=1(C
τ
i )

2 with

(Cτ
t )

2 :=
4c0
M

x2
t (1 + ε)St−11t≤τ .

If the (Ft)t≥1-adapted process (zt)t≥1 is (
√

c0
M )-sub-Gaussian and each zt is unit-norm, then for

any fixed λ ∈ R

Mτ
t (λ) = exp

(
λAτ

t −
λ2

2
(Bτ

t )
2

)
, t ≥ 1

is a supermartingale.
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Proof of Claim G.4. Note 1t≤τ = 1 − 1τ≤t−1 is Ft−1-measurable. Thus, the vector (s +∑t−1
i=1 xizi)1t≤τxt is Ft−1-measurable. By the condition on process (zt)t≥1, we conclude from

the definition of conditionally sub-Gaussian from Definition D.2 that

E[exp(λXτ
t ) | Ft−1] = E[exp(2λxt⟨zt, s+

t−1∑
i=1

xizi⟩1t≤τ ) | Ft−1]

≤ exp

(
λ2

2
(4c0/M)x2

t∥s+
t−1∑
i=1

xizi∥21t≤τ

)

≤ exp

(
λ2

2
(4c0/M)x2

t (1 + ε)St−11t≤τ

)
= exp

(
λ2

2
(Cτ

t )
2

)
where the last inequality is because of the stopping time argument.

We also need the following lemma in the intial treatment of the proof of Theorem F.1.

Lemma G.5 (Trigger lemma). For any sequence of event (Et, t ∈ T ), define the stopping time τ as
the first time t the event Et is violated, i.e.

τ = min{t ∈ T : ¬Et}.
Then, the following equality holds for all t ∈ T ,

{τ ≤ t} = ¬Et∧τ . (18)

G.1.2 PROOF OF THEOREM F.1

Now we are ready to the proof.

Proof of Theorem F.1. We apply Lemma G.5 for Et = Et(ε) and it follows

P (∃t ∈ T ,¬Et(ε)) = P(τ ≤ T ) = P (¬ET∧τ (ε))

= P (|YT∧τ | ≥ εST∧τ )

= P

(
|Y0 +

T∑
t=1

(Yt − Yt−1)1t≤τ | ≥ εST∧τ

)
(19)

By the construction of stopped process YT∧τ − Y0 =
∑T

t=1 X
τ
t = Aτ

T . Then, our goal, from
Equation (19), becomes to upper bound the RHS of Equation (20),

P (∃t ∈ T , (¬Et)) = P (|Y0 +Aτ
T | ≥ εST∧τ ) (20)

By Claim G.4, the process (Aτ
t , B

τ
t )t≥1 with Aτ

t =
∑t

i=1 X
τ
i =

∑t
i=1(Yt − Yt−1)1t≤τ and

(Bτ
t )

2 =
∑t

i=1(4c0/M)x2
t (1 + ε)St−11t≤τ satisfy the condition of Theorem G.1. Then we can

apply the Theorem G.1: with probability at least 1− δ,

∀t ≥ 1, |Aτ
t | ≤

√√√√2 ((Bτ
t )

2 + Lt) log

(
1

δ

((Bτ
t )

2 + Lt)
1/2

L
1/2
t

)

Since by the condition in Theorem F.1, we have |Y0| ≤ (ε/2)s2. Now we want to argue that for any
fixed ε ∈ (0, 1), with suitable choice of LT and M , we have with probability at least 1− δ

|Y0 +Aτ
T | ≤

√√√√2 ((Bτ
T )

2 + LT ) log

(
1

δ

((Bτ
T )

2 + LT )
1/2

L
1/2
T

)
+ (ε/2)s2

︸ ︷︷ ︸
(I)

≤ εST∧τ . (21)
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Claim G.6. With some computations, we found the following configuration suffices for Equa-
tion (21):

LT ≤
4(1 + ε)s4

2M
and M ≥ (16(1 + ε)/ε2)

(
log

(
1

δ

)
+ log

(
1 +

T

s2

))
.

Proof of Claim G.6. Recall the definition

St = s2 +

t∑
t=1

x2
i

We first calculate the term (Bτ
T )

2 by our construction:

(Bτ
T )

2 ≤ 4c0
M

T∧τ∑
t=1

x2
t ((1 + ε)St−1)

=
4c0(1 + ε)

M

T∧τ∑
t=1

x2
t (ST∧τ − (ST∧τ − St−1))

≤ 4c0(1 + ε)

M
(ST∧τ − s2)ST∧τ

Then, the almost sure upper bound of (Bτ
T )

2 assuming x2
t ≤ cx is

(Bτ
T )

2 ≤ 4c0(1 + ε)

M

T∑
t=1

(s2 + (t− 1)cx) ≤
4c0(1 + ε)

M
(s2T + cxT

2/2)

Since (a+ b)2 ≤ (1 + λ)(a2 + (1/λ)b2) for all λ,

(I)2 ≤ (1 + λ)

(
2
(
B2

T + LT

)
log

(
1

δ

(
B2

T + LT

)1/2
L
1/2
T

)
+

ε2s4

4λ

)

Let LT = cℓ/M and c = 4c0(1 + ε) and ℓ to be determined.

(I)2 ≤ (1 + λ)

(
2
(
B2

T + LT

)
log

(
1

δ

(
B2

T + LT

)1/2
L
1/2
T

)
+

ε2s4

4λ

)

≤ (1 + λ)

(
2c

M

(
(ST∧τ − s2)ST∧τ + ℓ

)
log

(
1

δ

√
(s2T + cxT 2/2 + ℓ)

ℓ

)
+

ε2s4

4λ

)

Let M = (2c/m) log

(
1
δ

√
(s2T+cxT 2/2)+ℓ

ℓ

)
, we can simplify

(I)2 ≤ (1 + λ)

(
m((ST∧τ − s2)ST∧τ + ℓ) +

ε2s4

4λ

)
Let ℓ = s4/2cx, m = ε2/(1 + λ) and λ = 1, we have

(I)2 ≤ ε2((ST∧τ − s2)ST∧τ + s4/2 + s4/2) ≤ ε2S2
T∧τ

where the last inequality is because s2 = S0 ≤ ST∧τ and s4 ≤ s2ST∧τ . The conclusion is that we
could select

M ≥ (16c0(1 + ε)/ε2) log

(
1

δ

√
2s2cxT + c2xT

2 + s4

s4

)

= (16c0(1 + ε)/ε2)

(
log

(
1

δ

)
+ log

(
1 +

cxT

s2

))
and the auxiliary variable

LT ≤
4c0(1 + ε)s4

2Mcx
.
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G.2 PROOF OF THEOREM G.1: METHOD OF MIXTURES

Robbins-Siegmund method of mixtures (Robbins & Siegmund, 1970) originally is developed to
evaluate boundary crossing probabilities for Brownian motion. The method was further developed
in the general theory for self-normalized process (de la Peña, Klass, and Lai, 2004; Peña, Lai, and
Shao, 2009; Lai, 2009).
Remark G.7 (Essential idea of Laplace approximation). If we integrate the exponential of a function
that has a pronounced maximum, then we can expect that the integral will be close to the exponential
function of the maximum. In our case, let

Mt(λ) = exp

(
λAt −

λ2

2
B2

t

)
Informally, with this principle of Laplace approximation, we would have

max
λ

Mt(λ) ≈
∫
Ω

Mt(λ)dh(λ)

where h is some measure on Ω.

The main benefit of replacing the maximum maxλ Mt(λ) with an integral M̄t :=
∫
Ω
Mt(λ)dh(λ)

is that we can handle the expectation E[M̄t] easier while we don’t know the upper bound on
E[maxλ Mt(λ)]. This is formalized in the following lemma.
Lemma G.8. Let (ht) be a sequence of probability measures on Ω. If (Mt(λ),Ft, t ≥ 1) is a
supermartingale with E[M1(λ)] ≤ 1 for all λ ∈ Ω, then for any t ≥ 1, the integrated random
variable M̄t =

∫
Ω
Mt(λ)dht(λ) has expectation E[M̄t] ≤ 1.

Further, let τ be a stopping time with respect to filtration (Ft)t≥0, i.e. {τ ≤ t} ∈ Ft,∀t ≥ 0. Then
Mτ (λ) is almost surely well-defined with expectation E[Mτ (λ)] ≤ 1 as well as E[M̄τ ] ≤ 1.

Proof. Using Fubini’s theorem and the fact that Mt(λ) is a supermartingale with E[Mt(λ)] ≤
E[M1(λ)] = 1, we have

E[M̄t] =

∫
Ω

E[Mt(λ)]dht(λ) ≤ 1.

For the expectation of stopped version Mτ (λ) and M̄τ , we apply (supermartingale) optional sam-
pling theorem.

Finally, we are comfortable to drive the proof of the self-normalized concentration bounds.

Proof of Theorem G.1. Let Λ = (Λt) be a sequence of independent Gaussian random variable with
densities

fΛt
(λ) = c(Lt) exp(−

1

2
Ltλ

2)

where c(A) =
√
A/2π is a normalizing constant. We explicitly calculate M̄t for any t ≥ 1,

M̄t =

∫
R
exp

(
λAt −

λ2

2
B2

t

)
fΛt

(λ)dλ

=

∫
R
exp

(
−1

2

(
λ− At

B2
t

)2

B2
t +

1

2

A2
t

B2
t

)
fΛt

(λ)dλ

= exp

(
1

2

A2
t

B2
t

)∫
R
exp

(
−1

2

(
λ− At

B2
t

)2

B2
t

)
fΛt(λ)dλ

= c (Lt) exp

(
1

2

A2
t

B2
t

)∫
R
exp

(
−1

2

((
λ−At/B

2
t

)2
B2

t + λ2Lt

))
dλ.

Completing the square yields(
λ− At

B2
t

)2

B2
t + λ2Lt =

(
λ− At

Lt +B2
t

)2 (
Lt +B2

t

)
+

A2
t

B2
t

− A2
t

Lt +B2
t

.
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By the change of variables λ′ = λ−At/(Lt +B2
t ) in the following (i),

M̄t = c (Lt) exp

(
1

2

A2
t

Lt +B2
t

)∫
R
exp

(
−1

2

(
λ− At

Lt +B2
t

)2 (
Lt +B2

t

))
dλ

(i)
= c (Lt) exp

(
1

2

A2
t

Lt +B2
t

)∫
R
exp

(
−1

2

(
λ2
(
Lt +B2

t

)))
dλ

=
c (Lt)

c (Lt +B2
t )

exp

(
1

2

A2
t

Lt +B2
t

)
.

A final application of Markov’s inequality yields

P

|Aτ | ≥

√√√√2 (Lτ +B2
τ ) log

(
1

δ

(Lτ +B2
τ )

1/2

L
1/2
τ

)
= P

[
c (Lτ )

c (Lτ +B2
τ )

exp

(
1

2

A2
τ

Lτ +B2
τ

)
≥ 1

δ

]
≤ δ · E

[
c (Lτ )

c (Lτ +B2
τ )

exp

(
1

2

A2
τ

Lτ +B2
τ

)]
i)
≤ δ · E

[
M̄τ

] (ii)
≤ δ,

where (i) uses the inequality for M̄τ derived above, and (ii) follows from Lemma G.8.

To get the anytime result in Theorem G.1, we define the stopping time

τ = min

t ≥ 1 : |At| ≥

√√√√2 (Lt +B2
t ) log

(
1

δ

(Lt +B2
t )

1/2

L
1/2
t

)
With an application of extended version of Lemma G.5, and applying the previous inequality yields

P

∃t ≥ 1, |At| ≥

√√√√2 (Lt +B2
t ) log

(
1

δ

(Lt +B2
t )

1/2

L
1/2
t

)
= P

τ <∞, |Aτ | ≥

√√√√2 (Lτ +B2
τ ) log

(
1

δ

(Lτ +B2
τ )

1/2

L
1/2
τ

)
≤ P

|Aτ | ≥

√√√√2 (Lτ +B2
τ ) log

(
1

δ

(Lτ +B2
τ )

1/2

L
1/2
τ

)
≤ δ.

This completes the proof.

H PROOF OF ARGUMENT FOR THE PRIOR MODEL

This section provide a new tool for random projection, dealing with the initial concentration in the
prior model.
Theorem H.1 (High-dimensional Hanson-Wright inequality). Let X1, . . . , Xn be independent,
mean zero random vectors in RM , each Xi is Ki-subGaussian. Let A = (aij) be an n× n matrix.
Then for any t ≥ 0, we have

P

| n∑
i,j:i ̸=j

aij⟨Xi, Xj⟩| ≥ t

 ≤ 2 exp

(
−min

{
t2

64K4M∥A∥2F
,

t

8K2∥A∥2

})
where K = maxi Ki.
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Remark H.2. This is an high-dimension extension of famous Hanson-Wright inequality (Rudelson
& Vershynin, 2013). The Theorem H.1 with exact constant is new in the literature, which maybe of
independent interest. Our proof technique generalizes from (Rudelson & Vershynin, 2013).
Lemma H.3 (Distributional JL lemma (Johnson & Lindenstrauss, 1984)). For any 0 < ε, δ < 1/2
and d ≥ 1 there exists a distribution Dε,δ on RM×d for M = O

(
ε−2 log(1/δ)

)
such that for any

x ∈ Rd

P
Π∼Dε,δ

(
∥Πx∥22 /∈

[
(1− ε)∥x∥22, (1 + ε)∥x∥22

])
< δ

Lemma H.4. We claim that the following construction of the random projection matrix Π ∈ RM×d

with M ≥ 64ε−2 log(1/δ) satisfy the Lemma H.3: Let Π = (z1, . . . , zd) be a random matrix with
each zi ∼ Pz, i.e., uniformly sampled over the unit sphere SM−1.

Proof. Each zi ∼ Pz = U(SM−1) is a 1√
M

-sub-Gaussian random vector with mean zero. Let
x ∈ Rd be the vector to be projected. By the construction of Π,

∥Πx∥2 − ∥x∥2 =
∑

1≤i ̸=j≤d

xixj⟨zi, zj⟩︸ ︷︷ ︸
off-diagonal

+

d∑
i=1

x2
i (∥zi∥2 − 1)︸ ︷︷ ︸
diagonal

The diagonal term is zero due to the unit sphere SM−1. The JL lemma is then a consequence of
bounding the following

PΠ

(
|off-diagonal| ≥ ε∥x∥2

)
We apply Theorem H.1 with A = xx⊤ and t = ε∥x∥2. Since K = 1/

√
M and ∥A∥F = tr(xx⊤) =

∥x∥2, ∥A∥2 = ∥x∥2, then

P

| ∑
1≤i ̸=j≤d

xixj⟨zi, zj⟩| ≥ ε∥x∥2
 ≤ 2 exp

(
−min

{
ε2∥x∥4

64K4M∥A∥2F
,

ε∥x∥2
8K2∥A∥2

})
≤ 2 exp

(
−M min

{
ε2/64, ε/8

})
.

This implies that to get the RHS upper bound by δ, we need

M ≥ 64ε−2 log(2/δ).

H.1 PROOF OF THEOREM H.1

Proof. We prove the one-side inequality and the other side is similar by replacing A with −A. Let

S =

n∑
i,j:i ̸=j

aij⟨Xi, Xj⟩. (22)

Step 1: decoupling. Let ι1, . . . , ιd ∈ {0, 1} be symmetric Bernoulli random variables, (i.e., P(ιi =
0) = P(ιi = 1) = 1/2) that are independent of X1, . . . , Xn. Since

E[ιi(1− ιi)] =

{
0, i = j,

1/4, i ̸= j,

we have S = 4Eι[Sι], where

Sι =

n∑
i,j=1

ιi(1− ιj)aij⟨Xi, Xj⟩

and the expectation Eι[·] is the expectation taken with respect to the random variables ιi. By Jensen’s
inequality, we have

E[expλS] ≤ EX,ι[exp 4λSι].
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Let Λι = {i ∈ [d] : ιi = 1}. Then we write

Sι =
∑
i∈Λι

∑
j∈Λc

ι

aij⟨Xi, Xj⟩ =
∑
j∈Λc

ι

⟨
∑
i∈Λι

aijXi, Xj⟩.

Taking expectation over (Xj)j∈Λc
ι

(i.e., conditioning on (ιi)i=1,...,d and (Xi)i∈Λι
), it follows that

E(Xj)j∈Λc
ι
[exp 4λSι] =

∏
j∈Λc

ι

E(Xj)j∈Λc
ι
[exp 4λ⟨

∑
i∈Λι

aijXi, Xj⟩]

by the independence among (Xj)j∈Λι . By the assumption that Xi are independent sub-Gaussian
with mean zero, we have

E(Xj)j∈Λc
ι
[exp 4λSι] ≤ exp

∑
j∈Λc

ι

8λ2K2
j ∥
∑
i∈Λι

aijXi∥2
 =: exp

(
8λ2σ2

ι

)
.

Thus we get
EX [exp 4λSι] ≤ EX [exp 8λ2σ2

ι ].

Step 2: reduction to Gaussian random variables. For j = 1, . . . , n, let gj be independent
N
(
0, 16K2

j I
)

random variables in RM that are independent of X1, . . . , Xn and ι1, . . . , ιn. De-
fine

T :=
∑
j∈Λc

ι

⟨gj ,
∑
i∈Λι

aijXi⟩.

Then, by the definition of Gaussian random variables in RM , we have

Eg[e
λT ] =

∏
j∈Λc

ι

Eg[exp ⟨gj , λ
∑
i∈Λι

aijXi⟩]

= exp

8λ2
∑
j∈Λc

ι

K2
j ∥
∑
i∈Λι

aijXi∥2
 = exp

(
8λ2σ2

ι

)
So it follows that

EX [exp 4λSι] ≤ EX,g[expλT ].

Since T =
∑

i∈Λι
⟨∑j∈Λc

ι
aijgj , Xi⟩, by the assumption that Xi are independent sub-Gaussian with

mean zero, we have

E(Xi)i∈Λι
[expλT ] ≤ exp

λ2

2

∑
i∈Λι

K2
i ∥
∑
j∈Λc

ι

aijgj∥2
 ,

which implies that

EX [exp 4λSι] ≤ Eg[exp
(
λ2τ2ι /2

)
] (23)

where τ2ι =
∑

i∈Λι
K2

i ∥
∑

j∈Λc
ι
aijgj∥2. Note that τ2ι is a random variable that depends on (ιi)

d
i=1

and (gj)
n
j=1.

Step 3: diagonalization. We have gj =
∑M

k=1 ⟨gj , ek⟩ ek and

τ2ι =
∑
i∈Λι

K2
i

∥∥∥∥∥∥
∑
j∈Λc

ι

aijgj

∥∥∥∥∥∥
2

=
∑
i∈Λι

K2
i

∥∥∥∥∥∥
M∑
k=1

∑
j∈Λc

ι

aij ⟨gj , ek⟩

 ek

∥∥∥∥∥∥
2

=

M∑
k=1

∑
i∈Λι

∑
j∈Λc

ι

Kiaij ⟨gj , ek⟩

2

=

M∑
k=1

∥PιÃ(I − Pι)Gk∥2
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where the last second step follows from Parseval’s identity. Gjk := ⟨gj , ek⟩ , j = 1, . . . , n, are
independent N

(
0, 16K2

j

)
random variables. Gk = (G1k, . . . , Gnk)

⊤ ∈ Rn. Ã = (ãij)
n
i,j=1 with

ãij = Kiaij . Let Pι ∈ Rn×n be the restriction matrix such that Pι,ii = 1 if i ∈ Λι and Pι,ij = 0
otherwise.

Define normal random variables Zk = (Z1k, . . . , Znk)
⊤ ∼ N(0, I) for each k = 1, . . . ,M . Then

we have Gk
D
= Γ1/2Zk where Γ = 16 diag(K2

1 , . . . ,K
2
n).

Let Ãι := PιÃ(I − Pι). Then by the rotational invariance of Gaussian distributions, we have

M∑
k=1

∥ÃιGk∥2 D
=

M∑
k=1

∥ÃιΓ
1/2Zk∥2 D

=

M∑
k=1

n∑
j=1

s2jZ
2
jk

where s2j , j = 1, 2, . . . , n are the eigenvalues of Γ1/2Ã⊤
ι ÃιΓ

1/2.

Step 4: bound the eigenvalues. It follows that

max
j∈[n]

s2j = ∥ÃιΓ
1/2∥2op ≤ 16K4∥A∥22.

In addition, we also have
n∑

j=1

s2j = tr(Γ1/2Ã⊤
ι ÃιΓ

1/2) ≤ 16K4∥A∥2F

and
∑M

k=1

∑n
j=1 s

2
j ≤ 16MK4∥A∥2F . Invoking Equation (23), we get

EX

[
e4λSι

]
≤

M∏
k=1

n∏
j=1

EZ

[
exp

(
λ2s2jZ

2
jk/2

)]
Since Z2

jk are i.i.d. χ2
1 random variables with the moment generating function E[etZ

2
jk ] = (1 −

2t)−1/2 for t < 1/2, we have

EX

[
e4λSι

]
≤

M∏
k=1

n∏
j=1

1√
1− λ2s2j

if max
j

λ2s2j < 1.

Using (1− z)−1/2 ≤ ez for z ∈ [0, 1/2], we get that if 16K4∥A∥22λ2 < 1, then

EX

[
e4λSι

]
≤ exp

λ2
M∑
k=1

n∑
j=1

s2j

 ≤ exp
(
16λ2K4∥A∥2F

)
.

Note that the last inequality is uniform in ι. Taking expectation with respect to δ, we obtain that

EX

[
eλS
]
≤ EX,ι

[
e4λSι

]
≤ exp

(
16λ2MK4∥A∥2F

)
whenever 0 < λ < (4K2∥A∥2)−1.

Step 5: Conclusion. Step 5: conclusion. Now we have

P(S ≥ t) ≤ exp
(
−λt+ 16λ2MK4∥A∥2F

)
for 0 < λ ≤

(
4K2∥A∥2

)−1

Optimizing in λ, we deduce that there exists a universal constant C > 0 such that

P(S ≥ t) ≤ exp

[
−min

(
t2

64MK4∥A∥2F
,

t

8K2∥A∥2

)]
.
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I VERIFY THE ASSUMPTION FOR SOME TYPICAL DISTRIBUTIONS

Lemma I.1 (MGF of Beta distribution). For any α, β ∈ R+ with α ≤ β. Random variable
X ∼ Beta(α, β) has variance Var (X) = αβ

(α+β)2(α+β+1) and the centered MGF E[exp(λ(X −
E[X]))] ≤ exp(λ

2Var(X)
2 ).

Example I.2 (Uniform over sphere U(SM−1)). Given a random vector z ∼ U(SM−1), for any
v ∈ SM−1, we have

⟨z, v⟩ ∼ 2Beta

(
M − 1

2
,
M − 1

2

)
− 1.

Thus, by Lemma I.1, we confirm z is (1/
√
M)-sub-Gaussian random vector.

Proof of Lemma I.1. For X ∼ Beta(α, β), Skorski (2023) gives a novel Order 2 Recurrence for
Central Moments.

E [(X − E[X])p] =
(p− 1)(β − α)

(α+ β)(α+ β + p− 1)
· E
[
(X − E[X])p−1

]
+

(p− 1)αβ

(α+ β)2(α+ β + p− 1)
· E
[
(X − E[X])p−2

]
Let mp := E[(X−E[X])p]

p! , When α ≤ β, it follows that mp is non-negative when p is even, and
negative otherwise. Thus, for even p,

mp ≤
1

p
· αβ

(α+ β)2(α+ β + p− 1)
mp−2 ≤

Var (X)

p
·mp−2.

Repeating this p/2 times and combining with mp ⩽ 0 for odd p, we obtain

mp ⩽

{
Var(X)

p
2

p!! p even
0 d odd

.

Using p!! = 2p/2(p/2)! for even p, for t ⩾ 0 we obtain

E[exp(λ[X − E[X]])] ⩽ 1 +

+∞∑
p=2

mpλ
p = 1 +

+∞∑
p=1

(λ2Var (X)/2)p/p! = exp

(
λ2Var (X)

2

)
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