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Abstract

State abstraction is a key tool for scaling reinforcement learning (RL) by reduc-
ing the complexity of the underlying Markov Decision Process (MDP). Among
abstraction methods, bisimulation has emerged as a principled metric-based ap-
proach, yet its suboptimality properties remain less understood compared to model
irrelevance abstractions. In this work, we clarify the relationship between these two
abstraction families: while model irrelevance implies bisimulation, the converse
does not hold, leading to coarser abstractions under bisimulation. We provide
the first suboptimality bounds for policies derived from approximate bisimulation
abstractions, analyzing both “naive” and “smart” refinement strategies for lifting
abstract policies back to the original MDP. Our theoretical results show that smart
refinement enjoys strictly better suboptimality guarantees, and our experiments on
Garnet MDPs confirm that this advantage translates into significant performance
improvements. We further explain this gap through the action gap phenomenon in
RL, which helps account for why some refinement strategies yield substantially
better behavior in practice.

1 Introduction

Abstraction plays a crucial role in scaling reinforcement learning (RL) to large or complex environ-
ments by simplifying the underlying Markov Decision Process (MDP). Among various abstraction
techniques, the bisimulation metric introduced by [3] has emerged as a principled and widely used
approach. This metric groups states based on their behavioral similarity, offering a quantifiable way
to construct abstract MDPs that preserve decision-relevant structure. Its effectiveness has also been
demonstrated as an auxiliary task for noise-robust representation learning [9] and as a generalization
framework for goal-conditioned RL [4].

Despite its popularity, the suboptimality incurred by using policies derived from bisimulation-based
abstractions remains largely unexplored. One reason for this gap may be the common assumption
that bisimulation-based abstraction is a variant of model irrelevance abstraction, for which policy
performance guarantees are well established. However, a key observation—and the starting point
of our work—is that model irrelevance implies bisimulation equivalence, but not vice versa. As
a result, bisimulation induces coarser abstractions, and existing suboptimality bounds for model
irrelevance do not necessarily apply.

In this paper, we provide the first analysis of suboptimality bounds for policies derived from
bisimulation-based abstract MDPs. We further investigate two natural policy refinement approaches
for transferring abstract policies back to the original MDP. Interestingly, while both methods are valid,
they lead to different theoretical suboptimality guarantees. Our empirical results reveal that this diver-
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gence is not merely theoretical; in practice, one method consistently outperforms the other—often by
a wide margin.

We conclude by discussing how the action gap phenomenon in RL can be used to explain this
observation, offering a new perspective on why some refinement strategies yield better performance
in practice. Together, our results highlight the importance of carefully considering both the abstraction
method and the policy refinement strategy when using bisimulation in RL.

2 Preliminaries

In this section, we introduce the notation and concepts we use in this paper.

An MDP is defined by the tuple M = (S,A,P, r, γ). Here, S denotes a finite set of states, and
A represents a finite set of actions. The transition probability function P : S × A → ∆S

1 gives
the probability P(s′|s, a) of reaching state s′ from state s after action a. The reward function
r : S ×A → [0, 1] defines the immediate reward r(s, a) received upon taking action a in state s. The
discount factor γ ∈ [0, 1) adjusts the weight of future rewards.

A common way to abstract MDPs is state aggregation, defined by the membership function ϕ : S →
Sϕ, mapping states of an MDP to abstract state. We define ϕ−1 to be the preimage of ϕ. Finally,
we define N : S → 2S as the neighborhood function which is a shorthand for ϕ−1(ϕ(·)), i.e., N (s)
returns the set of all states that share the same abstract label as s.

Then, we construct the abstract MDP Mϕ = (Sϕ,A,Pϕ, rϕ, γ) where:

Pϕ(z
′|z, a) = 1

|ϕ−1(z)|
∑

s∈ϕ−1(z)

∑
s′∈ϕ−1(z′)

P(s′|s, a), rϕ(z, a) =
1

|ϕ−1(z)|
∑

s∈ϕ−1(z)

r(s, a).

(1)

Next, we classify these abstractions based on the properties they satisfy. There are two common state
similarity notions in the literature: bisimulation and model irrelevance. In the exact case, these two
notions are equivalent to each other ([8], [3]):
Definition 1. A state abstraction ϕ is called a model-irrelevant abstraction or a bisimulation
abstraction if it satisfies the following condition:
ϕ(s1) = ϕ(s2) =⇒ (r(s1, a) = r(s2, a) and P(C|s1, a) = P(C|s2, a) ∀C ∈ Sϕ) ∀a ∈ A,

(2)
where P(C|·, a) is shorthand for

∑
s∈C P(s|·, a).

This is an exact and “lossless" abstraction of the original MDP, i.e., the abstract MDP is enough to
compute the optimal policy of the original MDP. However, this condition is very strict in practice and
cannot lead to coarse enough state abstractions. Hence, in the literature, approximate relaxations of
this condition have been introduced.

The first approximate abstraction is bisimulation-based and aggregates states that are close under
a bisimulation metric.2 While the bisimulation metric is not unique, we consider the bisimulation
metric obtained via the fixed-point iteration introduced by [3].
Definition 2. Bisimulation metric dfix is the least-fixed point of the following fixed-point iteration:

F (d)(s, s′) = max
a∈A

(1− γ)|r(s, a)− r(s′, a)|+ γTK(d)(P(·|s, a),P(·|s′, a)). (3)

where TK(d) : ∆S ×∆S → [0, 1] is the Kantorovich metric under metric d.
Remark 1. For a given d, TK(d)(P(·|s, a),P(·|s′, a)) can be computed via the following linear
program:

max
ui,i=1...|S|

|S|∑
i=1

(P(si|s, a)− P(si|s′, a))u(si)

subject to : ∀i, j. u(si)− u(sj) ≤ d(si, sj)

∀i. 0 ≤ u(si) ≤ 1

(4)

1∆S is the probability simplex over S.
2While this is actually a semimetric as it does not satisfy separation property, we will call it a metric as

common in literature.
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Note that Definition 2 is a special case of the metric introduced in [3] with weights of reward and
transition terms are set as (1− γ) and γ, respectively.
Definition 3. A state abstraction ϕ is an ϵB-approximate bisimulation abstraction if ϕ(s1) =
ϕ(s2) =⇒ dfix(s1, s2) ≤ ϵB for all s1, s2 in S.

The second approximate abstraction replaces the states’ similarity under a metric with conditions on
their reward and transitions functions.
Definition 4. A state abstraction ϕ is called an (ϵR, ϵP )-approximate model-irrelevant abstraction if
it satisfies the following condition:

ϕ(s1) = ϕ(s2) =⇒
(
|r(s1, a)−r(s2, a)| ≤ ϵR and

∑
C∈Sϕ

|P(C|s1, a)−P(C|s2, a)| ≤ ϵP
)
∀a ∈ A

(5)

3 Comparing Bisimulation and Model Irrelevance

Approximate bisimulation abstractions have long been considered an example of approximate model
irrelevance abstractions as they both consider one-step reward and transition probability similarities
between states and coincide in the exact (lossless) case ([8]). Potentially due to this understanding,
analysis of the suboptimality of the policies obtained from bisimulation abstractions has been
omitted in the literature so far to the best of our knowledge. However, in this section, we show
that model irrelevance implies bisimulation but the converse does not hold. More formally, we
show the following two lemmas with the first one stating that all model irrelevance abstractions are
bisimulation abstractions and the second one stating that there exists bisimulation abstractions that
cannot be captured by nontrivial model-irrelevance abstractions.
Lemma 1. If ϕ is an (ϵR, ϵP )-approximate model-irrelevant abstraction, it is also an ϵB-bisimulation
abstraction with ϵB = ϵR + γ

1−γ
ϵP
2 .

Lemma 2. For any ϵP < 2, there exists an arbitrarily small ϵB , an MDP M, and state aggregation
function ϕ such that ϕ is an ϵB-approximate bisimulation abstraction but there exists s1, s2 such that
ϕ(s1) = ϕ(s2) with

∑
C∈Sϕ

|P(C|s1, a)− P(C|s2, a)| > ϵP .

Proof of Lemma 1 Let s1 and s2 be any two states such that ϕ(s1) = ϕ(s2). Then, |R(s1, a)−
R(s2, a)| ≤ ϵR and

∑
C∈Sϕ

|P (C|s1, a)− P (C|s2, a)| ≤ ϵP for all actions a. Proving the lemma
requires showing d(s1, s2) ≤ ϵR + γ

1−γ · ϵP
2 . We establish this by induction on the number of

fixed-point iterations applied on the starting metric d0, which is zero everywhere.

The base case is trivial as d0(s1, s2) = 0. Next, assume that

ϕ(s1) = ϕ(s2) =⇒ dk(s1, s2) ≤ ϵR + γ
1−γ · ϵP

2 ,

and show that the same holds for dk+1(s1, s2).

Using the definition of TK in Remark 1,

TK(dk)(P (·|s1, a), P (·|s2, a)) = max
u∈U(dk)

|S|∑
i=1

(P (si|s1, a)− P (si|s2, a))u(si),

where U(dk) = {0 ≤ u ≤ 1 | u(si)− u(sj) ≤ dk(si, sj)}.

For a fixed u, define M+
C = maxsi∈C u(si), M−

C = minsi∈C u(si), and g(C) = 1
2 (M

+
C +M−

C ).
Then,

|S|∑
i=1

(P (si|s1, a)− P (si|s2, a))u(si) =
|S|∑
i=1

(u(si)−g(ϕ(si)))(P (si|s1, a)− P (si|s2, a))

+

|S|∑
i=1

(P (si|s1, a)− P (si|s2, a))g(ϕ(si)).
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For every si ∈ C,

|u(si)− g(ϕ(si))| = max{g(ϕ(si))− u(si), u(si)− g(ϕ(si))}
≤ max{g(ϕ(si))−M−

C , M+
C − g(ϕ(si))}

=
M+

C−M−
C

2

=
maxsi,sj∈C(u(si)−u(sj))

2

≤ maxsi,sj∈C dk(si,sj)

2

≤ 1
2

(
ϵR + γ

1−γ
ϵP
2

)
.

Thus,
|S|∑
i=1

|u(si)− g(ϕ(si))|(P (si|s1, a)− P (si|s2, a)) ≤ ϵR + γ
1−γ

ϵP
2 . (6)

Since 0 ≤ M−
ϕ(si)

≤ g(ϕ(si)) ≤ M+
ϕ(si)

≤ 1, we have 0 ≤ g(ϕ(si)) ≤ 1. Then, rewriting the
summation over clusters instead of states, we obtain:

|S|∑
i=1

(P (si|s1, a)− P (si|s2, a))g(ϕ(si)) =
∑
C∈Sϕ

(P (C|s1, a)− P (C|s2, a))g(C). (7)

This summation is maximized by picking g(C) = 1 when P (C|s1, a) ≥ P (C|s2, a) and g(C) = 0
otherwise. Since

∑
C∈Sϕ

(P (C|s1, a) =
∑

C∈Sϕ
(P (C|s2, a) = 1, this selection of g results in value

1
2

∑
C∈Sϕ

|P (C|s1, a)− P (C|s2, a)|. Hence,

|S|∑
i=1

(P (si|s1, a)− P (si|s2, a))g(ϕ(si)) ≤ 1
2

∑
C∈Sϕ

|P (C|s1, a)− P (C|s2, a)| ≤ ϵP
2 . (8)

Then, combining Equation (6) and (8), we obtain:

|S|∑
i=1

(P (si|s1, a)− P (si|s2, a))u(si) ≤ ϵR + 1
1−γ

ϵP
2 . (9)

Since this holds for all u ∈ U(dk),

TK(dk)(P (·|s1, a), P (·|s2, a)) ≤ ϵR + 1
1−γ

ϵP
2 .

By definition,

dk+1(s1, s2) = max
a

(1− γ)|R(s1, a)−R(s2, a)|+ γTK(dk)(P (·|s1, a), P (·|s2, a))

≤ (1− γ)ϵR + γ
(
ϵR + 1

1−γ
ϵP
2

)
= ϵR + γ

1−γ
ϵP
2 .

This concludes the induction proof.

Proof of Lemma 2 To prove this lemma, we will construct a parametric MDP.

On the MDP shown in Figure 1, we define ϕ such that ϕ(s1) = ϕ(s2) = ϕ(s3) ̸= ϕ(s4). Next, we
compute the bisimulation distances for all pairs:

dfix(s2, s4) = (1− γ)η2
dfix(s2, s3) = (1− γ)η1
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s1 s2

s3 s4

r + η1

r

r + η1
r − η2

Figure 1: Counter example to be used for Lemma 2. We will show that for any ϵ, η1 and η2 can be chosen such
that s1, s2, and s3 are a single cluster, s4 is a cluster of its own, and s2 and s4 are arbitrarily close.

dfix(s3, s4) = (1− γ)(η1 + η2)

dfix(s1, s2) = (1− γ)η1 + γ(1− γ)η2
dfix(s1, s3) = γ(1− γ)η2
dfix(s1, s4) = (1− γ)(η1 + η2) + γ(1− γ)η2

First, we observe that (1 − γ)η1 + γ(1 − γ)η2 < ϵB makes ϕ an ϵB-approximate bisimulation
abstraction. For any η2, picking η1 such that η1 ≥ ϵ

(1−γ) −η2(γ+1) satisfies the condition. Then, we
can treat η2 as a free variable that can be chosen independently, still ensuring ϕ is an ϵB-approximate
bisimulation abstraction.

Then, we observe that ϕ above results in
∑

C∈Sϕ
|P(C|s1, a)− P(C|s3, a)| = 2 but dfix(s1, s3) =

γ(1− γ)η2, which can be taken to zero by choosing arbitrarily small η2.

In short, there is always an MDP and an aggregation function ϕ such that ϕ is an ϵB-approximate
bisimulation abstraction for an arbitrarily small ϵB but it cannot be an (ϵR, ϵP )-approximate model-
irrelevant abstraction for a nontrivial (< 2) ϵP . This shows that ϵP cannot be bounded by a monotone
function of ϵB .

Remark 2. Lemma 2 states that there are no "non-trivial" model-irrelevant abstractions. However, it
is easy to see that if ϕ is ϵB-approximate bisimulation abstraction, it is also a ( ϵB

1−γ , 2)-approximate
model-irrelevant abstraction. Since 2 is the largest possible ϵP anyway, we consider this a "trivial"
abstraction because it only needs to account for the reward distances.

4 Suboptimality Bounds for Abstract Policy Refinement

A natural question for a state abstraction ϕ is the usefulness of solution of Mϕ in approximating
the optimal policy of M. We consider two possible refinements of the Mϕ’s solution. Assuming
V ∗
ϕ : Sϕ → R is computed, the refined policy can be either:

πϕ,N (s) = argmax
a

rϕ(ϕ(s), a) + γ
∑

z′∈Sϕ

Pϕ(z
′|ϕ(s), a)V ∗

ϕ (z
′), (10)

or
πϕ,S(s) = argmax

a
r(s, a) + γ

∑
s′∈S

P(s′|s, a)V ∗
ϕ (ϕ(s

′)). (11)

Equation (10) does not make any use of M and is the same as setting πϕ,N (s) = π∗
ϕ(ϕ(s)). As it

does not leverage any additional information about M, we refer to it as the “naive refinement".

In contrast, Equation (11) utilizes the M state the agent is in, instead of the abstract state it is mapped
to. This avoids errors due to aggregation in greedy action selection. We refer to this strategy as the
“smart refinement".
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One desired property for a state abstraction ϕ is that its refined policies πϕ,N and πϕ,S have bounded
suboptimality, i.e., ∥V ∗ − V π∥∞ is bounded for π ∈ {πϕ,N , πϕ,S}. Note that when ϕ is an exact
abstraction as in Definition 1, πϕ,N and πϕ,S coincide with each other and result in zero suboptimality.

Suboptimality bound of πϕ,N when ϕ is an (ϵR, ϵP )-approximate model-irrelevant abstraction is
well-known in the literature.
Theorem 1. [5] Let ϕ be an (ϵR, ϵP )-approximate model-irrelevant abstraction on M and Mϕ is
defined as in Equation (1). Then:

∥V ∗ − V πϕ,N ∥ ≤ 2ϵR
1− γ

+
γϵP

(1− γ)2
. (12)

While the theoretical properties of bisimulation metric have been studied in the literature and several
value function bounds for the gap between the abstract and original optimal value functions have
been given ([3], [7]), suboptimality of the abstract policy on the original MDP has not been shown so
far. In this section, we will derive such bounds for πϕ,N and πϕ,S .
Theorem 2. Let ϕ be an ϵB-approximate bisimulation abstraction on M and let Mϕ be defined as in
Equation (1). Then:

∥V ∗ − V πϕ,N ∥ ≤ 2ϵB
(1− γ)3

, (13)

and
∥V ∗ − V πϕ,S∥ ≤ 2γϵB

(1− γ)3
, (14)

Proof of Equation (14) Performance Difference Lemma (PDL) ([6]) states that for any policy π
and for any state s0 ∈ S:

V π∗
(s0)−V π(s0) =

1

1− γ
E

s∼dπ
s0

[V ∗(s)−Q∗(s, π(s)] =
1

1− γ
E

s∼dπ
s0

[max
a

Q∗(s, a)−Q∗(s, π(s))],

(15)

where dπs0 is the discounted occupancy measure induced by π when starting from s0. So, we need to
bound maxa Q

∗(s, a)−Q∗(s, π(s)). Take π to be the policy:

πϕ,S(s) = argmax
a

r(s, a) + γ
∑
s′∈S

P(s′|s, a)V ∗
ϕ (ϕ(s

′)). (16)

We start by showing Q̄(s, a) = r(s, a) + γ
∑

s′∈S P(s′|s, a)V ∗
ϕ (ϕ(s

′)) satisfies |Q̄(s, a) −
Q∗(s, a)| ≤ γϵB

(1−γ)2 for all s ∈ S and a ∈ A:

|Q̄(s, a)−Q∗(s, a)| = |γ
∑
s′∈S

P(s′|s, a)(V ∗(s′)− V ∗
ϕ (ϕ(s

′))|

≤ γ
∑
s′∈S

P(s′|s, a)|V ∗(s′)− V ∗
ϕ (ϕ(s

′)|

≤ γ
∑
s′∈S

P(s′|s, a) ϵB
(1− γ)2

[3], for cT ≥ γ

=
γϵB

(1− γ)2
.

(17)

Next, we observe that this implies |maxa Q
∗(s, a) − Q∗(s, πϕ,S(s))| ≤ 2γϵB

(1−γ)2 . Let a∗ =

argmaxa Q
∗(s, a) and ā∗ = argmaxa Q̄(s, a). Then,

Q∗(s, ā∗) +
γϵB

(1− γ)2
≥ Q̄(s, ā∗) ≥ Q̄(s, a∗) ≥ Q∗(s, a∗)− γϵB

(1− γ)2
,

which implies |maxa Q
∗(s, a)−Q∗(s, πϕ,S(s))| ≤ 2γϵB

(1−γ)2 .

Then, from Equation (15):

V ∗(s0)− V πϕ,S (s0) ≤
2γϵB

(1− γ)3
. (18)
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Proof of Equation (13) We can again use the approach shown above, we just need a new bound on
maxa Q

∗(s, a)−Q∗(s, πϕ,N (s)) for the state-agnostic πϕ,N :

πϕ,N (s) = argmax
a

rϕ(ϕ(s), a) + γ
∑

z′∈Sϕ

Pϕ(z
′|ϕ(s), a)V ∗

ϕ (z
′). (19)

Define Q̂(s, a) = rϕ(ϕ(s), a) + γ
∑

z′∈Sϕ
Pϕ(z

′|ϕ(s), a)V ∗
ϕ (z

′). Then,

|Q̂(s, a)−Q∗(s, a)|

=

∣∣∣∣∣∣(rϕ(ϕ(s), a)− r(s, a)) + γ
∑

z′∈Sϕ

Pϕ(z
′|ϕ(s), a)V ∗

ϕ (z
′)−

∑
s′∈ϕ−1(z′)

P(s′|s, a)V ∗(s′)

∣∣∣∣∣∣
≤|rϕ(ϕ(s), a)− r(s, a)|+ γ

∣∣∣∣∣∣
∑

z′∈Sϕ

V ∗
ϕ (z

′)Pϕ(z
′|ϕ(s), a)−

∑
s′∈ϕ−1(z′)

P(s′|s, a)V ∗(s′)

∣∣∣∣∣∣
Then, using the definition of abstract MDP, this is equal to:

∣∣∣∣∣∣ 1

|N (s)|
∑

s̄∈N (s)

r(s̄, a)− r(s, a)

∣∣∣∣∣∣
+ γ

∣∣∣∣∣∣
∑

z′∈Sϕ

V ∗
ϕ (z

′)
1

|N (s)|
∑

s̄∈N (s)

∑
s′∈ϕ−1(z′)

P(s′|s̄, a)

−
∑

s′∈ϕ−1(z′)

P(s′|s, a)V ∗(s′)

∣∣∣∣∣∣ .
Reorganizing the summations in the second term:

1

|N (s)|

∣∣∣∣∣∣
∑

s̄∈N (s)

r(s̄, a)− r(s, a)

∣∣∣∣∣∣
+ γ

∣∣∣∣∣∣ 1

|N (s)|
∑

s̄∈N (s)

∑
z′∈Sϕ

 ∑
s′∈ϕ−1(z′)

P(s′|s̄, a)V ∗
ϕ (z

′)−
∑

s′∈ϕ−1(z′)

P(s′|s, a)V ∗(s′)

∣∣∣∣∣∣ .
Flattening the nested summations in the second term and reorganizing terms:

=
1

|N (s)|

∣∣∣∣∣∣
∑

s̄∈N (s)

r(s̄, a)− r(s, a)

∣∣∣∣∣∣+ γ

∣∣∣∣∣∣ 1

|N (s)|
∑

s̄∈N (s)

(∑
s′∈S

P(s′|s̄, a)V ∗
ϕ (ϕ(s

′))− P(s′|s, a)V ∗(s′)

)∣∣∣∣∣∣

=
1

|N (s)|

∣∣∣∣∣∣
∑

s̄∈N (s)

r(s̄, a)− r(s, a)

∣∣∣∣∣∣
+ γ

∣∣∣∣∣∣ 1

|N (s)|
∑

s̄∈N (s)

(∑
s′∈S

P(s′|s̄, a)(V ∗
ϕ (ϕ(s

′))− V ∗(s′)) +
∑
s′∈S

(P(s′|s̄, a)− P(s′|s, a))V ∗(s′)

)∣∣∣∣∣∣
7



Using triangular inequality:

≤ 1

|N (s)|

∣∣∣∣∣∣
∑

s̄∈N (s)

r(s̄, a)− r(s, a)

∣∣∣∣∣∣+ γ

∣∣∣∣∣∣
∑

s̄∈N (s)

∑
s′∈S

(P(s′|s̄, a)− P(s′|s, a))V ∗(s′)

∣∣∣∣∣∣


+ γ

∣∣∣∣∣∣ 1

|N (s)|
∑

s̄∈N (s)

∑
s′∈S

P(s′|s̄, a)(V ∗
ϕ (ϕ(s

′))− V ∗(s′))

∣∣∣∣∣∣
=

1

|N (s)|

∣∣∣∣∣∣
∑

s̄∈N (s)

r(s̄, a)− r(s, a)

∣∣∣∣∣∣+ γ

1− γ

∣∣∣∣∣∣
∑

s̄∈N (s)

∑
s′∈S

(P(s′|s̄, a)− P(s′|s, a))(1− γ)V ∗(s′)

∣∣∣∣∣∣


+ γ

∣∣∣∣∣∣ 1

|N (s)|
∑

s̄∈N (s)

∑
s′∈S

P(s′|s̄, a)(V ∗
ϕ (ϕ(s

′))− V ∗(s′))

∣∣∣∣∣∣
(1− γ)V ∗(·) is a feasible solution to the optimization problem in Equation (4)[3]:

≤ 1

|N (s)|

∣∣∣∣∣∣
∑

s̄∈N (s)

r(s̄, a)− r(s, a)

∣∣∣∣∣∣+ γ

1− γ

∣∣∣∣∣∣
∑

s̄∈N (s)

TK(dfix)(P(·|s̄, a),P(·|s, a))

∣∣∣∣∣∣


+ γ

∣∣∣∣∣∣ 1

|N (s)|
∑

s̄∈N (s)

∑
s′∈S

P(s′|s̄, a)(V ∗
ϕ (ϕ(s

′))− V ∗(s′))

∣∣∣∣∣∣
Using triangular inequality and the definition of dfix:

≤ 1

|N (s)|(1− γ)

 ∑
s̄∈N (s)

(1− γ) |r(s̄, a)− r(s, a)|+ γ |TK(dfix)(P(·|s̄, a),P(·|s, a))|


+ γ

∣∣∣∣∣∣ 1

|N (s)|
∑

s̄∈N (s)

∑
s′∈S

P(s′|s̄, a)(V ∗
ϕ (ϕ(s

′))− V ∗(s′))

∣∣∣∣∣∣
≤ 1

|N (s)|(1− γ)

∑
s̄∈N (s)

dfix(s, s̄) + γ

∣∣∣∣∣∣ 1

|N (s)|
∑

s̄∈N (s)

∑
s′∈S

P(s′|s̄, a)(V ∗
ϕ (ϕ(s

′))− V ∗(s′))

∣∣∣∣∣∣
≤ 1

|N (s)|(1− γ)

∑
s̄∈N (s)

ϵB + γ

∣∣∣∣∣∣ 1

|N (s)|
∑

s̄∈N (s)

∑
s′∈S

P(s′|s̄, a) ϵB
(1− γ)2

∣∣∣∣∣∣
=

ϵB
1− γ

+
ϵBγ

(1− γ)2
=

ϵB
(1− γ)2

Then, maxa Q
∗(s, a)−Q∗(s, πϕ,N (s)) ≤ 2ϵB

(1−γ)2 . Applying PDL gives:

V ∗(s0)− V πϕ,N (s0) ≤
2ϵB

(1− γ)3
(20)

Remark 3. As a consequence of Remark 2, we can use Theorem 1 to derive an alternative to the
bound in Equation (13):

∥V ∗ − V πϕ,N ∥ ≤ 2(γ + ϵB)

(1− γ)2
. (21)

Note that Equation (13) is the tighter bound if and only if:

2(γ + ϵB)

(1− γ)2
>

2ϵB
(1− γ)3

⇐⇒ (1− γ)γ + (1− γ)ϵB > ϵB
⇐⇒ 1− γ > ϵB .

(22)
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This suggests for fine-grained abstractions with smaller ϵB , Equation (13) is the tighter bound.
Finally, note that while γ and ϵB are not independent for a fixed ϕ, their relation depends on the
MDP and how the reward and transition terms relate to each other.

4.1 Numerical Experiments and Discussion

As can be seen from Theorem 2, the upper bound on suboptimality for the “smart refinement" is
smaller than the “naive refinement" by a factor of γ. A natural question is whether this relation
between suboptimality bounds carry over to the comparison of actual suboptimalities.

In order to test this question, we randomly construct 50 Garnet MDPs [1] each with 30 states, 3
actions, branching factor of 12, and discount factor γ = 0.95. Then, we compute a 0.07-approximate
bisimulation abstraction for each, reducing the number of states by a factor of ∼ 4. Finally, we
compare value of refined abstract policies between smart and naive refinements.

Our results indicate that the naive refinement yields a mean suboptimality of 1.553, corresponding to
a ∼ 10% deterioration in performance. In contrast, the mean suboptimality of the smart refinement is
0.056, corresponding to only ∼ 0.4% decrease in the performance compared to the true optimal policy.

Notice that the gap between the performance of two refinement strategies is much larger than the γ
factor suggested by the theoretical bounds. We attribute the large performance gap between refinement
policies to the action gap phenomenon [2], which is often used to explain why RL agents can perform
well despite imperfect Q-value estimates. The phenomenon highlights that the value of the optimal
action is typically much larger than that of the second-best action. As a result, even substantial errors
in action-value estimates often lead to the same greedy action. Under smart refinement, the error
stems primarily from value function approximation—specifically, using the abstract optimal value
function instead of the true optimal one. In contrast, naive refinement compounds both dynamics
errors and value function errors, leading to significantly worse performance.

5 Conclusions

In this paper, we studied the relation between bisimulation and model irrelevance abstractions and their
implications for suboptimality in reinforcement learning. We showed that model irrelevance always
induces bisimulation abstractions, but not vice versa, highlighting that suboptimality bounds for the
former cannot be directly applied to the latter. We then derived the first suboptimality guarantees for
policies obtained from approximate bisimulation abstractions, distinguishing between naive and smart
refinement strategies. Our analysis revealed that smart refinement achieves tighter bounds—by a factor
of γ—and our experiments confirmed that this improvement is not only theoretical but also leads
to markedly smaller suboptimality in practice. Finally, we argued that the action gap phenomenon
provides an intuitive explanation for these results, shedding light on why RL agents often perform
well despite approximation errors. Overall, our preliminary results underscore the importance of both
the abstraction method and the refinement strategy in achieving reliable performance when leveraging
bisimulation in RL. For future work, we are interested in understanding the practical implications
of these insights not only for bisimulations but other model reduction and approximation techniques.
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