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ABSTRACT

We resolve difficulties in training and sampling from discrete energy-based mod-
els (EBMs) by learning a smoothed energy landscape, sampling the smoothed
data manifold with Langevin Markov chain Monte Carlo, and projecting back to
the true data manifold with one-step denoising. Our Smoothed Discrete Sampling
formalism combines the attractive properties of EBMs and improved sample qual-
ity of score-based models, while simplifying training and sampling by requiring
only a single noise scale. We demonstrate the robustness of our approach on gen-
erative modeling of antibody proteins and successfully express and purify 97% of
generated designs in a single round of laboratory experiments.

1 INTRODUCTION

Discrete sequence generation poses a number of challenges to gradient-based generative models.
Generative models must be expressive enough to faithfully capture the underlying data distribution,
while also having controllable outputs that are novel, unique, diverse, and respect the constraints of
the problem space. Energy-based models (EBMs) (Hinton & Sejnowski, 1986; LeCun et al., 2006)
fit an energy function that specifies a probability distribution over data analogous to the Boltzmann
distribution from statistical physics. Giving access to an easily computable energy is an advantage
of EBMs, but on the flip-side they can be difficult to train and sample from. Denoising objectives
based on score matching (Hyvärinen, 2005; Vincent, 2011) and the related advancements in diffusion
models (Sohl-Dickstein et al., 2015; Ho et al., 2020) overcome these issues, but these either model
the energy gradient or only provide access to an empirical lower-bound of the likelihood.

Protein design is an instance of the discrete sequence generation problem, wherein the challenge is
to find useful proteins in the large, discrete, and sparsely functional space (Romero & Arnold, 2009)
of dimension 20L for proteins of length L.

Here, we consider the specific problem of deep generative modeling of antibody molecules, a class of
proteins with highly conserved structure that are of immense interest for therapeutics. In addition to
the qualities mentioned above, generative models for antibodies must be sample-efficient because of
the relatively small size of datasets with therapeutic antibodies. Antibodies consist of well-conserved
domains and high entropy variable regions, so leveraging evolutionary information from pre-trained
protein language models is not an immediate solution. To this end, we introduce Smoothed Discrete
Sampling (SDS), a method building on the neural empirical Bayes (NEB) (Saremi & Hyvärinen,
2019) formalism that addresses the brittleness of discrete EBMs and in doing so, provides a robust
and general framework for protein design.

2 RELATED WORK

Energy-based models (EBMs) (LeCun et al., 2006) are a class of physics-inspired models that learn
an energy function defining a probability distribution over data with a rich history that goes back
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to Boltzmann machines (Hinton & Sejnowski, 1986). Contrastive divergence (Hinton, 2002) train-
ing using Markov-Chain Monte Carlo (MCMC) was proposed to estimate the gradient of the log
partition function, wherein input data is usually discrete and MCMC chains are initialized from
training data, leading to long mixing times in high dimensions. Using continuous inputs and
gradient-based MCMC (Langevin dynamics) initialized from uniform noise with a replay buffer
of past samples, efficient training was achieved (Du & Mordatch, 2019). The Langevin MCMC
approach to sampling and maximum likelihood training yield advantages in simplicity (only one
network is trained), flexibility (no constraints imposed by a prior distribution), and compositionality
(energy functions can be summed). Estimating unnormalized densities can also be formulated us-
ing score matching (Hyvärinen, 2005). This formulation led to probabilistic models for denoising
autoencoders (Vincent, 2011; Alain & Bengio, 2014; Saremi et al., 2018), but also has an empirical
Bayes interpretation that is most related to this work. The neural empirical Bayes (NEB) (Saremi &
Hyvärinen, 2019) formalism unifies kernel density estimation (Parzen, 1962) and empirical Bayes
(Robbins, 1956) to transform the unsupervised learning problem into a more tractable form where a
neural network energy function is parameterized to capture a smoothed data distribution.

Although generative modeling is widely adopted in image and natural language generation, suc-
cessful applications of generative modeling in the sciences are few and far between, due to the
over-representation of image and text datasets, challenges in evaluation, and the need for generating
samples that are novel and diverse while respecting the underlying symmetries and structure of a
particular domain. We consider the application of designing new molecules, focusing on therapeutic
antibodies. Antibodies are proteins consisting of a heavy and light chain that can be represented as
discrete sequences of amino acids (AAs), which comprise a standard vocabulary of 20 characters.
Approaches borrowing from traditional ML generative modeling have been used to model antibod-
ies (Shuai et al., 2021; Gligorijević et al., 2021; Ferruz & Höcker, 2022; Tagasovska et al., 2022),
but typical natural-language-based methods struggle to capture the data distribution of antibodies,
for which there is limited training data (∼100K high-quality sequences) and additional challenges
due to the high-entropy variable regions of the sequence. Here, we address the above challenges
with training and sampling discrete sequences from EBMs using a formulation of WJS.

3 METHODS

3.1 ENERGY-BASED MODELS

EBMs are a class of models that learn an energy function fθ : X → R mapping inputs x (in Rd) to
a scalar “energy” value. The data distribution is approximated by the Boltzmann distribution

pθ(x) ∝ e−fθ(x).

EBMs are typically trained via contrastive divergence (Hinton, 2002) and new samples are drawn
from pθ(x) by Markov-Chain Monte Carlo (MCMC). Details of the loss function used in this work
are given in Section A.1. In Langevin MCMC, samples are initialized from a known data point or
random noise and refined with (discretized) Langevin diffusion

xk+1 = xk − δ∇fθ(xk) +
√
2δ εk, εk ∼ N(0, Id), (1)

where∇ denotes the gradient of the energy function with respect to inputs, k is the sampling step, δ
is the (discretization) step size, and the noise εk is drawn from the normal distribution at each step.

3.2 NEURAL EMPIRICAL BAYES AND WALK-JUMP SAMPLING

In NEB, the random variable X is transformed with additive Gaussian noise Y = X +N(0, σ2Id).
The least-squares estimator of X given Y = y is given by (Robbins, 1956; Miyasawa, 1961)

x̂(y) = y + σ2∇ log p(y), (2)

where p(y) =
∫
p(y|x)p(x)dx is the probability distribution function of the smoothed density.1 The

estimator is expressed purely in terms of g(y) = ∇ log p(y) known as the score function Hyvärinen

1We follow the convention p(x) := pX(x), p(y) := pY (y), etc.
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(2005) which is parametrized with a neural network denoted by gϕ : Rd → Rd. The least-squares
estimator then takes the following parametric form:

x̂ϕ(y) = y + σ2gϕ(y). (3)

Putting this all together leads to the following learning objective

L(ϕ) = Ex∼p(x),y∼p(y|x)∥x− x̂ϕ(y)∥2, (4)

which is optimized with stochastic gradient descent. Notably, no MCMC sampling is required dur-
ing learning. In short, the objective is “learning to denoise” with an empirical Bayes formula-
tion. Following learning one can sample noisy data using the learned score function gϕ(y) with
Langevin MCMC (replace −∇f with g in Eq. 1). For any such draws yk, clean samples from
the true data manifold M are obtained by “jumping” back to M with the least-squares estimator
x̂ϕ(yk) = yk + σ2gϕ(yk). This is the walk-jump sampling (WJS) scheme. A key property of WJS
is the fact that the least-squares estimation (jump) is decoupled from the Langevin MCMC (walk).

Here, we take advantage of this decoupling to train an EBM with maximum likelihood estimation
on the smoothed distribution of noisy sequences, generate noisy samples with Langevin MCMC,
and denoise samples with a separately trained neural network, the least-squares estimator. The SDS
algorithm is given in Algorithm 1.

4 RESULTS

We report results for our method, Smoothed Discrete Sampling (SDS) (Fig. 1), on modeling the
data distribution of antibodies and alleviating the difficulties of training and sampling from EBMs
for discrete sequences. We also present surprising results related to EBM parameter optimization
with maximum likelihood training on noisy data that suggest a more general and robust training
procedure for EBMs. Details related to model architectures, training, and sequence sampling are in
Section A.1

4.1 SDS GENERATES NATURAL ANTIBODIES in vitro

Figure 1: Smoothed Discrete Sampling
samples from the distribution of noisy
sequences and jumps back to the clean
data manifold.

Out of more than 277 designed antibody sequences tested
in the laboratory, 270 were successfully expressed and
purified. We achieved the 97.47% in vitro success rate
by developing SDS to capture the antibody distribution in
silico. We measure generative model performance with
a suite of “antibody likeness” (ab-likeness) metrics in-
cluding labels derived from the AA sequence with Biopy-
thon (Cock et al., 2009), a sequence similarity score from
sequence alignments with DIAMOND (Buchfink et al.,
2021), Levenshtein edit distances calculated with Edlib
(Šošić & Šikić, 2017), and a naturalness metric (Bachas
et al., 2022) computed from the likelihoods of a masked
language model pre-trained on antibody sequences. Se-
quence property metrics are condensed into a single scalar
metric by computing the normalized average Wasserstein
distance Wproperty between the property distributions of
samples and a validation set. The average total edit dis-
tance Edist summarizes the novelty and diversity of sam-
ples compared to the validation set. The results summa-
rized in Table 1 show that with increasing noise level, σ, better agreement is reached between the
sample property distributions and the validation set. The average total edit distance also increases
monotonically with increasing σ, reflecting the improved sequence novelty/diversity and mode ex-
ploration. Distributions of DIAMOND similarity (Fig. A.2) and naturalness (Fig. A.2) metrics
indicate that natural sequences are generated with reasonable similarity to the training set, while
maintaining diversity and novelty. Further experiments comparing to other generative model base-
lines are discussed in Section A.3.
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Table 1: Ablikeness metrics. Heavy chain (light chain) metrics are reported separately. The score
function implemented in the EBM training, denoted by score, is taken to be either as ±∇fθ(y)

σ Wproperty ↓ Edist ↑

score← −∇fθ(y)
0 0.31 (0.31) 2.3 (3.3)
0.1 0.17 (0.20) 4.9 (4.8)
0.5 0.08 (0.10) 16.5 (16.3)
1.0 0.07 (0.08) 33.5 (40.3)

4.2 SDS STABILIZES TRAINING

We observe that the SDS formalism prevents instabilities during maximum likelihood training.
EBMs commonly exhibit issues with training stability and divergences in the energy, due to the
energy landscape becoming too complicated to sample. Noising the data provides strong regulariza-
tion that prevents overfitting and instabilities. This is seen over a range of noise levels σ ∈ (0.1, 1.0].
For σ = 0, samples have very few edits (<3.5 on average) compared to training data, but they are
highly nonphysical changes that yield disagreement between the biophysical property distributions
(Table 1).

4.3 SDS SIMPLIFIES AND GENERALIZES CONTRASTIVE TRAINING

We investigate the effects of discarding many of the techniques for improved EBM training that,
while introduced to ameliorate challenges with EBMs, also introduce complexities that make EBMs
brittle, inflexible, and difficult to optimize. In particular, we discard the replay buffer, the ℓ2 norm
penalty loss term to regularize the energies, Metropolis rejection sampling, and time step annealing.
We use the Langevin MCMC algorithm from (Sachs et al., 2017) and eliminate the need for careful
hyperparameter finetuning; σ is the only free hyperparameter in SDS. Similarly, we use a simplified
1D CNN architecture for our EBM that further eliminates complexity and training difficulties. Our
method achieves strong ablikeness results (Table 1, Figs A.2 and A.2), simply by increasing σ to
an optimal value. Surprisingly, even changing the sign in the score function for Langevin MCMC
(Tables 1,2) during contrastive training does not affect the robustness of the results. We observe
that changing the sign leads to some instability early in training, but does not affect the convergence
behavior or ablikeness results. This suggests that further investigation is needed to uncover the truly
essential components of maximum likelihood training with Langevin MCMC.

5 CONCLUSIONS AND FUTURE WORK

We proposed “Smoothed Discrete Sampling” (SDS), a generative model for discrete sequences that
uses Langevin Markov chain Monte Carlo to sample from smoothed data distributions. We evaluate
our approach on the antibody design problem, showing the capability of our method to generate
novel, diverse, and functional antibodies as measured by synthetic biophysical property distributions
and similarity metrics. The strong regularization provided by fitting the energy function to noisy
data completely prevents overfitting, even on small datasets of <1000 samples, resulting in fast
and efficient retraining and sampling with low compute requirements. SDS discards many of the
commonly used techniques for improving EBM training with Langevin MCMC (replay buffers, ℓ2
norm penalty, simulated annealing, rejection sampling, etc.) and reduces the engineering complexity
of training EBMs and diffusion-based models to a single hyperparameter choice: the noise level, σ.
Intriguingly, we find that even inverting the sign of the score function in Langevin MCMC does
not deteriorate sample quality or impede training. Altogether, our results suggest a simplified, more
general and robust framework for training and sampling from discrete energy-based models with
applications to therapeutic molecule design. Future work will probe the generality of our results
to other classes of molecules and even other data modalities (e.g., images), as well as theoretical
investigation into the results presented here.
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A APPENDIX

A.1 ADDITIONAL DETAILS ON EXPERIMENTS

Discrete sequence generation We represent antibody protein molecules as x = (x1, . . . , xd),
where xl ∈ {1, . . . , 20} corresponds to the AA type at position l. Sequences from the Observed
Antibody Space (OAS) database (Olsen et al., 2022) are one-hot encoded and aligned according to
the AHo numbering scheme (Honegger & PluÈckthun, 2001) using the ANARCI (Dunbar & Deane,
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2016) package. Aligning sequences in this way is a simple solution to handling insertions and
deletions, which are otherwise troublesome for models that require fixed length inputs and outputs;
alignment introduces a “gap” token that can be introduced or removed during sampling to effectively
change the length of sequences. This allows the model to capture the distribution of lengths present
in natural antibodies. An EBM is trained via contrastive divergence on the noisy manifold of one-hot
encodings. A separate denoising model is trained with the objective in Eq. 4. The EBM is a simple
1D convolutional neural network (CNN) and the denoising model is a ByteNet (Kalchbrenner et al.,
2016) architecture trained from scratch. New antibody sequences are generated by sampling noisy
samples with Langevin MCMC following gradients from the EBM, denoising with the least-squares
estimator, and taking argmax x to recover a one-hot encoding.

EBM architecture For all experiments we use an identical architecture consisting of three
Conv1D layers with kernel sizes 15, 5, and 3 and padding 1, ReLU non-linearities and an output lin-
ear layer of size 128. All EBMs were trained with contrastive training and the AdamW (Loshchilov
& Hutter, 2017) optimizer in PyTorch (Paszke et al., 2019).

EBM loss The EBM is trained by maximizing the log-likelihood of noisy data under the model:

argmax
θ

Ey∼pY
[log pθ(y)] = argmax

θ

(
Ey−∼pθ(y)[fθ(y

−)]− Ey+∼pY
[fθ(y

+)]
)

(5)

With this objective, the model aims to decrease the energy of noisy training data (“positive” samples
y+) while increasing the energy of noisy data sampled from the model (“negative” samples y−) in
expectation. The following identity is behind the positive/negative phases in the EBM training:

∇θ log pθ(y) = −∇θfθ(y)−∇θ logZ(θ)

= −∇θfθ(y) +

∫
∇θfθ(y)e

−fθ(y)dy

Z(θ)

= −∇θfθ(y) +

∫
∇θfθ(y) · pθ(y)dy

= −∇θfθ(y) + Ey∼pθ(y)[∇θfθ(y)],

(6)

where Z(θ) =
∫
e−fθ(y)dy is the partition function.

Algorithm 1: Smoothed discrete sampling
Input: Denoiser, gϕ(y), energy-based model, fθ(y)
Output: Noisy samples y ∼ p(y), denoised samples x̂(y)

1 y0 ∼ U([0, 1]d) +N(0, σ2Id)
2 for t = 0, . . . , T − 1 do
3 yt+1 ← yt − δ∇yfθ(yt) +

√
2δεt , εt ∼ N(0, Id)

4 end
5 x̂T ← yT + σ2gϕ(yT )
6 return argmax x̂T
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A.2 ADDITIONAL ABLIKENESS METRICS

Table 2: Ablikeness metrics. Heavy chain (light chain) metrics are reported separately. The score
function implemented in the EBM training, denoted by score, is taken to be either as ±∇fθ(y)

σ Wproperty ↓ Edist ↑

score← +∇fθ(y)
0 0.31 (0.31) 2.3 (3.3)
0.1 0.17 (0.18) 5.0 (5.0)
0.5 0.10 (0.11) 16.5 (17.4)
1.0 0.07 (0.10) 30.9 (40.2)

Figure 2: DIAMOND sequence similarity distributions of heavy (light) chain in blue (orange). Sam-
ples between 0.8-0.9 indicate good similarity to training set while maintaining novelty and diversity.

Figure 3: Naturalness distributions of heavy (light) chain in blue (orange). Samples above 2 indicate
sequences with high likelihood.

A.3 TRASTUZUMAB MUTANT GENERATION

To further show the robustness of our method, we consider the task of training generative models
on a Trastuzumab mutant dataset (Mason et al., 2021) and compare to baseline models. The dataset
consists of 9k binding and 25k non-binding (after de-duplication and removing samples that are
labeled both binding and non-binding) Trastuzumab CDR H3 mutants with up to 10 mutations. The
mutants were measured in lab experiments to determine their binding to HER2 antigen. The goal
of this benchmark task is to produce samples that are also predicted to bind to HER2. We trained
SDS models (score-based and energy-based) on only the binder set at a noise level of σ = 0.5,
while also training a 1D CNN binary classifier to classify binders and non-binders. The classifier
achieves 86% accuracy on an IID validation split. Then, we classified 1000 samples from each
SDS generative model and two baseline models trained on the Trastuzumab mutant dataset. We
compare to two diffusion models; 1) a sequence transformer based on BERT (Devlin et al., 2018)
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Table 3: Probability of binding.

Model pbind ↑
SDS (score-based) 0.97
SDS (energy-based) 0.97
Transformer 0.60
EGNN 0.58

that generates sequences, and 2) an E(n) Equivariant Graph Neural Network (EGNN) (Satorras
et al., 2021) that codesigns (sequence, structure). The probability of binding for designs from
each model is reported in Table 3. SDS models produce the highest percentage of predicted binders.
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