
Successor Representations Enable Emergent
Compositional Instruction Following
Vivek Myers∗, Bill Chunyuan Zheng∗, Anca Dragan, Kuan Fang†, Sergey Levine

University of California, Berkeley †Cornell University

Abstract
Effective task representations should facilitate compositionality, such that after
learning a variety of basic tasks, an agent can perform compound tasks consisting
of multiple steps simply by composing the representations of the constituent steps
together. While this is conceptually simple and appealing, it is not clear how to
automatically learn representations that enable this sort of compositionality. We
show that learning to associate the representations of current and future states with
a temporal alignment loss can improve compositional generalization, even in the
absence of any explicit subtask planning or reinforcement learning. This approach
is able to generalize to novel composite tasks specified as goal images or language
instructions, without assuming any additional reward supervision or explicit subtask
planning. We evaluate our approach across diverse tabletop robotic manipulation
tasks, showing substantial improvements for tasks specified with either language or
goal images.

1 Introduction

Compositionality is a core aspect of intelligent behavior, describing the ability to sequence previously
learned capabilities and solve new tasks [46]. In domains involving long-horizon decision-making
like robotics, various learning approaches have been proposed to enable this property, including
hierarchical learning [40], explicit subtask planning [65, 27, 1], and dynamic-programming-based
“stitching” [31, 39]. In practice, these techniques are often unstable and/or data-inefficient in
real-world robotics settings, making them difficult to scale [44].
By contrast, biological learners are adept at quickly composing behaviors to reach new goals [46].
Possible explanations for these capabilities have been proposed, including the ability to perform
transitive inference [15], learn successor representations and causal models [19, 32], and plan with
world models [70]. In common among these theories is the idea of learning structured representations
of the world, which inference about which actions will lead to certain goals.
How might these concepts translate to algorithms for robot learning? In this work, we study how
adding an auxiliary successor representation learning objective affects compositional behavior in
a real-world tabletop manipulation setting. We show that learning this representation structure
improves the ability of the robot to perform long-horizon, compositionally-new tasks, specified either
through goal images or natural language instructions. Perhaps surprisingly, we found that this
temporal alignment does not need to be used for training the policy or test-time inference, as long as
it is used as an auxiliary loss over the same representations used for the tasks. An example of this
can be seen in Fig. 1.
We evaluate our method, Temporal Representation Alignment (TRA), on a set of challenging multi-
step manipulation tasks in the BridgeData setup [71]. These tasks specifically test the compositional
capabilities of the robot policies: as a whole, the tasks are out-of-distribution, but each distinct
subtask can be described through a goal image that lies in the training distribution. Adding a simple
time-contrastive alignment loss improves compositional performance on these tasks by >40% across
13 tasks in 4 scenes.

∗Equal contribution.
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Figure 1: Example rollouts of a task with TRA and GCBC to put all food items in the bowl. While
TRA can implicitly decompose the task into steps and execute them one by one, GCBC is unable to
do that and fails to ground to any relevant objects. GCBC+AWR on the other hand only grounds
one object, failing to display any compositionality

2 Related Work

Our approach builds upon prior work on goal- and language-conditioned control, focusing particularly
on the problem of compositional generalization.

Robot manipulation with language and goals. Recent improvements in robot learning datasets
have enabled the development of robot policies that can be commanded with image goals and
language instructions [1, 71, 67]. These policies can be trained with goal- and language-conditioned
imitation learning from human demonstrations [14, 36, 50, 51, 10], reinforcement learning [11, 12],
or other forms of supervision [9, 16]. When being trained to reach goals, methods can additionally
use hindsight relabeling [4, 37] to improve performance [71, 55, 20, 22]. Our work shows how the
benefits of goal-conditioned and language-conditioned supervised learning can be combined with
temporal representation alignment to enable compositionality that would otherwise require planning
or reinforcement learning.

Compositional generalization in sequential decision making. In the context of decision making,
compositional generalization refers to the ability to generalize to new behaviors that are composed of
known sub-behaviors [64, 69]. Biological learning systems show strong compositional generalization
abilities [15, 20, 21, 45], and recent work has explored how similar capabilities can be achieved in
artificial systems [2, 34, 47]. In the context of policy learning, exploiting the compositionality of the
behaviors can lead to generalization to unseen and temporarily extended tasks [31, 42, 29, 28, 54, 59].
Hierarchical and planning-based approaches also aim to enable compositional behavior by explicitly
partitioning a task into its components [26, 56, 74, 62]. With improvements in vision-language
models (VLMs), many recent works have explored using a pre-trained VLM to decompose a task into
subtasks that are more attainable for the low-level manipulation policy [1, 5, 7, 43, 56, 68, 75]. Our
contribution is to show compositional properties can be achieved without any explicit hierarchical
structure or planning, by learning a structured representation through time-contrastive representation
alignment.
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Representation learning for states and tasks. State and task representations for decision making
aim to improve generalization and exploit additional sources of data. Recent work in the robotics
domain have explored the use of pre-trained representations across multimodal data, including
images and language, for downstream tasks [38, 48, 52, 55, 58, 61, 66, 17, 35]. In reinforcement
learning problems, representations are often trained to predict future states, rewards, goals, or
actions [3, 53, 73, 25], and can improve generalization and sample efficiency when used as value
functions [6, 8, 18, 23, 13]. Some recent works have explored the use of additional structural
constraints on representations to enable planning [26, 74, 24, 33], or enforced metric properties to
improve compositional generalization [49, 57, 72].
Our work is distinct in that we show that temporal representation alignment can enable compositional
generalization in a real-world manipulation setting without being used for policy extraction or defining
a value function.

3 Temporal Representation Alignment

Given training on a series of short-horizon goal-reaching and instruction-following tasks, our goal
is to learn a representation space such that our policy can generalize to a new (long-horizon) task
that can be viewed as a sequence of known subtasks. We propose to structure this representation
space by aligning the representations of states, goals, and language in a way that is more amenable
to compositional generalization. The key insight is that temporal alignment

Notation. We take the setting of a goal- and language-conditioned MDPM with state space S,
action space A, initial state distribution ρ, dynamics P(s′ | s, a), discount factor γ, and language
task distribution W. A policy π(a | s) maps states to a distribution over actions. We inductively
define the k-step (action-conditioned) policy visitation distribution as:

pπ1 (s1 | s0, a0) ≜ p(s1 | s0, a0),

pπk+1(sk+1 | s0, a0) ≜
∫
A

∫
§
p(sk+1 | s, a) dpπk (s | s0, a0) dπ(a | s)

pπk+t(sk+t | st, at) ≜ pπ(sk | s0, a0). (1)

Then, the discounted state visitation distribution can be defined as the distribution over s+, the state
reached after K ∼ Geom(1− γ) steps:

pπγ (s+ | s, a) ≜
∞∑
k=0

γkpπk (s+ | s, a). (2)

3.1 Temporal Alignment

We propose temporal representation alignment (TRA) as an auxiliary objective to structure the
representation space of goals and language instructions to better enable compositional generalization.

LNCE({xi, yi}Ki=1; f, h) =
K∑
i=1

log
(

ef(yi)
Th(xi)∑K

j=1 e
f(yj)Th(xi)

)
+

K∑
i=1

log
(

ef(yi)
Th(xi)∑K

j=1 e
f(yi)Th(xj)

)
(3)

LBC
(
{si, ai, s+i , ℓi}

K
i=1;π

)
=

K∑
i=1

log π
(
ai | si, ξ(ℓi)

)
+ log π

(
ai | si, ψ(s+i )

)
(4)

LTRA
(
{si, ai, s+i , gi, ℓi}

K
i=1;π, φ, ψ, ξ

)
= LBC

(
{si, ai, s+i , ℓi}

K
i=1;π

)︸ ︷︷ ︸
behavioral cloning

+LNCE
(
{si, s+i }

K
i=1;φ, ψ

)︸ ︷︷ ︸
temporal alignment

+LNCE
(
{gi, ℓi}Ki=1;ψ, ξ

)︸ ︷︷ ︸
task alignment

(5)
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Our overall objective is to minimize Eq. (5) across states, actions, future states, goals, and language
tasks within the training data:

min
π,φ,ψ,ξ

E(s1,i,a1,i,...,sH,i,aH,i,ℓ)∼D
i∼Unif(1...H)
k∼Geom(1−γ)

[
LTRA

(
{st,i, at,i, smin(t+k,H),i, sH,i, ℓ}Ki=1;π, φ, ψ, ξ

)]
. (6)

Algorithm 1: Temporal Representation Alignment (TRA)

1: input: dataset D = ({st,i, at,i}Ht=1, ℓi)Ni=1
2: initialize networks Θ ≜ (π, φ, ψ, ξ)
3: while training do
4: sample a batch of transitions

{
(st,i, at,i, st+k,i, ℓi)

}K
i=1 ∼ D for k ∼ Geom(1− γ)

5: Θ← (π, φ, ψ, ξ)− α∇ΘLTRA
(
{st,i, at,i, st+k,i, ℓi}Ki=1; Θ

)
6: output: language ℓ-conditioned policy π(at|st, ξ(ℓ))
7: goal g-conditioned policy π(at|st, ψ(g))

A summary of our approach is shown in Algorithm 1.

4 Experiments

Our experimental evaluation aims to answer the following research questions for TRA:

1. Can TRA enable zero-shot composition of multiple sequential tasks without additional
prompting or planning methods?

2. How well does TRA perform compared to conventional offline RL algorithms in terms of
task generalization and composition?

3. How well does TRA capture skills that are seen at a lower percentage within the dataset,
compared to the numerous entries of object manipulation?

4. Is time alignment by itself sufficient for effective compositional generalization?

TRA(Ours)
AWR
GRIF
Octo

LCBC

Success Rate

Instruction Following Performance

(a) Language instruction tasks

TRA(Ours)
AWR
GRIF
Octo

GCBC

Success Rate

Goal Reaching Performance

(b) Goal-image conditioned tasks

Figure 2: Aggregated performance on compositional generalization tasks, consisting of instruction-
following and goal-reaching tasks.

4.1 Experimental Details

We evaluate TRA on a collection of held-out compositionally-OOD tasks – tasks for which the
individual substeps are represented in the dataset, but the combination of those steps is unseen.
For example, in a task such as “removing a bell pepper from a towel, and then sweep the towel”,
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Table 1: Compositional Generalization Error of Methods

Modality TRA GRIF LCBC GCBC Octo
image 4.25± 0.37 5.24± 0.34 4.84± 0.11 5.15± 0.41

language 3.82± 0.25 4.95± 0.32 4.84± 0.11 4.56± 0.32

both the tasks “remove the bell pepper from the towel” and “sweep the towel” have similar entries
within BridgeData, but such combined trajectory and language description does not exist. We utilize
a real-world robot manipulation interface with a 7 DoF WidowX250 manipulator arm with 5Hz
execution frequency. We train on an augmented version of the BridgeDataV2 dataset [71], which
contains over 50k trajectories with 72k language annotations. We augment the dataset by rephrasing
the language annotations, as described by [55], with 5 additional rephrased language instruction for
each language instruction present in the dataset, and randomly sample them during training.
In order to specifically test the ability of TRA to perform compositional generalization, we organize
our evaluation tasks into 4 scenes that are unseen in BridgeData, each with increasing difficulty:
Scene A – One-Step Drawer: this is the only scene that are not compositionally-OOD, as all
the tasks are one-step tasks. This scene involves opening, putting an item in, and closing a drawer.
These tasks have been seen in BridgeData, although at a lower frequency than object manipulation,
but the position in which they are initialized are unseen. They will be used to compare TRA’s ability
to baselines when solving single-step tasks.
Scene B – Task Concatenation: this scene involves concatenating multiple tasks of the same
nature in sequence, where a robot must be able to perform all tasks within the same trajectory.
During evaluation, we instruct the policy with instructions such as sweeping multiple objects in the
scene that require composition (though are not sensitive to the order of the composition).
Scene C – Semantic Generalization: Unlike scene B, these tasks require manipulation with
different objects of the same class. We test this using various food items seen within BridgeData and
instruct the policy to put various food items within a container. An example of such task would
be to have a table containing a banana, a sushi, a bowl, and various distractor objects, and instead
of using specific language commands such as “put the banana and the sushi in the bowl”, a more
general statement such as“put the food items in a container” will be used.
Scene D – Tasks with Dependency: This is the most challenging of the set of tasks: these tasks
have subtasks that require previous subtasks being completed for them to succeed. An example of
this would be to open a drawer, and to take out an item in the drawer, as one cannot take out an
item from the drawer if the drawer is not open.
The complete list of tasks is noted in Appendix C.

4.2 Baselines

We compare against the following baselines:

GRIF [55] learns a goal- and language- conditioned policy using aligned goal image and language
representations. In our experiments, this becomes equivalent to TRA when the temporal alignment
objective is removed.

GCBC [71] learns a goal-conditioned behavioral cloning policy that concatenates the goal image
with the image observation.

LCBC [71] learns a language-conditioned policy that concatenates the language with the image
observation.

OCTO [30] uses a multimodal transformer to learn a goal- and language-conditioned policy. The
policy is trained on Open-X dataset [60], which incorporates BridgeData in its entirety.
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Table 2: Real-world Language Conditioned Evaluation

Task TRA GRIF LCBC Octo AWR

open the drawer 0.80±0.1† 0.20±0.2 0.60±0.2 0.60±0.2 0.40±0.2
mushroom in drawer 0.80±0.1 0.80±0.2 0.40±0.2 0.00±0.0 0.60±0.2

close drawer 0.60±0.2 0.60±0.2 0.40±0.2 0.60±0.2 0.40±0.2
(∗) put the spoons on towels 1.00±0.0 0.40±0.2 0.20±0.2 0.00±0.0 0.20±0.2
(∗) put the spoons on the plates 0.80±0.2 0.20±0.2 0.20±0.2 0.20±0.2 0.00±0.0
(∗) fold cloth into the center 1.00±0.0 0.20±0.2 0.40±0.2 0.40±0.2 0.40±0.2
(∗) sweep to the right 0.80±0.1 0.20±0.2 0.40±0.2 0.40±0.2 0.00±0.0

(∗) put the corn and sushi on plate 0.90±0.1 0.00±0.0 0.40±0.2 0.00±0.0 0.50±0.2
(∗) sushi and mushroom in bowl 0.80±0.2 0.00±0.0 0.60±0.2 0.20±0.2 0.60±0.2
(∗) corn, banana, and sushi in bowl 0.80±0.1 0.00±0.0 0.00±0.0 0.00±0.0 0.20±0.1
(∗) take the item out of the drawer 0.60±0.2 0.00±0.0 0.00±0.0 0.20±0.2 0.00±0.0
(∗) move bell pepper and sweep towel 0.50±0.2 0.00±0.0 0.00±0.0 0.20±0.2 0.00±0.0
(∗) corn in plate then sushi in pot 0.70±0.1 0.00±0.0 0.40±0.2 0.60±0.2 0.20±0.2

∗ indicates task is compositionally-OOD (has multiple steps never seen together in training)
†The best-performing method(s) up to statistical significance are highlighted

AWR [63] uses advantages produced by a value function to effectively extract a policy from an
offline dataset. In this experiment, we use the difference between the contrastive loss between
the current observation and the goal representation and the contrastive loss between the next
observation and the goal representation as a surrogate for value function.

We train GRIF, GCBC, LCBC, and AWR using the same augmented Bridge Dataset as TRA, and
we use an Octo-Base 1.5 model for our evaluation. A more detail approach is detailed in Appendix B.
During evaluation, we give all policies the same goal state and language instruction regardless of
the architecture, as they are trained on the same language instruction with the exception of Octo,
which doesn’t benefit from paraphrased language data, but does benefit from a more diverse language
annotation set across a larger dataset of varying length and complexity.

4.3 Experimental Evaluation

Does TRA enable compositionality? In Table 1, we compare the normalized mean squared
error (MSE) of the TRA method with other methods on held-out compositionally-OOD image- and
goal-specified tasks. These values are derived from passing the inputs through the policy network
and sampling the mode of the distribution without unnormalizing the outputs based on the dataset.
The validation MSE for these tasks are lower with a statistically significant margin, demonstrating
that in a compositionally-OOD setting, TRA provides a trajectory closer to expert demonstrations.
Section 4.2 and Section 4.2 show the success rates of the TRA method compared to other methods on
real-world robot evaluation tasks. We marked all policies within the task orange if they achieve the
best statistically significant performance. We first compare the performance against methods in Scene
A. We observe that while TRA performs well with drawer tasks, its performance against baseline
methods are not statistically significant. However, when being evaluated on compositionally-OOD
instruction following tasks, TRA performs considerably better than that of any baseline methods.
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Table 3: Real-world Goal-Conditioned Evaluation

Task TRA GRIF GCBC Octo AWR

open the drawer 0.60±0.2† 0.60±0.2 0.40±0.2 0.50±0.2 0.80±0.2
mushroom in drawer 0.90±0.1 0.40±0.2 0.80±0.2 0.90±0.1 0.60±0.2

close drawer 1.00±0.0 0.40±0.2 0.80±0.2 0.60±0.2 0.40±0.2

(∗) put the spoons on towels 1.00±0.0 0.20±0.2 0.60±0.2 0.40±0.2 0.60±0.2
(∗) put the spoons on the plates 1.00±0.0 0.00±0.0 0.40±0.2 0.00±0.0 0.80±0.2
(∗) fold cloth into the center 1.00±0.0 0.00±0.0 0.00±0.0 0.60±0.2 0.00±0.0
(∗) sweep to the right 0.70±0.1 0.40±0.2 0.00±0.0 0.80±0.2 0.00±0.0

(∗) put the corn and sushi on plate 0.70±0.1 0.00±0.0 0.20±0.2 0.00±0.0 0.30±0.1
(∗) sushi and mushroom in bowl 0.60±0.2 0.00±0.0 0.20±0.2 0.40±0.2 0.60±0.2
(∗) corn, banana, and sushi in bowl 0.50±0.2 0.00±0.0 0.00±0.0 0.40±0.2 0.50±0.2
(∗) take the item out of the drawer 0.40±0.2 0.00±0.0 0.00±0.0 0.20±0.2 0.00±0.0
(∗) move bell pepper and sweep towel 0.60±0.2 0.20±0.2 0.20±0.2 0.40±0.2 0.00±0.0
(∗) corn in plate then sushi in pot 0.30±0.1 0.20±0.2 0.00±0.0 0.00±0.0 0.00±0.0

∗ indicates task is compositionally-OOD (has multiple steps never seen together in training)
†The best-performing method(s) up to statistical significance are highlighted

While TRA completed 88.9% of tasks seen in Scene B, 83.3% of evaluations in Scene C, and 60% of
tasks in Scene D with instruction following, the best-performing baseline for Scene B was 30% with
LCBC, 43.3% for Scene C with AWR, and 33.3% on Scene D with Octo. The same improvement
was also present in goal reaching tasks, although at a lower level, in which Scene C produced 60%
success rate and scene D produced a 43.3% success rate, as compared to 46.7% and 20% for the
best-performing baselines.

0 0.2 0.4 0.6 0.8

TRA (Ours)

AWR+TRA

TRA (Ours)

AWR+TRA

Success Rate

Ablation: Using TRA as Value Signal

Goal Images Language

Figure 4: Aggregated success rate of using AWR as an addi-
tional policy learning metric over all 4 scenes.

Qualitatively, we see that policies
trained under TRA provides a much
smoother trajectory between different
subtasks while following instructions,
while other cannot replicate the same
performance. Take removing the bell
pepper + sweep task for example, with
its visualization shown Fig. 3, while
TRA was able to remove the bell pep-
per by grasping it and putting it to
the bottom right corner of the table,
LCBC cannot replicate the same per-
formance, choosing to nudge the bell
pepper instead and failed to execute
the task.

How well does TRA perform
against Conventional Offline RL
Algorithms? While offline reinforce-
ment learning promises good stitch-
ing behavior [41], we demonstrate that
TRA still outperforms offline reinforce-
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“move the bell pepper to the bottom right of the table, 
and then move the towel to the top right of the table”

LCBC

TRA

Figure 3: Example rollouts of a task with TRA and LCBC. While TRA is able to successfully
compose the steps to complete the task, LCBC fails to ground the instruction correctly.

ment learning on robotic manipulation. Overall, TRA performs better than AWR for both language
and image tasks, outperforming AWR by 45% on instruction following tasks, and by 25% on goal reach-
ing tasks, showing considerable improvement over an offline RL method that promises compositional
generalization via stitching.
Qualitatively, it is often seen that a policy trained with AWR would stop after one subtask, even
though the goal instruction or image demanded all of the subtasks be completed. We can see this
behavior in Fig. 1, in which we have the same goal image being fed in to 3 different policies in which
all 3 food items must be put in the bowl. While TRA successfully completes all 3 subtasks, AWR
chose to only complete one subtask and terminates right after putting the banana in the bowl. This
is due to the fact that AWR on an offline dataset has a goal-reaching reward function, in which it
does not attempt to align the representations of all trajectories across time unlike TRA.

Does TRA help capturing rarely-seen skills within the dataset? We also compare the
performance of TRA against AWR across all scenes and compare the performance of the policies
with all 3 tasks in Scene D as well as folding the towel, all rarely seen skills within BridgeData, as
it mainly focused on object manipulation. When compared by task within language conditioned
set, we discover AWR suffered a significant drop off in effectiveness, with its average success rate
plummeting from 43.3% in Scene C compared to 6.67% in Scene D, while TRA had a smaller drop
off, from 83.3% to 60%, displaying that TRA generates better understanding of tasks that are rarely
seen in the dataset. Other agents do not nearly achieve the same performance even as AWR in Scene
D, as the lack of such compositional generalization prevented the policies from achieving all of the
tasks at a reliable rate.

Is TRA sufficient in achieving compositional generalization? Finally, we demonstrate in our
real-world experiment that only using temporal alignment is sufficient for achieving good compositional
generalization. We evaluate this by comparing a policy trained on only temporal alignment loss (our
method), and another policy trained on such loss and have these losses weighed by AWR, using
the same principle described Section 4.2, in which we calculate the difference between contrastive
alignment losses between the current observation with goal and next observation with goal.
Fig. 4 shows that across all evaluation tasks, there exists no statistically significant difference between
using and not using AWR in addition to temporal alignment, in fact, using AWR marginally decreases
the efficacy of TRA, as compared to showing marginal improvement over vanilla GCBC methods and
a similar performance with vanilla LCBC methods. While TRA qualitatively improve the smoothness
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of the execution trajectories, the same cannot be said about using AWR, in which after executing
every subtask, the robot chose to return near the starting joint angles before executing the next
subtask.

4.4 Failure Cases

While TRA provides an effective mechanism for compositional generalization, it is not immune to
failures. Qualitatively, we observe that despite showing better compositional generalization, the
policy still fails at a similar rate compared to other multivariate Gaussian policies when multimodal
behavior is observed, other cases of early grasping and incorrect reaching are also observed at a
similar rate. While TRA did provide marginal improvements as seen in Scene A, it does not provide
full coverage of such scenarios. More analysis of failure cases can be seen in Appendix E.

5 Conclusions and Limitations
In this paper, we studied the effects of adding a temporal representation alignment objective in
behavior cloning, and we have discovered that by adding this metric, it allows a robot policy to
perform robust compositional generalization even when the composition of such tasks are OOD.
Although TRA demonstrates strong performance, there are few limitations remain. First, due to
restrictions placed by dataloaders, TRA cannot handle extremely long sequence of language, even
though the difficulty of subtasks contained within the instructions still remain easy. It also needs to be
shown that such method will be helpful for executing long-horizon tasks with bimanual manipulators
or enable cross-embodiment generalization. An interesting future development for this method
would look into these directions and also create such compositional generalization across multiple
embodiments.
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A Implementation Details

A.1 Dataset Curation

We use an augmented version of BridgeData. We augment the dataset by generating 5 additional
paraphrased instruction per language instruction. During training process, we randomly sample the
instructions for each trajectory to ensure an equal coverage of texts.
During data loading process, for each observation that is being sampled with timestep k, we also
sample min(k + x, trajectory length), x ∼ Geom(1− γ), we load the new observation along with the
previous data. We employ random cropping, resizing, and hue changes during training process image
robustness.

A.2 Policy Training

We use a ResNet-34 architecture to model the policy π(a|s, z). We use a multivariate Gaussian
distribution to model the action of the policy. We train our policy with one Google V4-8 TPU
VM instance. We train the policy for 150,000 steps, which takes a total of 20 hours to train the
policy. We use a learning rate of 3e-4, 2000 linear warmup steps, and a MLP head of 3 layers of 256
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dimensions after encoding the observation representations as well as goal representations. During
inference, we use the argmax policy, that is, we use the mode of the distribution instead of random
sampling during evaluation.

B Baseline Implementation Details

B.1 Octo

We use an Octo-base 1.5 model publicly availble on HuggingFace for evaluating Octo baselines. We
use inference code that is readily available for both image- and language- conditioned tasks. During
inference, we use an action chunking window of 4 and an execution horizon window of 4.

B.2 Behavior Cloning

We train a Goal-Conditioned Behavior Cloning and Language-Conditioned Behavior Cloning agent
using the same procedure as GRIF, with major reductions to remove the contrastive training
between image and language. During the training process, only the behavior cloning loss is used for
optimization, and we use the same hyperparameters as TRA during the training process.

B.3 AWR

In order to train an AWR agent without separately implementing a reward critic, we implement a
surrogate for advantage using the following formula:

A(st) = LNCE(Enc(st),Enc(g))− LNCE(Enc(st+1),Enc(g)) (7)

In which Enc could be any of the encoders φ, ξ, ψ. L is the same InfoNCE loss defined Section 3,
and g is defined as either the goal observation or the goal language instruction, depending on the
modality.
And we extract the policy using the same algorithm described in AWR:

π ← argmax
π

Es,a∼D[log π(a|s, z) exp(
1
β
A(s))] (8)

During training, we set β to 1, and we use a batch size of 128, the same value as policy training for
our method.

C Experiment Details

In this section, we go through our experiment details and how they are set up. During evaluation,
we randomly reset the positions of each item within the table, and perform 5 or 10 trials on each
task, depending on whether this task is important within each scene.

C.1 List of Tasks

Table 4 describes each task within each scene, and the language annotation used when the policy
is used for inference. Every task that is outside of the drawer scene are multiple step, and require
compositional generalization.

C.2 Inference Details

During inference, we use a maximum of 200 timesteps to account for long-horizon behaviors, which
remains the same for all policies. We determine a task as successful when the robot completes the
task it was instructed to within the timeframe. For evaluating baselines, we use 5 trials for each of
the tasks.
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Table 4: Task Instructions

Scene Count Task Description Instruction

Drawer
10 open the drawer “open the drawer”
10 put the mushroom in the drawer “put the mushroom in the drawer”
10 close the drawer “close the drawer”

Task Generalization

5 put the spoons on the plates “move the spoons onto the plates.”
5 put the spoons on the towels “move the spoons on the towels”

6 fold the cloth into the center from
all corners “fold the cloth into center”

10 sweep the towels to the right “sweep the towels to the right of
the table”

Semantic Generalization

10 put the sushi and the corn on the
plate “put the food items on the plate”

5 put the sushi and the mushroom
in the bowl “put the food items in the bowl”

10 put the sushi, corn, and the ba-
nana in the bowl “put everything in the bowl”

Tasks With Dependency

10 take mushroom out of drawer “open the drawer and then take
the mushroom out of the drawer”

10 move bell pepper and sweep towel
“move the bell pepper to the bot-
tom right corner of the table, and
then sweep the towel to the top
right corner of the table”

10 put the corn on the plate, and
then put the sushi in the pot

“put the corn on the plate and
then put the sushi in the pot”

C.3 Validation MSE

In addition to rolling out the policy on real-world robot settings, we additionally collected 9 additional
tasks that are compositionally OOD for 5 trajectories each, and we use 3 randomly selected seeds to
train policies to evaluate the MSE on the validation trajectories.

D Additional Visualizations

In this section, we show additional visualizations of TRA’s execution on compositionally-OOD tasks.
We use folding, taking mushroom out of the drawer, and corn on plate, then sushi in the pot as
examples, as these tasks require a strong degree of dependency to complete.

E Failure Cases

We break down failure cases in this section. While TRA performs well in compositional generalization,
it cannot counteract against previous failures seen with behavior cloning with a Gaussian Policy.
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“open the drawer, and then take the mushroom out of the 
drawer”

“fold the towel into center”

“put the corn on the plate, and then put the sushi in the pot”

Figure 5: In these figures, we see that TRA is able to perform good compositional generatlization
over a variety of tasks seen within BridgeData
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“open the drawer, and then take the mushroom out of the 
drawer”

❌

“put everything in the bowl”

STUCK!

❌
EVAL ENDS!

Figure 6: Most of the failure cases came from the fact that a policy cannot learn depth reasoning,
causing early grasping or late release, and it has trouble reconciling with multimodal behavior
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