Transferability of Graph Transformers with
Convolutional Positional Encodings

1

Transformers have recently been adapted to graph-structured data by injecting graph information
through positional or structural encodings while retaining global self-attention—yielding Graph
Transformers. Graph transformers have delivered state-of-the-art or highly competitive results in
several domains, including but not limited to large-scale molecular property prediction [1], biomed-

Javier Porras-Valenzuela Zhiyang Wang
Department of Electrical and Systems Engineering Halicioglu Data Science Institute
University of Pennsylvania University of California, San Diego
Philadelphia, PA 19104 La Jolla, CA 92093
jporras@seas.upenn.edu zhw135Qucsd.edu
Xiaotao Shang

Department of Electrical and Systems Engineering
University of Pennsylvania
Philadelphia, PA 19104
tshang@seas.upenn.edu

Alejandro Ribeiro
Department of Electrical and Systems Engineering
University of Pennsylvania
Philadelphia, PA 19104
aribeiro@seas.upenn.edu

Abstract

Transformers have achieved remarkable success across domains, motivating the
rise of Graph Transformers (GTs) as attention-based architectures for graph-
structured data. A key design choice in GTs is the use of Graph Neural Network
(GNN)-based positional encodings to incorporate structural information. In this
work, we establish a theoretical connection between GTs with GNN positional
encodings and Manifold Neural Networks (MNNs). Building on transferability
results for GNNs, we prove that such GTs inherit the transferability guarantees of
GNNs. In particular, GTs trained on small graphs provably generalize to larger
graphs under mild assumptions. We complement our theory with extensive exper-
iments on standard graph benchmarks, demonstrating that GTs exhibit scalable
generalization behavior on par with GNNs. Our results provide new insights into
the understanding of GTs and suggest practical directions for efficient training of
GTs in large-scale settings.

Introduction

ical knowledge graphs [2], and long-range data benchmark [3].

Graph transformers extend self-attention to graphs by injecting structural information—via po-
sitional or structural encodings—and letting attention aggregate signals beyond local neighbor-

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: New Perspectives in

Graph Machine Learning (NPGML).

hoods. Early formulations introduced absolute encodings from the graph Laplacian and adapted
full-attention layers to irregular topologies, while subsequent designs added relative encodings (e.g.,
shortest-path distance, edge features, centrality) or kernel-based encodings to bias attention toward
graph structure. Canonical examples include the Graph Transformer [4], SAN, which learns spec-
tral encodings drawn from the Laplacian spectrum [5], GraphiT (diffusion-kernel/relative encodings)
[6], and the Graphormer family (shortest-path and centrality biases in dense self-attention) [1]. Hy-
brid “local-global” models such as GraphGPS [7], GraphTrans [8] combine a message-passing GNN
block with a global attention block, and sparse variants such as Exphormer [9] and , and UnifiedGT
[10] replace quadratic attention with structured sparsity for scalability—together yielding a general
recipe for high-capacity, size-aware graph transformers.

A central insight across this literature is that structure must be encoded explicitly for attention to
be effective on graphs. While full attention is given by transformer architecture, the outstanding
performance is always restricted by the huge calculation complexity brought by the full attention
architecture. Therefore, it is meaningful to develop a graph transformer that can be transferable
across different graph sizes under theoretical guarantees.

Theory from spectral graph signal processing establishes that such graph convolutional fil-
ters—under continuity conditions—are stable to perturbations and transferable across graphs sam-
pled from the same limit model [11, 12, 13, 14, 15]. Moreover, by analyzing graphs through limits,
one obtains that graph filters and GNNs converge as graph size grows; hence, models trained on
small sampled graphs can be deployed on larger graphs from the same limit model without retrain-
ing. We show that when these stable and transferable encodings are fed to a transformer whose
attention is controlled to be Lipschitz—e.g., by normalization schemes for self-attention or by al-
ternative Lipschitz attention maps—the composed model inherits stability and size-transferability.
Practically, this yields an efficient recipe: train on small graphs using graph convolutional positional
encodings, then transfer to larger graphs while keeping attention regularized, achieving sub-linear
performance difference and substantial computational savings.

The main contributions are as follows:

* We propose the graph convolutional filter as the positional encoding to ensure the stability,
equivariance, transferability, and generalization as the transformer inputs.

* With the graph filtering positional encoding, we provide the theoretical guarantee that the
graph transformers are transferable across different scales of graphs sampled from an un-
derlying manifold without retraining.

* We carry out experiments to verify on different domains (ArXiv-year, Reddit, snap-patents,
MAG). We propose a practical sparse graph transformer whose performance can match or
outperform GNNs and other graph transformers especially over heterophilic graphs.

2 Preliminaries

2.1 Graph neural networks

Set up and graph convolutions An undirected graph G = (V, £, W) contains a node set V with
N nodes and an edge set £ C V x V. The weight function W : £ — R assigns values to the edges.
We define the graph Laplacian L = diag(A1) — A where A € RV*¥ is the weighted adjacency
matrix. Graph signals are functions mapping nodes to a feature value. We write it as a vector z €
R¥, with each entry [z]; representing the function value on node i. A graph convolutional filter hg
is composed of consecutive graph shifts by graph Laplacian, defined as hg (L)x = kK;Ol hyLFz
with {hk}sz_Ol as filter parameters. We replace L with eigendecomposition L = VAV H where V
is the eigenvector matrix and A is a diagonal matrix with eigenvalues {\; x} ¥, as the entries. The
spectral representation of a graph filter is

K—1
VPhg(L)z =Y AV z = h(A) V2. (1)
k=1
This leads to a point-wise frequency response of the graph convolution as ﬁ()\) = 2{2—01 hi .

Graph neural networks A graph neural network (GNN) is a layered architecture, where each
layer consists of a bank of graph convolutional filters followed by a point-wise nonlinearity o :

R — R. Specifically, the e-th layer of a GNN that produces F. output features {zg}f;l with F,_;

F._

input features {z{ ,},°;" is written as

Fe—l
=0 | > hFL)zl |,)

q=1

for each layer e = 1,2--- , E. The graph filter h?(L) maps the ¢-th feature of layer e — 1 to the
p-th feature of layer e. We denote the GNN as a mapping W (H, L, Z), where H = {h#}. , 4
denotes a set of the graph filter coefficients with a finite dimension at all layers and Z € RV %0 ag
the input feature matrix over all nodes.

2.2 Manifold neural networks

Setup and manifold convolutions. We consider a d-dimensional compact, smooth and differen-
tiable Riemannian submanifold M embedded in a M-dimensional space RM with finite volume.
This induces a measure p which has a non-vanishing Lipschitz continuous density p with respect
to the Riemannian volume over the manifold with p : M — (0, 00), assumed to be bounded as
0 < pmin < p(x) < pmaz < oo for all z € M. The manifold data supported on each point z € M
is defined by scalar functions f : M — R [12]. We use L?(M) to denote L? functions over M with
respect to measure u. The manifold with probability density function p is equipped with a weighted
Laplace operator [16], generalizing the Laplace-Beltrami operator as

1
Lf= —2—pdiv(p2Vf), (3)

with div denoting the divergence operator of M and V denoting the gradient operator of M [17, 18].
The manifold convolution operation is defined relying on the Laplace operator £ [12]. For a function
f € L?*(M) as input, a manifold convolutional filter [12] can be defined as

K—1
g(x) =h(L)f(z) = > hwe " f(x), @
k=0
with hy € R the filter parameter.

Manifold neural networks. A manifold neural network (MNN) is constructed by cascading L
layers, each of which contains a bank of manifold convolutional filters and a pointwise nonlinearity
o : R — R. The output manifold function of each layer l = 1,2--- | L can be explicitly denoted as

Fi_y

fFla)y=o > UL, (2) |, ®)

q=1

where f! |, 1 < g < Fj_ is the g-th input feature from layer [— 1 and f/’, 1 < p < F} is the p-th
output feature of layer [. We denote MNN as a mapping W v((H, L, f), where H = {h}?}, , ;isa
collective set of filter parameters in all the manifold convolutional filters.

3 Transferable Graph Transformers

We consider signals supported on the manifold defined in Section 2.2, with a weighted Laplace
operator as defined in (3). Because functions f € L2(./\/l) describe information on M, we focus on
a finite-dimensional subspace of L?(M) determined by an eigenvalue cutoff of £, i.e., a bandlimited
signal:

Definition 1. A manifold signal f € L?(M) is bandlimited if there exists some X\ > 0 such that for
all eigenpairs {\;, ¢;}32, of the weighted Laplacian L when \; > X, we have (f, ¢i) s = 0.

Node Positional Encodings

A
Graph]

L

Graph Filter

Transformer Output Features

Node Features

Figure 1: Framework of graph transformer with convolutional filtering positional encodings.

Suppose we are given a set of N i.i.d. randomly sampled points Xy = {x;}, over M, with
x; € M sampled according to measure ;. We construct a graph G(V, £, W) on these N sampled
points Xy, where each point z; is a vertex of graph G, i.e. V = X . Each pair of vertices (x;, ;)
is connected with an edge while the weight attached to the edge W(z;, ;) is determined by a kernel
function K. The kernel function is decided by the Euclidean distance ||z; — x| between these two
points. The graph Laplacian denoted as L can be calculated based on the weight function [19]. The
constructed graph Laplacian with an appropriate kernel function has been proved to approximate the
Laplace operator £ of M [20, 21, 22]. In this paper, we implement the normalized Gaussian kernel
definition in [22], which is defined as:

1 l=i—=j?

Wl(xi,xj) = Ke(xs,2;5) = 6—26 2. (6)

We consider a graph transformer operating over this constructed graph G from the underlying man-
ifold M. A graph transformer (GT) is comprised of £ GNN layers followed by L — E transformer
layers, explicitly denoted as

Z.=9Ys(H,LZ). e € [1,E] @)
X; = @G(Z; T)l = V;X;_; softmax [(Qle—l)T(Kle—l)] le [E + 1,L] (8)

with Xg = Zg = g (H,L,Z)g, and ¥ a GNN as defined in (2). The outputs of the GNN in
Equation (7) are referred to as the positional encodings. The learnable parameters of the transformer
are linear maps Q. K;,V; € RP>*P collected in T = {Qq, KbVl}lL:l. Observe that in this
architecture, the graph structure is only considered in Equation (7). The attention operation (8)
computes attention coefficients for every pair of node embeddings x; ;,X; ;, %, j € [1, N], regardless
of the connectivity in L. The output of the GT is a matrix X, € RV *P_ For the ease of presentation,
we consider the case with £ = 1 and L = 2, while the conclusion can be extended to accomodate
multiple layers.

Manifold transformer. A manifold transformer layer is defined as

F(&) = Ui (M, L. g)(x) = o (/M ﬁ(t)e—“gu)du(x)) ©)

f e<Qf($)’Kf(y)>Vf(y)d,u(y)
(T, f)(2) = MfMe(Qf(:cLKf(y»du(y) (10)

for manifold signal g € L?(M) and + € M a point in the manifold. Here, f and g are vector-
valued functions over M. Equation (9) corresponds to the MNN described in Section 2.2 over the
manifold signal g. Equation (10) describes manifold attention, the continuous analogue of softmax.
The manifold transformer is a map ® 5 : L2(M) — L?(M) resulting of the composition of f (the
MNN) with the manifold attention operation. The vector-valued function ® o((T, f) : M — R?
maps a point in the manifold to a D-dimensional signal. We now introduce a set of assumptions
required to ensure the convergence from GNNs to MNNs and from GTs to MTs.

Assumption 1 (Normalized Lipschitz signals). The manifold signals g are normalized Lipschitz for
all points a,b € M, ||g(b) — g(a)|| < ||b — al|.

Assumption 2 (Bounded linear operators). Q, K, and 'V are bounded linear operators with con-
stants Cq, C, Cy > 0, i.e., |Qx|| < Collx||, |[Kx|| < Ck|x]|, [[Vx|| < Cv|x]|, for allx € R.

Assumption 3 (Spectral continuity of the filter). The frequency response function of the filter satis-

fies

> >

N[=0, W] < CLA™h A e (0,0),
with C, a spectral continuity constant that regularizes the smoothness of the filter function.

Assumption 4 (Normalized Lipschitz nonlinearity). The nonlinearity o is normalized Lipschitz
continuous, i.e.,
lo(a) —a(b)] < la—1), o(0) =0.

Assumptions 1 — 4 are mild assumptions on the properties of the underlying manifold, manifold
signals, and filters, and are common in the analysis of Riemannian manifolds for GNN transferabil-
ity.

Equation (7) describes the positional encodings of the GT. Leveraging GNNss as positional encodings
is a principled choice, supported by the established convergence results of GNNs to MNNs that
have led to showing desirable architectural properties. Building on this foundation, we present a
convergence theorem from the literature, tailored to our setting.

Theorem 1. (Point-wise Convergence of GNN to MNNs) For a graph G sampled from a manifold
M constructed with Equation 6, for each node x; € Xy, under assumptions 1 — 4, it holds with
probability 1 — § that

2
Acny = [[[Te(H,L,Pxn)]; — Cm(H, L, f)(z))]]2 < EFE! (Cez " % 10%/5) ’
(11)

where C' is a constant that depend on the geometry of the manifold and scales with C, defined in
Appendix 5.2, and e = ¢(N) > (%)

2d+12

Having stated the convergence of the GNN positional encodings to the continuous analogue MNN
positional encodings, we can use this result to present our main theorem on the convergence of GT
with GNN Positional Encodings to MT with MNN positional encodings.

Theorem 2. (Point-wise Convergence of GT to MT) For any © € M, under assumptions 1 — 2, the
pointwise output difference between a graph transformer and manifold transformer, with probability
at least 1 — 6, is bounded by

Agpx) = [®a(T, X)(z) — m(T, f)(z)]2 < (Cv + 26" Cox)Aann

+ [(Cy + eMCqk)] A(%)l/d (12)

where A is a constant related to the geometry of M, d > 3 is the intrinsic dimension of the manifold,
Corx = CqCk, Cy are the linear operator bound constants of Q, K, and V, and M = Cg.

The proof of Theorem 2 is available in Appendix 7. This result proves that as the number of nodes
sampled in graph G increases, the output of GT tends to converge to the underlying MT with a rate

@ ((log N/N)(1/ d)). The Lipschitz constant of the value operator appears in the term Cy Agnn,

which indicates smoother graph filters in GNNSs lead to a smaller convergence bound. Furthermore,
the result suggests smoother linear operators Q, K, V, H can also improve the convergence rate,
which provides the insight that by adding regularization to the operators in transformer helps to
achieve a better convergence result, hence a better transferability performance.

Theorem 2 indicates that the pointwise output difference of GT and MT decays as the size of the
sampled graph IV grows. This implies that we can train a GT on a small graph G with N7 nodes,
and fransfer it to a larger graph Go, with N < Nj, with guarantees that the approximation gap
to the manifold transformer’s output is bounded. This implication is paramount given the O(N?)
computational cost of GT — we can train on a relatively smaller graph and ensure good performance
on larger graphs. We state this below in the following corollary:

Test Accuracy Heatmap (GNN) Test Accuracy Heatmap (Sparse GT-RPEARL)

o297 o

0375 0.90 Joass o 0375

0.350 0.350
0.325

0.325

-0.300 -0.300

Test Accuracy
Training Fraction
°
Test Accuracy

Training Fraction

0275

025 {E08
0250

0275

-0.250

-0.225 0.10 Jasen -0.225

Testing Fraction Testing Fraction

Figure 2: Test Accuracy Heatmaps on snap-patents across for GCN and SGT-RPEARL.

Corollary 3. (Transferability of Graph Transformers) Let G1 and Go graphs constructed by points
sampled from M, with N1, Na nodes respectively, and graph signals X, and Xs. Further, let
Iy : La(Gy) — L2(M) denote the interpolation operator on N nodes (detailed definition in
Appendix 5.1). Define the 1,2 norm of a manifold signal f supported on M as ||f||p12(m) =

S 1 f(@)|l2 dp(x) Then, it holds, with probability 1 — 6,

1
WHINl(I’Gl(TaXl) —In, @, (T, X)) < Aax,) + Dax,) +20vCorr (13)

4 Experiments

Corollary 3 implies that the performance gap of GTs versus the ideal manifold transformer should
decay as graph sizes increase, a consequence that we now turn to validating empirically. From the
dataset, we subsample training graphs Gt with sizes Ntg taken over fractions 0.05,0.1,...,1.0,
and evaluate on a large test graph Gpst with size Nysy > Ntg. Our theory predicts that as Ntg
increases, the performance of GTs on Grst approximates that of a GT trained on the full graph.

We evaluate on four node classification datasets. Here we present SNAP-Patents [23] and ArXiv-
year [23]. Results for ogbn-mag [24] and REDDIT-BINARY [25] are available in Appendix 10,
which show similar transferability patterns in cases where GCN and GT’s accuracy is comparable.

Models. We consider a GCN [26] baseline, and three different transformers. A conventional trans-
former [27] with attention coefficients for each pair of nodes in the graph and RPEARL [28] posi-
tional encodings (GT-GNN). A sparse transformer with attention restricted to the k-hop neighbor-
hoods, with RPEARL-based positional encodings (Sparse GT-RPEARL). Finally, Exphormer [9],
another sparse variant that computes attention coefficients for (i) one-hop neighbors, (ii) random
edges from an expander graph, (iii) /N additional attention coefficients between each node and a
virtual global node. Sparse GT and Exphormer are transformer variants that endow the architecture
with additional locality and sparsity priors that go beyond our theory to aid with performance and
computational tractability on large graphs. Crucially, Exphormer has no positional encodings, and
thus is not covered by our theoretical results.

GTs with GCN encodings exhibit transferability properties. = Figure 3 shows the test perfor-
mance of the four models with increasing training fractions on full testing datasets, for SNAP-
Patents and ArXiv-year. GT-GNN and SGT-GNN'’s accuracy with only a fraction of the training
nodes is comparable to their accuracy with the largest training fraction, indicating successful trans-
ferability. This is also true for GCN, albeit with a lower peak accuracy. This gap between GCN and
GT is consistent with previous work’s observations of the success of global attention in heterophilic
datasets ([4]). The trend of Exphormer in ArXiV-year also shows a more pronounced monotonic
increase, possibly due to the random sampling procedure being more beneficial on larger graphs.

GTs attain high accuracy on small test graphs.

The heatmaps of Figure 2 show the performance

of each model with both increasing sizes of train and test graphs on SNAP-Patents. Here, Sparse

GT, maintains strong accuracy even with the smallest possible test graph fractions.

In contrast,

GCN’s accuracy is low with small test graphs, suggesting that it requires a minimum amount of

graph structure to make reliable predictions.

Test Accuracy vs. Training Fraction (snap-patents)
Model Type
—e— GNN
GT-GNN
—8— Sparse GT-RPEARL
—e— Exphormer
At
_—e
_e—e
—s-
038 o«

/

o

03]

°
w
®

o—o—o—tq

Test Accuracy

o
@
i

o—a— T "
.\:
P
[o
—

030 /\ \/-

Training Fraction

(a) snap-patents

Test Accuracy

°
W
S

Test Accuracy vs. Training Fraction (arXiv-year)
Model Type
—e— GNN
GT-GNN
—8— Sparse GT-RPEARL
—e— Exphormer

/\/\/

ot
I\

& ~ ._.
et

o.
—

Training Fraction

(b) arXiv-year

Figure 3: Transferability results for arXiv-year and snap-patents.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen,
and Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in
neural information processing systems, 34:28877-28888, 2021.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer.
In Proceedings of the web conference 2020, pages 2704-2710, 2020.

Vijay Prakash Dwivedi, Ladislav Rampasek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan
Luu, and Dominique Beaini. Long range graph benchmark. Advances in Neural Information
Processing Systems, 35:22326-22340, 2022.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to
graphs. arXiv preprint arXiv:2012.09699, 2020.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. Advances in Neural Information Pro-
cessing Systems, 34:21618-21629, 2021.

Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. Graphit: Encoding graph
structure in transformers. arXiv preprint arXiv:2106.05667, 2021.

Ladislav Rampések, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and
Dominique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in
Neural Information Processing Systems, 35:14501-14515, 2022.

Zhanghao Wu, Paras Jain, Matthew A. Wright, Azalia Mirhoseini, Joseph E. Gonzalez, and Ion
Stoica. Representing Long-Range Context for Graph Neural Networks with Global Attention.

Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal
Sinop. Exphormer: Sparse transformers for graphs. In International Conference on Machine
Learning, pages 31613-31632. PMLR, 2023.

Junhong Lin, Xiaojie Guo, Shuaicheng Zhang, Dawei Zhou, Yada Zhu, and Julian Shun. Uni-
fiedGT: Towards a Universal Framework of Transformers in Large-Scale Graph Learning. In
2024 IEEE International Conference on Big Data (BigData), pages 1057-1066. IEEE.

Zhiyang Wang, Luana Ruiz, and Alejandro Ribeiro. Geometric graph filters and neural net-
works: Limit properties and discriminability trade-offs. IEEE Transactions on Signal Process-
ing, 2024.

Zhiyang Wang, Luana Ruiz, and Alejandro Ribeiro. Stability to deformations of manifold
filters and manifold neural networks. IEEE Transactions on Signal Processing, pages 1-15,
2024.

Luana Ruiz, Luiz FO Chamon, and Alejandro Ribeiro. Transferability properties of graph
neural networks. IEEE Transactions on Signal Processing, 71:3474-3489, 2023.

Luana Ruiz, Luiz Chamon, and Alejandro Ribeiro. Graphon neural networks and the trans-

ferability of graph neural networks. Advances in Neural Information Processing Systems,
33:1702-1712, 2020.

Nicolas Keriven, Alberto Bietti, and Samuel Vaiter. Convergence and stability of graph con-
volutional networks on large random graphs. Advances in Neural Information Processing
Systems, 33:21512-21523, 2020.

Alexander Grigor’yan. Heat kernels on weighted manifolds and applications. Cont. Math,
398(2006):93-191, 2006.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst.
Geometric deep learning: going beyond Euclidean data. IEEE Signal Processing Magazine,
34(4):18-42, 2017.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

Gal Gross and Eckhard Meinrenken. Manifolds, vector fields, and differential forms: an intro-
duction to differential geometry. Springer Nature, 2023.

Russell Merris. A survey of graph Laplacians. Linear and Multilinear Algebra, 39(1-2):19-31,
1995.

Jeff Calder and Nicolas Garcia Trillos. Improved spectral convergence rates for graph Lapla-
cians on e-graphs and k-NN graphs. Applied and Computational Harmonic Analysis, 60:123—
175, 2022.

Mikhail Belkin and Partha Niyogi. Towards a theoretical foundation for laplacian-based man-
ifold methods. Journal of Computer and System Sciences, 74(8):1289—-1308, 2008.

David B Dunson, Hau-Tieng Wu, and Nan Wu. Spectral convergence of graph Laplacian and
heat kernel reconstruction in L from random samples. Applied and Computational Harmonic
Analysis, 55:282-336, 2021.

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao,
and Ser-Nam Lim. Large Scale Learning on Non-Homophilous Graphs: New Benchmarks
and Strong Simple Methods. In Marc’ Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin,
Percy Liang, and Jennifer Wortman Vaughan, editors, Advances in Neural Information Pro-
cessing Systems 34: Annual Conference on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, Virtual, pages 20887-20902. arXiv.

Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong, and Anshul
Kanakia. Microsoft Academic Graph: When experts are not enough. 1(1):396-413.

Pinar Yanardag and S.V.N. Vishwanathan. Deep Graph Kernels. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’15, pages 1365-1374. Association for Computing Machinery.

Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional
Networks.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st
International Conference on Neural Information Processing Systems, NIPS 17, pages 6000—
6010. Curran Associates Inc.

Charilaos Kanatsoulis, Evelyn Choi, Stefanie Jegelka, Jure Leskovec, and Alejandro Ribeiro.
Learning Efficient Positional Encodings with Graph Neural Networks.

Nicolas Garcia Trillos, Moritz Gerlach, Matthias Hein, and Dejan Slepcev. Error estimates for
spectral convergence of the graph Laplacian on random geometric graphs towards the Laplace—
Beltrami operator.

Ulrike Von Luxburg, Mikhail Belkin, and Olivier Bousquet. Consistency of spectral clustering.
The Annals of Statistics, pages 555-586, 2008.

Wolfgang Arendt, Robin Nittka, Wolfgang Peter, and Frank Steiner. Weyl’s law: Spectral
properties of the Laplacian in mathematics and physics. Mathematical analysis of evolution,
information, and complexity, pages 1-71, 2009.

Zhiyang Wang, Juan Cervino, and Alejandro Ribeiro. A Manifold Perspective on the Statistical
Generalization of Graph Neural Networks.

5 Appendix

5.1 Manifold decomposition and induced manifold signal

The graph G contains points Xy = {z;}}Y, sampled from the manifold M. The graph signal
X € RV*P can be viewed as a discretization of the continuous manifold signal f evaluated at
points Xy, that is

Pyf =X, (14)

where Py : Lo(M) — Lo(Xy) is called the sampling operator. The sample Xy induces a
decomposition of the manifold [29], {V;} Y, with respect to Xy, with V; C B,.(z;) a ball of radius
r centered at x;, with respect to the Euclidean distance in Euclidean ambient space.

Let uy = % ZZ]\L 1 0x; the empirical measure of the random sample. The decomposition is defined
by the oo-optimal transport map 7' : M — Xy, defined by the co-optimal Transport Distance
between u and py,

doo (1, N)L = T:Tgﬁl;l}imv ess sup, e (0 (z, t(x)). (15)

Here, T# denotes that (T~ (V) = un (V) holds for every V; of the decomposition of M.

The radius of the balls where the partitions are contained can be bounded as r < A(%)l/ 4 when

d > 3andasr < A(log N)3/4/N'/2 when d = 2, with A being a constant related to the geometry
of the manifold.

The manifold function induced by the signals of the sampled graph is a piecewise constant function
defined by

N

(InX)(2) = > [Xlilsev, (16)

i=1

where Iy : Lo(Xn) — La(M) denotes the interpolation operator.

5.2 Proof of Theorem 1

We first import the spectral point-wise convergence of graph Laplacian to Laplace-Beltrami operator
from [22]. The spectral representation of manifold filters are similar to graph convolutional filter,
while we consider the case in which the Laplace operator is self-adjoint, positive-semidefinite and
the manifold M is compact. In this case, £, has real, positive and discrete eigenvalues {\;}52;,
written as £,¢; = \;¢; where ¢; is the eigenfunction associated with eigenvalue A;. The eigen-
values are ordered in increasing order as 0 = A; < Ay < A3 < ..., and the eigenfunctions are
orthonormal and form an eigenbasis of L?(M). When mapping a manifold signal onto the eigen-

basis [f]; = (f, ¢i)a = S f(@)i(x)du(z), the manifold convolution can be seen in the spectral
domain as

K—1
9l = > hie ™[l (17)
k=0
Hence, the frequency response of manifold filter is given by iL()\) = K;Ol he FA.

Proposition 1. [22][Theorem 4] For a sufficiently small ¢ > 0, if n is sufficiently large so that
1
e=¢(n) > (10%) 2 then with probability greater than 1 —n=2, forall 0 < i < M,
Nin — Ni| < Qie?, max |ai[dinl; — ¢i(x;)| < Qae?, (18)
z;j eXn
with 1 and Q5 related to the eigengap of L, d, and the diameter, the volume, the injectivity radius,

the curvature and the second fundamental form of the manifold.

10

Because {z1, o, -+ ,zy} is a set of randomly sampled points from M, based on Theorem 19 in
[30] we can claim that

log(1/6
(PN f,PNngi) — (f, i) ml = O (gE\/))) (19)
where (f, ¢;) f M x)dpu(x) is defined as the inner product over manifold M. This also
indicates that
log(1/d
P12 = 11| = O (gﬁv”> , o)

which indicates [P f|| = [|f[lp + O((log(1/8)/N)1/4), where || f[34 = (f. f).m. We suppose
that the input manifold signal is Ajs-bandlimited with M spectral components. We first write out
the difference on each node x; € Xy as

N M
I(@Ly)Pxfl; = (h(L)) (@)l = || Y b)) (PN f, bin) i n]; Z)fs i) mepi(a)
- B @1)
M M N
< Zh()‘l7N)<PNf7¢l,N>[¢l,N]] Zh()<f7¢1 M¢z x] Z zN PNf7¢z N>[¢z N}
i=1 i=1 =M+ (22)
M M N
< Z 7,N PNf7¢¢N>[¢zN] Z ()<f7¢z>./\/l¢z wj 7,N PNf7¢¢N>[¢zN]
i—1 i=1
(23)
The first part of (23) can be decomposed with the triangle inequality as
Zh zN PNf7¢1N ¢1N Zh f7¢1 M¢1(Ij)
5 1M R R M
< Z (h()\i,N) h(A)) (Pnf, ¢inN)[@in]; Zh()\z) (Pnf,din)[din]; — (f, ¢i>M¢z‘($g‘))H :
i=1 1=1
(24)

In (24), the first part relies on the difference of eigenvalues and the second part depends on the
eigenvector difference. The first term in (24) is bounded with Cauchy-Schwartz inequality as

M M
Z(il()\i,n) — B\ (P f, i) i ni|| < Z ‘il()\i,N) — h()| (PN f, pin)] (25)
i=1 -
< |Pnfll Z (M) |Aiv — Al (26)
i=1
M
<|PufID CrneA 27)
i=1
M
< P flCL e) i (28)
i=1

< (nan + (52) 0T =))

In (25), it depends on the inequality that |[¢; n];| < [|@i Nl < ||@in]l2 = 1. In (27), it depends
on the filter assumption in Assumption 3. In (28), we implement Weyl’s law [31] which indicates
that eigenvalues of Laplace operator scales with the order \; ~ i%/?¢. The last inequality comes from

11

the fact that Y oo, i 72 = %2. The second term in (24) can be bounded with the triangle inequality
as

M

> TR\ (P f, i) din]y — i) i) H

i=1

i) (PN f, ¢in)bin]j — (PN S, bin)pi(z;)) H

i) (PN f, diN)bi(x5) — (f, di) mPi(w;))

| (30)

The first term in (30) can be bounded with inserting the eigenfunction convergence result in Propo-
sition 1 as

M
Zh ((Pnf, din)@in]; — (PNf, i) mPi(z;))

i=1

M
<3 [k (i ila)] G
u 3
<D T <||f||M + (W) > (32)
i=1
M %
<2 Y07 <|f|| + ()) @
== Ay(M, N). (34)

Considering the filter assumption in Assumption 3, the second term in (30) can be written as

M
Z h(O\i,n) (PN f, i) @i(a5) — (f, i) i)
i=1

E/%E I

>~ || P, i) = (. bidaal [4(a)) (35)
1;41
<D [P f,bin) = (o di)aal 5] (36)
1;11 d
<D (14 me) AP, pin) — (f di) (37)
i=1
2
< 5 1PN F.bin) = (Fbidu] = As(N) (38)

The term (P f, @i n) — (f, ¢:) m| can be decomposed by inserting a term (P f, Py ¢;) as
(PN f,din) — (fs@i)m| S [(PN S din) — (PN Pndi) + (Pnf,Pndi) — (f, i)l

(39)

<|(Pnf,pin) — (Pnf,Pngi)| + [(Pnf,Pnei) — (f, ¢i>J\/(lJ10)

<|Pnfllll¢in —Pnoil| + (Pnf,Pnei) — (f, i) ml (41)

< <||f||M + <1Og§\1[/6))4> CM,;AM n 10%%/6) (42)

12

Then equation (37) can be bounded as

M
Z h(\i,n) (P f, din)di(x5) — (f, ¢z’>M¢z‘(%’))|’
M 1
e 1og(1/8)\ T\ Cazhie [log(1/d)
PIELAS d(Aﬂ)((anw(N)) Made . Jlosl) @)
2 Cptze log(1/6)\ T\ 72 [log(1/d)
7 o, S (s (249)') 5

The second term in (23) can be bounded with the eigenvalue difference bound in Proposition 1 as

A al log(1/6)\ 1
> M) Prfidimbini| < D (R <||f||M+<gN>) (45)
i=M+1 i=M+1
< > DIl (46)
=M1
<@+ ST ATDIflm @7)
i=M-+1
< M7 fllm = Ag(M). 48)

We note that the bound is made up by terms A1 (V) + A2 (M, N) + A3(N) + A4 (M), related to the
bandwidth of manifold signal M and the number of sampled points /N. This makes the bound scale
with the order

log(1/9)
N
with Cf = CL91%2Hf||M, Ch = QQ%Q, Cl = %2 and C} = || fllm. As N goes to infinity, for
every 0 > 0, there exists some My, such that for all M > M, it holds that A4(M) < §/2. There
also exists ng, such that for all N > ny, it holds that A;(N) + Aa(My, N) + A3(N) < §/2. We
can conclude that the summations converge as N goes to infinity. We see M large enough to have
M~1 < §', which makes the eigengap 6 also bounded by e. We combine the first two terms as

IIB(LN)P Sl = h(L,) fla))]| < (C1CL+Ca)e + T logg/f”,

with C = Ql%z [fllm and Co = Qo7 ’9 5,1 1- To bound the output difference of MNNs, we need
to write in the form of features of the final layer

Ih(Ln)Py fl; — (L) f(x;)| < Cle® + Cheby) + C4 +CMT (49)

(50)

F F
[@a(E, Ly, Py f)]; — O(H, Ly,)@ = D 1= D fh () 51)
=1 —1
I‘i q
<> H[X%,L]j - fL(z)) \ : (52)
q=1

By inserting the definitions, we have

b s = 2| = o [ihf%m)xz,“] —a(ihﬁ’%)fﬁl(xj)) (53)

q=1 . qg=1
J
with x,, o = P f as the input of the first layer. With a normalized point-wise Lipschitz nonlinearity,

we have
Z [hpq (Ln)x nl 1} thq) fity(x5)

q=1

B!

15 15 = I ()] (54)

EF:H B (L))y = B (L) A ()| (55)

13

The difference can be further decomposed as
Iy (L)]y = 0 (L) fily ()|
< by (Lv)xy 1l — [h”q(LN)Pfo_l]'+[hpq(LN)PNfﬁ_l]'—hpq(ﬁp)ff_l(ﬂcj)ll (56)
< B a)xd il -)P (Ly)P S = DL f ()|
(57)

The second term can be bounded with (49) and we denote the bound as A for simplicity. The first
term can be decomposed by Cauchy-Schwartz inequality and non-amplifying of the filter functions
as

<t s = 17 @) <ZAN||xM 1||+Z||)il = fiy (@)l (58)

To solve this recursion, we need to compute the bound for ||xl ||. By normalized Lipschitz continuity
of ¢ and the fact that ¢(0) = 0, we can get

F
Pl < > b (Ly)xi, || < Z g (L) x| < Z Iyl < F'7Hixll (59)
q=1 q=1
Insert this conclusion back to solve the recursion, we can get
<t s = 17)| < 1P (60)

Replace [with L we can obtain
I[®e(H, Ly, Py f)l; — CH, L,, f)(z;)]| < LF* Ay, (61)
when the input graph signal is normalized. By replacing f = Iyx, we can conclude the proof.

5.3 Local Lipschitz continuity of MNNs

We utilize Proposition 3 in [32], which shows that the outputs of MNN defined in (5) are locally
Lipschitz continuous within a certain area, which is stated explicitly as follows.

Proposition 2. (Local Lipschitz continuity of MNNs [32][Proposition 3]) Assume that the assump-
tions in Theorem 1 hold. Let MNN be L layers with F features in each layer, suppose the manifold

filters are nonamplifying with |h(\)| < 1 and the nonlinearities normalized Lipschitz continuous,
then there exists a constant C' such that

|®(H, L, f)(z) — ®H, L,)(y)| < FFC'dist(x —y), forallz,y € B,(M), (62)

where B, (M) is a ball with radius r over M with respect to the geodesic distance.

6 Lemmas and Propositions

Lemma 4. Let v € M a point in the manifold, and y € V}, a point in partition V; C B,.(x;). Then
it holds that

(Qf(x), Kf(z;)) — (Qf(z), Kf(y))| < ByCoCk 7 (63)
Proof.
(Qf(2), Kf(z;)) — (Qf (=), Kf(y)) = QS (), K(f(z;) — f(»)) (64)
< Colf@) = Crllf(z) — fW) (65)
< BrCoCxkllf(x;) — f(W)ll (66)
< BfCoCklz; — (67)
<ByCoCk r (68)
(69)

Where in (65) we apply the bound on the linear operators Q and K, in (66) we apply the bound on
the manifold signal || f(z)|| < B, in (67) we apply the assumption on normalized Lipschitz MNN,
I f(z) — f(y)|| < |z —yl|, and in (68) we use the fact that y € V}, therefore |y — ;| < r. O

14

Lemma 5. Let Xy = {;}, be a set of points sampled from the manifold M, with its corre-
sponding induced partitioning {V; }}¥_,. For each x; € Xn, and for any y € V}, it holds that

%5 — Fiy| < eMByCoCx 7 (70)
Proof.
Vi — Fiyl = | exp (Qf (z:), Kf (x5)) — exp (Qf (), Kf(y))] (71)
< eMUQS(x:), Kf(x)) — (Qf (), Kf ()] (72)
<eMB;COoCK 7 (73)

where M := sup,, ¢ (Qf(u), Kf(v)). Note that M < Cq B} using the bounds on the MNN
signal and linear operators. In the first inequality we use the mean value theorem, |e® — eb| <
emax{a:b} g — b|. In the second we apply the bound from Lemma 4. O

Lemma 6. Let Xy = {x;}, be a set of points sampled from the manifold M, with its corre-
sponding induced partitioning {V;}¥,. For each x; € X it holds that

9y = Fisl = exp [(Qucs, Kox)] = exp [(QF). K)| (74)
< M|[(Qxi Kx)| = [(Qf (@), K f(x)]| 15)
< Mo (xiyx;) = (£ (@), £la;)]| (76)
< M Cae| (i, () = F(a7)) +{(oxi = (1)), £ (@) (a7
< MCou [lxi = F@)l - sl + 1 @)ls =)] 79)
<2eMCor By Aoy (79)
S 2€MOQKAGNN. (80)

In equation (75) we apply the mean value theorem, in (76) we apply the bound on the linear opera-
tors, in (77) add and subtract an intermediate term and apply bilinearity of inner products, in (78) we
apply Cauchy-Schwartz, in (79) we use the bound from Theorem 1, and finally, in (80) GNN/MNN
outputs are normalized By = 1.

7 Proof of Theorem 2

Theorem 2 bounds the convergence of a Graph Transformer with GNN-based PEs to a Manifold
Transformer with MNN-based PEs.

Proof. The graph transformer’s output for the i-th node can be written in vector form as
-1 exp[(Qxi, Kx;)|Vx;

T expl(Qr, Kxy)]

We will introduce an auxiliary term built from the induced manifold signal of the sample output of
a MT. For point z € M

81

®ulfiT)e) =

Dm S exp [(Qf (i), Kf(y))] duly)
(82)
The output difference for node 7 can be decomposed as
@6 (X; T)(2) — @Mm(f; T) ()] (83)
= [®c(X; T)(z) — 2m(f; T)(z) + am(f; T)(2) — ad(f; T)(@)] (84)

< [®c(X;T)(2) — am(X; T)(@)| + [@0 (X T)(2) = Baa(f, LT ()| (89)

15

INPy [3y V() du(y)) (@) = > i1 Jy, exp[(Qf (), Kf (z;)]V f () dp(y)

)

From Equation (83) to Equation (84) we add and subtract the induced manifold signal term, and in
(84) to (85) we use the triangle inequality.

For notational brevity, we will denote the GT attention coefficients as 7;; = exp[(Qx;, Kx;)],
the MT attention coefficients as +;, = exp[(Qf(z;)Kf(y))] , and the induced manifold signal
coefficients as 7;; = exp[(Qf(z;), Kf(x;))]. Furthermore, when necessary we will abbreviate the

denominator terms as Dg = Zjvzl Yij and Dpg = [iy dpn(y).

Thus we have

217 VX,

(X T)(2i) = =—F—— (86)
le]
Yiy VS (y)dp(y)
(i), = L7, (87
M
" AV (s
b)) — V) (8%)
M
We will now bound the first term of (85),
7 Vx; 7-1, ~i‘V X
|®c(X;T)(2) — M (X;T)(|— =105V —ZHZ)J fla)], (89)
Da M
Distribute the denominators, add a subtract D x7;; V f(z;), then apply triangle inequality:
1 N
DD ; DamiVx; — Da¥i V f (25) (90)
1 N
= > DaaisVxj = DaaigV f(25) + DaaigV f(27) = D VF () || OD
DeDm |
1 N 1 N
< DaDu ;DM%]‘VXJ' — Dpi; V f(zj)| + DaDo ; D7V f(zj) — Davi; V f(z;)
92)
1 1 N

j=1

Note that x; — f(z;) corresponds to the output difference between a GNN and an MNN. This
difference can be bounded as per Theorem 1, which denote as Ay . Thus, the first term of (93)
can be bounded as

N N
1
iy C_ W < . s — .
DaDwy ; D i V(% f(mj)) <|V| ;%J |XJ f(xj)| 94)
< FCVAGNN 2%7 = CyvAgnn, (95)

j=1

by using triangle inequality and the bound on the linear operator V, then the bound on Ay and
the definition for Dq.

16

Now we bound the second term in (93). We add and subtract another comparative term D x47;;,

N

D GID o ;(DM% — Dcig)V f () (96)

= i [(DM%‘J‘ = Dm%ij) + (Dmis — Daig) |V f (w5) 97)
DeDm 4=

- me = i D)

~ |DeDm = m(Yij = Fig) + (D = Da)¥ig |V £ (25) (98)
N ~

<3| ey (o —) Vite)| + e 0100 ©9)
N 1 ~Z

< ; |:DG|’Yij — iz| + D 17(; |Dag — DG@ CyB; (100)

On (98) we rearrange the terms, (99) we apply triangle inequality, on (100) the linear operator
bounds using Assumption 2, bound on the MNN signal By using Assumption 3. Applying the
bound of Lemma 6 (80) to (100) we obtain

N - 26 CQKBf Z’Y”CVBHDM Dg|

<2eMCo A Dy — D 101
Da DuDa e CorAcnN + |Dm Gl (101)

j=1

We now turn to bound the term |D g — Dg].

D~ Da| = | / exp [(Qf (2:), Kf ()] d Zexp (Qfa) Kf(,)]| (102)

The partitions B,.(x;) C V; cover the manifold M. Therefore, for every x € M, there exists a ;
such that |z — x;| < r. We can decompose the integral as

\Z / exp [(QF (1), K (1)) duly Zexp Qf@). Ki@))| o3
< \Z /V e [(Q (1), K f ()] — xp [(QF (1), K)] diu(y)| (104)
i=1 J
N
<3 [Jexn Q). K rw)] = exp (@). K)] (105)
< eMCoiBy|f(x;) = f(y)|| < Cor Byr = M Cokr. (106)

In Equation (104), we add repeated negative terms in order to bring the partition center coefficients
into the integral, in (105) the triangle inequality, in (106) the normalized Lipschitz property of the
MNN output (Assumption 4) and the bound |z; — y| < r for all y € V;. Finally we set By = 1.

Combining (95), (106) and (101), we conclude the bound for the first term of (85) is

’@G(X§ T)(z) — ®m(X; T)(l“)’ < OvAgnn +2eMCorAgnn +eMCgir (107)
= (CV + QeMCQK)AGNN + eMCQK’I“ (108)

17

‘We now bound the second term of (85),

@00 (X5 T) (@) — B aq(f, L5 T) () (109)

|| Z=m 16V i V@) duy) (110)
f/\/l ’%ydﬂ(y) fM ;}d/iyd,u(y)

< Dle /V 545V () dpa(y) — /M%ny(y)du(y) (i

Ly 5V () — 3V () du(y) (112)

= DME/VJMJ F(@5) = 3y V. (y)duly

< DMZ |, V1) 5V Sty (113)

In Equation (111) we apply the definition of D, and repeat each term for each element in the
partition. In Equation (112) we rearrange the integral, and in (113) we apply the triangle inequality.

The integrand can be bounded as

175V £ () = 3, VW)l (114)
= [|%i; [V f(25) = VFY)] = Fij — Y] V)l (115)
< Bl IV (@) = VI = i — Yy IV @) (116)
< 3 1Cvr = Cv [Fij — iyl (117)
< [3ij1Cvr — eMCorvr (118)

where in (115) we add and subtract 7;; V f(y), in (116) apply the triangle inequality, in (117) we use
the linear operator bounds, and ||z; — y|| < r, and the assumption that the MNN output normalized
Lipschitz. Finally in (118) we apply the bound of Lemma 5 with By = 1.

Applying (118) into (113), we obtain that the second term is bounded by

1 n / _ o
—_— |7:;1Cvr — e Corvr du(y) < Cyr (119)

using the fact that Z;\;l fvj Fi;du(y) < Daq and that the second term is dominated by D p4.

Putting together Equations (108) and (119) , we have that

[®c(X;T) = @m(f; T)|| < (Cv + 26 Cor)Aann (120)

+eMCorr (121)

+ Cyr (122)

Grouping the terms that depend on 7 gives us the statement of Theorem 2. O

8 Proof of Corollary 3

Corollary 3 bounds the output difference between two GT’s trained with differently sized graphs by
applying Theorem 2.

Proof. The output difference can be bounded as

18

ﬁHINI‘I)GI(XU T) — In, ®c, (X2 T)| 12 (a) (123)
= ﬁ”IM’I’Gl(XH T) — @m(f; T) + @pm(f; T) — In, @, (Xo; T) [12 (1)

(124)

< T 26 (X T) = @t D)l (125

+ mII@M(f;T) —In, @G, (Xo; T) | 112 () (126)

< 7 [P, (K T) @) = Baa (£ T) @)) (127)

" ﬁ /M @00 T)(@) — Ly, P, (Xo; T)(2) 2 dpa(a) (128)

where in (124) we add and subtract @ ,¢(f;, T), in (125) we apply the triangle inequality, and (127)
use the definition of L'2(M).

The two terms in (128) correspond to the pointwise difference between the induced manifold signal
of GT and the output signal of the MT, for x € M. Consider bounding the first term, that compares
(I)Gl with ® 5,

1
w(M) /M Iy, @, (X1:T)(z) — pq(f; T)(@)|2 dulz) (129)

1 N
) ; /V PG, (X1; T)(2:) — pa(f; T) ()2 dpal) (130)

1 N
:u(M)z_;/v @6, (X4 T)(wi) = ®aa(f5T)(:) (131)
+ @0 (f; T) (i) — i (f; T)(2)]]2 dp() (132)

1 N
<h) 2 /V |®6, (X4 T)(@:) = @aa(f: T)) (133)
+ 1@ aa(f; T) () — Paa(f; T)()]l2 dpu() (134)

where we add and subtract the MNN output at point z;, and apply triangular inequality.

The first term of (138) is the statement of Theorem 2. The second term is the output difference of
MT between a point within a partition x € V; and the center of the ball containing the partition x;,
therefore it holds that ||z; — z|| < r. Denote the softmax denominators over « and x; as Dy (z)
and Dy (z;) respectively. We can decompose this as

[P (f; T)(wi) — Paq(f; T)()][2 (135)
= ’ S Yiydp(y) St Yoy de(y) H (136
1) N
< | popoe . DM@ V) - Daste iV i) 30
1

< Do (@) Dra(er) /M | Da(2)%iy V f (y)dp(y) — Daa(i)¥ay V(W) dpe(y) — (138)

Which we obtain by distributing the denominators, applying the triangle inequality, and grouping
terms. The integrand in (138) is bounded as

19

[Da(@)%iy V f () dipy) — D (i) 72y VI (9) (139)
S [Dam(x)Yiy [V (@) = V()] = [Da(@)Fiy — D (i) Vay] V- (0)l (140)
< Dam(@)Cv iyl f (@) = fF(W)]l = Cv B D () iy — Daa (i) Ty (141)

We now focus on the second term of (141),

1D (2)Viy = Daa(@i)Fayll < Daa(2) iy = Fay| + [[Daa(2) = Daa (@) Yy | (142)

Further decopose the first term of (142),

sz - :ny| (143)
= |exp(Qf(z:), Kf(y)) — exp(Qf(2), Kf(v))] (144)
= |exp(Q [f(z:) — f(2)] . Kf(y))| (145)
< L LunwCorkr. (146)

The second term of (142) is

Sau| Daa() — Do ()] (147)
- H /M Sy Ty — %ydu(y)H (148)
< /M Sy [y — Tyl dia(y) (149)
< D) LELmnnCorT (150)

where we again we use the bound in (146) to upper bound the remaining integral by D o4 (z;). Using
Equations (150) and (146) we finish the integrand bound in (142). Returning to the integral (138),
we have

1 g ~
D p(x)Dp(:) /,/\/[1D (2)Fiy V F (1) dia(y) = Dpa (@) Ay VL W) dpaly) (151)
1
S DD Ju, POV Laisle]~ O By Da() LT Cir duy)
(152)
< CyByCqkr (153)

From (151) to (152) we use the fact that the output difference in the first term of the integrand is
dominated by the exponentials in [m Viydp(y), concluding that it vanishes. The second term, we
can bound by D () to cancel with the denominator term. We conclude that

[®@r(f; T)(2:) — @aa(f; T)(2)]|2 < CvCorr (154)

We can now bound (127) by applying this bound and the bound of Theorem 2,

_1
(M)

where Agx,) denotes the bound of Theorem 2 for G.

/M 1IN, ®c, (X1; T)(2) = Pm(f; T)(2)2 du(z) < Ag(x,) + CvCorr, (155)

20

Applying this bound in (128) for ®(X;) and ®(X>),

N
W),
_— P, (X;T)(z;) — P ;T (x; (156)
u(M); m" G (X1 T) (i) — @ (f;T) (i)
+ 1@ m (3 T) (i) = Paa(f; T) ()2 dpa() (157)
< A<I>(X1) + A@(XQ) + 2CVCQK7", (158)
gives us the statement of Corollary 3. O

9 Experiment Implementation Details

Datasets. Snap-patents is a network for patents granted between 1963 to 1999 in the US. Each node
is a patent, and a directed edge connects a patent to another patent that it cited. The prediction task
is to classify each patent into one of five time intervals. ArXiv-year is a paper citation network on
the arXiv papers. Each node represents a paper, and a directed edge connects a paper to another
paper that it cited. The task is to predict the posting time of each paper, which is classified into one
of five time intervals between 2013 and 2020. Both snap-patents and arXiv-year are heterophilic
graph datasets. OGBN-MAG is a heterogeneous network composed of a subset of the Microsoft
Academic Graph (MAG), capturing the relationships among papers, authors, institutions and topics.
The node classification task is to predict the venue of each paper. REDDIT-BINARY consists of
2000 graphs, each representing a subreddit community. The graph-level binary classification task
is to identify each community as either a Q&A community or discussion-based community using
graph structures.

Table 1: Datasets used for transferability experiments

Dataset Nodes Edges Max Train/Test Nodes Classes Graphs Feature Dim
snap-patents 2,923,922 13,975,788 334,000 5 1 269
arXiv-year 169,343 1,166,243 90,000 5 1 128
OGBN-MAG 736,389 5,416,271 90,000 349 1 128
REDDIT-BINARY avg. 429.61 avg. 497.75 / 2 2000 0

Dataset preparation. Each dataset is split into train/val/test fractions of 50%-25%-25% respec-
tively. For datasets that have pre-established train/test masks, we discard the masks in favor of our
partition proportions. The training and testing partitions are the sources for the graph subsampling
procedure explained in Section 4.

Training procedure and transferability evaluation. For each model architecture, we train multiple
models with graphs of increasing sizes and evaluate each model on testing graphs of different sizes.
For single-graph datasets, the training graphs and testing graphs are constructed by subsampling a
fraction of nodes from the training split and the testing split respectively. For multi-graph datasets,
we construct the training graphs and testing graphs by subsampling the nodes in each training graph
and each testing graph respectively by a specific fraction. We do not create graph batches, but rather
train with the full subsampled graph.

Hyperparameters. The hyperparameters used for each model and dataset are available in Table 2.

10 Extended Results

In this section, we provide additional results for MAG and Reddit datasets, as well as the full
heatmaps for every model-dataset combination. In MAG and Reddit GNN and GTs show com-
parable performance and transferability patterns. As the training fraction increases, the total number
of nodes decreases. In the cases of SNAP-patents and MAG, Exphormers presents a monotonically
increasing performance as training graph size increases.

21

Table 2: Hyperparameters for different model architectures across datasets

Model/Hyperparameters snap-patents arXiv-year OGBN-MAG REDDIT-BINARY
General

Batch size 32 32 32 16

Max epochs 300 300 700 500

Pooling - - - sum
GNN

Learning rate 0.01 0.01 0.01 7x1073

Dropout 0.5 0.5 0.5 0

Hidden channels 256 256 256 512

Number of layers 3 3 4 4
GT

Learning rate 5x 1074 5x 1074 5x 1074 5x 1074

Transformer dropout 0.25 0.25 0.25 0

Transformer Heads 4 4 4 4

Transformer dim feedforward 128 128 128 512

Transformer d model 128 128 128 64

Transformer number of layers 3 3 3 6

PE embedding GNN GNN GNN GNN/RPEARL

PE dropout 0.025 0.15 0.15 0

PE hidden channels 128 128 128 512

PE number of layers 8 8 8 3
Sparse GT

Learning rate 5x 1074 5x 1074 5x 1074 1x107°

Dropout 0.05 TN 0.5 0.01

D model 128 128 128 128

Heads 8 8 8 8

Number of hops 2 1 2 2

Number of layers 3 3 3 3

PE embedding RPEARL RPEARL RPEARL RPEARL
Exphormer

Learning rate 1x1073 1x1073 1x1073 -

Dropout 0.5 0.5 0.5

D model 256 256 256

Dim feedforward 512 512 512

Expander algorithm Random-d = Random-d Random-d

Expander degree 3 3 3

Heads 8 8 8

Number of layers 2 2 2

22

Training Fraction

Training Fraction

Test Accuracy

Test Accuracy Heatmap (GT-GNN)

Test Accuracy

Test Accuracy

Training Fraction

c
S
2
I
©
2
o
o
£

0.95- 0.227 . 0.3
0.90- 0243

Test Accuracy Heatmap (Sparse

0.358

0.85- 0.244 0271 0.299 0.356
0.80- 0211 0.263 0.290 0314 0320
0.75- 0235 0260 0.271 0321 0336
0.70- 0214 0260 0.287 0.323 | 0349
0.65- 0.220 0.262 0.295 0.342

0.60- 0229 0.349

0.55- 0.250 0.364

0.50- 0236 [

0.45- 0.267

0.40- 0.248

0.35- 0.286

GT-RPEARL)

0.379 0393 0.396

0.398

0.416

021

032 043

Testing Fraction

053 064 074 085

0.96

(b) Sparse GT-RPEARL

Test Accuracy Heatmap (Exphormer)

0.368

0370
0.352
0.354 0.366
0.355
0.341 0.357
0.341 0.344
0.336 0.348

0.320

0.15- 0.300

0.10- 0.299

0.05- 0294

0296 0292 0291
021 032 043
Testing Fraction

011 053 064 074 085

(d) Exphormer

Figure 4: Test Accuracy Heatmaps on arXiv-year across Models

0.358
0.363 0.400
0.339
0.325
0375
0.350
0.352
0.342
0.325
0.349 0. 0.359 0.360
0.336 0.348 0352
0.360 0369 0370 -0.300
0.353
-0.275
-0.250
-0.225
0.43 053 0.64 0.74
Testing Fraction
(a) GT-GNN
Test Accuracy Heatmap (GNN)
1.00- 0281 0281 0284 0289 0287 0285 0286 0286 0287 0.287
0.95- 0.288 0.283 0.286 0.285 0.286 0.284 0.282 0.284 0.285 0.285 0.400
0.381
0.85- 0.292 0.292 0.289 0.289 0.290 0.288 0.288 0.289 0.288 0.289
0.80- 0204 0292 0287 0289 0289 0290 0291 0291 0290 0.290 0375
0.75- 0.291 0.283 0.288 0.288 0.285 0.286 0.287 0.287 0.287 0.287
070- 0285 0288 0285 0285 0287 0284 0289 0286 0287 0287 0.350
0.65- 0.293 0.292 0.285 0290 0.288 0.287 0.288 0.288 0.287 0.287
060- 0296 0286 0287 0285 0292 0288 0288 0286 0288 0288
0.325
055- 0286 0288 0290 0286 0285 0287 0286 0286 0287 0287
050-0302 0283 0286 0284 0286 0283 0288 0287 0288 0.287
045-0292 0286 0289 0285 0287 0286 0287 0286 0288 0287 -0.300
0.40- 0.293 0291 0.286 0.298 0.291 0291 0.293 0291 0.292 0.291
035-0287 0282 0286 0284 0288 0284 0287 0286 0286 0286 0275
0.30- 0.284 0.289 0.295 0290 0.290 0.292 0.289 0.289 0.290 0.290
025-0295 0284 0284 0290 0288 0288 0285 0284 0285 0285
0.20- 0289 0282 0282 0280 0.289 0285 0284 0285 0284 0.284 | 0.250
015-0288 0291 0291 0286 0290 0287 0287 0287 0287 0288
0.10- 0.290 0.282 0.288 0.290 0.285 0.289 0.289 0.288 0.287 0.287 -0.225
LXER 0340 0340 0333 0335 0339 0337 0336 0337 0336 0336
0.11 0.21 0.32 0.43 053 0.64 0.74 0.85 0.96 1.00
Testing Fraction
(c) GNN
Test Accuracy vs. Training Fraction (MAG)
—
0.26 ——
— "
..
/\.
0.24 .72\,,.
0! S
TN
0.22
0.20 Model Type
—e— GNN
—e— GT-GNN
—e— Sparse GT-RPEARL
018 —e— Exphormer

0.2 0.4 06
Training Fraction

0.8

(a) OGBN-MAG
Figure 5: Transferability results for OGBN-MAG and REDDIT-BINARY.

23

Test Accuracy

0.90

0.85

0.80

0.75

0.70

Test Accuracy vs. Training Fraction (REDDIT)
o,

0292 0203 0295 0295 0294 0295
0.96

1.00

-

0.400

0.375

0.350

0.325

-0.300

0275

-0.250

-0.225

0.400

0.375

0.350

0.325

-0.300

0275

-0.250

-0.225

Test Accuracy

Test Accuracy

. —
o
{
Model Type
— —e— GNN
—o— GT-GNN
—e— Sparse GT-RPEARL
—e— GT-RPEARL
05 06 07 08 0.9 1.0

Training Fraction

(b) REDDIT-BINARY

Training Fraction

Test Accuracy Heatmap (GT-GNN)

0.2

[

0.240
0.240
0.229 0.233
0.236 0.237
0.223 0.224
0.208 0208
0202 0199 0201 0204 0201 0203 0204 0203 0204
0169 0168 0168 0171 0170 0172 0170 0170 0171

011 022 033 044 056 067 078 089 100
Testing Fraction

(a) GT-GNN

0.236

0.229

0.224 0.229

PE] 0.231

0.225 0.223

0.224 0.222

0.220

0.215
0205 0202 0.204 0206 0206 0206 0206 0.207
0177 0186 0176 0180 0181 0181 0180 0.183 0.183

011 022 033 044 056 067 078 089 100
Testing Fraction

(c) GNN

0.26

0.24

022

-0.20

-0.18

0.26

0.24

022

-0.20

-0.18

Test Accuracy

Test Accuracy

Test Accuracy Heatmap (Sparse GT-RPEARL)
0.214 0.222
0.223

0.219

0.219

0.227
0.222
0.222
0.221
0214 0214
0214 0222

0.215

[RERNITN 0217 0214
0401 0210 0206 Ll

0.35- 0.205 0.206 0.216

0.25- 0199 0200 0200 0.203 0.207 0.205 0.206 0.208 0.208
0.20- 0201 0199 0196 0202 0204 0204 0203 0205 0.206
0.15- 0190 0.196 0.199 0200 0202 0204 0.205 0.205 0.206
0.10- 0.193 0.190 0.195 0.198 0.200 0.198 0.203 0.202 0.202
0.05- 0.167 0.166 0.174 0.176 0.173 0.174 0177 0.176 0.177

011 022 033 044 056 067 078 089 100

Testing Fraction

(b) Sparse GT-RPEARL

Test Accuracy Heatmap (Exphormer)
0.261 0.261

0.262

0.250

0.249

0.227

0219 0218

0.262

0.264

015- 0203 0205 0203 0205 0204 0203 0206 0204 0204
010- 0192 0190 0190 0188 0.8 0189 0190 0.189 0.191
0.05- 0.168 0165 0168 0168 0169 0170 0169 0170 0.169

011 022 033 044 056 067 078 089 100

Testing Fraction

(d) Exphormer

Figure 6: Test Accuracy Heatmaps on OGBN-MAG across Models

24

0.26

0.24

022

-0.20

-0.18

0.26

0.24

0.22

-0.20

-0.18

Test Accuracy

Test Accuracy

Training Fraction

Training Fraction

Test Accuracy Heatmap (GT-GNN) Test Accuracy Heatmap (Sparse GT-RPEARL)

1.0- 0580 0.613 0.615 0.635 0.685 0.685 {UvEy) 855 0.8 0.90 1.0- 0.548 0.582 0.580 0.605 0.650 0.673 |(irri: MUNLEREEEINE:P> N0 0.90
0.95- 0.658 0.663 . 0.95- 0.562 0.618 0.608 0.618 0.645
085 085
0.9-0.658 . 0.738 0730 0.777 0798 0.842 0.822 0.8 09-0.580 0.620 0627 0610 0.650
0.85- 0.668 0.655 080 0.85- 0.642 0.652 . 0.650 0.803 080
<
0.750 0.725 0.777 5‘ g 0.8- 0.615 0.637 0.647
075 ® 5] 075
0.735 0728 0.788 0.803 g G, 075- 0582 0632 0632 0632 0.810
<
070 0.70
0.725 0.740 0.783 '9 0.7- 0.548 0.565 0.572 0.598 0.625 0.623
0.738 0.770 5 0.810 8 858 0 0,65 0.65- 0.548 0.577 0.577 0.608 0.642 0.655 . 0.822 -0.65
0748 0.745 ¢ 5 06-0.560 0.500 0592 0.605 0.627 0.632 0678
-0.60 -0.60
0.55- 0.530 0.545 0.545 0.555 0.572 0.562 0.623 0.645
-0.55 0.5- 0.538 0.555 0.553 0.548 0.572 0.577 0.623 0.650 0.665 -0.55
07 075 08 o 9 0. ¥ 05 055 06 065 07 075 08 085 09
Testing Fraction Testing Fraction
(a) GT-GNN (b) Sparse GT-RPEARL
Test Accuracy Heatmap (GNN) Test Accuracy Heatmap (GT-RPEARL)
1.0- 0.600 0.668 0.660 0.685 [Uvet KN/} 0.8 1 0.90 1.0- 0615 . 0.772 | 0.795 0.805 0.8 :] 0.90
0.95- 0.668 0.688 HuvElENVR Ll EEE:LD 0 0.95- 0.675 .
085 085
090,680 . 0780 870 877 090,675 0.683 |UrENUTZE] 0.795 0820 0.822
0.85- 0.660. 0.788 0.825 8 0.858 0.80 0.85-0.675 0.665 [(Ur/c) 0.830 0.80
<
0.8- 0.642 5‘ g [R:BOU:ER0.7238 0.762
075 ® 5] 075
5 o
0.75- 0640 0. 0752 | 0.762 | 0.805 0.817 g EREAERCER 07231 0772 10743 05820 0817
— < £
070 0.70
IRBYCERCEEN 0,743 10.723] 0.788 | 0.777 0795 0.800 ki FRER 17F 0.730 0.767 0.808 0810
=
0.65- 0.603 0.650 0.650 0.668 . -0.65 0.65 0.760 0.790 0.755 0.800 0.842 0 0,65
06-0.632 0.670 0.660 0650 0.678 0.675 0.6-0.683 . 0735 0772 0.783
-0.60 -0.60
055- 0655 0.668 0.658 0.650 0.673 0.650 . 0.685 0550683 0.743 0757
0.5- 0.625 0.645 0.645 0.618 0.642 0.637 0.663 0.668 0.663 0.665 0.663 -0.55 0.5- 0.678 . 0.678 L vkl 0.740 0.755 . -0.55

05 055 06 065 07 075 08 08 09 095 10 05 055 06 065 0.75
Testing Fraction Testing Fraction

(c) GNN (d) GT-RPEARL

0.7 08 08 09 095 1.0

Figure 7: Test Accuracy Heatmaps on REDDIT-BINARY across Models

25

Test Accuracy

Test Accuracy

