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ABSTRACT

Regression tasks, notably in safety-critical domains, require proper uncertainty
quantification, yet the literature remains largely classification-focused. In this
light, we introduce a family of measures for total, aleatoric, and epistemic uncer-
tainty based on proper scoring rules, with a particular emphasis on kernel scores.
The framework unifies several well-known measures and provides a principled
recipe for designing new ones whose behavior, such as tail sensitivity, robustness,
and out-of-distribution responsiveness, is governed by the choice of kernel. We
prove explicit correspondences between kernel-score characteristics and down-
stream behavior, yielding concrete design guidelines for task-specific measures.
Extensive experiments demonstrate that these measures are effective in down-
stream tasks and reveal clear trade-offs among instantiations, including robustness
and out-of-distribution detection performance.

1 INTRODUCTION

Predictive models now drive decision-making in safety-critical domains such as weather forecasting
(Price et al., 2025; Alet et al., 2025), autonomous driving (Michelmore et al., 2018) or healthcare
(Löhr et al., 2024; Edupuganti et al., 2020); tasks where careful analysis of the model predictions
and accurate uncertainty quantification are indispensable. Many studies have analyzed different
approaches to quantify predictive uncertainty, often distinguishing between different sources of un-
certainty. In particular, one usually considers two sources of uncertainty: aleatoric uncertainty and
epistemic uncertainty (Hüllermeier & Waegeman, 2021). Broadly speaking, aleatoric uncertainty
describes the inherent randomness in the data-generating process, for example, due to measurement
errors and, as it describes variability that is independent of the amount of data, is often referred to as
irreducible uncertainty. Epistemic uncertainty, on the other hand, arises from a lack of knowledge
about the data-generating process and can be reduced by improving the model or acquiring more
data; therefore, it is also referred to as reducible uncertainty.

While aleatoric uncertainty is generally well captured in predictive models, epistemic uncertainty
is more difficult to represent and requires higher-order formalisms, such as second-order distribu-
tions (distributions of distributions) or credal sets (sets of probability distributions) (Levi, 1980).
Given such an uncertainty representation, the key question is how to measure or quantify the total,
aleatoric, and epistemic uncertainty. This choice of measure is crucial, as it directly influences both
the decision-making process and the performance of downstream tasks. Numerous works focus on
developing and analyzing new measures for uncertainty quantification (Sale et al., 2023a; Malinin
& Gales, 2021; Gal et al., 2017; Kotelevskii et al., 2022; Berry & Meger, 2024), with recent steps
towards more unified approaches that incorporate many existing measures and give guidance on
how to construct new ones (Schweighofer et al., 2023; Kotelevskii et al., 2025). However, research
has focused mainly on uncertainty quantification in classification, although many predictive models
naturally operate in a regression setting.

In supervised regression tasks, a practitioner is generally interested in predictive uncertainty, which
describes the uncertainty of the target y ∈ Y given some covariates x ∈ X . While the notions
of total, aleatoric, and epistemic uncertainty remain the same (Hüllermeier & Waegeman, 2021),
the corresponding uncertainty measures fundamentally differ as compared to the classification case.
Unlike classification, where the label space is discrete and bounded, regression targets lie in an
(often) unbounded, continuous and possibly high-dimensional domain, which often makes existing
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measures unsuitable. While in regression, many methods focus on uncertainty representation (Amini
et al., 2020; Lakshminarayanan et al., 2017; Kelen et al., 2025), only a few works focus on analyzing
the underlying uncertainty measures (Berry & Meger, 2024; Bülte et al., 2025b).
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Figure 1: Illustration of epistemic uncertainty for
a two-member Gaussian ensemble with shared
variances. As the component variances shrink,
the variance-based measure (SSE) stays constant,
the entropy-based measure (Slog) diverges, while
our proposed energy-score-based measure (SES)
converges to half the Euclidean distance between
component means.

Contributions In this paper, we introduce a
unified framework for uncertainty quantifica-
tion in regression, built from proper scoring
rules. Similar to Kotelevskii et al. (2025); Hof-
man et al. (2024b), we formulate uncertainty
measures in terms of score (or Bregman) diver-
gences, but establish new connections to proper
scoring rules in real-valued domains. In partic-
ular, we propose to use kernel scores (Gneit-
ing & Raftery, 2007) as a specific instantia-
tion for the uncertainty measures, as those offer
unique advantages as compared to other scor-
ing rules (Waghmare & Ziegel, 2025). We not
only show that this framework includes several
already existing uncertainty measures, but also
provide a principled way to design new uncer-
tainty measures based on corresponding prop-
erties of the underlying kernel score. We de-
rive explicit connections between those prop-
erties and desirable behavior of the associated
uncertainty measure, such as translation invari-
ance or robustness. Finally, we validate the pro-
posed measures empirically, highlighting the
derived theoretical properties in practice and
showcasing their application in several down-
stream decision-making tasks.

2 UNCERTAINTY IN SUPERVISED REGRESSION

In the following, we denote by X ⊆ Rd and Y ⊆ Rd the (real-valued) feature and target space,
respectively. Furthermore, let σ(Y) be the Borel σ-algebra on Y , let P denote a convex set of
probability measures on the measure space (Y, σ(Y)) and let R = R ∪ {−∞,∞}. In addition,
we write D = {xi,yi}ni=1 ∈ (X × Y)n for the training data. For i ∈ {1, . . . , n}, each pair
(xi,yi) is a realization of the random variables (Xi, Yi), which are assumed to be independent
and identically distributed (i.i.d) according to a probability measure P. Consequently, each x ∈ X
induces a conditional probability distribution P(· | x), where P(y | x) represents the probability of
observing the outcome y ∈ Y given the features x. Here, we assume that the conditional predictive
distribution P(· | x) is absolutely continuous with respect to the Lebesgue measure µ and therefore
admits a probability density function p(· | x).

2.1 UNCERTAINTY REPRESENTATION

Regarding second-order uncertainty quantification, we denote by P(Y) the set of all (convex) prob-
ability measures on Y on the measurable space (Y, σ(Y)) and, similarly, by P(P(Y)) the set of all
probability measures on (P(Y), σ(P(Y))). We refer to Q ∈ P(P(Y)) as a second-order distribu-
tion. In contrast to the classification setting, the probability measures P ∈ P(Y), are not necessarily
defined on a bounded domain. While we keep the setup as general as possible and this article mainly
revolves around uncertainty quantification rather than uncertainty representation, the following ex-
amples illustrate how a second-order distribution could be specified within our framework:

Parametric distributions: Given a (fixed) parametric distribution p(y | θ(x)) with θ ∈ Θ ⊆ Rp,
we can consider the second-order distribution to be on the (measurable) parameter space (Θ, σ(Θ)),
e.g. Q ∈ P(Θ). In particular, this includes many uncertainty quantification methods, such as

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

deep ensembles (Lakshminarayanan et al., 2017), deep evidential regression (Amini et al., 2020), or
distributional regression (Kneib et al., 2023).

Ensemble approaches: Given an empirical measure, i.e. Q = Qm = 1
M

∑M
m=1 δPm

for first-order
distributions Pm ∼ Q, the setting includes general ensemble approaches, such as ensembles of
normalizing flows (Berry & Meger, 2023), mixture density networks (Bishop, 1994), nonparametric
ensembles (Kelen et al., 2025) or diffusion models (Wolleb et al., 2021).

Unless noted otherwise, we will consider arbitrary first- and second-order distributions, where we
assume that we have a first-order distribution P ∼ Q, distributed to some second-order distribution
Q and Y ∼ P. In addition, we define the first-order probability measure P := EQ[P], which can
be interpreted as the Bayesian model average (BMA) predictive distribution (Schweighofer et al.,
2023).

3 UNCERTAINTY QUANTIFICATION BASED ON PROPER SCORING RULES

In this section, we present a general framework for (second-order) uncertainty quantification based
on proper scoring rules, enabling a unified theoretical treatment of different uncertainty measures.
A scoring rule is a function S : P ×Y → R, such that S(P,Q) :=

∫
S(P,y) dQ(y) is well-defined

for all P,Q ∈ P (Gneiting & Raftery, 2007). A scoring rule S is called proper, if

S(Q,Q) ≤ S(P,Q), for all P,Q ∈ P (1)

and strictly proper if equality holds only when P = Q. Intuitively, proper scoring rules quantify
the discrepancy between a predictive distribution and the realized outcome, attaining their minimum
at the true distribution. Following Dawid (2007), every scoring rule S can be associated with a
(generalized) entropy H and a divergence D, via

H : P → R, P 7→ H(P) :=
∫

S(P, y) dP(y) (2)

D : P × P → R, (P,Q) 7→ D(P,Q) := S(P,Q)−H(Q). (3)

For (strictly) proper scoring rules, H is (strictly) concave on P , while the divergence satisfies
D(P,Q) ≥ 0 for P,Q ∈ P with equality if and only if P = Q (compare Dawid, 2007). These
quantities generalize the familiar notions of Shannon entropy and Kullback-Leibler divergence: H
captures the average surprisal under a distribution, and D measures the discrepancy between two
distributions. Under mild assumptions, proper scoring rules can be characterized in terms of their
entropy function (Gneiting & Raftery, 2007), so either can be used to construct the other.

Building on the above, we define the following estimator (Kotelevskii et al., 2025; Hofman et al.,
2024b)

TUB(Q) := EP∼Q[S(P,P)], EUB(Q) := EP∼Q[D(P,P)], AUB(Q) := EP∼Q[H(P)], (4)

which is based on the BMA predictive distribution and recovers variance- and entropy-based mea-
sures as special cases. However,since the BMA distribution generally differs from the true predictive
distribution, this estimator can be misleading (Schweighofer et al., 2023). Recent work (Kotelevskii
et al., 2025; Schweighofer et al., 2023) therefore considers pairwise comparisons between predictive
distributions of all models weighted by their posterior probabilities, yielding

TUP(Q) := EP,P′∼Q[S(P′,P)], EUP(Q) := EP,P′∼Q[D(P′,P)], AUP(Q) := EP∼Q[H(P)]. (5)

Here, AU remains unchanged, while TU and EU are defined relative to the true belief Q. Both
estimators satisfy the additive decomposition TU = EU+AU. While the pairwise estimator (P), as
opposed to the BMA estimator (B), admits closed-form solutions for many distributions, it comes at
higher computational cost, for example O(M2) vs. O(M) for a second-order ensemble of size M .

Comparing both estimators, the difference

∆ := TUP −TUB = EUP −EUB = EP∼Q[EP′∼Q[S(P′,P)]− S(P,P)], (6)

quantifies how the BMA score deviates from the expected score over all models. If S is convex in
its first argument, Jensen’s inequality implies ∆ ≥ 0, therefore the pairwise estimator is an upper
bound for the BMA estimator (Schweighofer et al., 2023). From now on, we refer to the two different
methods with index B and P for BMA and pairwise estimation, respectively.
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4 KERNEL SCORES

In order to guide the choice of S for the instantiations of uncertainty estimates, we now introduce an
important subclass of scoring rules, so-called kernel scores, which have many favorable properties
and are widely studied in the machine learning literature. Kernel scores have been first discussed
by Dawid (2007); Gneiting & Raftery (2007); here we draw mainly on the notation from Wagh-
mare & Ziegel (2025). Consider a continuous, negative definite kernel k : Y × Y → R, denote
Pk = {P ∈ P :

∫∫
k(x,x′) dP(x) dP(x′) < ∞}, and, without loss of generality, assume that

k(x,y) ≥ 0, ∀x,y ∈ Y .

Definition 4.1 (Kernel score). The kernel score Sk : Pk × Y 7→ R associated with the kernel
k : Y × Y → [0,∞) is defined as

Sk(P,y) =
∫

k(x,y) dP(x)− 1

2

∫∫
k(x,x′) dP(x) dP(x′)− 1

2
k(y,y), (7)

for P ∈ P,y ∈ Y .

This scoring rule is (strictly) proper for a (strongly) conditionally negative definite kernel (Wagh-
mare & Ziegel, 2025). Similar to Ziegel et al. (2024) we include the last term in the above definition,
which ensures that the kernel score Sk is nonnegative. The entropy and divergence associated with
a kernel score Sk and P,Q ∈ Pk are given as

Hk(P) =
1

2

∫∫
k(x,x′) dP(x) dP(x′)− 1

2

∫
k(x,x) dP(x), (8)

Dk(P,Q) = −1

2

∫∫
k(y,y′) d(P−Q)(y) d(P−Q)(y′). (9)

For the kernel score, the corresponding divergence Dk recovers the squared Maximum Mean Dis-
crepancy (MMD2) (Gretton et al., 2012), which plays an important role in statistics and machine
learning (Gretton et al., 2012; Sejdinovic et al., 2013). In fact, kernel scores admit many advanta-
geous properties:

Metric on Pk: Under mild conditions, kernel scores are the only scoring rules that are a valid metric
on Pk (Theorem 19, Waghmare & Ziegel, 2025). Furthermore, the only restriction on the existence
of the score (and divergence) is that Hk(P) < ∞, as by definition of Pk. In particular, this allows for
measuring the divergence between continuous, discrete, or even degenerate distributions, as opposed
to other scoring rules that require absolute continuity with respect to the Lebesgue measure (compare
Figure 1).

Flexible choice of k: The general definition of the kernel score in (7) allows for a broad choice
of underlying domains. While in this article, we focus on uni or multivariate regression, many
kernels have been developed for other domains. This includes, in particular, kernels for spatial data
(Scheuerer & Hamill, 2015), graph data (Vishwanathan et al., 2010), functional data (Wynne &
Duncan, 2022), or natural language (Lodhi et al., 2002).

Unbiased estimation: The MMD2 (and therefore also Sk and Hk) admit an unbiased empirical
estimator via a U-statistic (Gretton et al., 2012). Therefore, it can be used even if no closed-forms
are available, as opposed to, for example, the log-score, which does not admit an unbiased estimator
(Paninski, 2003).

Translation invariance: Kernel scores with a kernel of the form k(x, y) ≡ k(x− y), x, y ∈ Y are
translation invariant in the sense that Sk(P,y) = Sk(Ph,y + h) for y,h ∈ Y , where Ph(A) =
P(A+ h) for Borel sets A ⊆ Y (Waghmare & Ziegel, 2025).

Homogeneity: A scoring rule S is said to be homogeneous of degree α if S(Pc, cy) = cαS(P, y)
for every c > 0,P ∈ P and y ∈ Y , where Pc(A) = P(c−1A) for Borel sets A ⊆ Y . The energy
score (Gneiting & Raftery, 2007) is the only homogeneous translation invariant kernel score on Rd

(Waghmare & Ziegel, 2025). Thus, affine transformations of the data distribution lead to the same
performance assessment of the scoring rule (or scaled by a factor α).
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5 PROPERTIES OF KERNEL SCORES AS AN UNCERTAINTY MEASURE

We now want to analyze the properties of the uncertainty measures in (4) and (5) if they are instan-
tiated with a (proper) kernel score Sk. It is noteworthy that the characteristics of the kernel scores,
introduced in the previous section, directly transfer to the corresponding uncertainty measures. Fur-
thermore, depending on the task, these properties can be very important in the context of uncertainty
quantification. For instance, kernel scores allow for comparing (almost any) arbitrary distributions
with an unbiased estimator, which can be important, for example, for mixture-of-expert models,
where each expert issues a prediction in a different format. In addition, we show that, if choosing
k in a principled way, the uncertainty measures instantiated with Sk fulfill intuitive properties that
have been studied in the literature (Wimmer et al., 2023; Sale et al., 2023a; Bülte et al., 2025b). One
trivial aspect of the corresponding measures is that they are all nonnegative, which follows directly
from the kernel being nonnegative. In addition, we show that, under some assumptions on Sk, the
measures assign higher values for EU (or AU) if the corresponding second-order (first-order) dis-
tribution has higher variability. Finally, we analyze the robustness of the corresponding uncertainty
measures with respect to a perturbation in the second-order distribution.

Before we show the corresponding results, we need to introduce some notation. Let P ∼ Q,P′ ∼ Q′

be two random first-order distributions with Q,Q′ ∈ P(P(Y)). Furthermore, let δP ∈ P(P(Y))
denote the Dirac measure at P ∈ P(Y) and let P1,P2 ∈ P(Y) with P1 ≤cx P2, where ≤cx denotes
the convex order, meaning that P1 ≤cx P2 ⇐⇒ EX∼P1 [ϕ(X)] ≤ EY∼P2 [ϕ(Y )] for all convex
functions ϕ : Y → R. Similarly, let Q1 ≤2

cx Q2 for Q1, Q2 ∈ P(P(Y)), where ≤2
cx denotes the

convex order with respect to all convex functionals Φ : P(Y) → R. In particular for P1 ≤cx P2

it holds that EX∼P1
[X] = EY∼P2

[Y ] and VX∼P1
[X] ≤ VY∼P2

[Y ], since the stochastic order is
a measure of variability of a distribution (Shaked & Shanthikumar, 2007). Then, we obtain the
following properties of the corresponding uncertainty measures1, which are proved in Appendix A.
Proposition 5.1. For any proper scoring rule S it holds that

1. Q = δP =⇒ EU(Q) = 0, while for a strictly proper scoring rule the converse holds as
well,

2. EU(δP) ≤ EU(Q1) ≤ EU(Q2).

Intuitively, since Q1 has less variability than Q2, the corresponding measure of epistemic uncertainty
assigns a smaller value to Q1 as well. Consequently, the smallest value of EU should be attained for
a distribution with no variability at all, which is in the case of a (second-order) Dirac distribution
δP. In addition, the converse holds for a strictly proper scoring rule, which means that EU(Q) = 0
can only be attained for the Dirac distribution Q = δP. Wimmer et al. (2023); Sale et al. (2023a)
formulate similar arguments for a mean-preserving spread in the classification case. However, our
notion is more general, as every mean-preserving spread implies a convex order, but not vice versa.
Proposition 5.2. Any kernel score Sk with a translation invariant kernel k(x, x′) that is convex in
one of its arguments fulfills AU(δP1

) ≤ AU(δP2
).

Similar to 5.1, if the first-order distribution P1 has less variability than P2, the corresponding mea-
sure of AU is smaller as well. Again, this is similar to studied properties in the classification case
(Wimmer et al., 2023; Sale et al., 2023a), but more general due to the definition via the convex order.
Proposition 5.3. Consider a parametric first-order distributions Pθ ∈ P(Y) with θ ∈ Θ ⊆ Rp, a
corresponding second-order distributions Q ∈ P(Θ), first-order distribution ϑ ∼ Q and assume
that AU(Q) < ∞. Furthermore, define Qε := (1− ε)Q+ εδθ0 , θ0 ∈ Θ and consider the influence
function (IF):

IF(θ0; AU, Q) = lim
ε→0

AU(Qε)−AU(Q)

ε
= Hk(Pθ0)− EQ[Hk(Pϑ)].

We then have that any kernel score Sk with bounded kernel k is robust in terms of the influence
function.

This definition of robustness of an estimator via the influence function (Hampel et al., 1986, Chapter
2), analyzes the limiting behavior if the underlying (second-order) distribution is perturbed by a

1Since propositions 5.1-5.3 hold for both type of estimators, we do not use an index B/P here.
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single point diverging to infinity. If the influence function is bounded, any outlier in Q can only
have finite impact on the estimation of AU(Q), making it robust against such outliers. While the
influence function could in principle also be defined for arbitrary second-order distributions, it is
not straightforward to define the contamination Qϵ and the corresponding convergence for arbitrary
measures.

Based on the previous propositions, one can choose different instantiations of the uncertainty mea-
sures, based on different choices of the kernel function k. In particular, we propose the following
choice of kernels, which might be selected based on the underlying task. The corresponding deriva-
tions can be found in Appendix B.

Squared-error: When choosing k(x, x′) = ∥x−x′∥2 we obtain the squared error SSE, which, in the
univariate case, leads to the commonly-used variance-based measure. It fulfills (5.2), but not (5.1),
since the corresponding scoring rule is not strictly proper.

Energy score: When k(x, x′) = ∥x− x′∥β , β ∈ (0, 2), we obtain the (strictly proper) energy score
SES (Gneiting & Raftery, 2007) and the corresponding divergence, the energy distance (Székely
& Rizzo, 2013). A special case of the former is the continuous ranked probability score (CRPS)
(Gneiting & Raftery, 2007), which arises for d = 1, β = 1. It is the only homogeneous translation
invariant kernel score on Rd and fulfills (5.1) and (5.2).

Gaussian kernel score: Another important example arises when we choose k as the Gaussian kernel
k(x, x′) = − exp

(
−∥x− x′∥2/γ2

)
with bandwidth γ, which is also a strictly proper scoring rule

(denoted as Skγ
) and therefore fulfills (5.1). In addition, it is robust and is the only proposed score

that fulfills (5.3), as the corresponding kernel is bounded.

While the well-known log-score Slog, which corresponds to the entropy-based measure, is also a
scoring rule, it is not a kernel score. In particular, it can be negative and therefore difficult to
interpret. However, it still fulfills (5.1) and (5.2) under some assumptions, as shown in Appendix A.
Each of the kernel scores mentioned above, as well as their corresponding uncertainty measure, can
be suitable for uncertainty quantification, depending on the underlying task. For example, when
mainly interested in the location estimate of a distribution, the squared error might be suitable, as it
measures EU only in the first moments of the first-order distributions. On the other hand, for spatial
data, the energy score might be more appropriate, as it is translation-invariant and homogeneous.

6 NUMERICAL EXPERIMENTS

In this section, we provide several numerical experiments that highlight differences and similarities
of the corresponding kernel instantiations and highlight their applicability as uncertainty measures
and in downstream tasks. In general, the evaluation of (second-order) uncertainty measures is not
straightforward, as no ground truth uncertainty is available. Here, we focus on three different experi-
ments to validate the performance of our proposed measure. While the evaluation focuses mainly on
the properties and instantiations of the aforementioned kernel scores, we also include the log-score
as a comparison, since it is commonly used in practice to assess uncertainty. While in principle, the
Gaussian kernel score Skγ requires tuning of the bandwidth, we found that choosing γ with the me-
dian heuristic works well empirically. In the following, we use the pairwise uncertainty measures, as
closed-form expressions are available for different first-order distributions (compare Appendix B).
More details on each experiment can be found in Appendix C.

6.1 QUALITATIVE ASSESSMENT OF UNCERTAINTY QUANTIFICATION

First, to analyze the uncertainty measures qualitatively, we use a distributional regression network
(DRN) (Rasp & Lerch, 2018) to predict the 2-meter surface temperature (T2M) across Europe.
The DRN gets a numerical weather prediction as the input and predicts a Gaussian distribution
Nµl,t,σ2

l,t
, where t denotes the time and l is an index for the gridpoint. We follow the setup in

Bülte et al. (2025a) and train an ensemble of M = 10 DRNs solely on gridpoints over land, but
evaluate over the whole domain, allowing for assessing the performance on out-of-distribution data.
As the predictability of the surface temperature changes with altitude, one would expect aleatoric
uncertainty to change with the orography, while epistemic uncertainty should change with the land-
sea mask (both visualized in Appendix C).
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Figure 2: The figure shows AU and EU averaged over a test set of 365 days for the different uncer-
tainty measures. For visualization purposes, epistemic uncertainty is shown on a log-scale.

Figure 2 shows the aleatoric and epistemic uncertainty for all measures, averaged across the test
data. While Slog shows high values of AU for many areas of the domain, the kernel-based measures
assign higher AU mainly to areas with higher altitude. For EU, the kernel-based measures seem
to show the best detection of OOD data, especially at the edges of the domain, where the DRN
issues poor predictions. In addition, SES and Skγ

also assign higher uncertainty to the (unseen)
Mediterranean sea. We provide additional results using deep evidential regression in Appendix C.

6.2 ROBUSTNESS ANALYSIS

Table 1: The table shows the mean absolute percentage error of aleatoric uncertainty for M = 25
ensemble members and one additional ensemble member with target distortion δ.

S/δ 0.0 0.2 0.5 1.5 2.5 5.0

Slog 0.25 0.90 1.56 3.34 4.47 4.82
SSE 1.11 25.3 324 7.21e+03 6.77e+04 4.78e+05
SES 0.55 4.7 14.7 78.2 224 503
Skγ

0.03 0.10 0.13 0.18 0.19 0.19

In order to empirically validate the robustness (in terms of the influence function) of different mea-
sures, we use three datasets from the UCI benchmark (Hernández-Lobato & Adams, 2015) and train
a deep ensemble (Lakshminarayanan et al., 2017) on each task. Then, we train one additional en-
semble member using a target variable with added noise, i.e. ŷ = y + N (0, δ2) with gradually
increasing noise. This allows for comparing the robustness of the different measures with respect
to an outlier in the second-order distribution. To measure the deviation, we use the mean absolute
percentage error (MAPE) with respect to the base ensemble, which is defined as

MAPE :=
100

n

n∑
i=1

∣∣∣∣ ŷδi − ŷi
ŷi

∣∣∣∣ ,
where ŷi and ŷδi for i = 1, . . . , n are the base- and distorted prediction, respectively. Table 1 shows
the results for the concrete dataset. Due to its robustness, the Gaussian kernel score changes the
least, while the variance-based measure quickly diverges to extreme values. More detailed results
and a theoretical analysis of robustness for deep ensembles can be found in Appendix C.

6.3 TASK ADAPTATION OF MEASURES

Recent work suggests that there is no universally optimal uncertainty measure (Mucsányi et al.,
2024), which motivates us to analyze how uncertainty measures can be adapted and tailored to
specific tasks. Even within the kernel score framework, a wide range of measures can be constructed
by choosing different kernels k. Each kernel choice not only defines an uncertainty measure, but also
induces a corresponding task loss via its scoring rule Sk. Understanding the relationship between a
task loss and the associated uncertainty measures is therefore central to task adaption.
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Figure 3: Different task losses (each plot) sorted by each of the different uncertainty measures from
highest to lowest total uncertainty, trained on the T2M prediction task. For visualization purposes,
the values shown are moving averages of size 50.

We first investigate this connection using the task of post-processing 2-meter temperature (T2M)
predictions with distributional neural networks. For this, we use weather station data (Demaeyer
et al., 2023) and the model of Feik et al. (2024); details are provided in Appendix C. While the
original task loss is the CRPS, we also train and evaluate the model under alternative losses corre-
sponding to the introduced scoring rules.

Figure 3 shows test instances sorted by decreasing total uncertainty, separately for each task loss
and uncertainty measure. The figure reveals large differences across task losses, yet relatively minor
variation between individual measures on a fixed task. For example, when training with squared
error, none of the measures performs well: uncertain predictions do not translate into high loss,
likely because squared error is not strictly proper. Interestingly, although unsuitable as a task loss,
the uncertainty measure induced by SSE still behaves similarly to measures originating from strictly
proper rules. This suggests that even when a scoring rule is not a good loss, its associated uncertainty
measure may remain useful in practice. Further analyses of AU and EU are reported in Appendix C.

Beyond comparing fixed measures, we next ask whether one can adapt uncertainty measures to a
task in an “optimal” way. To this end, we study the family of Gaussian kernel scores {kγ}γ∈R+ and
treat the bandwidth γ as a tunable parameter. The goal is to select γ such that the induced uncertainty
measure maximizes task performance. As a testbed, we consider an active learning task, a standard
benchmark for uncertainty measures. Here, the objective is to select new training instances under a
budget, using epistemic uncertainty as the selection criterion (Hofman et al., 2024a; Nguyen et al.,
2022; Kirsch et al., 2019). We estimate epistemic uncertainty with the pairwise estimator and the
score divergence Dk derived from the Gaussian kernel score.

2000 4000 6000 8000
Training instances

1.0

1.5

C
R

P
S

2000 4000 6000 8000
Training instances

0.75

0.80

0.1
0.4
0.7
1.0
1.3
1.6
1.9

γ

Figure 4: Continuous ranked probability score with increasing training instances for different model
runs with the corresponding uncertainty measure specified by γ, averaged across three runs. The left
panel shows the full run, the right panel shows a close-up.

In this setting, we again use the T2M post-processing task. An ensemble of ten neural networks is
trained, each iteratively quarrying new data. Performance is measured in terms of the continuous
ranked probability score, averaged over three runs. Figure 4 shows CRPS evolution for different
values of γ ∈ (0, 2]. The results clearly demonstrate systematic task adaption: larger values of γ
consistently yield lower CRPS (highlighted by the color gradient), indicating better model perfor-
mance.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

This experiment highlights that while there may be no one-fits-all uncertainty measure, task-specific
tuning can identify an effective measure within a given family. In our case, adapting γ enables the
Gaussian kernel score to align well with the active learning objective, illustrating a concrete path
toward task-adapted uncertainty quantification.

7 RELATED WORK

Novel uncertainty measures. Many studies focus on quantifying uncertainty for predictive models,
especially for classification. While the most commonly used measures are based on the Shannon
entropy (Houlsby et al., 2011), those have been criticized for having undesirable properties (Wim-
mer et al., 2023). Several generalizations have been proposed, such as variance-based Sale et al.
(2023b), distance-based (Berry & Meger, 2024; Sale et al., 2023a) or pairwise (Schweighofer et al.,
2023; Malinin & Gales, 2018; Berry & Meger, 2024) estimators. Closest to our work are recent
developments in deriving uncertainty measures based on proper scoring rules and Bregman diver-
gences. Gruber & Buettner (2023); Adlam et al. (2022) derive a bias-variance decomposition based
on Bregman divergences that can be used for uncertainty quantification. Recently, (Kotelevskii et al.,
2025; Hofman et al., 2024a;b; Schweighofer et al., 2023) introduced a framework for decomposing
and quantifying uncertainty based on proper scoring rules and corresponding Bregman divergences.
While similar in nature, our work specifically considers scoring rule-based uncertainty measures in
the regression setting, which fundamentally differs from classification.

Uncertainty quantification in regression. While many works focus on uncertainty representation in
regression, for example, via second-order distributions (Amini et al., 2020; Meinert & Lavin, 2022;
Malinin et al., 2020) or ensembles (Berry & Meger, 2023; Lakshminarayanan et al., 2017; Kelen
et al., 2025), little is usually done in the direction of analyzing the underlying uncertainty measures.
The studies usually employ either the variance-based measure (Amini et al., 2020; Meinert & Lavin,
2022; Valdenegro-Toro & Mori, 2022) or (a variant of) the entropy-based measure (Malinin et al.,
2020; Berry & Meger, 2024; Postels et al., 2021). While Bülte et al. (2025b) compare both measures
with respect to a given set of preferable properties, they do not consider other measures or the pair-
wise variants thereof. In contrast, our work proposes a general framework to construct uncertainty
measures in regression that can be used to derive many different instantiations of the measures with
potentially different properties.

8 DISCUSSION

We propose a new framework for uncertainty quantification in supervised regression, based on
strictly proper scoring rules and kernel scores. This framework generalizes recent advances from
the classification setting, encompassing widely used uncertainty measures while also enabling the
systematic construction of new ones. Our analysis highlights how specific properties of kernel scores
directly translate into distinct characteristics of the induced uncertainty measures, offering practical
guidance for their selection and adjustment. Beyond the theoretical results, our numerical experi-
ments demonstrate the versatility of the proposed measures, illustrating both their robustness and
their adaptiveness to task-specific requirements.

Limitations and future work While our construction provides a principled foundation, it is not
unique—alternative measures may satisfy the same properties. This opens up opportunities to de-
velop criteria or selection procedures that help identify which measure is most appropriate in prac-
tice. Similarly, we focused on a specific set of properties, but many other aspects—such as efficiency
or interpretability could enrich the framework and extend its applicability. On the empirical side, our
study was primarily comparative within the proposed framework; extending evaluations to a wider
spectrum of uncertainty quantification and uncertainty representation methods would offer deeper
insights into its practical utility. Exciting opportunities also lie in exploring richer data domains,
such as spatial, graph-structured, or functional data, where the interaction between kernel scores
and domain structure could reveal new insights. Similarly, adapting the proposed measures to gen-
eralized kernel scores, such as weighted scores (Allen et al., 2023), could allow further tailoring
of the measures for a specific task, such as the identification of extreme events. Finally, additional
theoretical work on the relationship between kernel scores and maximum mean discrepancy may
uncover additional properties and guide the principled design of task-specific “optimal” measures.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility, we only use publicly available datasets and model implementations. For
datasets, we use the UCI benchmark (Hernández-Lobato & Adams, 2015), the WeatherBench2
benchmark (Rasp et al., 2024) and the EUPPBench benchmark (Demaeyer et al., 2023). In ad-
dition, we use the following model implementations: Distributional regression network (Rasp &
Lerch, 2018; Feik et al., 2024), deep evidential regression (Amini et al., 2020) and implementations
from the publicly available repository lightning-uq-box (Lehmann et al., 2025). Our own adap-
tations, implementations and reproducible experiments are available in an anonymous repository
(https://anonymous.4open.science/r/ke_anonymous-A80D).

USE OF LARGE LANGUAGE MODELS

Large language models (OpenAI’s ChatGPT) were used to assist with improving grammar, style,
and phrasing in the final stage of this manuscript.
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A PROOFS

Proof of Proposition 5.1. Here we prove that for any proper scoring rule S, it holds that

1. Q = δP =⇒ EU(Q) = 0, while for a strictly proper scoring rule the converse holds as
well,

2. EU(δP) ≤ EU(Q1) ≤ EU(Q2).

Consider the BMA estimator. For Q = δP we have P = P and EU(Q) = EP∼Q[D(P,P)] =
D(P,P) = 0, since D is a divergence. For a strictly proper scoring rule, we obtain

EU(Q) = EP∼Q[D(P,P)] = 0 =⇒ P = EQ[P] = P =⇒ Q = δP.

For the pairwise estimator, the proof works in an analogous way.

Proof of Proposition 5.2. Here we prove that any kernel score Sk with a translation invariant kernel
k(x, x′) that is convex in one of its arguments fulfills AU(δP1

) ≤ AU(δP2
).

We know by assumption that P1 ≤cx P2 and AU(δP) = H(P). Therefore, we need to show that
H(P1) ≤ H(P2). Recall that for any translation invariant kernel score we have k(x, x′) ≡ k(x−x′)
and the corresponding entropy is given as

H(P) =
1

2
EX,X′∼P[k(X −X ′)]− 1

2
EX∼P[k(X −X)︸ ︷︷ ︸

≡k(0)

],

where the last part is a constant, due to the translation invariance. Now rewrite the first part as

EX,X′∼P[k(X −X ′)] = EX∼P[EX′∼P[k(X −X ′)]︸ ︷︷ ︸
=:ϕ(X)

]

Since the kernel k(x, x′) is convex in one of its arguments and symmetric, k(x− x′) is also convex
in x for a fixed x′. As the expectation with respect to X ′ ∼ P is linear, it follows that ϕ(X) is
convex. Now, since we are given a convex ordering, which implies EX∼P1

[ϕ(X)] ≤ EY∼P2
[ϕ(Y )]

for all convex functions ϕ : Y → R, it follows that EX,X′∼P1
[k(X−X ′)] ≤ EX,X′∼P2

[k(X−X ′)]
and therefore

AU(δP1) = H(P1) ≤ H(P2) = AU(δP2).

Proof of Proposition 5.3. We show the following: Consider a parametric first-order distributions
Pθ ∈ P(Y) with θ ∈ Θ ⊆ Rp, a corresponding second-order distributions Q ∈ P(Θ), first-order
distribution ϑ ∼ Q and assume that AU(Q) < ∞. Furthermore, define Qε := (1−ε)Q+εδθ0

, θ0 ∈
Θ and consider the influence function (IF):

IF(θ0; AU, Q) = lim
ε→0

AU(Qε)−AU(Q)

ε
= H(Pθ0

)− EQ[H(Pϑ)].

We then have that any kernel score Sk with bounded kernel k is robust in terms of the influence
function.

Recall that Hk(Pθ0
) = 1

2EX,X′∼Pθ0
[k(X,X ′)]− 1

2EX∼Pθ0
[k(X,X)]. In particular, if k is bounded,

i.e. k ≤ C < ∞ for some C ∈ R it follows from the linearity of expectation that Hk(Pθ0
) ≤ C and

therefore, with AU(Q) < ∞ that IF(θ0; AU, Q) ≤ C < ∞.

Proposition A.1. The variance-based measure (squared error) does not fulfill point 1 of Proposition
5.1.

Proof. Consider the BMA estimator, two first-order Gaussian distribution, e.g. P1 =
N (0, σ2

1),P2 = N (0, σ2
2) with σ2

1 ̸= σ2
2 and a second-order distribution, specified as a Dirac mix-

ture, i.e. Q = 1
2δP1 + 1

2δP2 . Recall that for the variance-based measure, we have D(P,Q) =
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(EY∼P[Y ] − EY ′∼Q[Y
′])2. In addition, we obtain P = 1

2P1 +
1
2P2 and EY ′∼P [Y

′] = 0. Then we
obtain

EU(Q) = EP∼Q[D(P,P)] = EP∼Q[(EY ′∼P[Y
′]︸ ︷︷ ︸

=0

−EY∼P[Y ])2] = EP∼Q[(EY∼P[Y ])2]

=
1

2
EP1∼Q[(EY∼P1

[Y ]︸ ︷︷ ︸
=0

)2] +
1

2
EP2∼Q[(EY∼P2

[Y ]︸ ︷︷ ︸
=0

)2] = 0.

Therefore, we obtain EU(Q) = 0 although Q ̸= δP. The same argument also works for the pairwise
estimator.

Proposition A.2. The entropy-based measure (log-score) fulfills AU(δP1) ≤ AU(δP2) if the under-
lying density is log-concave.

Proof. A probability distribution has log-concave density, if the density can be expressed as p(x) ≡
exp(φ(x)) for a concave function φ(x). Recall that the log-score corresponds to the differential
entropy, which can be expressed as

H(P) = −
∫

p(x) log p(x)dµ(x) = EP[− log p(X)].

Then, for a log-concave density, we have that − log p(x) is a convex function in x, and since by
the convex order we have EX∼P1 [ϕ(X)] ≤ EY∼P2 [ϕ(Y )] for all convex functions ϕ : Y → R, it
follows that

AU(δP1) = H(P1) ≤ H(P2) = AU(δP2).

B DERIVATION OF MEASURES FOR SPECIFIC CHOICES OF SCORING RULES

In this section, we derive expressions for the (generalized) entropy- and divergence term of the
uncertainty measures introduced in this article. Recall that in order to assess EU, AU and TU,
one requires expressions for the entropy, divergence and expected scoring rule. This is regardless
whether one chooses the pairwise or the BMA estimator. Therefore, for P,Q ∈ P and X,X ′ ∼
P, Y, Y ′ ∼ Q, and P,P′ ∼ Q, P = EQ[P], we will derive the quantities H(P), D(P,Q), as well as
the gap between the BMA and pairwise estimation ∆, for different scoring rules.

Log-score Let P be the set of distributions on Y that are absolutely continuous with respect to
the Lebesgue measure µ and P,Q ∈ P with corresponding densities p, q. The logarithmic score
Slog : P × Y → R, given by

Slog(P,y) = − log p(y)

is a strictly proper scoring rule. The associated entropy and divergence are given as

Hlog(P) = −
∫

p(x) log p(x) dµ(x),

Dlog(P,Q) =

∫
q(y) log

(
q(y)

p(y)

)
dµ(y) = DKL(Q∥P),

which are the Shannon entropy and Kullback-Leibler divergence, respectively. Utilizing the BMA
estimator, we obtain the entropy-based measure, while for the pairwise estimator we obtain the
pairwise KL-divergence, as shown by Schweighofer et al. (2023). For their difference, we obtain
the so-called reverse mutual information

∆ = EQ

[
DKL

(
P∥P

)]
.
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Kernel score Consider the kernel score Sk : Pk × Y associated with a negative definite kernel k.
We obtain the following expressions for the pairwise estimator:

H(P) =
1

2
EP [k(X,X ′)]− 1

2
EP[k(X,X)],

D(P,Q) = EP,Q [k(X,Y )]− 1

2
EP [k(X,X ′)]− 1

2
EQ [K(Y, Y ′)] .

The corresponding uncertainty measures are obtained by plugging the selected kernel into the above
quantities.

Squared error Let P be the set of distributions on Y ⊆ Rp such that
∫
∥x∥2 dP(x) < ∞ and

Y ∼ P ∈ P . The squared error SSE : P × Y → R given by

SSE(P,y) = (y − EP[Y ])2,

is a proper (but not strictly proper) kernel rule, with k(x,x′) = ∥x− x′∥2. The associated entropy
and divergence are given as

HSE(P) = tr(CovP[Y ]), DSE(P,Q) = ∥µP − µQ∥2 .
In the case of the squared error, the corresponding uncertainty measures can be expressed in terms of
moments of moments of the first order distribution, leading to the following measures for the BMA
estimator:

AUB(Q) = EQ [tr(CovP[Y ])] ,

EUB(Q) = EQ

[
∥µP − µP′∥2

]
= tr (CovQ[µP]) ,

TUB(Q) = EQ

[
∥Y − EQ[µP]∥2

]
,

which reduces to the variance-based decomposition in the univariate case Y ⊆ R. For the pairwise
estimator, we obtain

AUP (Q) = EQ [tr(CovP[Y ])] ,

EUP (Q) = 2EQ

[
∥µP − µP′∥2

]
= 2tr (CovQ[µP]) ,

TUP (Q) = EQ

[
∥Y − EQ[µP]∥2

]
+ tr (CovQ[µP]) ,

which shows that both estimators only differ by a factor of two for the epistemic uncertainty. The
gap between both estimators is

∆ = tr (CovQ[µP]) = EQ[DSE(P,P)].

This quantity measures the expected (score-) divergence between the BMA against all possible mod-
els.

B.1 CLOSED-FORM EXPRESSIONS FOR GAUSSIANS

Here, we derive closed-form expressions for the entropy and divergence term of different scoring
rules for first-order Gaussian and mixture of Gaussian distributions. Recall that for kernel scores
Sk with a conditionally negative definite kernel k, the entropy and divergence of two probability
measures P,Q ∈ P(Y) are given as

Hk(P) =
1

2
EX,X′∼P[k(X,X ′)]− 1

2
EX∼P[k(X,X)] (10)

Dk(P,Q) = EX∼P,Y∼Q[k(X,Y )]− 1

2
EX,X′∼P[k(X,X ′)]− 1

2
EY,Y ′∼Q[k(Y, Y

′)]. (11)

Consider two first-order Gaussian distributions X ∼ P = N (µ, σ2), Y ∼ Q = N (ν, τ2). Then we
obtain the following expressions:
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Log-score

H(P) =
1

2
log(2πeσ2), (12)

D(P,Q) = log
( τ
σ

)
+

σ2 + (µ− ν)2

2τ2
− 1

2
. (13)

These expressions are obtained via well-known results from the differential entropy and KL-
divergence for Gaussian distributions.

Squared error

H(P) = σ2, (14)

D(P,Q) = (µ− ν)2. (15)

Proof. For the entropy, we obtain

H(P) =
1

2
EX,X′∼P[(X −X ′)2)] =

1

2

(
EP[X

2]− 2EP[X]EP[X
′] + EP[X

′2]
)
= VP[X] = σ2.

In addition, we have that EX∼P,Y∼Q[(X −Y )2] = EP[X
2]− 2EP[X]EQ[Y ] +EQ[Y

2] such that for
the divergence we obtain

D(P,Q) = EP[X
2]− 2EP[X]EQ[Y ] + EQ[Y

2]− VP[X]− VQ[Y ]

= EP[X
2]− 2EP[X]EQ[Y ] + EQ[Y

2]− EP[X
2] + EP[X]2 − EQ[Y

2] + EQ[Y ]2

= EP[X]2 − 2EP[X]EQ[Y ] + EQ[Y ]2 = (EP[X]− EQ[Y ])
2

= (µ− ν)2.

CRPS

H(P) =
σ√
π
, (16)

D(P,Q) =
(√

σ2 + τ2
) √

2√
π

1F1

(
−1

2
,
1

2
;−1

2

(µ− ν)2

σ2 + τ2

)
−
(
σ + τ√

π

)
. (17)

Proof. Winkelbauer (2014) show that for the raw absolute moment of a Gaussian we have

E[|X|p] = σp2p/2
Γ(p+1

2 )√
π

1F1

(
−p

2
,
1

2
;− µ2

2σ2

)
,

where 1F1 denotes Kummer’s confluent hypergeometric function. Furthermore, we know that
X − Y ∼ N (µ− ν, σ2 + τ2), X − X ′ ∼ N (0, 2σ2) and Y − Y ′ ∼ N (0, 2τ2). Therefore, we
obtain

H(P) =
1

2
EX,X′∼P[|X −X ′|] = 1

2

√
2σ2

√
2
Γ(1)√

π
1F1

(
−1

2
,
1

2
; 0

)
=

σ√
π
.

With EX∼P,Y∼Q[|X − Y |] =
√
σ2 + τ2

√
2√
π 1F1

(
− 1

2 ,
1
2 ;− 1

2
(µ−ν)2

σ2+τ2

)
we obtain the divergence

D(P,Q) by plugging in the corresponding expectations.

Gaussian kernel score Given the (negative) Gaussian kernel k(x, y) = − exp(−(x − y)2/γ2)
with scalar bandwidth γ, we obtain

H(P) =
1

2

(
1− γ√

γ2 + 4σ2

)
(18)

D(P,Q) =
1

2

γ√
γ2 + 4σ2

+
1

2

γ√
γ2 + 4τ2

− γ√
γ2 + 2(σ2 + τ2)

exp

(
− (µ− ν)2

γ2 + 2(σ2 + τ2)

)
(19)

18
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Proof. Let Z := X − Y ∼ PZ := N (δ, υ) with δ := µ − ν, υ := σ2 + τ2. Then Z2

δ follows
a noncentral chi-squared distribution, i.e. Z2

δ ∼ χ2(1, λ) with noncentrality parameter λ = δ2

υ .
Furthermore, we have

EX∼P,Y∼Q[k(X,Y )] = −EPZ

[
exp

(
−

Z2

υ υ

γ2

)]
= −Mχ2(1,λ)

(
− υ

γ2

)
.

Here, Mχ2(k,λ)(t) is the moment-generating function of χ2(k, λ), with t = − υ
γ2 , which can be

expressed analytically (compare, for example, Patnaik (1949)) as Mχ2(k,λ)(t) =
exp( λt

1−2t )
(1−2t)k/2 . There-

fore, we obtain

EX∼P,Y∼Q[k(X,Y )] = − γ√
γ2 + 2(σ2 + τ2)

exp

(
− (µ− ν)2

γ2 + 2(σ2 + τ2)

)
and

H(P) =
1

2
EX,X′∼P[k(X,X ′)]− 1

2
EX∼P[k(X,X)]

=
1

2

(
1− γ√

γ2 + 4σ2

)
.

By plugging these expressions into the definition of the divergence D(P,Q), we obtain the corre-
sponding closed form.

Gaussian mixtures Here, we consider a mixture of Gaussians, i.e. X ∼ P =∑M
i=1 wiN (µi, σ

2
i ), Y ∼ Q =

∑N
j=1 vjN (µj , σ

2
j ) with nonnegative weights wi, vj that sum to

one. For a mixture of Gaussians, closed-form expressions are not necessarily available, as is the
case for the log-score. However, for specific cases, closed-form expressions are available via the
corresponding marginals. For a translation-invariant kernel score, the expressions for the mixture
density network can be derived in terms of the kernel score of the individual components. By lin-
earity of the expectation, we obtain

E[k(X,Y )] =

M∑
i=1

N∑
j=1

wivjEX∼N (µi,σ2
i ),Y∼N (µj ,σ2

j )
[k(X,Y )].

In the case of a translation invariant kernel, i.e. k(X,Y ) ≡ k(X−Y ) this reduces to a weighted sum
of the corresponding Gaussian score, as we have X−Y ∼ N (µi−µj , σ

2
i +σ2

j ). Therefore, we can
use the results from the previous section to derive the scores for the Gaussian mixtures analytically.

Marginal scores In the multivariate setting Y ⊆ Rd for d > 1, closed-form expressions are more
difficult to obtain then in the univariate setting. For instance, for a Gaussian distribution, the energy
score admits an analytic solution for β = 1, d = 1 but not for β = 1, d > 1. However, one
can always define a multivariate strictly proper scoring rule from a univariate one. Let {Yj}dj=1
be a collection of marginal distributions from the multivariate random variable Y . Then one can
construct a marginal score for Y as

SM (P, y) =
d∑

j=1

S(Pj , yj),

where Yj ∼ Pj when Y ∼ P and S is a (strictly) proper scoring rule for the marginal Yj . Then,
the scoring rule SM is also strictly proper. This is especially interesting if the main interest is in the
marginals, for example, if the dependence structure across the marginals is of little interest.

C EXPERIMENT DETAILS

C.1 QUALITATIVE ASSESSMENT OF UNCERTAINTY QUANTIFICATION

We follow the experiment setup in Bülte et al. (2025a) and use DRNs to post-process 2-meter surface
temperature (T2M) predictions. More specifically, the input to the DRNs is the mean prediction of
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the ECMWF integrated (ensemble) forecast system (IFS), and the networks are trained to predict
the parameters µθ, σ

2
θ of a Gaussian distribution per individual gridpoint. Similar to Bülte et al.

(2025a), we use ERA5 data (Hersbach et al., 2020) with a spatial resolution of 0.25◦ × 0.25◦ and
a time resolution of 6h. Furthermore, we restrict the data to a European domain, covering an area
from 35°N – 75°N and 12.5°W – 42.5°E with selected user-relevant weather variables (u-component
and v-component of 10-m wind speed (U10 and V10), temperature at 2m and 850 hPa (T2M and
T850), geopotential height at 500 hPa (Z500), as well as land-sea mask and orography) that serve
as input to the model. In addition, we use a positional embedding of the latitude/longitude of each
gridpoint, which improves model performance (Rasp & Lerch, 2018). All data is obtained via the
WeatherBench2 repository (Rasp et al., 2024), a visualization of the domain, land-sea-mask and
orography can be seen in Figure 5.
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Figure 5: The figure shows the spatial domain used for the distributional regression networks, as
well as the corresponding land-sea mask and orography.

We train an ensemble of M = 10 DRNs, with hyperparameters from Bülte et al. (2025a). During
training, the models only see the land area of the domain, which allows to evaluate the uncertainty
measures on out-of-distribution data.

Deep evidential regression To verify the results against a different uncertainty representation, we
repeat the experiment using the deep evidential regression framework (Amini et al., 2020). In this
setting, we have a first-order Gaussian and a second-order normal-inverse-gamma (NIG) distribu-
tion. We follow Amini et al. (2020) and use an additional regularization term for which we use
different values λ. To obtain the uncertainty measures, we sample from the NIG distribution and
use empirical (pairwise) estimates of TU, EU and AU, respectively. Figure 6 shows AU and EU for
different values of λ. While the estimated uncertainties heavily depend on the regularization param-
eter, it is evident that the SSE are impacted by pointwise outliers, as the corresponding uncertainty
values are very high. In contrast, the measures based on SES and Skγ

seem to exhibit the structural
changes across the topography of the domain most clearly.

C.2 ROBUSTNESS

Here, we use a deep ensemble (Lakshminarayanan et al., 2017) on the concrete, energy and yacht
dataset from the UCI regression benchmark (Hernández-Lobato & Adams, 2015). We train a base
ensemble of M = 25 and M = 5 members and one additional member that is trained on a distorted
target ŷ = y + N (0, δ2). This allows us to analyze the robustness of the different uncertainty
measures with respect to an outlier in the ensemble prediction. Table 2 shows the mean absolute
percentage error of the aleatoric uncertainty from the base ensemble for different values of δ and
different ensemble sizes. Figure 7 shows corresponding visualizations for the different datasets.

In addition to the results on the UCI benchmark, we can provide a theoretical analysis of the ro-
bustness in the case of a deep ensemble, which admits a first-order predictive Gaussian distribu-
tion p(y | θ) = N (µ, σ2),θ = (µ, σ2)⊤. Assume that the second-order distribution fulfills
∥EQ[H(Pϑ)]∥ < ∞, meaning that the aleatoric uncertainty of the sample distribution Q is well
defined2. In that case, we can analyze the influence function IF(θ0; AU, Q) by analyzing the limit

2For a finite ensemble this always holds.
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(b) λ = 0.01
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(c) λ = 1.0
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Figure 6: The figure shows AU and EU averaged over a test set of 365 days for the different uncer-
tainty measures using deep evidential regression. For visualization purposes, epistemic uncertainty
is shown on a log-scale.

limθ0→∞ H(Pθ0), since EQ[H(Pϑ)] is a finite constant. Table 3 shows the closed-form expressions
for H(θ0), as well as the corresponding growth rates in the contamination θ0. While the Gaussian
kernel score is the only scoring rule that is robust, since it admits a bounded influence function, the
log-score and CRPS have a notably slower growth rate in θ0 as the variance-based measure, which
grows linearly with σ2

0 .

C.3 TASK ADAPTION

We use the distributional regression network from (Feik et al., 2024), which is used to post-process
2-meter surface temperature forecasts with a lead time of 24h on a station-based benchmark dataset
(Demaeyer et al., 2023). The model issues a prediction at every individual station and is optimized
and evaluated using the continuous ranked probability score. We use the hyperparameters from Feik
et al. (2024). For analyzing the different measures, we train different ensembles (M = 10) with the
different scoring rules as task losses and analyze the different measures of total uncertainty for each
model. Figure 8 shows an additional visualization for the sorted epistemic and aleatoric uncertainty,
respectively. While the behavior for AU looks similar to that of TU (compare Figure 3), for EU the
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Table 2: Effect of the added noise δ on the different (aleatoric) uncertainty measures for different
ensemble sizes M across all three datasets. The reported values are the mean absolute percentage
error from the corresponding measure for the base ensemble.

Experiment M S 0.0 0.2 0.5 1.5 2.5 5.0

Concrete

5

Slog 1.20 4.15 6.76 14.5 19.3 20.8
SSE 6.51 122 1.53e+03 3.49+e04 3.30e+05 2.10e+06
SES 3.06 22.2 66.7 356 1.04e+03 2.27e+03
Skγ

0.14 0.47 0.60 0.80 0.84 0.88

25

Slog 0.25 0.90 1.56 3.34 4.47 4.82
SSE 1.11 25.3 324 7.21e+03 6.77e+04 4.78e+05
SES 0.55 4.7 14.7 78.2 224 503
Skγ 0.03 0.10 0.13 0.18 0.19 0.19

Energy

5

Slog 0.52 2.45 5.07 9.86 11.4 16.4
SSE 5.49 47.3 288 1.21e+04 2.93e+04 5.06e+07
SES 2.50 15.4 49.6 270 417 8.58e+03
Skγ

1.64 6.27 10.2 13.1 13.5 14.0

25

log 0.11 0.57 1.17 2.28 2.62 3.79
SSE 1.12 10.6 64.1 2.86e+03 6.57e+03 1.09e+07
SES 0.52 3.52 11.3 62.5 95.3 1.933e+03
Skγ

0.34 1.41 2.31 2.97 3.07 3.17

Yacht

5

Slog 0.30 5.03 8.97 11.9 15.6 18.6
SSE 2.05 1.02e+03 1.37+e04 9.85+e05 2.83+e06 2.58+e07
SES 1.07 69.7 255 1.33e+03 3.07e+03 1.02e+04
Skγ 0.63 11.7 14.1 14.8 15.5 15.6

25

Slog 0.09 1.17 2.08 2.75 3.61 4.30
SSE 0.60 225 2.88+e03 2.10+e05 6.42+e05 6.10+e06
SES 0.31 15.9 57.5 298 699 2.36e+03
Skγ

0.18 2.65 3.18 3.36 3.52 3.54

Table 3: Limit and corresponding growth rates for the influence function IF(θ0; AU, Q) in the limit
θ0 → ∞.

S H(Pθ0) limθ0→∞ H(Pθ0) Growth

Slog
1
2 log(2πeσ

2
0) ∞ O(log(σ2

0))
SSE σ2

0 ∞ O(σ2
0)

SES
σ0√
π

∞ O(
√

σ2
0)

Skγ

1
2

(
1− γ√

γ2+4σ2
0

)
0.5 O(1/

√
σ2
0)

measures behave very differently. For example, for all task losses except SSE, the measures SSE

and Skγ
show opposite behavior, i.e. one is decreasing, while the other is increasing. In these cases,

epistemic uncertainty most likely does not contribute much to the total uncertainty and is therefore
not aligned with the corresponding task loss. Instead, the task loss is highest whenever aleatoric
uncertainty is highest.

For the active learning task, we train an ensemble of 10 DRNs that are initially trained using 200
samples and can acquire 200 new instances in each of 40 rounds. The models are trained for 2
epochs in each round. At the end of the 40 rounds, the model had access to around 10% of the
training data. The model performance is evaluated using the continuous ranked probability score
over the test set.
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Figure 7: Effect of the added noise δ on the different (aleatoric) uncertainty measures for an ensem-
ble of size M = 25 across all three datasets. The reported values are the mean absolute percentage
error from the corresponding measure for the base ensemble.
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Figure 8: The figure shows the different task losses (each plot) sorted by each of the different uncer-
tainty measures from highest to lowest epistemic (a) and aleatoric (b) uncertainty. For visualization
purposes, the values shown are moving averages of size 50.
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