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Image A Ours BEiT MoCov3 Image B Ours BEiT MoCov3

Figure 1: Attention response of different self-supervised vision transformers. The queries are
marked with red boxes. MoCov3 fails to follow the query and BEiT focuses too much on neigh-
boring patches, while SemanticMIM distinguishes different objects and approximates their segmen-
tation masks. MoCov3 and BEiT show the result from 10th layer while Ours are from 8th layer.
Attention responses across depth are further analyzed in supplementary.

ABSTRACT

This paper represents a neat yet effective framework, named SemanticMIM, to in-
tegrate the advantages of masked image modeling (MIM) and contrastive learning
(CL) for general visual representation. We conduct a thorough comparative anal-
ysis between CL and MIM, revealing that their complementary advantages may
stem from two distinct phases, i.e., compression and reconstruction. Specifically,
SemanticMIM leverages a proxy architecture that customizes interaction between
image and mask tokens, bridging these two phases to achieve general visual repre-
sentation with both abundant semantic and positional awareness. Through exten-
sive qualitative and quantitative evaluations, we demonstrate that SemanticMIM
effectively amalgamates the benefits of CL and MIM, leading to significant en-
hancement of performance and feature linear separability, and also offers notable
interpretability through attention response visualization.

1 INTRODUCTION

Self-supervised learning (SSL) algorithms (Liu et al., 2021; Balestriero et al., 2023) have emerged
as a powerful paradigm for deriving rich feature representations without relying on extensive anno-
tations. These algorithms can be roughly categorized into two families: Masked Image Modeling
(MIM) (He et al., 2022; Xie et al., 2022) and Contrastive Learning (CL) (He et al., 2020; Chen et al.,
2020a). As illustrated in Fig. 1, MIM focuses on the reconstruction of partially corrupted images,
serving as a pretext task that facilitates the model’s ability to infer local patterns from limited con-
textual information, however the redundancy of image signals hinders the learning of grasping long-
range global semantics (Li et al., 2023; Xie et al., 2023b). MIM is inherently compatible with the
transformer architecture and demonstrates versatility across different tasks and modalities, thereby
garnering increasing research interest. In contrast, Contrastive Learning emphasizes aligning global
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features with instance discrimination as its core pretext task (Wu et al., 2018). CL excels in capturing
prominent, semantically rich foreground elements, albeit at the expense of nuanced understanding
of complex local spatial patterns. Further, the absence of positional priors in the pre-training im-
plies that CL’s semantic understanding is broadly homogeneous, circumventing the need for explicit
positional awareness. Consequently, MIM and CL exhibit specialization in downstream tasks that
are sensitive to positional dynamics (e.g., segmentation) and semantic content (e.g., classification),
respectively. Given the distinct properties of MIM and CL, there exists a compelling imperative to
find a compromise solution that can absorb the advantages of both methods.

Prior efforts to reconcile the disparities between MIM and CL have predominantly adopted two
strategies. First, one approach sought to augment CL with fine-grained alignment with positional
priors, such as aligning features of pixels, regions, or objects (Wang et al., 2021; Van Gansbeke
et al., 2021; Bai et al., 2022). However, this CL-centric strategy suffers from collapse to trivial solu-
tions and thus heavily relies on hyperparameters and regularization, thereby sacrificing the inherent
flexibility of MIM. Second, a more straightforward strategy is optimizing the objectives of MIM and
CL simultaneously (Zhou et al., 2021; Oquab et al., 2023). This approach inevitably introduces the
complex task of integrating two distinct learning objectives and the pursuit of multi-view represen-
tation significantly escalates the computational demands, which necessitates a nuanced approach to
balance and fuse these methodologies.

To deepen the understanding of the intrinsic properties of MIM and CL, we explore their specifics
empirically in Sec. 3.2. We elucidate that the complementary capabilities of CL and MIM meth-
ods in semantic modeling, i.e., consistency and completeness are achieved through compression
and reconstruction, respectively. CL approaches compress information from all image patch to-
kens [IMG] into a single class token [CLS] , encapsulating global abstract semantics. Conversely,
reconstruction-based MIM methods prioritize local neighbors rather than global semantics, stem-
ming from the inherent redundancy in image modality.

Inspired by CL, we propose SemanticMIM, a novel paradigm that introducing compression within
MIM framework, aiming to harness some of the advantages of CL methods. It is noteworthy that
SemanticMIM is not a combination of CL and MIM in a multi-task manner. Instead, it strictly
adheres to the general MIM framework and achieves compression by controlling information ex-
change. Specifically, we propose a proxy architecture to seamlessly connect two phases: initially,
[IMG] tokens interact with [PROXY] tokens, compressing all information into the [PROXY] to-
kens, which embody abstract semantics. Subsequently, these [PROXY] tokens engage with the
mask tokens [MASK] , reconstructing the target with spatial priors derived from [MASK] tokens
while preserving rich semantics through the [PROXY] tokens.

We conduct a broad spectrum of both qualitative and quantitative analyses to substantiate the efficacy
of SemanticMIM. The following points delineate the advantages of SemanticMIM. (1) Compared to
MIM, SemanticMIM excels in discerning the semantics of specific objects rather than semanticless
neighbor pixels, i.e., consistency. (2) Compared to CL, SemanticMIM exhibits a keen positional
awareness rather than homogeneous perception. It adeptly identifies targeted semantics within both
foreground and background elements with explicit positional priors, i.e., completeness. (3) The
[PROXY] tokens tend to inherently learn various implicit positional priors, i.e., regions of interest.
This mechanism naturally directs the model’s attention towards relevant semantic features. (4) Be-
yond achieving considerable performance gains in fine-tuning settings, SemanticMIM significantly
improves the performance in linear probing settings, which indicates that the features of pre-training
phase are more linearly separable.

The main contributions are summarized as follows:

• We provide an elaborate analysis, and point out that the fundamental principles underlying
contrastive learning and masked image modeling lie in compression and reconstruction,
respectively.

• We propose SemanticMIM, a neat yet effective framework to integrate the merits of masked
image modeling and contrastive learning. SemanticMIM leverages a proxy architecture to
orchestrate compression and reconstruction in cascades.

• Extensive qualitative and quantitative experiments validate the effectiveness of Seman-
ticMIM, indicating its capability of obtaining visual representations with high consistency
and completeness.
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2 RELATED WORK

2.1 MASKED IMAGE MODELING

Motivated by the success of Masked Language Modeling in NLP (Devlin et al., 2018), Masked
Image Modeling (MIM) has been proposed for training a vision transformer in a self-supervised
manner. For MIM task, the model takes a corrupted image as input and predicts the target of the
missing area. The difference between the prior works of MIM mainly lies in the target choice and
image corruption.

Target can be roughly divided into two kinds: low-level signals and high-level features. The for-
mer mainly refers to raw pixels (Dosovitskiy et al., 2021; Xie et al., 2022; Huang et al., 2022b),
normalized pixels (He et al., 2022), hand-crafted feature descriptors (Wei et al., 2022a), and even
positions (Zhai et al., 2022; Caron et al., 2024; Wang et al., 2024). This kind of target is easy to
obtain with no extra cost but continuous signals suffer from high redundancy and few semantic in-
formation. Researchers find that high-level features extracted by well-trained image tokenizers are
also appropriate targets, including concrete deep features by offline (Wei et al., 2022a;b; Zhou et al.,
2022; Hou et al., 2022; Peng et al., 2022) or online models (Tao et al., 2023; Chen et al., 2022; Dong
et al., 2022; Zhou et al., 2021) and discrete codes (Bao et al., 2022; Chen et al., 2024; Dong et al.,
2023) generated by VQ-VAE (Van Den Oord et al., 2017) or dVAE (Ramesh et al., 2021).

The most used image corruption strategy is randomly removing a certain proportion of image
patches. On this basis, removing multiple adjacent patches creates a more challenging context and
encourages long-range dependency (Bao et al., 2022; Xie et al., 2022). Inspired by hard sample
mining, manually designed criterions are proposed to choose where to mask and guide the model re-
constructing the discriminative image patches (Kakogeorgiou et al., 2022; Shi et al., 2022; Li et al.,
2021). Furthermore, image corruption could also be processed in the frequency domain, transform-
ing the pretext task into low-level vision tasks such as image super-resolution or denoising (Xie
et al., 2023a).

2.2 CONTRASTIVE LEARNING

Contrastive learning (CL) methods (He et al., 2020; Chen et al., 2020a;c; Chen* et al., 2021; Chen
et al., 2020b) learn visual representations by creating different views of an image and aligning their
features, encouraging semantic invariance to simple transformations. To resist collapse to trivial
solutions, the contrastive loss (Wu et al., 2018; Oord et al., 2018) is adopted to maximize dissimi-
larity between negative sample pairs. The introduction of prototypes (Li et al., 2020; Asano et al.,
2019; Caron et al., 2020) addresses the large batch size requirement by replacing pairwise compar-
ison with cluster assignment consistency. Self-distillation methods (Grill et al., 2020; Caron et al.,
2021; Oquab et al., 2023; Chen & He, 2021) further simplify the training framework, preventing
collapse by asymmetric model architecture and parameter update strategy. Besides, more regular-
izations (Zbontar et al., 2021; Bardes et al., 2021; Oquab et al., 2023) are proposed to constrain
correlations in the dimensions of not only samples but also features.

On the other hand, CL is sub-optimal for dense prediction downstream tasks due to the discrepancy
between image-level alignment pre-training and pixel-level prediction. Hence, dense contrastive
learning methods are proposed aligning sub-image-level features with position priors. Pixel-level
(point-level) features are easily obtained on feature maps before pooling and matched between views
by designed rules such as similarity or spatial distance (Wang et al., 2021; O Pinheiro et al., 2020;
Xie et al., 2021b; Zhang et al., 2022; Ziegler & Asano, 2022). With the help of masks or regions of
interest generated by unsupervised segmentation and detection modules, object-level feature align-
ment further benefits the localization and intra-image contrast (Van Gansbeke et al., 2021; Hénaff
et al., 2021; Huang et al., 2022a; Roh et al., 2021; Xie et al., 2021a; Wei et al., 2021). Creating
synthetic views by copying regions from other images like mixup augmentation (Zhang et al., 2017)
could also obtain prior foreground masks (Wang et al., 2022; Yang et al., 2021). However, most
of the above feature alignments are combined with the original image-level loss. How to balance
multi-level supervision and avoid over-weight remains further exploration.
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Figure 2: A unified view of the masked image modeling (i.e., BEiT) and contrastive learning (i.e.,
MoCov3) paradigm. The augment operator transforms input image into another view while preserv-
ing semantic information. The target generator produces ground truth. The vision transformer and
prediction head are trained modules.

3 METHOD

3.1 A UNIFIED VIEW OF SELF-SUPERVISED LEARNING FRAMEWORK

In this section, we present a unified view of the self-supervised learning (SSL) framework, aiming
to harmonize the merits of masked image modeling (MIM) and contrastive learning (CL). It is worth
noting that self-supervised algorithms are a large family containing many types of pretext tasks. The
framework presented here only focuses on algorithms used for training vision transformers. Besides,
we include methods like BYOL (Grill et al., 2020) into ”CL” category as well since they still follow
the similar rule that aligning global features.

The MIM framework generally consists of four principal components: an augment operator, an
encoder, a prediction head, and a target generator. As shown in Fig. 2 (a), an input image x is
augmented by random masking to remove a certain proportion of image patches. Define the index
set of all image patches as I = {1, . . . , N[IMG]}, the index set of the remaining image patches and
discarded image patches as R[IMG] ⊆ I and R[MASK] = I − R[IMG], respectively. The retained
patches are projected into a series of patch embeddings {xi}, whereas the discarded ones are sub-
stituted with the equivalent number of repeated learnable query tokens, known as [MASK] tokens
in MIM. After applying positional embeddings to the sequence according to their position index
from R[IMG] and R[MASK], the whole sequence is then processed by the encoder and the prediction
head. Meanwhile, the target generator takes the complete original image as input and generates the
dense target ti, i.e., the supervision signal. Finally, the reconstructed [MASK] tokens, restoring the
semantic information of the corresponding missing patches, are supervised by the generated target
with the designated similarity measure L. The objective function is delineated as follows:

min E
x∈D

E
i∈R[MASK]

L(zi, ti), (1)

where D is the training corpus and z is the output feature of the prediction head. The choice of the L
depends on the target used. For example, ℓ1 is used when using pixel (Xie et al., 2022) or HOG (Wei
et al., 2022a) as targets, and cross-entropy is used when the target is produced by discrete tokenizers
such as dVAE (Bao et al., 2022) or VQGAN (Dong et al., 2023).

Further, we find that the CL methods, particularly those employing self-distillation manner, share a
similar framework as MIM methods as illustrated in Fig. 2(b). For example, MoCo (Chen* et al.,
2021), a typical CL approach, employs augmentation techniques such as random resized cropping to
generate multiple views of an input image. The query to obtain representation with global semantics
is a single learnable embedding, known as [CLS] token in vision transformer. The target generator
is a dual online encoder updated by exponential moving average (EMA). The generated deep feature
target is aligned with the output query token by contrastive loss(Oord et al., 2018).

Both methodologies adhere to a common paradigm of extracting and aligning features from aug-
mented views of the same image. The difference lies in the access of features and type of target.
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Figure 3: Information propagation of the contrastive learning, masked image modeling, and our pro-
posed SemanticMIM. Numbers indicates position ids and the slash means position-irrelevant. The
compression structures present in CL methods endow the model with a better ability to capture se-
mantics. Inspired by this, we introduce similar compression structures into MIM, aiming to enhance
the semantic awareness on top of the original positional awareness of MIM.

More specifically, MIM uses several queries with positional prior to focus on local neighbor pix-
els with positional awareness and uses dense target for supervision, whereas CL only uses a single
query without prior to obtain features with global semantics and uses image-level target. Previous
works have demonstrated that the four components of the framework are replaceable between MIM
and CL methods. For instance, the dual EMA encoder in CL could also serve as the target generator
in MIM (Tao et al., 2023; Chen et al., 2022; Dong et al., 2022; Zhou et al., 2021), and the masking
operation in MIM can join the augmentation series in CL to generate more challenging views (Ass-
ran et al., 2022; Huang et al., 2023; Shen et al., 2023). This cross-utilization highlights the flexibility
and shared foundational principles of both methodologies.

3.2 DISCUSSION ON PROPERTIES OF SELF-SUPERVISED LEARNING FRAMEWORK

Self-supervised learning aims to train models that exhibit robust generalization across various down-
stream tasks. To give a more specific definition, an ideal pre-trained model is expected to be capable
of encoding features of promising consistency and completeness. Consistency ensures that queries
on identical objects elicit similar responses. Completeness guarantees that arbitrary objects within
an image, including backgrounds, should be encoded into features of the corresponding positions.

CL methods exhibit promising consistency but poor completeness. They could adeptly capture
the salient objects. However, this focus comes at the expense of completeness, as they tend to
neglect the details of the background. In contrast, MIM achieves high completeness by capturing
detailed representations across the entire image but struggles with consistency. More specifically,
the redundancy in features of MIM means they are more likely to exhibit response by neighbor
patches rather than those of similar semantics. The low consistency underlines MIM’s challenge in
capturing global semantic representations. From Sec. 3.1, we have pointed out that the difference
between MIM and CL may stem from their distinct target and query. This section delves into how
target and query contribute to consistency and completeness.

Dense target encourages completeness but reduces consistency. Regardless of the specific target
generator employed, MIM inherently produces dense targets characterized by significant redun-
dancy. More specifically, This redundancy implies that the targets for neighboring areas bear a
strong similarity to each other. This phenomenon essentially degenerates MIM into a variant of an
autoencoder, where the model (i.e., [MASK] query) tends to replicate its neighbors. We identify
it as a “learning shortcut” inherent to MIM, leading to a limited receptive field that inadvertently
encourages a model to mimic the properties of adjacent areas rather than understanding context.

To mitigate this issue, most MIM framework adopts a high mask ratio to reduce the probability that
adjacent patches exist and compel the model to extend its focus to the broader context rather than
local neighbors. Advanced masking strategy (e.g., SimMIM (Xie et al., 2022)) is also designed to
exclude adjacent patches by using the mask unit of larger size. But as shown in the Fig. 1, not all
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Figure 4: Comparison of the architecture. MIM only focuses on Reconstruction. In SemanticMIM,
since the number of [PROXY] is much smaller than that of [IMG] , information is compressed first
(left) and then transmitted to [MASK] to complete the reconstruction (right). This design introduces
compression while remaining compatible with the original MIM framework.

features belonging to a specific object have high similarity but only those adjacent in spatial do,
indicating that the MIM model still tends to focus on local areas and struggles with low consistency.

Global target encourages consistency but reduces completeness. CL methods utilize a single
global feature as the target, generated either by a sophisticatedly trained model or an online EMA
updated encoder. This global feature target typically encapsulates the essence of the foreground
at the detriment of background details. Meanwhile, compared to the dense supervision of MIM,
a single target feature in CL is high-level and more conceptual, raising properties that explicitly
contain the foreground layout of high consistency.

Query in CL acts compression and queries in MIM find neighbors. We provide analysis from
the perspective of information propagation. In CL, the [CLS] token serves as the query, embody-
ing a mechanism that captures global semantics and generates abstract features. Its capability is
empowered by the implicit compression during forwarding, as shown in Fig. 3(a). [CLS] token
is tasked with compressing information from all relevant image patches, aligning itself with targets
that encapsulate global context. This compression phase helps the model retain the most essential
information and reduce feature redundancy. This single query token [CLS], however, provides
limited capacity and over compress information.

Conversely, MIM employs learnable semantic-free embeddings, the [MASK] tokens as queries.
Distinct from the query in CL, the [MASK] tokens are applied with position embeddings as prior
to indicate target reconstruction areas. However, the prior inadvertently encourages convenience to
the “learning shortcut” mentioned in the last section, making it effortless for the model to locate the
neighboring image patches of the masked patches and reduce the necessity of leveraging broader
contexts. As depicted in Fig. 3(b), when the queries only propagate information with a limited num-
ber of neighboring image patches, the pre-trained model of MIM performs poor feature consistency
and notable redundancy without the help of compression.

3.3 MASKED IMAGE MODELING WITH PROXY ARCHITECTURE

Based on the provided analysis, we propose a neat framework SemanticMIM drawing inspiration
from the compression of CL and applying it to solve the inherent limitations of MIM, as shown
in Fig. 3(c). To mitigate the issue of easily locating neighboring image patches of the masked
patches due to the positional prior, we disrupt the direct information propagation between [IMG]
tokens and the [MASK] tokens. Instead, we leverage extra tokens with no positional prior in between
as a proxy, naming it [PROXY] token. Second, since the [PROXY] tokens and [MASK] tokens are
both queries with no semantic information, the information is forced to spread from [IMG] tokens to
[PROXY] tokens and then from [PROXY] tokens to [MASK] tokens. The [PROXY] token plays
a role in the information bottleneck and thus the original pretext task is divided into two distinct
stages: compression and reconstruction. We can calibrate the extent of compression by adjusting
the number of [PROXY] tokens used.
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The implementation is shown in Fig. 4. In the original MIM framework, [IMG] and [MASK]
tokens are processed as a whole sequence. Suppose the hidden state of the [IMG] and [MASK]
tokens of layer i as hi

[IMG] and hi
[MASK], respectively. The forward process in each transformer layer

is defined as follows:

hi+1
[IMG],h

i+1
[MASK] = MLP(SelfAttn([hi

[IMG],h
i
[MASK]])). (2)

The key idea of SemanticMIM is a specific mechanism of information propagation constraint. For
the three types of tokens, our goal is to architecturally segregate [IMG] and [MASK] , render-
ing them mutually exclusive in visibility, while simultaneously ensuring both are accessible to
[PROXY] tokens. This is achieved through a modification of the transformer block, as illustrated
in Fig. 4(b), which incorporates dual cascaded attention and MLP modules, mirroring settings across
each layer. The self-attention and subsequent MLP only process [IMG] and [PROXY] tokens, re-
sponsible for the compression task, gathering semantic information from image patches and com-
pressing it into [PROXY] tokens. This forward can be formulated as Eq. (3), where hi

[PROXY] is
the hidden state of the [PROXY] token at layer i. The extra cross-attention and the following MLP
finish the reconstruction task. In particular, the sequence formed by concatenating [PROXY] and
[MASK] tokens is utilized as key and value, while only the [MASK] token serves as query input.
We formulate this process as Eq. (4).

hi+1
[IMG],h

i+1
[PROXY] = MLP(SelfAttn([hi

[IMG],h
i
[PROXY]])) (3)

hi+1
[MASK] = MLP(CrossAttn(hi

[MASK], [h
i+1
[PROXY],h

i
[MASK]])) (4)

With this design, the compression and reconstruction task is fully disentangled and executed by in-
dependent modules. Such disentanglement makes the reconstruction modules serve as a dedicated
plugin for the pre-training stage and can be discarded later. Besides, calculating attentions sepa-
rately allows SemanticMIM to have the same or even lower computational cost than vanilla MIM.
Detailed analysis is provided in Appendix C. Further, the encoder only performs the compression
task in our framework, avoiding wasting capacity on the reconstruction task as in the original MIM
framework (Liu et al., 2023). Our design better meets the requirements of the downstream tasks for
discriminative visual representations with consistency and completeness defined in Sec. 3.2.

4 EXPERIMENTS

4.1 PRE-TRAINING SETTING

As our proposed method only modifies the way that information passed in the encoder, it is parallel
to any MIM framework. The additional [PROXY] tokens are indeed learnable embeddings just like
the [CLS] token, in the implementation, we initialize multiple [CLS] tokens and use them as the
[PROXY] tokens. Notably, the [PROXY] tokens only acts as springboards and are not supervised
by any signals directly. So we compute loss only on [MASK] tokens as in the original.

To illustrate the generality, we choose two representative baselines BEiT (Bao et al., 2022) and
MaskFeat (Wei et al., 2022a), which utilize high-level and low-level targets respectively. For all
experiments, we use ViT-Base (Dosovitskiy et al., 2021) with patch size 16 as the encoder backbone
and pretrain it on ImageNet-1K (Deng et al., 2009) dataset over 300 epochs at 2242 resolution. Both
baselines adopt 40% mask ratio and one [CLS] token. When applying our methods, we set the
mask ratio to 60% and the number of [PROXY] tokens to 8. The model used in ablation study and
visualization is based on BEiT unless specified otherwise. Further details on our pre-training are
provided in the Appendix E.

4.2 EVALUATION SETTINGS

To quantitatively validate the effectiveness of our methods, we conduct experiments on classification
and semantic segmentation tasks with both linear probing and end-to-end fine-tuning. Further details
are described in the Appendix E.
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Table 1: Performance comparison with baselines. We report top-1 accuracy on ImageNet-1K,
mIoU on ADE20K, and mIoU on PascalVOC. Linear and FT stand for linear probing and fine-
tuning, respectively. All results are produced by ourselves.

Datasets ImageNet-1K PascalVOC ADE20K

Protocol Linear FT Linear FT

Feature CLS Patch CLS Patch Featmap Featmap

BEiT 31.5 38.7 81.9 82.2 23.8 40.2
BEiT + Ours 49.2(+17.7) 48.2(+9.5) 83.0(+1.1) 82.9(+0.7) 43.1(+19.3) 44.1(+3.9)

MaskFeat 23.4 33.5 82.7 83.0 37.8 42.6
MaskFeat + Ours 52.0(+28.6) 59.7(+26.2) 83.7(+1.0) 83.6(+0.6) 49.5(+11.7) 45.7(+3.1)

For the classification task, we train a supervised linear classifier on the ImageNet-1K training set
for 100 epochs and report top-1 accuracy on the ImageNet-1K validation set following the settings
in (Bao et al., 2022). The classifier is integrated at the final layer under the fine-tuning protocol and
at the 7th layer to harness a generalizable feature representation under the linear probing protocol.
Additionally, we provide results of feeding the classifier with [CLS] tokens (named CLS in the
table) and with average pooling features of output [IMG] tokens (named Patch).

For the semantic segmentation task, we report mIoU on ADE20K (Zhou et al., 2017) benchmark
with 150 semantic categories for end-to-end fine-tuning and PascalVOC (Everingham et al., 2010)
benchmark with 21 semantic categories for linear probing. More specifically, on ADE20K, we
use UperNet (Xiao et al., 2018) as the decoder and fine-tuning for 160k steps at 6402 resolution
following (Bao et al., 2022). On PascalVOC, we train a 1 × 1 conv layer on top of the frozen 6-th
layer feature at 4482 resolution for 25 epochs following (Ziegler & Asano, 2022).

4.3 MAIN RESULTS

We validate our proposed SemanticMIM by incorporating it to BEiT and MaskFeat in Tab. 1. On
classification, SemanticMIM enhances accuracy by 10% for BEiT and 25% for MaskFeat during
linear probing, and around 1% under fine-tuning. On segmentation, our method outperforms BEiT
by 19.3% and MaskFeat by 11.7% under linear probing and around 3% under fine-tuning.

Three findings emerge from the results. First, SemanticMIM notably enhances performance un-
der linear probing, a protocol that directly assesses the quality of visual representations, indicating
that SemanticMIM learns more linearly separable and discriminative features. Second, our method
shows a more pronounced improvement on MaskFeat compared to BEiT. This discrepancy can be
attributed to MaskFeat’s use of low-level HOG targets, which possess less semantic information
and greater redundancy, leading to features encoding with more details but poor consistency. Com-
pression introduced in our framework is particularly effective for this scenario, yielding substantial
performance enhancements. Thirdly, with our method, the [CLS] tokens become more adept at
extracting global information, since they serve as the proxy to effectively gather information from
context and learn compressed semantic features without supervision.

Note that the baseline performance of our reproduced BEiT and MaskFeat is lower than reported in
the original paper and it is mainly due to the different settings. BEiT and MaskFeat use block-wise
masking and undergo training for 800 and 1600 epochs, respectively. Our study employs random
patch masking and limits training to 300 epochs for simplification purposes.

4.4 ABLATION STUDY ON NUMBER OF [PROXY] TOKEN

Fig. 5 shows the impact of the number of [PROXY] tokens in our method. We train ViT-Base
for 300 epochs and then fine-tune for 100 epochs. ImageNet-1K validation accuracy under fine-
tuning protocol is reported. The resolution of the input image is 224x224 and patch size is 16, so
the number of [IMG] tokens is 196. As the number of [PROXY] tokens increases, the extent of
compression decreases, more information is transferred to the [MASK] token for reconstruction and
thus the task difficulty is reduced. The optimal performance is achieved with 8 [PROXY] tokens.
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Figure 5: Ablation on [PROXY] tokens.
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Figure 6: Ablation on mask ratio.

Image

(a) MoCov3 (b) BEiT (c) Ours

Figure 7: Attention maps queried by distinct patches across different methods. The query
patches to produce attention maps are marked with red boxes.

SemanticMIM with only 2 [PROXY] tokens achieves competitive performance to the baseline,
indicating high redundancy of the original image context. With more [PROXY] tokens, the effect
of compression gradually diminishes. Considering the extreme case of using as many [PROXY]
tokens as [MASK] tokens or even more, our method degenerates to the conventional MIM except
for an extra information exchange between [PROXY] and [MASK] token. Hence, the performance
of our methods gradually approaches the baseline as the number of [PROXY] tokens increases.

4.5 ABLATION STUDY ON MASK RATIO

Fig. 6 shows the effect of the mask ratio under the same training setting as in Sec. 4.4. A low mask
ratio leads to overly rich context information rendering the pretext task insufficiently challenging,
and vice versa for a high mask ratio. The optimal ratio of our method is around 60%. Previous
works whose encoder processes only visible patches use a higher ratio like 75% in MAE (He et al.,
2022) and those processing the whole sequence including [MASK] tokens use a lower mask ratio
like 40% in BEiT (Bao et al., 2022). Our architecture is similar to MAE, in which the encoder does
not process [MASK] tokens. The information bottleneck brought by [PROXY] tokens increases the
task difficulty compared to the original MIM framework, thus lowering the optimal mask ratio.

5 VISUALIZATION

In this section, we provide a qualitative analysis by visualizing the attention response of the pre-
trained models. We compare MoCov3 (Chen* et al., 2021), BEiT (Bao et al., 2022), and our method
based on BEiT to explore the properties of CL, MIM, and the proposed SemanticMIM. More exam-
ples are provided in the Appendix D.

SemanticMIM satisfies both completeness and consistency. As shown in Fig. 7, we visualize
the attention map with [IMG] as queries. MoCov3 displays a lack of positional sensitivity and
generates homogeneous attention maps that distinguish foreground and background regardless of
which image patch to query. BEiT suffers from local receptive fields and only neighbor image
patches respond to the query. SemanticMIM integrates the advantages of both, being position-aware
and semantic-aware. All [IMG] tokens belonging to the same object as the given patch respond
to the query, which illustrates the remarkable consistency. Besides, all objects in the foreground
and background have correct and distinct responses, showcasing strong completeness. Moreover,
a notable observation is that SemanticMIM assigns similar features to the two cats with different
appearances, underscoring its capability of semantic perception.
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Image (a) MoCov3 (b) BEiT

(c) Ours

Figure 8: Attention maps queried by [CLS] /[PROXY] token across different methods.
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Figure 9: Heatmap of the focused area of distinct [PROXY] tokens. We average the attention
map of 500 images from ImageNet to display this pattern.

Deciphering the intrinsic mechanism of SemanticMIM. Fig. 8 unveils the attention response of
the [PROXY] token. Supervised by the global deep feature target, the [CLS] token of MoCov3
focuses on the foreground, including the trees and the tower. In contrast, BEiT lacks explicit [CLS]
token supervision and the disorderly attention response illustrates that it struggles to gather seman-
tic information. For SemanticMIM, different [PROXY] tokens pay attention to objects of different
regions and most of the patches respond to the query in each attention map belonging to the corre-
sponding semantic category.

Delving deeper, we calculate the average attention map of each [PROXY] token over 500 images
from ImageNet, and the result is shown in Fig. 9. It is observed that each [PROXY] token focuses
on almost exclusive regions. Since an image patch of arbitrary position may be selected for re-
construction, the [PROXY] tokens, the only information provider for the mask tokens, are forced
to encode information of all regions. The most efficient encoding method is that each [PROXY]
tokens store information of distinct areas non-overlappingly. Hence, the [PROXY] tokens in Se-
manticMIM tend to region-level object queries with position prior, gathering semantic information
from regions of interest, which facilitates the reconstruction by encouraging [MASK] token to ex-
plore region-level context.

6 CONCLUSION

In this paper, we present SemanticMIM to integrate the merit of contrastive learning into masked
image modeling. We first abstract the essence of CL and MIM to compression and reconstruction
through comprehensive analysis. With this hypothesis, SemanticMIM naturally leverages a proxy
architecture to first compress all information of [IMG] token into [PROXY] token, and recon-
struct [MASK] token conditioned on these [PROXY] token. As a result, SemanticMIM adeptly
models global semantics akin to contrastive learning, while preserving the spatial awareness intrin-
sic to masked image modeling, leading to a general self-supervised visual representation. Further,
extensive qualitative and quantitative experiments validate the effectiveness of SemanticMIM.
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A ANALYSIS ON ATTENTION DISTANCE

Following (Xie et al., 2023b), we analyze the average attention distance across models pre-trained by
three distinct methods, i.e. MIM (BEiT), CL (MoCov3), and our proposed SemanticMIM, as shown
in Fig. 13. The attention distance is computed by averaging the distance between the query patch
and all other patches, weighted by the attention weights (Dosovitskiy et al., 2021). It is analogous
to the receptive field where higher value refers to a broader context dependency.

We observe that CL pre-trained models tend to focus on the local context at lower layers, transition-
ing to more global context at higher layers, while MIM pre-trained models display an opposite trend.
SemanticMIM, although grounded in MIM’s training architecture, exhibits a pattern akin to CL,
suggesting that data compression plays a pivotal role in managing context dependency. Meanwhile,
SemanticMIM retains MIM’s characteristic of diverse head behaviors across all layers. Finally, it
is observed that the average attention distance of SemanticMIM is higher than MIM and lower than
CL. We argue that MIM might overly concentrate on neighboring patches, while in CL the entire
foreground containing multiple objects responds to the query. SemanticMIM can distinguish objects
of different semantic categories, leading to a balanced attention distance.
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Figure 10: BEiT.
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Figure 11: MoCov3.

0 2 4 6 8 10
Layer Index

0

20

40

60

80

100

120

140

At
te

nt
io

n 
Di

st
an

ce

Figure 12: SemanticMIM.

Figure 13: Comparison of averaged attention distance across different types of self-supervised
methods. The y-axis refers to the averaged attention distance, while x-axis represents the layer
index. Each data point for a given layer index represents a specific attention head. The baseline
of SemanticMIM is BEiT. We reproduce BEiT by ourselves and use the released weights from the
official MoCov3.

B VISUALIZATION OF ATTENTIONS GROWING ALONG LAYERS

As shown in Fig. 14, we visualize the attention map across various layers. The pretrained model
is ViT-B with 16 [PROXY] tokens under MaskFeat framework. It indicates that attention in the
shallow layers predominantly focuses on the local neighbors of the query patch. With the depth
increases, the response area in the attention map gradually broadens, indicating that the model pro-
gressively explores the context with further spatial distance. Finally, the attention map converges to
the semantic layout of the corresponding object. Previous work (Xie et al., 2023b) has shown that
supervised pre-trained and CL pre-trained models tend to exhibit a shift from local to global focus
across layers but MIM pre-trained model brings locality inductive bias. SemanticMIM follows the
framework of MIM and behaves like CL and supervised pre-training, indicating that compression is
crucial to the global receptive field.

C ANALYSIS ON COMPUTATIONAL COST AND PARAMETERS

The introduction of SemanticMIM brings a slight change in computational cost. Suppose the shape
of the input image tensor is [B,L,D]. A standard ViT block consumes:

CostAttn = 4BLD2 + 2BL2D

CostMLP = 8BLD2

CostTotal = 12BLD2 + 2BL2D
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Depth=1 Depth=3 Depth=5 Depth=7 Depth=9 Depth=11

Image

Figure 14: Attention maps of SemanticMIM across depths. The patches used as queries are
marked with red boxes and the depth refers to the layer index.

Specifically, we suppose that L0, L1, L2 refer to the number of [IMG], [PROXY] and [MASK]
tokens, and L = L0+L1+L2 where L1 = 0 for vanilla MIM. In SemanticMIM, the cost becomes:

CostAttn = 4B(L0 + L1)D
2 + 2B(L0 + L1)

2D

CostMLP = 8B(L0 + L1)D
2

As for the cross-attention module, its query has the shape [B,L2, D] and its key and value have the
shape [B,L1 + L2, D], thus consumes

CostCross = 3BL2D
2 +BL1D

2 + 2BL1L2D + 2BL2
2D

In total, a semanticMIM block consumes

CostTotal =12B(L0 + L1)D
2 + 2B(L0 + L1)

2D

+ 11BL2D
2 +BL1D

2 + 2BL1L2D + 2BL2
2D

During training, take our ViT-B setting as an example where D = 768, L1 = 8, L0 = 78, L2 = 118,
SemanticMIM achieves a 2.8% reduction in FLOPs compared to vanilla MIM. The computational
cost becomes equivalent when L1 = 11. During inference, where L0 = 196, L2 = 0, using 8 proxy
tokens (L1 = 8) leads to only 3.7% increase in FLOPs, which is accompanied by a considerable
performance gain. As for parameters, since the cross-attention modules are discarded after training,
the only difference between semanticMIM and vanilla MIM models are a few proxy tokens, resulting
in a negligible increase compared to the whole model.

D VISUALIZATION ON MORE SCENARIOS

In this section, we present more attention visualization results in Figs. 15 and 16. We pre-train a
ViT-Base model with our proposed SemanticMIM framework based on BEiT on ImageNet-1K for
300 epochs. We evaluate SemanticMIM under both simple and complex scenarios without selective
cherry-pick.

E DETAILED RECIPES

We provide the detailed recipe of pre-training in Tab. 2 and all four evaluation experiments
in Tab. 3, Tab. 4, Tab. 5, and Tab. 6.
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Figure 15: Attention maps of complex scenarios. We select several different styled images from
LAION (Schuhmann et al., 2022), containing multiple objects as inputs. The queried patches are
marked with red boxes.
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Figure 16: Attention maps of images containing a single object. We select several images com-
monly used in fine-grained classification tasks. The queried patches are marked with red boxes.
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Table 2: Hyperparameters for pre-training BEiT and MaskFeat on ImageNet-1K. When applying
our proposed method, we use exactly the same recipe.

Hyperparameters BEiT MaskFeat
Training epochs 300
Batch size 2048
Adam ϵ 1e-8
Adam β (0.9, 0.999)
Peak learning rate 1.5e-3 1.6e-3
Minimal learning rate 1e-5 1e-6
Learning rate schedule Cosine
Warmup epochs 10 30

Gradient clipping 3.0 0.02
Stoch. depth 0.1
Weight decay 0.05

Crop Ratio (0.08, 1.0) (0.5, 1.0)
Flip Prob 0.5
Color jitter 0.4 ✗

Table 3: Hyperparameters for fine-tuning pre-trained model on ImageNet-1K.

Hyperparameters BEiT & MaskFeat
Epochs 100
Batch size 1024
Adam ϵ 1e-8
Adam β (0.9, 0.999)
Peak learning rate 4e-3
Minimal learning rate 0
Learning rate schedule Cosine
Warmup epochs 0

Gradient clipping ✗
Stoch. depth 0.1
Weight decay 1e-4

Crop Ratio (0.08, 1.0)
Flip Prob. 0.5

Table 4: Hyperparameters for fine-tuning pre-trained model with UperNet on ADE20K. BEiT and
MaskFeat use the same recipe.

Hyperparameters BEiT & MaskFeat
Fine-tuning Steps 160k
Batch size 16
Adam ϵ 1e-8
Adam β (0.9, 0.999)
Peak learning rate 3e-5
Minimal learning rate 0
Learning rate schedule Linear
Warmup steps 1500

Gradient clipping ✗
Stoch. depth 0.1
Weight decay 0.05

Input resolution 640× 640
Multi-scale Inference ✗
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Table 5: Hyperparameters for training the classifier while freezing the pre-trained model following
linear probing protocol on ImageNet-1K. BEiT and MaskFeat use the same recipe.

Hyperparameters BEiT & MaskFeat
Epochs 100
Batch size 1024
Adam ϵ 1e-8
Adam β (0.9, 0.999)
Peak learning rate 4e-3
Minimal learning rate 0
Learning rate schedule Cosine
Warmup epochs 0

Gradient clipping ✗
Weight decay 1e-4

Crop Ratio (0.08, 1.0)
Flip Prob. 0.5

Table 6: Hyperparameters for training the segment head while freezing the pre-trained model fol-
lowing linear probing protocol on PascalVOC. BEiT and MaskFeat use the same recipe. For faster
training, we interpolate the groundtruth and output to training resolution and use normal eval reso-
lution during evaluation.

Hyperparameters BEiT & MaskFeat
Epochs 25
Batch size 120
Optimizer SGD
Learning rate 0.01
Learning rate schedule Step
Warmup epochs 0

Gradient clipping ✗
Weight decay ✗

Input resolution 448× 448
Training resolution 100× 100
Eval resolution 448× 448
Multi-scale Inference ✗

21


	Introduction
	Related Work
	Masked Image Modeling
	Contrastive Learning

	Method
	A Unified View of Self-Supervised Learning Framework
	Discussion on Properties of Self-supervised Learning Framework
	Masked Image Modeling with Proxy Architecture

	Experiments
	Pre-training Setting
	Evaluation Settings
	Main Results
	Ablation Study on Number of [PROXY] Token
	Ablation Study on Mask Ratio

	Visualization
	Conclusion
	Analysis on Attention Distance
	Visualization of attentions growing along layers
	Analysis on Computational Cost and Parameters
	Visualization on more scenarios
	Detailed Recipes

