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Abstract

Reinforcement learning and Generative Flow Networks, known as GFlowNets, present an
exciting possibility for neural networks to model distributions across various data struc-
tures. In this paper, we broaden their applicability to data structures consisting of opti-
mal solutions for a combinatorial problem. Concretely, we propose using Q-learning and
various policy gradient methods, as well as GFlowNets to learn the distribution of opti-
mal solutions for kidney exchange problems (KEPs). This could provide a useful tool for
decision-making authorities, policymakers and clinicians, as it o!ers them multiple opti-
mal or near-optimal solutions, and provides a complementary landscape to their traditional
integer programming-based toolbox for promoting fairness and societal benefits. Our rein-
forcement learning-based framework trained on KEP instances provides an e!ective addition
to computationally expensive exact approaches, notably mixed-integer programming. Our
experiments thoroughly evaluate the quality of the solution sets sampled from the trained
neural networks in terms of optimality, their scalability when dealing with real-sized KEP
instances, and their capability to generate a diverse pool of solutions. We also cover the
use of their e"cient solution generation capabilities to improve fairness and simulate the
evolution of the KEP pool in a dynamic setting. Our contribution is thus: 1) methodologi-
cal, as it introduces a novel setting for reinforcement learning in addition to GFlowNets, 2)
implementational, as it delves beyond the theory and details how to use conditional infor-
mation, and 3) of practical significance, as it considers a specific combinatorial problem in
the healthcare domain.

1 Introduction

Resource allocation problems are ubiquitous in our everyday lives as they find various applications in sectors
such as business, engineering, robotics, and healthcare (Cormen et al., 2022; Bin-Obaid & Trafalis, 2020;
Munguía-López & Ponce-Ortega, 2021). Many of these problems take the form of combinatorial optimization
problems due to the indivisibility of resources, which makes them hard to solve. One large class of such
problems consists of matching problems. In the healthcare sector, kidney exchange problems (KEPs) are
well-known matching problems involving patients needing a kidney transplant and donors. The goal is to
find an exchange plan (defined in section 2), which determines the patients receiving a transplant. The
objective driving the search for an exchange plan can vary but often involves the maximization of some
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objective function taking into account the number of matched patients (i.e., receiving a transplant) among
other criteria.

Undoubtedly, KEPs correspond to an important subset of resource allocation problems in combinatorial
optimization. In this context, we identify three key challenges. First, the exchange plans that are selected can
sometimes fail for logistical reasons and due to donor or patient drop-o!, e.g. a patient’s health status renders
them unable to perform surgery. Second, KEPs often have multiple optimal exchange plans, and relying
on exact solvers may not ensure all patients have a fair chance of receiving a transplant. Third, simulating
KEPs in the long term is computationally expensive, notably, because each round of a KEP corresponds to
a hard combinatorial problem. Because current KEPs use ad-hoc or empirically-based objectives to guide
their matching policy, such exchange systems have yet to fully demonstrate the long-term impact of derived
policies on the patient pool. For example, it has been observed in certain KEPs that there is an accumulation
of certain subgroups of patients in the pool, based on bloodtype (Canadian Institute for Health Information,
2016).

Based on the first two aforementioned challenges, e"ciently computing multiple exchange plans would em-
power decision-makers with the ability (i) to dispose of alternative exchange plans in situations of unexpected
infeasibility, and (ii) to draw exchange plans at random according to a fixed policy and guarantee proba-
bilities to patients of receiving a transplant, akin to live lotteries for citizens’ assemblies (Flanigan et al.,
2021). With respect to the third challenge posed above, the e"cient simulation of matching policies would
(iii) a!ord decision-makers the ability to discover long-term policy impacts and mitigate potential negative
e!ects. Because of the delicate nature of allocating kidneys to patients, the ultimate decision-making power
lies in the hands of policy-makers and clinicians. They stand to gain greater advantages from a diverse array
of exchange plans rather than relying on a singular one.

Because KEPs are usually formulated as mixed-integer programs, distributions of solutions can be generated
through column generation (St-Arnaud et al., 2023). For large kidney exchange pools, the mixed-integer
formulation can become impractical to describe, and the time to compute one solution, not to mention a
distribution of solutions, can be prohibitively large. To complement these approaches, reinforcement learning
(RL) methods can learn policies that build exchange plans sequentially. The learned models can then be
used to generate solutions. Because of the need to scale to large kidney exchange pools and to model long-
term behaviour of policies dictating the selection of exchange plans, it is important to better understand
the pros and cons of using learning-based methods to derive KEP policies. In this work, we explore the
possibility of e"ciently generating multiple optimal or near-optimal solutions (exchange plans) by learning
policies to generate exchange plans. This fits neatly into the framework of reinforcement learning through
policy optimization methods. These include policy gradient, promiximal policy optimization (PPO), and
Q-learning. By deriving the policy directly (and indirectly through Q values in Q-learning), the possibility
of sampling multiple high-reward solutions arises. More recently, generative flow networks (GFlowNets),
forming a new class of algorithms to sample solutions proportional to some reward (much like PPO), have
shown promising results (Bengio et al., 2023; 2021). Our first contribution is the application of these learning-
based methods to KEPs with the goal of using an extended set of solutions to form probability distributions
over exchange plans. Second, to fit into the reinforcement learning and GFlowNet framework, we formalize
the states, actions, trajectories, episodes and reward function that define the sampling distribution to be
learned. Moreover, we condition on the input KEP graph as it allows us to model a rich family of distributions
from which we can sample. Third, we experimentally demonstrate1 the ability of our learning procedure
to e"ciently output good-quality (near-optimal) distributions by comparing against baselines, including the
selection of an optimal solution. In addition, we analyze the capability of the learning phase to generalize
from smaller KEP instances (i.e. training set) to larger instances (i.e. test set) when computing one or
multiple exchange plans.

The promising experimental results validating the use of RL and GFlowNets enable us to advance to our
fourth contribution: showcasing the value of having an e"cient sampler downstream of the training phase.
To this end, (1) we provide an e!ective sampling mechanism through which decision-makers can report
individual matching probabilities to patients in the KEP pool, and (2) we describe the use of our approach

1
Our code will be made available upon publication.
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within the simulation of the evolution of the KEP pool over time. In (1), by using exchange plans generated
through policy learning, we demonstrate how to improve individual fairness (IF) (i.e. more equal probability
of receiving a transplant over patients) measures by computing a diverse set of (near-)optimal solutions. We
compare against an optimal (but not scalable) exact mixed-integer programming approach. In (2), we use our
e"cient samplers and we show that their use in a dynamic simulation of the kidney exchange system allows
to approximate the expected number of transplants over multiple matching rounds. These two experiments
reflect how the work developed in this article can empower decision-makers to assess fairness thanks to the
availability of multiple optimal solutions and to better understand the long-term impact of their choice of
matching policy on patient welfare.

In section 2 of this article, we introduce key definitions and concepts relating to KEPs. We follow with a
literature review of solution approaches and fairness for KEPs, machine learning in combinatorial optimiza-
tion and reinforcement learning approaches for sampling solutions. In sections 4 and 5, we detail all the
necessary concepts for learning-based methods applied to KEPs. Section 6 contains the experimental setup
for our research questions. In sections 7 and 8, we introduce research questions and we detail the results by
providing a thorough analysis. Finally, section 9 contains our concluding remarks and we highlight future
research directions.

2 Kidney exchange

With the purpose of addressing the scarcity of kidneys on deceased donor waiting lists, Rapaport (1986)
put forward the notion of living donor exchanges. This led to what is now known as kidney exchange (Roth
et al., 2004), a barter market that has been implemented in several countries, namely, in Europe (Biró et al.,
2021), Canada (Malik & Cole, 2014) and South Korea (Park et al., 2004).

In a kidney exchange system, incompatible patient-donor pairs are registered, forming a KEP pool. These
pairs are then matched with other incompatible patient-donor pairs to exchange donors, resulting in com-
patible transplants to be performed. Matching between pairs can be done either pairwise or involve multiple
pairs as part of a cycle. Additionally, non-directed donors can also register in the system, without being
attached to a specific patient, and allow exchanges to initiate on them, thereby leading to chains. Indeed, a
KEP can be naturally modeled as a graph G = (V, A); see Figure 1. In Figure 1, the set P of patient-donor
pairs is represented by vertices and an arc (u, v) between vertices u and v corresponds to compatibility
between the donor of pair u and the patient of pair v. The set N in Figure 1 consists of non-directed donors,
here the grey-coloured vertices. The vertex set of the graph is equal to the disjoin union of P and N , i.e.,
V = P → N with P ↑ N = ↓. Notice that there are no incoming arcs to vertex v8. In this example, we can
observe cycles involving vertices from P , e.g. (v2, v7, v4), and chains starting in vertices from N and extended
with vertices from P , e.g. (v8, v3, v2, v5) where (v8, v3, v2) is a subchain that is also a valid chain. We use
the general term exchange to refer to a cycle or a chain. Consequently, solving a KEP entails determining
an exchange plan, i.e., a set of disjoint exchanges (matchings) as only one kidney can be transplanted from a
donor. In addition, for logistic reasons, the list of allowed exchange plans is limited to those including cycles
and chains of below a predetermined length. This constraint is behind the complexity of solving KEPs, as
they would otherwise be tantamount to assignment problems. In Figure 1, an exchange plan, where the
maximum predetermined exchange length is three, takes the form of a subgraph of the original KEP graph
(see subgraph on the right in the figure). The task of finding an exchange plan is usually approached through
the use of solvers optimizing an objective, such as the maximization of the total number of transplants, the
so-called utilitarian objective. Thus, in kidney exchange systems, at each predefined interval (e.g., every four
months), a KEP is solved to find an exchange plan among the currently registered patients and donors that
optimizes the objective function. This over-time setting is referred as a dynamic KEP in the remainder of
the paper.

3 Literature review

Solving KEPs. In its most basic form, KEPs entail optimizing the utilitarian objective, which is already
NP-hard (Abraham et al., 2007). The simplest mixed-integer program (MIP) to describe a KEP is the
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v1 v2 v3 v8

v5

v6 v7 v4

Set of incompatible pairs
P = {v1, v2, . . . , v7}

Set of non-directed donors
N = {v8}

v1 v2 v3 v8

v6 v7 v4

Exchange plan

Figure 1: On the left, an example of a KEP graph. On the right, an example of a feasible exchange plan for
a predetermined maximum exchange length of three.

cycle formulation (Abraham et al., 2007; Roth et al., 2007). Other MIPs of a more compact size have been
proposed, for example, by Constantino et al. (2013) and Dickerson et al. (2016). MIPs are widely used since
they can be fed directly to o!-the-shelf solvers. While the usual goal in KEPs is to identify a single optimal
exchange plan according to some pre-agreed objective, other works have proposed the determination of a
probability distribution over exchange plans, accounting for fairness during selection. For instance, Farnadi
et al. (2021) enumerate all optimal solutions for the utilitarian objective in order to generate a probability
distribution across them from which to sample exchange plans. This approach is better known as individual
fairness, and it only scales for small instances with at most 50 pairs. Next, we discuss fairness for KEPs in
more detail.

Fairness for KEPs. It was observed by Dickerson et al. (2014) that solely maximizing the number of
transplants in KEPs can result in unfair treatment of specific patient groups that accumulate in the KEP
pool over time (c.f. RQ4 in section 8). For this reason, there has been substantial research on group fairness
approaches for selecting an exchange plan (e.g., Dickerson et al. (2014); Dickerson & Sandholm (2014);
Gao (2019)). Recent work has introduced a distinct fairness concept—individual fairness—which focuses on
ensuring fairness at the level of individual patients rather than patient groups. This idea involves o!ering
decision-makers multiple feasible solutions, moving away from the traditional focus on a single solution
returned by solvers (Farnadi et al., 2021; St-Arnaud et al., 2023; Demeulemeester et al., 2025). St-Arnaud
et al. (2023) obtain probability distributions through the enumeration of solutions in the support of multi-
objective KEPs composed of utilitarian and fairness components. The drawback of their methodology is that
the choice of a specific fairness objective is predetermined before solving the optimization problem. This
restricts the solution landscape to those that align with the chosen objective, potentially excluding other fair
or e"cient solutions that policy-makers might wish to explore.

Machine learning and combinatorial optimization. Across the literature on combinatorial optimiza-
tion problems (which includes MIPs), a commonly found solution approach relevant to our work involves
the use of machine learning models and architectures to return high quality solutions. This method belongs
to a subtype of end-to-end constrained optimization known in the literature as predicting solutions (Kotary
et al., 2021). Specifically, Lagrange multipliers have been used in learning objectives to enforce feasibility of
constrained problems (Hopfeild & Tank, 1985), while Detassis et al. (2021) introduced an iterative algorithm
that uses a combinatorial optimization solver to adjust solutions returned by a neural network in order to
maintain feasibility. Vinyals et al. (2015) introduced pointer networks to solve the travelling-salesman (TSP)
and convex-hull problems, but their method applies to instances where all permutations of a solution are
feasible; this is the case for KEP cycles, but not for chains. RL methods such as the actor-critic framework
have been used to solve combinatorial optimization problems by relaxing the optimality criterion of generated
solutions (Bello et al., 2016). More recent advances in Velickovic et al. (2018) use graph attention networks
with REINFORCE (Williams, 1992) to improve upon previous results on tasks such as TSPs.

A major driving factor behind this line of research comes from the inherent di"culty in solving some large
combinatorial optimization problems exactly; in some well-known cases, an approximate solution that is
feasible is satisfying (e.g. chess, TSP), thus further justifying the use of learning-based methods. Moreover,
when combinatorial optimization problems involve uncertainty, it is typically intractable to solve a problem
exactly and it is then natural to use learning-based methods. Other learning-based methods are available,
such as ML-augmented constrained optimization and predict-and-optimize (Kotary et al., 2021). The former
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guide a combinatorial solver during the solution phase, while the latter learns to predict a proxy model
(objective and/or constraints) that is fed to a combinatorial optimization solver, which returns a solution
that is ideally close to a target solution (Ferber et al., 2020; Aubin-Frankowski et al., 2024). Much like MIP, if
the combinatorial formulation of the problem or the time to recover recover a solution is prohibitively large,
these methods can fail. While predicting solutions has shown promise in certain tasks such as portfolio
optimization and mixed-integer linear programming (Wilder et al., 2019; Ferber et al., 2020), we observe
that these learning-based methods, much like MIP, are most commonly used for selecting one solution, in
contrast to our goal of producing a full distribution of solutions. The main di"culty with the aforementioned
methods emerges out of the training procedure, but once a model is learned, we can often get an e"cient
sampler that allows for fast solution generation. Based on this idea, we describe in the paragraph below how
we seek to take advantage of this potentially highly e"cient solution generation to address fairness concerns
raised earlier in relation to MIPs.

Solution sampling in RL. In this article, we seek to investigate learning methods that can sample
exchange plans e"ciently. We are motivated by the need to find distributions of exchange plans exhibiting
certain properties, as it is the general case for fair assignment problems involving the allocation of critical
resources. Our work is also driven by the fact that such mechanisms can allow the e"cient simulation of
multiple matching rounds (dynamic KEP). The key aspect that di!erentiates our line of inquiry from prior
research on KEPs is the learning aspect involved, where one is looking to learn a distribution of optimal (or
near-optimal) solutions, according to a given objective. For this reason, we focus on policy gradient and flow-
based methods (Sutton et al., 1999; Bengio et al., 2023), and extend their application to the setting of kidney
exchanges. These approaches are well suited for application on discrete structures such as graphs as it is
possible to enforce constraints within the set of possible actions. In addition, GFlowNets o!er in some cases
an improvement over policy-gradient methods and Monte Carlo Markov chain (MCMC) sampling, because of
their ability to model the reward directly and learn modes of the distribution. Algorithms derived from both
policy gradient and generative flow networks have previously been successfully used in drug discovery (Bengio
et al., 2021; Angermueller et al., 2019). The setting in drug discovery is similar to ours in the sense that it
seeks to output samples that bear a particular graph structure (drug-like molecule). Yet, it is also di!erent,
since the output in our problem is conditional on an initial KEP graph (see section 5), i.e. the action and
state spaces are countably infinite (see section 6).

4 Learning-based methods

We proceed to define the usual concepts of RL such as state, action and reward, in the setting of static
KEPs. We will later see in section 5 the process by which we learn static KEP policies and how these
policies are deployed over episodes consisting of multiple matching rounds with uncertainty over the arrival
and departure of patient-donor pairs.

Preliminaries. As argued in the previous sections, learning-based methods (e.g. policy gradient and
GFlowNets) seem to o!er an adequate approach for learning probability distributions aimed to address
fair assignment problems, namely, KEPs. In our application of learning methods to KEPs, we propose to
sequentially build exchange plans by adding cycles and chains until a maximal exchange plan is reached.
Thus, given a set of disjoint cycles and chains (hence a KEP subgraph, or exchange plan), the policy to
be learned will assign probabilities to the remaining feasible (i.e., disjoint) cycles and chains. A cycle or
chain is selected by drawing from the constructed distribution. Note that Q-learning does not directly o!er
a probability distribution, but we can recover one by making use of a ω-greedy selection mechanism. This
approach involves either selecting uniformly at random between a feasible cycle or chain, or choosing the
one with the maximum value (i.e. maximum Q-value).

In the process of building an exchange plan, two scenarios are possible: the current exchange plan is complete
(i.e., maximal) or not yet. In the case where it is not yet maximal, we augment it with additional cycles
and chains. In the case where it is maximal, the only available option is to select the exchange plan and
proceed to the next matching round. Because of these two possible scenarios, we will define two types of
states, internal and external states.
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Definition 4.1 (State). General states, denoted with the variable s, will consist of a tuple s = (G, H), where
G is a KEP graph and H is an exchange plan, i.e. a KEP subgraph of G consisting of disjoint cycles and
chains. The set of parent and children of state s will be denoted using par(s) and child(s), respectively. An
internal state s = (G, H) is a state such that for all s

→ ↔ child(s), there exists H
→ such that s

→ = (G, H
→) and

H is a subgraph of H
→. An external state s = (G, H) is a state such that for all s

→ = (G→
, H

→) ↔ child(s),
we have H

→ = ↓. We denote the set of external states as X .

In the case of an internal state, an (internal) action (see Definition 4.2 below) will correspond to cycles and
chains that can be included to augment the exchange plan in the internal state (i.e., its second component).
Specifically, (internal) actions are arcs between an internal state s and a state s

→, such that s’s exchange plan
is a subgraph of s

→’s exchange plan. When convenient, we will denote such arcs as a = (s, s
→). In the case

of an external state, an (external) action corresponds to the selection of the exchange plan as a matching.
Specifically, (external) actions are arcs between two states s and s

→, such that s
→’s exchange plan is ↓. We

can also think of internal states as part of the matching-building process in a specific matching round, while
external states correspond to the end of a matching round.
Definition 4.2 (Action). A general action is an arc a = (s, s

→) between two states. It is an internal action
if s = (G, H) and s

→ = (G, H
→) implies that H is a subgraph of H

→. It is an external action if s
→ = (G→

, ↓)
for some KEP graph G

→.
Definition 4.3 (Transition function). The transition function T is implicitly defined as (s, a) ↗↘ s

→ with
probability 1 for a = (s, s

→) when s is an internal state. When s = (G, H) is an external state, we have
a random variable MG such that s

→ = (G→
, ↓) ≃ MG, where G

→ is obtained through the graph G after the
arrival and departure of patient-donor pairs and non-directed donors in the pool using a Markovian process
M.

The transition function corresponds to adding cycles and chains for internal states and transitioning to a
new KEP graph after a matching round for external states.
Definition 4.4 (Reward). At each state, the reward for s = (G, H) and a = ((G, H), (G→

, H
→)) is given as

R(s, a) = e
|P (H

→)| for a maximal matching H
→ (see Definition 4.5) and 0 otherwise, where P (H →) is the vertex

set of H
→ and it corresponds to the set of matched patients.

Using this representation of states and actions, it is possible to form a directed acyclic graph (DAG). 2 We
can compare the introduced definitions with Figure 2. The DAG starts with an empty exchange plan and
sequentially adds cycles or chains. The external actions are represented using the blue arrows. Because of
space constraints we only include one external action, at the end of the trajectory, in Figure 2. Once a
maximal exchange plan is encountered, it transitions to a new KEP graph, modelled as a Markovian process
M (see Simulator in section 6 for more details). The red box encloses a matching round (see section 5 for
more details).

To suit the use of machine learning models, the states involved in our experiments are, in reality, computed
from vertex embeddings of exchange plans. That is, given vertex embeddings {xi}|V |

i=1 in a vector space Rd,
we compute the averages 1

|V (G)|
∑|V (G)|

i=1 xi and 1
|V (H)|

∑|V (H)|
i=1 xi to obtain the embeddings of G and H,

respectively3. After the concatenation of these two vectors, we obtain the embedding of the state s = (G, H)
(i.e. the state corresponding to the exchange plan H). This map from an exchange plan (i.e. a graph) to its
corresponding state will be denoted by ε.
Definition 4.5 (Trajectory). A (complete) trajectory is a sequence ϑ = (s0, s1, . . . , sn) of states (here, n ↔ N
is an arbitrary length) that satisfies si ↔ child(si↑1) for i = 1, . . . , n. Whenever sn ↔ X , we will refer to this
(complete) trajectory as a maximal trajectory, or maximal matching.

In simple words, a trajectory corresponds to a sequential selection of exchanges for various KEP graphs (see
Figure 2). The set of complete trajectories is denoted T and the set of trajectories following from the state
s is denoted Ts.

2
To prevent confusion, we reserve the use of the term “graph” solely for KEP graphs.

3
The notation V (G) and V (H) is interpreted as the vertex sets of graphs G and H.
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Parameterization. Based on the terminology introduced above, we describe how to model probability
distributions over states, partial and complete trajectories.
Definition 4.6 (Forward and backward flow). The forward flow, denoted PF , is a function (s, s

→), ϖ ↗↘ R+
such that equation 1 is satisfied, where ϖ ↔ Rd is a parameter vector. Similarly, the backward flow is a
function (s, s

→), ϖ ↗↘ R+ such that equation 2 is satisfied. By slightly abusing notation and dropping the
dependence on ϖ, we can use equation 3 to extend forward and backward flows to complete trajectories ϑ .

∑

s→↓child(s)
PF (s→|s, ϖ) = 1 (1)

∑

s↓par(s→)
PB(s|s→

, ϖ) = 1 (2)

PF (ϑ | s0) := Z

n∏

i=1
PF (si | si↑1) PB(ϑ |sn) := R(sn)

n∏

i=1
PB(si↑1 | si) (3)

Definition 4.7 (Initial flow). The initial flow Z is a function s, ϖ ↗↘ R+, where s is an internal state.

The parameters ϖ that are involved in PF , PB and Z are often omitted for simplicity. For example, in equa-
tion (6), we abuse notation and we drop the dependence of PF , PB and Z on the parameters unless necessary
to disambiguate between two di!erent ϖ’s. In order to unify the notation between RL and GFlowNets, we
make the identification in equation 4. The reward R is a function of the external states x ↔ X and was
described in detail in Definition 4.4 (see caption of Figure 2). We present the definition of the Q function,
as well as the detailed balance equation of the forward and backward probability transitions for GFlowNets
in equation 6 of Definition 4.9. In equation 4.9, we omit the dependency of R on the action since the end of
an episode is an external state and thus, its action is trivial.

pω(s→|s) := pω(a | s) ⇐ PF (s→ | s), a = (s, s
→) =: s ↘ s

→ (4)

Definition 4.8 (Q function). The Q function is a function s, (s, s
→) ↗↘ R+. We make use of the identification

found in equation 5, where we abuse notation a drop the dependence on the parameters.

Q(s ↘ s
→) := Q(s, a = s ↘ s

→) (5)

Definition 4.9 (Trajectory balance). The trajectory balance equation for PF and PB given a complete
trajectory ϑ is as follows:

PF (ϑ | s0)
PB(ϑ |sn) = Z

∏
n

i=1 PF (si | si↑1)
R(sn)

∏
n

i=1 PB(si↑1 | si)
(6)

If 0 over all trajectories, the trajectory balance loss indicates that the networks PF and PB correspond to
a flow (see Bengio et al. (2023)). By sampling a set of trajectories, we optimize an estimator for the true
loss. With the introduction of various definitions and identifications between RL and GFlowNet notation in
mind, we will see in the next section how to learn policies over sequences of matching rounds (i.e. episodes).
Q-learning, policy gradient, PPO, and GFlowNets each lead to their own loss that will be optimized over
batches of episodes using an exploratory policy.

5 Generating episodes

In order to generate data over which the learning-based methods can fine-tune their parameters, we introduce
a Markovian process M that generates KEP pools.
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Definition 5.1. Let L ↔ N be arbitrary. An episode of L matching rounds consists of a sequence (ϑi)L

i=1 of
trajectories ϑi starting in an internal state s0i = (Gi, ↓) and terminating in an external state sni ↔ X . We
make use of the notations s0 and sf for the artificial states corresponding to the start and final states of an
episode. These are special purpose states that are neither internal nor external states, and that model the
beginning and end of an episode. Furthermore, when the trajectories ϑi for i = 1, . . . , L are maximal, we call
the episode a static-matching episode.

Each trajectory forming an episode corresponds to a matching round. The transition from trajectory ϑi to
ϑi+1 (i.e. from sni to s0i+1) indicates the end of a matching round and the start of a new one. In our scenario,
we restrict episodes to static-matching episodes and the number of (maximal) trajectories contained in each
episode to a fixed number L. Each episode has finite length and corresponds to a sequence of maximal
matchings. In Figure 2, we can observe part of a static-matching episode. The matching round is contained
inside the red box and we can see the previous and following internal states (G→

, H
→) and (G→→

, ↓), respectively.
The choice of static-matching episodes is motivated by our goal to obtain near-optimal policies for traditional
KEPs over multiple matching rounds. Therefore, the exchange plan selected at round i needs to a!ect the
matching round at time i + 1, while the decision needs to be restricted to the current matching round. True
dynamic KEP policies, where we obtain near-optimal solutions for a non-myopic setting, are reserved for
future work and various approaches would be conceivable; nevertheless, learning-based approaches seem very
well suited for this setting (see section 9). Using the notions introduced in section 4, the policies learned
over episodes are dependent on parameter ϖ. In the particular case of GFlowNets, the literature refers to
this kind of learned GFlowNets as conditional GFlowNets (Bengio et al., 2023).
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Selected in exchange plan

Selected in exchange plan

New patient-donor pair

New arc

Internal action

External action / arrival of pairs

Selected trajectory in matching round

NDD matched and not matched

Subgraphs
H1 = ({v1, v2, v5}, {(v1, v2), (v2, v5), (v5, v1)})

H2 = ({v3, v8}, {(v8, v3)})
H

⇒ = (↓, ↓)
H3 = ({v6, v9}, {(v6, v9), (v9, v6)})

Figure 2: Example of a matching round. We start from the initial state represented with a KEP graph with
an empty matching. At every step, we add cycles and chains to the exchange plan (red nodes/arcs) until
we reach an external state (i.e. maximal matching). This external state transitions to a new initial KEP
graph for the next matching round by following the markovian process M (blue curved arrow - only one is
depicted due to space constraints). The green path corresponds to the trajectory for this matching round,
with multiple trajectories forming episodes.

9



Published in Transactions on Machine Learning Research (04/2025)

Definition 5.2 (Exploratory policy). An exploratory policy is a policy ϱ with full support over a domain
{(ϑi)L

i=1 : (ϑi)i ≃ M, ϑi ↔ Ts0i
}. An exploratory policy over static-matching episodes is called a static-

matching exploratory policy.

In the domain of the exploratory policy ϱ, ϑi are trajectories forming episodes (ϑi)L

i=1 of length L. We can
then evaluate the loss for our learning-based methods. Specifically, the GFlowNet loss L for an episode
is given by equation (7). Similarly, we can also obtain an estimate of the gradient for policy gradient in
equation (8) and for the PPO loss (clipped with ω = 0.2) in equation (9))4.

The parameter ϖ corresponds to all the parameters of a neural architecture. For equations (7) and (9), we
seek to minimize the loss L. In the case of GFlowNets, we obtain a flow loss since, if the loss is 0 over all
episodes (or trajectories), we have a flow-matching condition called the trajectory balance equation (Malkin
et al., 2022). This implies that Z, PF and PB form a flow. In practice, this loss will not be 0 and we will also
not sum over all trajectories since there would be too many to compute. We will have to resort to sampling
a subset of trajectories using ϱ.

L(ϖ) =
∑

(εk)k↔ϑ

(
log

(
Z(s0)

∏
nk

ik=1 PF (sik | sik↑1)
R(sn)

∏
nk

ik=1 PB(sik↑1 | sik )

))2

(7)

g = E(εk)k↔ϑ

[
nk∑

ik=1
⇔ω log PF (sik | sik↑1)Q(sik↑1 ↘ sik )

]
(8)

L(ϖ) = E(εk)k↔ϑ

[
nk∑

ik=1
min

(
PF (sik | sik↑1, ϖ)

PF (sik | sik↑1, ϖold)Q(sik↑1 ↘ sik ),

clip
(

PF (sik | sik↑1, ϖ)
PF (sik | sik↑1, ϖold) , 1 ⇓ ω, 1 + ω

)
Q(sik↑1 ↘ sik )

)] (9)

6 Experimental setup

We aim to validate our approach with empirical evaluations by addressing five core research questions for-
mulated to demonstrate the capabilities of learning-based methods to iteratively build a variety of exchange
plans for KEPs. To provide comprehensive answers to these research questions, we first outline the experi-
mental setup and we describe the KEP instances simulator.

Methods. We first define the di!erent suites of experiments that are performed. We evaluate generative
flow networks (GFlowNet), Q-learning, policy gradient (PolicyGradient) and proximal policy gradient
(ProximalPolicyGradient). We specify that the Q function minimizes the squared di!erence between both
sides of the Bellman equation as in the temporal di!erence learning (TD learning) loss. It is common in the
GFlowNets literature to compare with methods such as ProximalPolicyGradient and PolicyGradient
and we defer to this rich body of literature for examples. We evaluate learning-based methods on datasets
of episodes sampled using our simulator: we simulate graphs using a Markovian process described below.
The resulting static-matching episodes will allow us to model the evolution of the KEP pool over time as
exchange plans are selected at various rounds, by more closely fitting the true distribution of possible graphs
encountered over the full horizon (L matching rounds).

In order to determine if the learning-based methods allow us to sample solutions that are close to optimal, we
first need to compare the quality of our returned solutions against other methods that are not learning-based.
We devise two heuristics to construct exchange plans. We will refer to the process of selecting sequentially
disjoint exchanges uniformly at random to form a solution as RandUniform. The selection of disjoint

4
We abuse notation and denote each method’s loss and parameters as L and ω, respectively.

10



Published in Transactions on Machine Learning Research (04/2025)

exchanges using a greedy process (i.e. largest first) will be referred to as RandGreedy (ties are broken
uniformly at random). We also use an exact MIP solver (Gurobi 10.0.2) to compute an optimal solution in
a single step to which we refer as OptMIP. Our mixed-integer implementation follows the hybrid position-
indexed edge formulation found in Dickerson et al. (2016). We note that OptMIP will always return one
solution in our experiments, in contrast to other sampling-based methods. Thus, the averages reported in
Tables are rather single values for OptMIP. The baselines will serve to highlight the quality of the returned
solutions and situate the e!ectiveness of the proposed learning approach.

Simulator. We simulate KEP graphs using a Markovian process. The simulator that is used in our
experiments is base on the work of Saidman et al. (2006). Over multiple rounds of arrival, the number
of incompatible pairs entering the pool is drawn from a Poisson distribution. For each of these pairs, the
blood type of the patient and donor are drawn according to pre-defined probabilities. Compatibility arcs
are then added between the newly introduced pairs and those already in the pool, as well as between the
newly introduced pairs themselves, following the ABO compatibility model (Dean, 2005). For each of the
new pairs, we randomly determine if the patient is hard-to-match given by their calculated panel reactive
antibody percentage (cPRA; high means hard-to-match) (Tinckam et al., 2015). Then, outgoing arcs from
each new pair are removed by drawing from a Bernoulli distribution with a parameter specified by the cPRA
value. If the arrival rate at each round is ς and we have N rounds, the expected number of vertices in the
KEP pool at the end is ςN . In our experiments, we did not simulate the arrival of non-directed donors
to make the exposition simpler. Each graph (unless specified otherwise) in the distribution output by the
simulator is obtained through N = 20 rounds with an arrival rate of ς = 5 (i.e., the expected number of
vertices is 100).

Generating episodes. For each obtained graph, we simulate 1000 episodes by picking actions at random
and follow the Markovian process between matching round (N = 1, ς = 5). Thus, we obtain in total a
dataset T consisting 100, 000 vectors (ϑ1, . . . , ϑL) of trajectories ϑi forming episodes. We use conditional
information (i.e. the initial graph at each matching round) as part of the input to our models by computing
graph embeddings using the starting graph at each matching round.

Model architecture. The architecture that is used consists of three main pipelines: learning embeddings,
learning the initial flow Z (for GFlowNet) and learning the flow probabilities PF . The layers that are used
for each pipeline are given in Table 6 in Appendix A.

7 Computational results: evaluating the solution e!ciency and quality of

learning-based methods

Using our simulator, we can evaluate the performance of our learning approaches on static-matching episodes.
This capability will allow us to model the evolution of the KEP pool over time as we follow the learned policy.
Additional details regarding the architecture and other research questions can be found in Appendices A
and C.

7.1 Quality of generated solutions

RQ1: To what extent does the utilitarian value of solutions sampled from the learning methods
align with those of the optimal solutions? To answer this question, we sample 1000 solutions for each
instance using the tuned networks, as well as using the baselines. For example, when evaluating GFlowNet
on a single instance, we sample 1000 solutions given the single initial KEP graph, while for multiple instances,
we sample 1000 solutions for each KEP graph. Given a sampling mechanism, we compare the samples that
we generated and we select the best one (i.e. maximum utilitarian reward). The resulting samples should
converge with probability 1 to their respective optimal value since each sampling mechanism has full support,
provided the policy has full support. This is specifically the case for ω-greedy policies.

We report the results from our experiment in Table 1, where the approximation ratio is equal to the utilitarian
value of a method’s returned solution divided by the optimal value. While the learning-based methods do
not recover solutions that are as good as OptMIP, we do see a significant improvement over the heuristics.
We note that among the learning methods, GFlowNet performs best. Further training of the networks,
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Instance size (ςN = 100)
Method Single instance Multiple instances

Best Median Worst Best Median Worst
OptMIP 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

RandUniform 0.873 ± 0.040 0.731 ± 0.014 0.492 ± 0.035 0.795 ± 0.042 0.681 ± 0.018 0.455 ± 0.046
RandGreedy 0.877 ± 0.035 0.779 ± 0.030 0.589 ± 0.021 0.821 ± 0.037 0.740 ± 0.072 0.492 ± 0.011

PolicyGradient 0.919 ± 0.058 0.826 ± 0.016 0.775 ± 0.026 0.838 ± 0.067 0.748 ± 0.054 0.684 ± 0.292
ProximalPolicy 0.923 ± 0.065 0.852 ± 0.056 0.787 ± 0.033 0.876 ± 0.066 0.759 ± 0.022 0.697 ± 0.065

Q-learning 0.904 ± 0.059 0.815 ± 0.044 0.768 ± 0.034 0.825 ± 0.064 0.725 ± 0.061 0.672 ± 0.014
GFlowNet 0.928 ± 0.062 0.854 ± 0.064 0.821 ± 0.019 0.897 ± 0.051 0.785 ± 0.039 0.702 ± 0.0457

Table 1: Average approximation ratio of learning-based methods against baselines. For each instance, we
report the best, median and worst values. We average these values over all instances.

along with adjustments to the architecture and hyper-parameters, could potentially bring us even closer to
the optimal value, o!ering promising opportunities for enhancing our method. Specifically, we envisage that
training on KEP instances with ςN > 50 would help the performance when testing on larger KEP instances.

7.2 Scaling to larger KEPs

RQ2: Is the generalization capability of RL and flow learning applicable to KEP instances of
diverse dimensions? In this experiment, we test the capability of RL and GFlowNets to generalize to
larger graphs. Concretely, we train the neural networks on a distribution of smaller graphs and then, we
evaluate the quality of the returned solutions on graphs of larger sizes.

Instance size (ςN)
Method 50 100 200

OptMIP 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
RandUniform 0.829 ± 0.045 0.795 ± 0.045 0.631 ± 0.064
RandGreedy 0.841 ± 0.044 0.821 ± 0.034 0.706 ± 0.066

PolicyGradient 0.914 ± 0.055 0.854 ± 0.066 0.727 ± 0.072
ProximalPolicy 0.933 ± 0.056 0.862 ± 0.062 0.742 ± 0.066

Q-learning 0.885 ± 0.065 0.829 ± 0.056 0.716 ± 0.072
GFlowNet 0.936 ± 0.058 0.872 ± 0.057 0.782 ± 0.077

Table 2: Average approximation ratio when training on instances of size (i.e. ςN) 50 and testing against
instances of size 50, 100, and 200.

The goal of this experiment is to show the ability of a model to extend beyond the size of the graphs on
which it was trained. Since large graphs are currently hard to train because of the large number of possible
actions involved at each step, a possibility is to train on smaller graph instances and deploy the network
on larger KEP graphs to obtain samples. We measure the quality of such samples on a network trained on
instances with ςN = 50 (arrival of ς = 5 pairs each round in expectation; N = 10 rounds). In Table 2, we
observe that when testing instances where the size of the initial KEP graphs is doubled, the learning-based
methods still perform better than the heuristics. Inference was fast even on larger graphs; we were able to
sample 1000 exchange plans per graph within a time of 15 minutes. The training time used was the same
as in our prior experiments. While we do not report these values in Table 2, the approximation ratio of the
best solution returned for larger graph sizes are surprisingly very similar to the ratios reported in Table 1
(Multiple instances).

RQ3: How e!cient is the generation of exchange plans? In this experiment, we evaluate the ability
of the learning approaches to sample multiple exchange plans e"ciently. We compute the time to sample a
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single solution averaged over 1000 solutions for each method, except for OptMIP, where we measure the
time to return a single solution. The results can be found in Table 3.

Instance size (ςN)
Method 200

OptMIP 16.812 ± 0.374
RandUniform 1.681 ± 0.056
RandGreedy 0.889 ± 0.034

PolicyGradient 1.702 ± 0.075
ProximalPolicy 1.527 ± 0.090

Q-learning 1.662 ± 0.076
GFlowNet 1.627 ± 0.016

Table 3: Aveage time (in seconds) to sample 1000 exchange plans. OptMIP time is for one solution, while
learning-based and heuristic methods take the average over 1000 sampled solutions.

We observe that the slowest method to compute a single solution is OptMIP. The other heuristics or
learning-based methods o!er a more e"cient method to obtain a large number of solutions. It has to be
said that the learning-based approaches require the training of neural networks. The time spent to retrieve
a solution is traded for the time spent learning the model. As the number and size of KEPs solved each
year is high and expected to grow, the learning approach becomes viable, o!ering capabilities such as added
flexibility in the choice of solution since we can generate many. It is also worth to mention that for larger
KEP instances, OptMIP can often fail to return the optimal solution.

8 Computational results: evaluating the role of distributions in fairness and

long-term policy behaviour

In this section, we will see that learned policies result in an e"cient matching-generation mechanism that
can be leveraged to generate distributions over exchange plans at each round. This ability combined with
ideas from the fairness literature in KEPs will allow us to demonstrate the potential to mitigate the dis-
proportionate probabilities of receiving a transplant over the set of patients in the pool. It will also allow
us to better understand long-term impacts of KEP policies by directly modelling the evolution of the pool
through the arrival and departure of patient-donor pairs.

8.1 Fairness in KEPs

RQ4: Does the e!cient generation of exchange plans allow us to mitigate fairness issues in
KEPs? In this experiment, we explore the extent to which learning approaches may improve fairness
guarantees to patients by taking advantage of the fast exchange plan-sampling mechanism. Decision-makers
can select solutions from a large set of exchange plans, from which they can devise lottery policies that
satisfy various fairness criteria. The access to multiple high-reward policies ensure that they can balance
utilitarian and fairness aspects as desired (see section 9 for a more in-depth discussion on this).

We choose to focus on the concept of individual fairness for KEPs (Farnadi et al., 2021). We begin by
computing the set P

→ of patients that can receive a transplant in the KEP. Using the subset P
→, we make

use of a fairness measure referred to as the L1 distance for individual fairness (Farnadi et al., 2021).
Definition 8.1 (Feasible matchings). For a graph G = (V, A), we define the set of feasible matchings XG as

XG = {H | (G, H) ↔ X } (10)

Definition 8.2 (Lp distance). Let G = (V, A) be a graph and P
→ ↖ V the subset of vertices that can be in

at least one solution from XG. The Lp-fairness of a probability distribution φ over XG is given by
∑

v↓P →

(φv ⇓ φ̄)p
, (11)
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where φv :=
∑

H↓XG|v↓H
φ(H), and φ̄ = 1

|P →|
∑

v↓P → φv. The variable φv is the probability that vertex v is
in a selected exchange plan and φ̄ is the mean probability of being selected as part of an exchange plan for
patients in P

→. A probability distribution φ is individually fair if it minimizes the Objective 115.

This L1 distance (here, p = 1) is a measure of the dispersion of patients’ chances of being selected: a
lower value indicates a more equally distributed chance of receiving a transplant, which is considered better.
For each method, we sample 1000 maximal exchange plans and we compute the probability mass of the
sampled exchange plans for two distributions: the uniform distribution and the distribution minimizing the
L1 distance. Because of the similarity in performance demonstrated amongst the learning-based methods in
the previous experiments, we only include results for GFlowNet as they o!ered the best performance. We
categorize our results as GFlowNet w/ uniform and GFlowNet w/ IF. We compare against OptMIP,
whose L1 score is computed from the distribution with a single solution. We also include the method of
St-Arnaud et al. (2023), referred to as Enum w/IF, which consists of enumerating optimal solutions to
KEPs using a column generation procedure in order to minimize the L1 value. For the column generation
procedure, we set a time limit of 1 hour. We also added the baseline heuristic RandGreedy to evaluate the
capacity of learning-based methods to enhance fairness over a simple solution sampling process. In order
to understand how individual fairness would scale, we also used di!erent values of N (with the same ς) to
generate 1000 instances for each additional ςN combination. We report our results in Table 4, where we
group results by the value of ςN (i.e. the expected size of the instances in the generation process).

Instance size (ςN)
Method 50 100 200

OptMIP 15.381 ± 1.814 43.265 ± 8.318 81.211 ± 14.484
Enum w/ IF 10.532 ± 1.489 25.423 ± 3.991 61.306 ± 8.153

GFlowNet w/ uniform 11.794 ± 1.130 34.467 ± 4.651 63.597 ± 9.426
GFlowNet w/ IF 10.701 ± 1.280 26.981 ± 3.823 62.049 ± 8.005

RandGreedy 14.440 ± 1.791 39.814 ± 5.295 75.869 ± 12.655

Table 4: Average individual fairness measures per instance size.

We observe that GFlowNets (and learning-based methods) improve measures of fairness when compared with
OptMIP as they allow for a more varied subset of patients to be included in its distribution of solutions.
Furthermore, the learning-based methods outperform the heuristic RandGreedy, indicating that these
methods are helpful in improving individual fairness measures. The optimal values achieved by Enum w/
IF are very close to the ones o!ered by GFlowNet minimizing the L1 with respect to the sampled exchange
plans (referred to as GFlowNet w/ IF in Table 4). In fact, making use of learning-based methods reveals to
be a promising approach as they result in e"cient samplers once trained that improve individual fairness for
larger instances. We can even manage to generate a large number of solutions for instances of size ςN = 500
and 1000, while it is not feasible for OptMIP or Enum w/ IF. In fact, for such large KEP graphs, we
could not even manage to generate a single solution in the time limit. We note that individual fairness has
been shown to su!er from a technical issue when optimized in conjunction with a utilitarian (St-Arnaud
et al., 2023) because empty exchange plans are optimal in terms of the fairness metric. This is, however,
not the case in our experiments since we sample solutions that are maximal, i.e., they cannot be extended
further. This experiment serves to highlight how the ability to generate a large set of exchange plans can be
used to mitigate fairness issues through lottery policies. In practice, decision-makers might wish to balance
fairness and utilitarian approaches. The capacity to explore the space of lottery policies through the e"cient
generation of exchange plans provides fertile ground for the exploration of these ideas.

By generating multiple solutions through reinforcement and flow learning methods, we can sample among
them and use the resulting patient probabilities to empower decision-makers with vital information related
to the structure of the KEP graph that would otherwise be missing. For example, in Figure 3, we can
observe how these probabilities are distributed. Note that with GFlowNet w/ IF, the probabilities are
less unevenly distributed. It is then possible to identify patients that are “mathematically” hard-to-match

5
For more context, see St-Arnaud et al. (2023).
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Figure 3: Distribution of patient transplant probabilities by ranges of probabilities. Values are averaged over
all instances with ςN = 100.

according to the KEP graph, as a complement to clinical definitions involving their cPRA measure (Dickerson
et al., 2014; Saidman et al., 2006).

Another conceivable method to jointly optimize the number of transplants and some fairness objective would
be to make use of the conditioning nature of approach, where we condition on the weights over both objectives
(see Jain et al. (2023) for an application to GFlowNets). These weights can later be changed to evaluate the
e!ect on the space of solutions returned by the model, o!ering some added flexibility to decision-makers. In
this work, we focus on the use of a single objective because of the added level of complexity these conditional
models entail. In the case of individual fairness and patient probabilities, multi-objective RL approaches
and multi-objective GFlowNets cannot provide any help as they are functions of distributions of exchange
plans.

8.2 Long-term policy behaviour

RQ5: Can e!cient solution generation be used to evaluate the long-term impact of a selection
policy? In this experiment, we deploy a trained GFlowNet (on instances of size ςN = 50) and we perform
multiple matching rounds using it. Concretely, in each round, an exchange plan is selected, the selected
vertices are removed from the graph and the arrival of new pairs with their corresponding compatibility arcs
is simulated. We use the same arrival rate ς and number of arrival rounds N for the incoming data. In total,
we generate 1000 static-matching episodes corresponding to multiple matchings and changes in the pool.
In Table 5, we compare the use of GFlowNet in each round with the use of OptMIP. The computation
times reported are with respect to the solution sampling time. Times to build the MIP (for OptMIP), to
enumerate available actions and to obtain the tensors (for GFlowNet) are not reported as they are similar
for both methods.

Foremost, we are interested in predicting the evolution of the KEP pool over multiple matching rounds, as
using OptMIP is slow and, for large real-world sizes, impractical. For this purpose, we deploy a GFlowNet
on a horizon of length 10 (i.e. 10 matching rounds). At each matching round, we select the maximum-
sized exchange plan from the set sampled by the GFlowNet (1000 exchange plans for each matching round).
Since the GFlowNet approximates the true optimal distribution with respect to the utilitarian objective, the
probability that the selected exchange plan is optimal goes to 1 as the number of samples increases at each
round.

We compare the cumulative number of transplants divided by the number of matching rounds against
OptMIP. The averages were computed over 1000 trajectories, much as in the previous experiment. We
refer the reader to Figure 4 for results. The e"cient sampling mechanism o!ered by GFlowNets allow us to
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Instance size ςN 50
Method/Matching rounds 2 5 10

OptMIP 43.862 ± 5.057 118.639 ± 13.517 189.771 ± 29.428
processing time (s) 15.219 ± 0.393 38.910 ± 1.990 81.629 ± 6.240

GFlowNet 40.580 ± 7.291 101.431 ± 12.674 144.615 ± 29.630
processing time (s) 1.328 ± 0.012 3.263 ± 0.031 5.103 ± 0.062
Instance size ςN 100

Method/Matching rounds 2 5 10
OptMIP 71.006 ± 9.874 168.305 ± 19.171 292.203 ± 36.743

processing time (s) 35.604 ± 1.17 93.791 ± 7.29 199.603 ± 17.709
GFlowNet 66.672 ± 11.116 149.503 ± 22.395 229.646 ± 39.645

processing time (s) 3.336 ± 0.018 8.965 ± 0.046 18.385 ± 0.091
Instance size ςN 200

Method/Matching rounds 2 5 10
OptMIP — — —

processing time (s) — — —
GFlowNet 136.013 ± 28.223 296.246 ± 28.018 633.861 ± 75.446

processing time (s) 3.910 ± 0.045 10.704 ± 0.147 23.731 ± 0.284

Table 5: Average number of transplants for multiple matching rounds when training on instances of various
sizes 50 and testing against instances of the same size. The average processing times reported are with respect
to sampling 1000 solutions. No instances were solved for OptMIP within the time limit for ςN = 200.

Figure 4: Average cumulative number of transplants after each round, divided by the number of rounds over
instances of size ςN = 50.

approximately compute the expected number of transplants performed over multiple rounds of KEPs under
a MIP framework. This allows us to model the evolution of the KEP pool under uncertainty over large
instances, and Figure 4 demonstrates that we can approximate the expected number of transplants achieved
under GFlowNet to high precision. The repeated optimization for MIP proves too costly to evaluate over
instances of size 200, as shown in Table 5 (dashed lines), which serves to underscore the e!ectiveness of our
sampler in predicting the evolution of the KEP pool.
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9 Discussion, future directions, and broader impacts

In this work, we have demonstrated the ability of learning-based methods, to complement exact MIP ap-
proaches in KEPs. Our learned models, as e"cient samplers of near-optimal solutions, give us two highly
valuable outcomes. Firstly, we are able to e"ciently provide multiple high-quality solutions that can be
used, for example, to promote fairness or to o!er alternative solutions in the event of unexpected infeasi-
bility (e.g. donor drop-o!). Secondly, we can approximate the long-term impact of choosing a particular
objective (matching policy) on the KEP pool. In the future, we can learn non-static-matching (i.e. dynamic)
policies over a longer horizon of simulated arrivals to approximate the optimal policy over multiple matching
rounds, given an objective (e.g. utilitarian objective). Validating our approach with hierarchies of objectives
and other real-world complexities in KEPs would be of interest. Of particular interest, a thorough explo-
ration of the space of lottery policies can o!er decision-makers the ability to explore policies that provide
certain fairness guarantees while remaining e"cient in terms of the expected number of transplants. The
learning-based mechanism we present in this article can be used to e"ciently generate multiple exchange
plans that can be included in the support of these lottery policies, scaling to large kidney exchange pools.
We envisage the extension of our conditional learning-based method to a family of objectives as in Jain
et al. (2023), in order to explore a large set fair policies as well as policies that balance utility and fairness.
Our explorations need not be confined solely to KEPs. The applicability of learning-based methods to other
matching or combinatorial problems remains a promising avenue for future study. Particularly in the context
of policy-making, they have the potential to provide guidance on the combinatorial space of solutions and
to help anticipate long-term impacts.

With respect to the broader impacts that our work can have, we highlight the expanded applicability of
learning-based methods to address combinatorial problems, with a specific emphasis on KEPs. Our findings
showcase promising results in learning (near-)optimal distributions that can guide policymakers and clini-
cians, and o!er patients supplementary information regarding solution selection and kidney allocation based
on their graph positions. This work represents an initial step towards acquiring deeper insights into a novel
approach for solution selection based on distributions of solutions and the approximation of long-term e!ects
in problems that wield significant impact on individuals’ lives. While our initial results are encouraging,
the ethical, legal, and social consequences of our approach need in-depth consideration to ensure responsible
implementation. In addition, our approach is currently tailored to KEPs. Extending it to broader combi-
natorial problems requires careful validation and adaptation. The real-world scenarios given their dynamic
and multifaceted nature, specifically in health care, involve complexities that our approach may not fully
capture. For instance, how patient preferences or health conditions evolve over time or how health-care poli-
cies change. Finally, our evaluations rely on simulated data and as the approach evolves, obtaining diverse
and comprehensive real-world datasets becomes crucial. However, we acknowledge the di"culty of accessing
such datasets due to their sensitive nature.

10 Acknowledgements

This work was funded by the NSERC grant 2024-04051 and 2021-04378, Canada CIFAR AI Chair, and
Google scholar award. This research was enabled in part by support provided by Calcul Québec (www.
calculquebec.ca) and Compute Canada (www.computecanada.ca).

References

David J. Abraham, Avrim Blum, and Tuomas Sandholm. Clearing algorithms for barter exchange mar-
kets: Enabling nationwide kidney exchanges. In Proceedings of the 8th ACM Conference on Electronic
Commerce, EC ’07, pp. 295–304, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-653-0. doi:
10.1145/1250910.1250954. URL http://doi.acm.org/10.1145/1250910.1250954.

Christof Angermueller, David Dohan, David Belanger, Ramya Deshpande, Kevin Murphy, and Lucy Colwell.
Model-based reinforcement learning for biological sequence design. In International conference on learning
representations, 2019.

17

www.calculquebec.ca
www.calculquebec.ca
www.computecanada.ca
http://doi.acm.org/10.1145/1250910.1250954


Published in Transactions on Machine Learning Research (04/2025)

Pierre-Cyril Aubin-Frankowski, Yohann De Castro, Axel Parmentier, and Alessandro Rudi. Generalization
bounds of surrogate policies for combinatorial optimization problems. arXiv preprint arXiv:2407.17200,
2024.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial opti-
mization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow network
based generative models for non-iterative diverse candidate generation. Advances in Neural Information
Processing Systems, 34:27381–27394, 2021.

Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J Hu, Mo Tiwari, and Emmanuel Bengio. GFlowNet
Foundations. The Journal of Machine Learning Research, 24(1):10006–10060, 2023.

Hamoud S. Bin-Obaid and Theodore B. Trafalis. Fairness in resource allocation: Foundation and appli-
cations. In Ilya Bychkov, Valery A. Kalyagin, Panos M. Pardalos, and Oleg Prokopyev (eds.), Network
Algorithms, Data Mining, and Applications, pp. 3–18, Cham, 2020. Springer International Publishing.
ISBN 978-3-030-37157-9.

Péter Biró, Joris Van de Klundert, David Manlove, William Pettersson, Tommy Andersson, Lisa Burnapp,
Pavel Chromy, Pablo Delgado, Piotr Dworczak, Bernadette Haase, et al. Modelling and optimisation in
European kidney exchange programmes. European Journal of Operational Research, 291(2):447–456, 2021.

Canadian Institute for Health Information. High risk and high cost: Focus on opportunities to
reduce hospitalizations of dialysis patients in Canada. https://secure.cihi.ca/free_products/
report-corr-high-risk-high-cost-en-web.pdf, 2016. "Accessed: 2024-11-28".

Miguel Constantino, Xenia Klimentova, Ana Viana, and Abdur Rais. New insights on integer-programming
models for the kidney exchange problem. European Journal of Operational Research, 231(1):57–68, 2013.
ISSN 0377-2217.

Thomas H. Cormen, Charles Eric Leiserson, Ronald L. Rivest, and Cli!ord Stein. Introduction to algorithms.
The MIT Press, Cambridge, Massachusett, fourth edition edition, 2022. ISBN 9780262046305.

Laura Dean. The ABO blood group. In Blood Groups and Red Cell Antigens. National Center for Biotech-
nology Information (US), 2005.

Tom Demeulemeester, Dries Goossens, Ben Hermans, and Roel Leus. Fair integer programming under
dichotomous and cardinal preferences. European Journal of Operational Research, 320(3):465–478, 2025.
ISSN 0377-2217. doi: https://doi.org/10.1016/j.ejor.2024.08.023. URL https://www.sciencedirect.
com/science/article/pii/S037722172400660X.

Fabrizio Detassis, Michele Lombardi, and Michela Milano. Teaching the old dog new tricks: Supervised
learning with constraints. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pp. 3742–3749, 2021.

John P. Dickerson, Ariel D. Procaccia, and Tuomas Sandholm. Price of fairness in kidney exchange. In
AAMAS, pp. 1013–1020, 2014.

John P. Dickerson, David F. Manlove, Benjamin Plaut, Tuomas Sandholm, and James Trimble. Position-
indexed formulations for kidney exchange. In Proceedings of the 2016 ACM Conference on Economics and
Computation, EC ’16, pp. 25–42, New York, NY, USA, 2016. Association for Computing Machinery. ISBN
9781450339360. doi: 10.1145/2940716.2940759. URL https://doi.org/10.1145/2940716.2940759.

John Paul Dickerson and Tuomas Sandholm. Balancing e"ciency and fairness in dynamic kidney exchange.
In AAAI Workshop: Modern Artificial Intelligence for Health Analytics, volume WS-14-08 of AAAI Work-
shops. AAAI, 2014.

18

https://secure.cihi.ca/free_products/report-corr-high-risk-high-cost-en-web.pdf
https://secure.cihi.ca/free_products/report-corr-high-risk-high-cost-en-web.pdf
https://www.sciencedirect.com/science/article/pii/S037722172400660X
https://www.sciencedirect.com/science/article/pii/S037722172400660X
https://doi.org/10.1145/2940716.2940759


Published in Transactions on Machine Learning Research (04/2025)

Golnoosh Farnadi, William St-Arnaud, Behrouz Babaki, and Margarida Carvalho. Individual fairness in
kidney exchange programs. Proceedings of the AAAI Conference on Artificial Intelligence, 35(13):11496–
11505, May 2021. URL https://ojs.aaai.org/index.php/AAAI/article/view/17369.

Aaron Ferber, Bryan Wilder, Bistra Dilkina, and Milind Tambe. Mipaal: Mixed integer program as a layer.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 1504–1511, 2020.

Bailey Flanigan, Paul Gölz, Anupam Gupta, Brett Hennig, and Ariel D Procaccia. Fair algorithms for
selecting citizens’ assemblies. Nature, 596(7873):548–552, 2021.

Irena Gao. Fair matching in dynamic kidney exchange. arXiv preprint arXiv:1912.10563, 2019.

JJ Hopfeild and DW Tank. Neural computation of decision in optimization problems. Biological cybernetic,
pp. 52–60, 1985.

Moksh Jain, Sharath Chandra Raparthy, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Yoshua Bengio, San-
tiago Miret, and Emmanuel Bengio. Multi-objective GFlowNets. In Proceedings of the 40th International
Conference on Machine Learning, ICML’23. JMLR.org, 2023.

L. V. Kantorovich. Mathematical methods of organizing and planning production. Management Science, 6
(4):366–422, 1960. doi: 10.1287/mnsc.6.4.366. URL https://doi.org/10.1287/mnsc.6.4.366.

James Kotary, Ferdinando Fioretto, Pascal van Hentenryck, and Bryan Wilder. End-to-end constrained
optimization learning: A survey. In 30th International Joint Conference on Artificial Intelligence, IJCAI
2021, pp. 4475–4482. International Joint Conferences on Artificial Intelligence, 2021.

Shafi Malik and Edward Cole. Foundations and principles of the canadian living donor paired exchange
program. Canadian journal of kidney health and disease, 1(6), 2014.

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory balance: Im-
proved credit assignment in gflownets. Advances in Neural Information Processing Systems, 35:5955–5967,
2022.

Aurora del Carmen Munguía-López and José María Ponce-Ortega. Fair allocation of potential COVID-19
vaccines using an optimization-based strategy. Process Integration and Optimization for Sustainability, 5:
3–12, 2021.

K Park, JH Lee, KH Huh, SI Kim, and YS Kim. Exchange living-donor kidney transplantation: diminution
of donor organ shortage. Transplantation proceedings, 36(10):2949–295, 2004.

FT Rapaport. The case for a living emotionally related international kidney donor exchange registry. Trans-
plantation proceedings, 18(3) Suppl. 2):5–9, June 1986. ISSN 0041-1345.

Alvin E Roth, Tayfun Sönmez, and M Utku Ünver. Kidney exchange. The Quarterly journal of economics,
119(2):457–488, 2004.

Alvin E. Roth, Tayfun Sönmez, and M. Utku Ünver. E"cient kidney exchange: Coincidence of wants in
markets with compatibility-based preferences. American Economic Review, 97(3):828–851, June 2007. doi:
10.1257/aer.97.3.828. URL https://www.aeaweb.org/articles?id=10.1257/aer.97.3.828.

S. Saidman, A. Roth, T. Sonmez, U. Unver, and F. Delmonico. Increasing the opportunity of live kidney
donation by matching for two- and three-way exchanges. Transplantation, 81(5):773–782, 2006.

William St-Arnaud, Margarida Carvalho, and Golnoosh Farnadi. Adaptation, comparison and practical
implementation of fairness schemes in kidney exchange programs, 2023.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods for
reinforcement learning with function approximation. Advances in neural information processing systems,
12, 1999.

19

https://ojs.aaai.org/index.php/AAAI/article/view/17369
https://doi.org/10.1287/mnsc.6.4.366
https://www.aeaweb.org/articles?id=10.1257/aer.97.3.828


Published in Transactions on Machine Learning Research (04/2025)

K. J. Tinckam, R. Liwski, D. Pochinco, M. Mousseau, A. Grattan, P. Nickerson, and P. Campbell.
cpra increases with dqa, dpa, and dpb unacceptable antigens in the canadian cpra calculator. Ameri-
can Journal of Transplantation, 15(12):3194–3201, 2015. doi: https://doi.org/10.1111/ajt.13355. URL
https://onlinelibrary.wiley.com/doi/abs/10.1111/ajt.13355.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio.
Graph attention networks. In 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018.
URL https://openreview.net/forum?id=rJXMpikCZ.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in neural information
processing systems, 28, 2015.

Bryan Wilder, Bistra Dilkina, and Milind Tambe. Melding the data-decisions pipeline: Decision-focused
learning for combinatorial optimization. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pp. 1658–1665, 2019.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine learning, 8:229–256, 1992.

20

https://onlinelibrary.wiley.com/doi/abs/10.1111/ajt.13355
https://openreview.net/forum?id=rJXMpikCZ

