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TradeLink

Piotr Sankowski
University of Warsaw
IDEAS NCBR

Marek Cygan
University of Warsaw
Nomagic

Sebastian Jaszczur*
University of Warsaw
IDEAS NCBR

ABSTRACT

Mixture of Experts (MoE) models have emerged as a primary solution for reducing
the computational cost of Large Language Models. In this work, we analyze
their scaling properties, highlighting certain arbitrary assumptions present in the
existing literature. In particular, we introduce a new hyperparameter, granularity,
which allows for the optimal adjustment of the size of experts. Subsequently,
we present scaling laws for fine-grained MoE, taking into account the number of
training tokens, model size, and granularity. Using these scaling laws, we derive
the optimal training configuration for a given computational budget. Furthermore,
in contrast with previous works, we demonstrate that the gap in efficiency between
dense and MoE models grows as we scale up the model size and training budget.

1 INTRODUCTION

In recent years, LLMs achieved exceptional performance in tasks across numerous domains (Chowd-
hery et al., 2022; Yin et al., 2023; Agostinelli et al., 2023). However, training those massive models
incurs high computational costs, measured in millions of GPU-hours (Touvron et al., 2023; Workshop
et al., 2023), and leading to non-negligible carbon footprints (Faiz et al., 2024). To combat these
obstacles, the research community has been striving to increase the efficiency of LLMs. One promis-
ing approach that has lately been gaining visibility is the use of Mixture of Experts (MoE) methods.
Models such as Switch (Fedus et al., 2022) and Mixtral (Jiang et al., 2024) have demonstrated that it
is possible to achieve comparable effectiveness with significantly lower computational costs.

In the context of the current trend of increasing budgets for training models, a question arises: will
MoE models continue to be attractive in the future? This is an important issue, as results from other
studies (Clark et al., 2022) suggest that the traditional dense models may outperform MoE as the
size of the models increases. We argue that previous claims lose their validity when we relax certain
implicit assumptions regarding the training process, present in previous research (Clark et al., 2022).
In particular, we refer to the fixed training duration and the constant size of experts in MoE models.

*Equal contribution. Corespondence to Jan Ludziejewski <ludziej@mimuw.edu.pl> , Jakub Krajewski
<gim.jakubk@gmail.com> and Sebastian Jaszczur <s.jaszczur@uw.edu.pl>.
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Figure 1: Mixture-of-Experts can be always considered more efficient than dense Transformers,
regardless of the model size. (a) Compute Optimal scaling curves for standard Transformers (the
dashed line) and for fine-grained MoE (colors denote optimal granularity for the given FLOPs training
budget). (b) Relative number of FLOPs needed to train Transformer and Vanilla MoE (MoE with
G = 1) to achieve the performance of MoE with compute optimal G.

Our results suggest that a compute-optimal MoE model trained with a budget of 1020 FLOPs will
achieve the same quality as a dense Transformer at a 20× greater computing budget, with compute
savings rising steadily, exceeding 40× at 1025 FLOPs (see Fig. 1). Our main contributions are:

1. Introducing a new hyperparameter - granularity. Adjusting this parameter allows us to
determine the optimal size of experts in MoE models, translating into increased efficiency.

2. Deriving new scaling laws for MoE models by integrating variable training duration, the
number of parameters, and granularity, pointing us to the optimal parameters of MoE models.

3. Demonstrating that, with optimal settings, MoE models can always outperform vanilla
Transformers at any computing budget - contrary to the results from Clark et al. (2022).

2 BACKGROUND AND RELATED WORK

Mixture of Experts. In the context of language modeling, MoE was first introduced by Shazeer
et al. (2017) and later adapted to Transformers (Shazeer et al., 2018; Lepikhin et al., 2020). Fedus
et al. (2022) improved the training stability and proposed to route each input to a single expert. Zhou
et al. (2022) fixed load balancing issues by designing expert choice routing, which we use in our
experiments. Concurrently to our work, Dai et al. (2024) proposed to modify the MoE layer by
segmenting experts into smaller ones . Independently, Liu et al. (2023) suggested a unified view
of sparse feed-forward layers, considering varying the size of memory blocks. Both approaches
can be interpreted as modifying granularity. However, we offer a comprehensive comparison of the
relationship between model hyperparameters and derive principled selection criteria.

The core idea behind MoE in Transformers is to replace the feed-forward layer with a set of experts.
The size of each expert is typically (Fedus et al., 2022; Zhou et al., 2022; Jiang et al., 2024) set to
mirror the original dimensions of the layer, with the hidden expert dimension dexpert equal to dff.

Scaling laws. Scaling laws are empirically derived equations relating the loss of a model with
variables such as the number of parameters, training samples, or the computational budget. Kaplan
et al. (2020) first studied scaling laws for Transformers and observed power law relationships between
the perplexity and sizes of the model and the dataset. Hoffmann et al. (2022) extended this work by
considering variable LR schedules and formulating a modified functional form of the scaling laws.

Particularly relevant, Clark et al. (2022) studied the scaling of MoE when changing model size and
number of experts on a fixed dataset, concluding that routed models are more efficient only until a
certain model size. In this work, we challenge that claim by considering a variable, optimal dataset
size for both model families (see Section 4.3).
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Figure 2: (a) Fit of the scaling laws for models trained on 33B tokens. (b) Validation of the fit.

3 GRANULARITY

In the standard setting, the inner dimension of each expert network dexpert is the same size as the
feed-forward layer of the base model, dexpert = dff. In this work, we suggest an alternative approach
where the hidden dimension of the expert is not necessarily set to mirror that of the standard feed-
forward layer. Instead, it can be adjusted to a value that is the most effective. This approach allows
the configuration of MoE to be articulated in terms of two key hyperparameters: granularity (G) and
expansion rate (E). In the following parts of this work, we will also use the term active parameters to
refer to the non-embedding parameters used to produce output for a single token, except routing. The
number of active parameters is denoted as Nact.

Let dexpert be the hidden dimension of a single expert. Granularity is defined as G = dff
dexpert

. In
other words, granularity denotes the multiplier factor for the change in the size of an expert from
the original standard model, defined as G = 1. Note that increasing granularity does not affect the
number of active parameters since, as G increases, the number of experts that process the token grows
proportionally to G. That is, for granularity G, a token is routed to G fine-grained experts, keeping
the number of active parameters constant.

We then define the expansion rate, which describes the increase in the number of parameters from
a standard transformer layer to a MoE layer. Given that, NMoE and Nff denote the total number of
parameters in an MoE layer excluding routing, and the standard feed-forward layer, respectively. The
expansion rate E is then defined as E = NMoE

Nff
. The definitions of both granularity and expansion rate

extend and refine our understanding of the number of experts, symbolized as Nexpert, Nexpert = G · E.
For non-granular models, where G = 1, the expansion rate is equal to the number of experts.
Intuitively, increasing granularity for a given expansion rate gives the model more flexibility in
mapping datapoints to experts, potentially improving performance.

4 SCALING LAWS

Granularity determines changes in the architecture of MoE. In this section, we aim to derive a
parametric scaling law for predicting the final loss value L based on granularity G, total number
of non-embedding parameters N , and number of training tokens D. To this end, we run over 100
experiments on the decoder-only Transformer MoE, with up to 3.7B parameters. The model sizes
are reported as E ×Nact, expansion rate and active parameters. We begin the analysis with partial
observations based on empirical results. We then combine them into a joint equation.

Power Law With Respect to Granularity. We first answer the question of whether granular models
follow the scaling laws. In Fig. 2 and in Fig. 3, we can notice that increasing granularity results
in a lower loss. The returns follow approximately an exponential pattern, converging to a positive
constant. The empirical relationship given by Fig. 3, suggests the following power-law dependence
of loss on a varying granularity for given N and D, LN,D(G) =

gN,D

GγN,D + hN,D.
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Figure 3: Illustration of scaling granularity when N,D are fixed for: (a) N = 64× 25M , D = 16B,
const = 3.12 (b) N = 64 × 49M , D = 16B, const = 3.02 (c) N = 64 × 25M , D = 32B,
const = 3.03 (d) N = 64× 49M , D = 32B, const = 2.88

Scaling the Model and Dataset Size. The power-law given by equation 2 consists of three terms
that describe inherent data entropy and limitations in function representation and data. This derivation
is independent of the architecture. In particular, the equation 2 also holds for constant granularity.
Empirically, we observe a power law relationship in N and D analogous to that in dense models (see
also Fig. 1 in Kaplan et al. (2020)), as depicted in Fig. 5, Appendix, for a fixed value of granularity.
Furthermore, the validity of this functional form is verified by fit in Section 4.2.

Since we know that separate scaling laws are valid for given granularities, in the general form, the
parameters in equation 2 can depend on the model’s granularity, LG(N,D) = cG + aG

NαG
+ bG

DβG
.

4.1 THE FORM OF THE JOINT SCALING LAW

Following the above observation that models with constant granularity obey Chinchilla scaling laws
given by equation 2, the key question arises as to how the general notion of granularity G can be
incorporated into the joint scaling law. The objective is to identify a function that fulfills these criteria,
L(N,D,G) = LN,D(G) = LG(N,D). We aim to determine which of these parameters remain
independent of G and present some rationale for the structure of our formula.

Lower Bound. Consider the limit for N and D growing to infinity, limN→∞
D→∞

L(N,D,G) = cG,

with the constant term cG dependent on granularity. This is contradictory to the fact that it captures
the inherent entropy of the dataset. The lower bound of the achievable loss when training bigger
models on more samples should not depend on the architecture. Therefore, parameter cG = c is
constant for all granularities.

Granularity and Number of Tokens D. As seen in Fig. 4, Appendix, the benefit of training a
model on a larger dataset is almost the same for each granularity value. This suggests that there is no
interaction between D and G. Therefore, we can assume that bG

DβG
= b

Dβ .
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Granularity and Model Size N . We consider α to be a constant that describes how the function
scales with N . In this work, we assume polynomial functional forms that rule out the potential
dependency of α on G given the form of LN,D(G). Therefore, the only element dependent on G is
aG:

L(N,D,G) = c+
( g

Gγ
+ a

) 1

Nα
+

b

Dβ
. (1)

Finally, one could consider omitting the constant a in the equation above, and it would still reduce
to LN,D(G). However, this would mean that a model with infinite granularity and a small number
of active parameters can achieve the perfect perplexity of the lower bound. We think that MoE
sparse model should not exceed the performance of its dense counterpart matched by a total number
of parameters and with all of them activated. This means that constant a can act as a marginal
improvement from granularity.

4.2 FITTING THE PARAMETRIC SCALING LAW

Subsequently, we fit parameters in equation 1 to describe the scaling of MoE. We depict the fit of the
equation in Fig. 2 (and Fig. 6, Appendix). We generally observe a good fit, with RMSE = 0.015.
The exact values are given in Table 3, Appendix D. We validate the stability of the fit by excluding
the top 20% of models with the lowest perplexity and finding the coefficients based on the remaining
experiments. We observe that the formula remains almost unchanged in this scenario (see Table 4 in
Appendix E). The validation RMSE is 0.019. Results are depicted in Fig. 2 b).

4.3 MOE IS ALWAYS MORE EFFICIENT

Subsequently, we find optimal N,D,G for a given computational budget F . This can be done by
solving the following optimization problem, minimize L(N,D,G) subject to FLOPs(N,D,G) = F .

Contrary to the results from Clark et al. (2022), in Fig. 1, we can see that Mixture-of-Experts can
always be considered more efficient than dense Transformers, regardless of the model size. According
to observations from Appendix D.1, MoE models scale better with optimal training. However, for
short training schedules, they may under-perform dense models. This means that for constant training
time and increasing model size, there exists a point where both models will become very under-trained,
in which scenario, dense models surpass MoE. This shows why in Clark et al. (2022), where varying
the number of training tokens has not been considered, MoE was predicted to be underperforming for
models bigger than 1T . However, when all training hyper-parameters N,D,G are properly selected
to be compute-optimal for each model, the gap between dense and sparse models only increases as
we scale. See Appendix F for the details of the compute-optimal setup derivation.

5 CONCLUSIONS

This study introduces a novel hyperparameter, granularity (G), and underscores the significance
of adjusting it to optimize the efficiency of MoE models. A central finding of this research is
that a standard granularity of G = 1 is suboptimal across a broad range of FLOPs, leading to the
recommendation of using higher granularity to enhance MoE model performance and efficiency.
Simultaneously, this work emphasizes the importance of varying training duration for compute-
optimal settings. Both granularity and variable training length are incorporated into new scaling laws,
confidently demonstrating that MoE models outperform dense transformers at any computing budget.
This work not only sheds new light on the scaling laws applicable to MoE models but also provides
practical guidance for improving computational efficiency in LLMs.
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Masoud, Marı́a Grandury, Mario Šaško, Max Huang, Maximin Coavoux, Mayank Singh, Mike
Tian-Jian Jiang, Minh Chien Vu, Mohammad A. Jauhar, Mustafa Ghaleb, Nishant Subramani, Nora
Kassner, Nurulaqilla Khamis, Olivier Nguyen, Omar Espejel, Ona de Gibert, Paulo Villegas, Peter
Henderson, Pierre Colombo, Priscilla Amuok, Quentin Lhoest, Rheza Harliman, Rishi Bommasani,
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A ARCHITECTURE AND TRAINING SETUP

All of the models considered in this work are decoder-only Transformers trained on the C4 dataset
(Raffel et al., 2023). We use GPT2 tokenizer (Radford et al., 2018). Each batch consists of 0.5M
tokens packed into 2048 sequences. Our optimizer is AdamW (Loshchilov & Hutter, 2019), with a
weight decay of 0.1. In each training run, we use the maximum learning rate of 2e−4, with linear
warmup for 1% steps and cosine decay to 2e−5. To improve stability, we initialize weights using the
truncated normal distribution with reduced scale, as advised in Fedus et al. (2022). The models are
trained using mixed precision; we always keep the attention mechanism and router in high precision.
We assume the infinite data regime, as the number of training tokens for any of the runs in less than
the number of tokens in the corpus. We follow Hoffmann et al. (2022) and perform our analysis on
the smoothed training loss.

In MoE, we use the Expert Choice routing algorithm, as it guarantees a balanced expert load without
tuning additional hyperparameters. To maintain compatibility with autoregressive language modeling,
we apply the recipe described in Zhou et al. (2022): tokens are grouped by position across different
sequences. The group size is always set to 256. We replace each feed-forward layer with MoE and
activate an average of 8d2model parameters per token in each MoE layer (except routing). In the router,
softmax is performed over the expert dimension, while we choose tokens over the token dimension, as
this leads to the best performance (as opposed to performing softmax over the token dimension). We
put an additional layer normalization before the output of MoE layer. This gives a small improvement
for standard MoE, but is crucial for the performance of models with G > 1.

Table 1 and table 2 list the considered architecture and training variants for dense and MoE models,
respectively.

Table 1: Architecture and training variants (MoE models).

#parameters (nonemb) dmodel nblocks nheads D (in #tokens) G

64x3M 256 4 4 16B, 33B, 66B 1, 2, 4, 8, 16
64x7M 384 4 6 16B, 33B, 66B 1, 2, 4, 8, 16
64x13M 512 4 8 16B, 33B, 66B 1, 2, 4, 8, 16
64x13M 512 4 8 130B 1, 2, 4
64x25M 512 8 8 16B, 33B, 1, 2, 4, 8, 16
64x25M 512 8 8 66B 1, 2, 4, 8
64x49M 640 10 10 16B, 33B 1, 2, 4, 8, 16
64x49M 640 10 10 66B 1, 2, 4
64x85M 768 12 12 33B 1, 2, 4

9



Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

Table 2: Architecture and training variants (dense models).

#parameters (nonemb) dmodel nblocks nheads D (in #tokens)

3M 256 4 4 16B, 24B, 33B, 66B
6M 256 8 4 16B, 24B, 33B, 66B

13M 512 4 8 16B, 24B, 33B, 66B
25M 512 8 8 16B, 24B, 33B, 66B
49M 640 10 10 16B, 24B, 33B, 66B
85M 768 12 12 16B, 33B

B SCALING LAWS BACKGROUND

B.1 TRANSFORMER SCALING

Large Transformer-based models are known to approximately obey the power-law relationship
between final loss L, model size N, and number of training tokens D. This relationship is often
called Chinchilla scaling laws described in Hoffmann et al. (2022) as

L(N,D) = c+
a

Nα
+

b

Dβ
. (2)

The power-law formula is composed of three distinct terms that characterize the intrinsic entropy of
data, constraints of the model, and limitations in the training data. The term c represents the minimum
possible error intrinsic to the data. The remaining two terms are suboptimality terms, which address
the limitations in function representation owing to the size of the model and in data signified by the
number of tokens. In the limit, with infinite data and model size, the loss is reduced to c.

B.2 MIXTURE OF EXPERTS

For MoE Transformer-based models, Clark et al. (2022) formulated the final loss for a constant
dataset size D of 130B tokens, allowing for variations in the expansion rate E, as:

L(N,E) =

(
10d/a

N

)a (
1

E

)b+c logN

. (3)

However, this result has a notable limitation as it can be applied only to the original dataset size. The
scalability and effectiveness are constrained in this scenario because it is crucial to align the number
of training samples with the available computational resources for optimal use. As per Kaplan et al.
(2020) and Hoffmann et al. (2022), maintaining a constant dataset size while scaling up the neural
network size leads to undertraining, resulting in a model that does not perform to its full potential.

C VISUALIZATIONS FOR THE DERIVATION OF THE SCALING LAW

D FITTING THE PARAMETRIC SCALING LAW

This section details results of scaling laws. In addition to MoE, we also perform fitting for dense
Transformer given by equation 2. Similarly to Hoffmann et al. (2022), we use Huber loss (Huber,
1964), with δ = 0.1. The optimization is performed using the BFGS algorithm. We include a weight
decay of 5e−4 to enhance generalization. We start with fitting parameters in equation 1 and then find
architecture-dependent coefficients α, β,A and B in equation 2. The values are presented in Table 3.
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Figure 4: The difference in the loss between training for 16B and 65B tokens for all model sizes
and granularity values. The model size is reported as the expansion rate and the number of active
parameters.
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Figure 5: Illustration of scaling N and D for constant granularity value of: (a) G = 1 (b) G = 2 (c)
G = 8 (d) G = 16.

D.1 MOE SCALING PROPERTIES

Comparing the part of the formula that approximates underfitting (that is, dependent on training
tokens) in MoE (30.8D−0.147) and Transformer (26.7D−0.127), we can infer that MoE models need
longer training to perform competitively but scale better after reaching that point. Nonetheless, this
moment may still precede the compute-optimal for both models. On the other hand, we can see that
the exponent on dense models α = −0.126 scales better with a total number of parameters than the
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Table 3: Values of the fitted coefficients.

Model a α b β g γ c

MoE 18.1 0.115 30.8 0.147 2.1 0.58 0.47
Dense 16.3 0.126 26.7 0.127 - - 0.47

MoE counterpart α = −0.115. This should not be surprising since dense models use all parameters
on each token contrary to MoE, which gains a computational advantage by activating only a subset of
them. Therefore, the fair comparison of the performance has to take into account FLOPs used by
each model type.

E VALIDATION OF THE SCALING LAW

Figure 6 presents the quality of the fit of the scaling law.
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Figure 6: We present the fit of the scaling law compared to experimental results.

In Table 4, we provide coefficients of the scaling law fitted with 20% of datapoints with the lowest
perplexity excluded for the purpose of validation.

Table 4: Values of the fitted coefficients.

Model a α b β g γ c
MoE 17.6 0.114 26.7 0.140 2.07 0.570 0.472

F COMPUTE-OPTIMAL FORMULA

The main component responsible for higher costs is the increase in routing operations due to a larger
pool of granular experts. This increase is proportional to the value of G. For standard, non-granular
MoE models (G = 1), the routing overhead still exists, although it has been considered negligible.
Taking into account the routing operation overhead, the number of used FLOPs F is described by the
following formula, F = (12dmodel

2cf +dmodelEGcr) ·D ·nblocks, given expansion rate E, granularity
G, and constants that denote FLOPs per active parameter ratio, respectively, within routing (cr) and
within the rest of the network (cf ). The derivation of this formula can be found in Appendix J.
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Given all the constraints, we need to solve the following optimization problem: given F ,

minimize
N,D,G

L(N,D,G)

subject to F = (12dmodel
2cf + dmodelEGcr) ·D · nblocks

N = d2model · (8E + 4) · nlayers,

dmodel = 64 · nlayers.

All these constraints are reducible to a one-dimensional optimization problem, which is, however,
hard to solve analytically. Therefore, we approximate the solution using Brent’s method (Brent,
1971). The results of this optimization for varying FLOPs budgets are plotted in Fig. 1 while the
optimal configurations of parameters for selected model sizes are presented in Table 5. To validate
the uncertainty of these predictions, we follow Hoffmann et al. (2022) and calculate the 10th and
90th percentiles estimated via bootstrapping data (see Appendix G for the detailed results).

Table 5: Compute optimal training hyper-parameters for MoE models. Optimal N and D follow
approximately similar relation to these of Hoffmann et al. (2022) for active parameters around the
range of 1B to 10B parameters, requiring comparably longer training for smaller models and shorter
for bigger ones. Note that this also considers optimal granularity and its FLOPs cost.

N D G FLOPs Loss

64 x 100M 4.37B 8 2.95e+18 3.133
64 x 1B 28.94B 16 1.93e+20 2.491
64 x 3B 72.90B 16 1.41e+21 2.245
64 x 7B 137.60B 32 6.46e+21 2.076
64 x 70B 941.07B 32 4.16e+23 1.694

64 x 300B 2.96T 64 5.69e+24 1.503
64 x 1T 7.94T 64 4.97e+25 1.367

The term 12dmodel
2 is the number of active parameters within a transformer block, while dmodelEGcr

is the number of active parameters within a routing network. The in-depth analysis of constants
cr and cf can be found in Appendix J. We exclude embedding and unembedding from the FLOPs
calculations, following Hoffmann et al. (2022).

Observe that, in contrast to scenarios where routing operations are omitted, the FLOPs calculation
that incorporates routing overhead relies on both dmodel and nblocks. Consequently, an additional
condition is required to determine the scaling of dmodel and nblocks in relation to an increase in N , the
number of parameters. It is noted that minor variations in the depth-to-width ratio are not significant
(Kaplan et al., 2020). Following this analysis, we opt to adopt the assumption that dmodel = 64nblocks.

The total number of parameters in the feed-forward layer, excluding the routing matrix, is
2Edffdmodel = 8Edmodel

2, and 4dmodel
2 in attention (key, query, value, and output projection). This

results in the following formula for N = dmodel
2 · (8E + 4) · nblocks.

G RELIABILITY OF COMPUTE OPTIMAL FORMULA

In this section, we assess the stability of our predictions presented in Appendix F. Similarly to
Hoffmann et al. (2022) we calculate the 10th and 90th percentiles estimated via bootstrapping data
(80% of the data is sampled 100 times). See Table 6 for the details.

H DISCUSSION

Extreme Granularity. In Section 4, we argue that model performance improves with increasing
granularity. This postulate largely aligns with the empirical findings of our study. Nonetheless, at
exceedingly high granularity levels, such as G = 64 in models characterized by dmodel = 256 and
E = 64, there is an observable decline in performance. This phenomenon is particularly evident
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Table 6: 10th and 90th percentiles estimated via bootstraping data.

N D G

64 x 100M (2.97B, 5.98B) (8, 8)
64 x 1B (21.17B, 40.73B) (16, 16)
64 x 3B (50.20B, 105.88B) (16, 32)
64 x 7B (101.06B, 205.40B) (32, 32)
64 x 70B (638.49B, 1.59T) (32, 64)

64 x 300B (1.99T, 5.62T) (64, 64)
64 x 1T (5.29T, 16.87T) (64, 64)

in scenarios where the number of parameters in the routing mechanism exceeds active parameters
in actual experts. Additionally, as described in Section 4.3, the utility of such high granularity is
predominantly restricted to models of substantial size. In alignment with the principles outlined in
Hoffmann et al. (2022), this research focuses more on findings that can be broadly applied rather
than delving into the specific details of these corner-case situations. However, it is hypothesized that
the efficiency of models with significantly high granularity could be potentially enhanced through
careful expert initialization or modifications to the routing algorithm. These ideas are set aside to be
investigated in future studies.

Varying Expansion Rate. In this study, due to computational resources constraint, we focus on
E = 64, as recommended by Clark et al. (2022). This value of E was also used for the largest models
in other works (Du et al., 2022; Zhou et al., 2022) and the best-performing configuration in Fedus
et al. (2022). Nonetheless, we acknowledge the importance of considering different expansion rates,
as different levels of E may be chosen based on factors like the target size of the model in memory.
Therefore, in Appendix I, we present the results of the study for E = 16 and show that the main
findings of this work are still valid in such cases.

Including E in the formula. Another possible advancement would be to unify all of the factors
N,D,G and E in one formula. While this would open the possibility of studying the relationships
between coefficients in more detail, it would also be hard to practically recommend the optimal
configuration in such a scenario using only FLOPs. This is because larger values of E typically
lead to better performance but also incur additional memory requirements. Therefore, the choice
of expansion rate may be heavily dependent on the available hardware configuration. We leave a
detailed study of these factors for future work.

Modeling the cost of granularity. It is important to note that the exact estimation of the training
cost of MoE models is dependent on the training setup, hardware, and implementation. Specifically,
increasing G can lead to higher transfer costs, depending on the adopted model of distributed training.
Therefore, the precise selection of hyperparameters should be made considering these factors. In this
work, we model the cost of operations using FLOPs, which is common in the Scaling Laws literature
(Kaplan et al., 2020; Hoffmann et al., 2022; Frantar et al., 2023). Additionally, we would like to
note that in our setup, we observe significant gains of granular models measured as wall-clock time
needed to achieve given perplexity (see Fig. 7 for an example).
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Figure 7: Training loss curves for model with N = 64 × 7M , D = 66B tokens, measured on
NVIDIA A100 GPU. We can see that the model with G = 8 achieves the best performance.

I VARYING EXPANSION RATE

In this section, we provide results for E = 16. The training procedure is the same as described in
App. A. The models considered in this part are listed in Table 7.

Table 7: Architecture and training variants (MoE models).

#parameters (nonemb) dmodel nblocks nheads D (in #tokens) G

64x3M 256 4 4 8B, 16B, 33B 1, 2, 4, 8, 16
64x7M 256 8 4 8B, 16B, 33B 1, 2, 4, 8, 16

64x13M 512 4 8 8B, 16B, 33B 1, 2, 4, 8, 16
64x13M 512 4 8 66B 1, 2, 4
64x25M 512 8 8 8B, 16B, 33B 1, 2, 4, 8, 16
64x49M 640 10 10 8B 1, 2, 4, 8, 16

We fit Eq. 1 using the same procedure as described in Section 4.2. The results are detailed in Table 8.

Table 8: Values of the fitted coefficients.

Model a α b β g γ c

MoE (E = 16) 19.64 0.124 57.07 0.169 1.18 0.986 0.472

Using the coefficients and FLOPs calculation formulas, we can derive the compute optimal training
parameters. The results are presented in Table 9.

We can observe that similarly to the case when E = 64, larger compute budgets imply larger optimal
values of G. Note that the values for 10th and 90th percentiles form larger intervals in this case, as in
this part we run a smaller number of experiments and keep shorter training durations. However, we
believe that this preliminary study forms a valuable addition to the results in the main part.
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Table 9: 10th and 90th percentiles estimated via bootstrapping data for E = 16.

N D G

16 x 100M (10.29B, 17.73B) (8 , 16)
16 x 1B (53.74B, 103.54B) (16, 32)
16 x 3B (106.22B, 261.04B) (16, 32)
16 x 7B (177.65B, 511.43B) (16, 32)

16 x 70B (721.60B, 3.22T) (32, 64)
16 x 300B (1.73T, 10.69T) (32, 64)

16 x 1T (3.60T, 28.22T) (32, 128)

J FLOPS CONSTANTS

The number of FLOPs F used in Transformer training, considering the routing operation overhead in
MoE, can be described by the following formula:

F = (12dmodel
2cf + dmodelEGcr) · ntokens· (4)

Following Hoffmann et al. (2022), we assume cf to be 6. This is interpreted as 6 FLOPs for each pair
of an active parameter (in linear projection) and a processed token. The breakdown of operations is
as follows:

• During the forward pass, 2 operations (single multiplication and single addition) are used to
compute the matrix multiplication of an input and linear projection.

• During the backward pass, 2 operations are used to compute gradients wrt. the input.
• During the backward pass, 2 operations are used to compute gradients wrt. the weights of

linear projection.

In our work, we have assumed the routing constant, cr, to be 14, with the breakdown presented below.
The exact number of operations may depend on the implementation of routing, but it will be between
6 and 20. However, our main conclusions of the paper are resistant to different assumptions of this
constant.

• During the forward pass, 2 operations are used to compute the expert logits based on an
input and ”routing linear projection”.

• During the backward pass, 2 operations are used to compute gradients for ”routing linear
projection” wrt. the input.

• During the backward pass, 2 operations are used to compute gradients for ”routing linear
projection” wrt. the weights of linear projection.

• During the forward pass, 2 operations are used to route input tokens to chosen experts.
• During the forward pass, 2 operations are used to route expert outputs to chosen tokens and

multiply those outputs by the routing score.
• During the backward pass, 2 operations are used to route gradients from output tokens to

experts.
• During the backward pass, 2 operations are used to route gradients from experts to input

tokens.

Similarly to the calculation of FLOPs for cf , FLOPs come in pairs as each multiplication is followed
by an addition (used to accumulate outputs or gradients).
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