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Abstract

Temporal Expression Extraction (TEE) is es-001
sential for understanding time in natural lan-002
guage. It has applications in Natural Lan-003
guage Processing (NLP) tasks such as question004
answering, information retrieval, and causal005
inference. To date, work in this area has006
mostly focused on English as TEE for low-007
resource languages is hindered by a scarcity008
of training data. We propose XLTime, a009
novel framework for zero-shot low-resource010
language TEE. XLTime works on top of pre-011
trained language models and leverages multi-012
task learning to prompt cross-language knowl-013
edge transfer both from English and within the014
low-resource languages. It alleviates the prob-015
lems caused by the shortage in low-resource016
language training data. We apply XLTime017
with different language models and show that018
it outperforms the previous automatic SOTA019
methods on four low-resource languages, i.e.,020
French, Spanish, Portuguese, and Basque, by021
large margins. It also closes the gap consider-022
ably on the handcrafted HeidelTime tool.023

1 Introduction024

Temporal Expression Extraction (TEE) refers to the025

detection of temporal expressions (such as dates,026

durations, etc. as shown in Table 1). It is an impor-027

tant NLP task and has downstream applications in028

question answering (Choi et al., 2018), information029

retrieval (Mitra et al., 2018), and causal inference030

(Feder et al., 2021). Most TEE methods work on031

English and are rule-based (Strötgen and Gertz,032

2013; Zhong et al., 2017). Deep learning-based033

methods (Chen et al., 2019; Lange et al., 2020)034

are less common and report results on par with or035

inferior to the rule-based SOTAs.036

Moreover, methods that work on low-resource037

languages are rare, because of the scarcity of an-038

notated data. We find that that there is consider-039

able room for improving TEE, especially for low-040

resource languages (e.g., the previous SOTA per-041

Table 1: Temporal expressions of different types (See Ap-
pendix A for the definitions of the types).

In the last three months (Duration), net revenue rose 4.3%
to $525.8 million from $504.2 million last year (Date).
The official news agency, which gives the daily (Set)
tally of inspections, updated on Friday evening (Time).

formance on the English TE3 dataset (UzZaman 042

et al., 2013) is around 0.90 in F1, while that on 043

the Basque TEE benchmark (Altuna et al., 2016) 044

is merely 0.47). Recent deep learning methods, 045

which have shown gains for many tasks, are under- 046

explored for this important area of NLP. 047

Developing an approach that can learn from a 048

limited amount of training data is crucial for this 049

field because of the efforts required to develop high- 050

quality rules for any language. Thus we propose 051

a cross-lingual knowledge transfer framework for 052

zero-shot low-resource language TEE, namely, XL- 053

Time. We base our framework on pre-trained multi- 054

lingual models (Devlin et al., 2019; Conneau et al., 055

2020). We then use Multi-Task Learning (MTL) 056

(Liu et al., 2019a) to prompt knowledge transfer 057

both from English and within the low-resource lan- 058

guages. We design primary and secondary tasks. 059

The former leverages the existing data of the other 060

languages. It transfers explicit knowledge that ex- 061

plicitly tells the forms of the temporal expressions 062

in a source language. The latter constructs its train- 063

ing data in a self-supervised (Liu et al., 2021) man- 064

ner. It transfers implicit knowledge by teaching the 065

model to tell if a sentence in the target language 066

contains temporal expressions. 067

Contributions. 1) We propose XLTime, which 068

prompts cross-lingual knowledge transfer using 069

MTL to address low-resource language TEE. 2) 070

We show that XLTime outperforms the previous 071

automatic SOTA methods by large margins on four 072

low-resource languages, i.e., French, Spanish, Por- 073

tuguese, and Basque, in a zero-shot setting. 3) 074

We show that XLTime also approaches the per- 075
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formance of the heavily handcrafted HeidelTime076

(Strötgen and Gertz, 2013), and even beats it on077

two languages (Portuguese and Basque). We make078

our code and data publicly available 1.079

2 Related Work080

While TEE is an important problem in NLP, there081

is relatively little work in the area, and most of082

this work focuses on English. Prior art can be di-083

vided into two classes: rule/pattern-based and deep084

learning approaches. In the first class, HeidelTime085

(Strötgen and Gertz, 2013) is the most commonly086

used tool and is the top approach to date, even087

though it is a collection of finely-tuned rules. It088

covers over a dozen languages. The approach was089

later extended to more languages with HeidelTime-090

auto (Strötgen and Gertz, 2015), which leverages091

language-independent processing and rules. Other092

approaches include SynTime (Zhong et al., 2017),093

which is based on heuristic rules, and SUTIME094

(Chang and Manning, 2012) and PTime (Ding et al.,095

2019), which leverages pattern learning.096

For the second class, Laparra et al. (2018) pro-097

poses a model based on RNNs. Chen et al. (2019)098

uses BERT with a linear classifier. Lange et al.099

(2020) inputs mBERT embeddings to a BiLSTM100

with a CRF layer and outperforms HeidelTime-auto101

on four languages. However, the reported perfor-102

mances of the deep learning-based methods are103

inferior to the rule-based ones, which is, in part,104

due to the complexity of the problem and training105

data paucity. In our work, we propose a new model106

which outperforms prior deep learning methods but107

also closes the gap considerably on HeidelTime.108

3 Proposed Method109

We formalize TEE as a sequence labeling task, sim-110

ilar to named entity recognition (NER) (Lample111

et al., 2016). Figure 1 shows the architecture of112

XLTime.113

3.1 Pre-trained Multilingual Backbone114

We adopt SOTA multilingual models (Devlin et al.,115

2019; Conneau et al., 2020) as the backbone of116

XLTime, denoted as: T (E(X)). X is the input se-117

quence. E and T are the lexicon and Transformer118

encoder layers as shown in Figure 1(b). The back-119

bone allows XLTime to acquire semantic and syn-120

tactic knowledge of various languages. It is shared121

by the MTL tasks introduced in Section 3.2.122

1Github to be added.

3.2 MTL-based Cross-Lingual Knowledge 123

Transfer 124

XLTime transfers knowledge from multiple source 125

languages to the low-resource target language. The 126

source languages include English and other lan- 127

guages for which TEE training data is available. 128

We design primary and secondary tasks on top 129

of the backbone to prompt explicit and implicit 130

knowledge transfer. The primary task transfers 131

knowledge that explicitly encodes the forms of the 132

temporal expressions in a source language. It is for- 133

malized as sequence labeling and directly leverages 134

the training data of the source language to train the 135

backbone along with the primary task head, shown 136

in Figure 1 (b). The primary task minimizes Lsl: 137

Lsl = −
b∑

i=1

mi∑
j=1

1(yij , c)log(softmax(W · x)), (1) 138

where x ∈ Rd is the embedding of a token output 139

by the backbone. W ∈ R|c|×d is the primary task 140

head. c and yij are the predicted and ground-truth 141

labels of the token. b is the total number of input 142

sequences and mi is the length of the ith sequence. 143

The secondary task implicitly reveals how the 144

temporal expressions would be expressed in the 145

target language. We translate the sequences in 146

the source language training data into the target 147

language using Google Translate2 (we also exper- 148

iment with AWS Translate3 and observe similar 149

results). The secondary task is formalized as bi- 150

nary classification, where the input samples are the 151

translated sequences and the labels are indicators 152

of whether or not the original sequences contain 153

temporal expressions (can be easily inferred from 154

the original labels). This task tunes the model to 155

learn the characteristics of temporal expressions in 156

the target language in an implicit manner. It is self- 157

supervised and requires no token-level labeling. It 158

trains the backbone along with the secondary task 159

head and minimizes Lbc: 160

Lbc = −
b∑

i=1

1(y′
i, c

′)log(softmax(W′ · x′)), (2) 161

where x′ ∈ Rd is the sequence embedding output 162

by the [CLS] of the backbone. W′ ∈ R2×d is the 163

secondary task head. c′ and y′i are the predicted 164

and true sequence labels. We train XLTime concur- 165

rently on the primary and secondary tasks, further 166

explanation is in Appendix B. 167

2https://translate.google.com/
3https://aws.amazon.com/translate/
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Task 1: 
          : Six deaths were reported in    the       last    week.
          :  O      O       O        O       O B-Date I-Date I-Date

     : It’s possible there will be more.
     :  O      O          O      O   O    O

Task 2: 
          :  Mayo   y   Junio.

     : B-Date O B-Date

Task 3:
     : mai et juin.                   : 1

Task 4:
     : Six décès ont été signalés la semaine dernière.             : 1
     :  Il est possible qu'il y en ait plus.               : 0
     

Translate

Translate

Lexicon Encoder

Transformer Layers[CLS]

Primary task head
(Sequence Labeling)

Secondary task head
(Binary Classification)

English
(source)

Spanish
(source)

French
(target)

Translate

Task 1
Task 2
Task 3
Task 4

(a) Sample Input and label (b)  Architecture of the XLTime Framework

Task-type-specific 
heads

Shared pre-trained 
backbone

Figure 1: The architecture and sample training input of the proposed XLTime framework (best viewed in color).

Table 2: Dataset statistics (more details in Appendix C).

Lang Dataset # Exprs

FR Bittar et al. (2011) 425
ES UzZaman et al. (2013) 1, 094
PT Costa and Branco (2012) 1, 227
EU Altuna et al. (2016) 847

TE3 (UzZaman et al., 2013) 1, 830
EN Wikiwars (Mazur and Dale, 2010) 2, 634

Tweets (Zhong et al., 2017) 1, 128

An Illustrative Example. In Figure 1, Tasks 1 and168

4 transfer knowledge from English to French. Task169

1 (primary) transfers knowledge about the exact170

forms of English temporal expressions using token-171

level labels (Y11 and Y12). Task 4 (secondary) takes172

the French translations (X41 and X42) of X11 and173

X12 as input and let Y41 and Y42 indicate whether174

or not the original sequences contain temporal ex-175

pressions (can be inferred from Y11 and Y12). Task176

4 provides indirect knowledge about French tem-177

poral expressions. Similarly, Tasks 2 and 3 transfer178

from Spanish to French.179

4 Experiments180

4.1 Experimental Setup181

Datasets. We use the English (EN), French (FR),182

Spanish (ES), Portuguese (PT), and Basque (EU)183

TEE benchmark datasets. Table 2 shows dataset184

statistics (see Appendix C for a more detailed de-185

scription). For each target language, we split its186

dataset with 10% for validation and 90% for test.187

For each source language (applicable to XLTime),188

we use the whole dataset for training.189

Baselines. We evaluate against rule-based as190

well as deep learning-based methods. We com-191

pare to the handcrafted HeidelTime (Strötgen and192

Gertz, 2013) and its automatically extended ver-193

sion, HeidelTime-auto (Strötgen and Gertz, 2015).194

We also compare to deep learning methods: BiL- 195

STM+CRF (Lange et al., 2020), mBERT, base and 196

large versions of XLMR (trained on English TEE 197

datasets and evaluated on low-resource languages). 198

Our Approaches. We test out several variants of 199

our proposed model, which can be broken into two 200

classes: 1) Cross-lingual transfer from EN. We 201

apply XLTime on mBERT, base and large versions 202

of XLMR and use EN as the only source language. 203

2) Cross-lingual transfer from EN and others. We 204

transfer from other languages in addition to EN. 205

Experimental settings are found in Appendix D. 206

Evaluation Metrics. We report F1, precision, and 207

recall in strict match (UzZaman et al., 2013), i.e., 208

all its tokens must be correctly recognized for an 209

expression to be counted as correctly extracted. 210

We follow the setting in prior work of evaluating 211

“without type” and report the results without con- 212

sidering the types of the temporal expressions (e.g., 213

for ‘see you tomorrow’, a prediction such as ‘O O 214

B-Duration’ would be counted as correct, though 215

the proper labeling would be ‘O O B-Date’). 216

We do note that the temporal expression field 217

should ultimately evaluate on the more complex 218

task of identifying temporal expressions as well 219

as their types. This is in the spirit of the annota- 220

tions and is in line with other sequence labeling 221

tasks, such as NER. Therefore, we also experiment 222

with the “with type” setting and show results in Ap- 223

pendix F. In both settings, the observations made 224

in Section 4.2 hold and XLTime outperforms the 225

previous automatic SOTAs by large margins. 226

4.2 Evaluation Results 227

We evaluate XLTime on zero-shot low-resource lan- 228

guage TEE (see Table 3). We observe: 1) XLTime- 229

XLMRlarge outperforms the strongest automatic 230

baseline by up to 13%, 14%, and 18% in F1, pre- 231

cision, and recall on all languages. It even out- 232
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Table 3: Zero-shot low-resource language TEE results (w/o type).

Model FR ES PT EU
F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re.

Automatic Baseline Models
HeidelTime-auto 0.55 0.65 0.47 0.42 0.58 0.33 0.50 0.67 0.39 0.17 0.66 0.10
BiLSTM+CRF(temp) 0.64 0.73 0.57 0.62 0.68 0.56 0.64 0.66 0.63 0.47 0.58 0.40
mBERT 0.63 0.70 0.58 0.62 0.69 0.56 0.66 0.63 0.69 0.65 0.71 0.60
XLMR-base 0.69 0.75 0.64 0.54 0.61 0.48 0.63 0.64 0.62 0.46 0.64 0.36
XLMR-large 0.75 0.78 0.73 0.72 0.75 0.69 0.75 0.74 0.76 0.70 0.74 0.67

Cross-Lingual Transfer from EN (Ours)
XLTime-mBERT 0.73 0.73 0.72 0.71 0.77 0.66 0.67 0.64 0.71 0.76 0.81 0.71
XLTime-XLMRbase 0.78 0.79 0.78 0.66 0.70 0.63 0.68 0.67 0.70 0.71 0.76 0.66
XLTime-XLMRlarge 0.76 0.79 0.73 0.72 0.79 0.67 0.77 0.74 0.81 0.78 0.85 0.71

Cross-Lingual Transfer from EN and Additional Source Languages (Ours)
XLTime-mBERT 0.80 0.77 0.82 0.77 0.79 0.74 0.80 0.77 0.83 0.77 0.82 0.72
XLTime-XLMRbase 0.82 0.79 0.86 0.72 0.78 0.68 0.73 0.72 0.75 0.79 0.86 0.73
XLTime-XLMRlarge 0.84 0.82 0.86 0.75 0.79 0.71 0.84 0.82 0.87 0.79 0.84 0.74
Handcrafted Method
HeidelTime 0.86 0.87 0.85 0.86 0.91 0.81 0.60 0.64 0.57 / / /

Table 4: Zero-shot low-resource language TEE with additional source languages (F1 scores w/o type). The blue cells are
expected to, while the underlined cells actually outperform (by ≥ 4%) using EN as the only source language.

Target Language FR ES
Source Language(s) EN EN, EU EN, PT EN, ES EN EN, EU EN, PT EN, FR
XLTime-mBERT 0.73 0.76 0.72 0.80 0.71 0.72 0.72 0.77
XLTime-XLMRbase 0.78 0.76 0.78 0.82 0.66 0.68 0.71 0.72
XLTime-XLMRlarge 0.76 0.81 0.80 0.84 0.72 0.72 0.75 0.73

Target Language PT EU
Source Language(s) EN EN, FR EN, ES EN, EU EN EN, PT EN, ES EN, FR
XLTime-mBERT 0.67 0.80 0.70 0.80 0.76 0.73 0.75 0.77
XLTime-XLMRbase 0.68 0.73 0.63 0.56 0.71 0.74 0.75 0.79
XLTime-XLMRlarge 0.77 0.82 0.84 0.74 0.78 0.79 0.79 0.77

performs the handcrafted HeidelTime method by233

a large margin (24% in F1) in PT. 2) Applying234

XLTime improves upon the vanilla language mod-235

els, even by transferring knowledge only from EN.236

E.g., XLTime-XLMRbase outperforms XLMR-237

base by 13%, 22%, 8%, and 54% in F1 on FR,238

ES, PT, and EU. 3) Introducing additional source239

languages to XLTime further improves the perfor-240

mance: the F1 improves by up to 19%, 11%, and241

11% for XLTime-mBERT, XLTime-XLMRbase,242

and XLTime-XLMRlarge. 4) HeidelTime is a very243

hard baseline to beat given the time and care that244

went into developing language-specific rules. How-245

ever, XLTime approaches its performance for FR246

and ES, outperforms it for PT, and makes predic-247

tions for EU (where HeidelTime has no rules).248

We also study the effect of transferring addi-249

tional knowledge from low-resource language(s),250

see Table 4 and Appendix E. Our assumption is,251

similar languages (FR, ES, and PT) would help252

each other (one exception is PT, as its dataset is253

translated from the EN dataset and we, therefore,254

don’t expect it to provide a benefit beyond what 255

EN already provides). We observe: 1) In most 256

cases, transferring additional knowledge from simi- 257

lar languages does help (the blue cells overlap with 258

the underlined cells), and improves the F1 by up 259

to 13%. 2) In some rare cases, negative transfer 260

(Wu et al., 2020) occurs as adding source languages 261

hurts performance (e.g., EN, ES → PT scores lower 262

than EN → PT for XLTime-XLMRbase). We hy- 263

pothesize this is related to the quality of the datasets 264

and plan to address this in the future (Appendix H). 265

5 Conclusion 266

We propose XLTime for zero-shot low-resource 267

language TEE. XLTime is based on language mod- 268

els and leverages MTL to prompt cross-language 269

knowledge transfer. It greatly alleviates the prob- 270

lems caused by the shortage in low-resource lan- 271

guage data and shows results superior to the previ- 272

ous automatic SOTA methods on four languages. 273

In addition, it approaches the performance of a 274

highly engineered rule-based system. 275
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Algorithm 1: Training XLTime

1 //Initialize model.
2 Load the parameters of E and T from a

pre-trained multilingual model.
3 Initialize W and W′ randomly.
4 // Prepare task data.
5 for t in {primary, secondary} do
6 Split the data of task t into

mini-batches Bt

7 B = Bprimary ∪Bsecondary

8 for e in 1, ..., epoch do
9 Randomly shuffle B

10 //bt is a mini-batch of task t
11 for bt in B do
12 if t is a primary task then
13 Lsl = Equation 1
14 else
15 Lbc = Equation 2

16 Compute gradient and update
model parameters

A Types of the Temporal Expressions 391

According to ISO-TimeML (Pustejovsky et al., 392

2010), the TEE dataset annotation guideline, there 393

are four types of temporal expressions, i.e., Date, 394

Time, Duration, and Set. Date refers to a calendar 395

date, generally of a day or a larger temporal unit; 396

Time refers to a time of the day and the granularity 397

of which is smaller than a day; Duration refers to 398

the expressions that explicitly describe some period 399

of time; Set refers to a set of regularly recurring 400

times (Pustejovsky et al., 2010). 401

B The Training Procedure 402

We adopt mini-batch-based stochastic gradient de- 403

scent (SGD) to train XLTime, as shown in Algo- 404

rithm 1. To concurrently train on the primary and 405

secondary tasks, we split the training data of both 406

tasks into mini-batches and randomly take one at 407

each step. We then calculate loss using that mini- 408

batch and update the parameters of the shared back- 409

bone (including E and T ) as well as the task-type- 410

specific head. The head of the other task type is 411

unaffected. 412

C Detailed Statistics of the Datasets 413

Table 5 shows the detailed statistics of the datasets 414

used in this study. 415
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Table 5: The statistics of the datasets.

Lang Dataset Domain #Docs #Exprs #Dates #Times #Durations #Sets

FR Bittar et al. (2011) News 108 425 227 130 52 16
ES UzZaman et al. (2013) News 175 1, 094 749 57 251 37
PT Costa and Branco (2012) News 182 1, 227 998 41 176 12
EU Altuna et al. (2016) News 91 847 662 22 151 12

TE3 (UzZaman et al., 2013) News 276 1, 830 1, 471 34 291 34
EN Wikiwars (Mazur and Dale, 2010) Narrative 22 2, 634 2, 634 0 0 0

Tweets (Zhong et al., 2017) Utterance 942 1, 128 717 173 200 38

D Experimental Setting416

We set d, the embedding dimension, to be 768417

when applying on the base version language mod-418

els and 1024 on large versions. We use AdamW419

(Loshchilov and Hutter, 2019) with a learning rate420

of 7e−6 and warm-up proportion of 0.1. We train421

the models for 50 epochs and use the best model as422

indicated by the validation set for prediction. All423

datasets are transformed into IOB2 format to fit the424

sequence labeling setting. For BiLSTM+CRF, we425

use the hyperparameters as suggested in the orig-426

inal paper. We repeat all experiments for 5 times427

and report the mean results.428

E Full Table for Zero-shot Low-resource429

Language TEE with Additional Source430

Languages431

Table 6 shows the precision and recall of zero-shot432

low-resource language TEE with additional source433

languages (w/o type).434

F Zero-shot Low-resource Language435

TEE with type436

Tables 7 and 8 show the results for zero-shot low-437

resource language TEE when considering the types438

of the temporal expressions. Note that the superi-439

ority of our proposed XLTime over the previous440

automatic SOTA still holds.441

G Language Models on English TEE442

In our early experiments, we reexamine the lan-443

guage models on English TEE. This section444

presents the results.445

G.1 Experimental Setup446

We study BERT (Devlin et al., 2019) and XLMR447

(Conneau et al., 2020) variants, RoBERTa (Liu448

et al., 2019b) and T5 Encoder (Raffel et al., 2019).449

We compare them to rule-based methods including450

HeidelTime (Strötgen and Gertz, 2013), SynTime451

(Zhong et al., 2017), and PTime (Ding et al., 2019), 452

which report SOTA performances on Wikiwars, 453

TE3, and Tweets, respectively. We experiment on 454

both settings, i.e., “with type" and “without type", 455

and report F1, precision, and recall in strict match 456

(UzZaman et al., 2013). We use the data splits 457

following Ding et al. (2019) and the experimental 458

settings introduced in Appendix D. 459

G.2 Evaluation Results 460

Table 9 shows the results. We observe: 1) When 461

ignoring the types, the language models are inferior 462

to SynTime on TE3, on par with or better than the 463

rule-based methods on Wikiwars and Tweets. 2) 464

When considering the types, the language models 465

outperform the previous SOTAs by 11-22%, 18- 466

21%, and 30-41% in F1 on TE3, Wikiwars, and 467

Tweets datasets. 468

H Future Work 469

We observe negative transfer in some rare cases 470

when transferring from multiple source languages 471

(Tables 4 and 6). As suggested by Wu et al. (2020), 472

the extent of negative transfer is affected by task co- 473

variance, which measures the similarities between 474

the embedded task samples. We plan to verify this 475

on XLTime by calculating and comparing the task 476

covariances of the positively transferred cases to 477

that of the negatively transferred cases. 478

One approach to reduce task covariance is to 479

transform task sample embeddings by inserting an 480

alignment layer between the lexicon encoder and 481

the first Transformer layer. Wu et al. (2020) pro- 482

poses an alignment layer design, i.e., one linear ma- 483

trix for each of the tasks. However, as the training 484

data for low-resource TEE is sparse, the parameters 485

introduced by these matrices might cause the model 486

to overfit. We plan to design a new alignment layer 487

that is more suitable for XLTime. The new design 488

aims to reduce task covariance while prompting 489

parameter sharing and reducing overfitting. 490
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Table 6: Zero-shot low-resource language TEE with additional source languages (precision and recall scores w/o type). The
blue cells are expected to, while the underlined cells actually outperform (by ≥ 4%) using EN as the only source language.

Precision
Target Language FR ES
Source Language(s) EN EN, EU EN, PT EN, ES EN EN, EU EN, PT EN, FR
XLTime-mBERT 0.73 0.76 0.76 0.77 0.77 0.76 0.79 0.79
XLTime-XLMRbase 0.79 0.77 0.81 0.79 0.70 0.72 0.75 0.78
XLTime-XLMRlarge 0.79 0.81 0.84 0.82 0.79 0.70 0.79 0.74

Target Language PT EU
Source Language(s) EN EN, FR EN, ES EN, EU EN EN, PT EN, ES EN, FR
XLTime-mBERT 0.64 0.77 0.67 0.77 0.81 0.78 0.79 0.82
XLTime-XLMRbase 0.67 0.72 0.60 0.54 0.76 0.82 0.79 0.86
XLTime-XLMRlarge 0.74 0.79 0.82 0.72 0.85 0.85 0.84 0.84

Recall
Target Language FR ES
Source Language(s) EN EN, EU EN, PT EN, ES EN EN, EU EN, PT EN, FR
XLTime-mBERT 0.72 0.77 0.69 0.82 0.66 0.69 0.66 0.74
XLTime-XLMRbase 0.78 0.76 0.75 0.86 0.63 0.64 0.68 0.68
XLTime-XLMRlarge 0.73 0.81 0.77 0.86 0.67 0.75 0.71 0.72

Target Language PT EU
Source Language(s) EN EN, FR EN, ES EN, EU EN EN, PT EN, ES EN, FR
XLTime-mBERT 0.71 0.83 0.74 0.83 0.71 0.69 0.70 0.72
XLTime-XLMRbase 0.70 0.75 0.66 0.59 0.66 0.67 0.70 0.73
XLTime-XLMRlarge 0.81 0.87 0.87 0.77 0.71 0.74 0.74 0.71

Table 7: Zero-shot low-resource language TEE results (w/ type).

Model FR ES PT EU
F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re.

Automatic Baseline Models
HeidelTime-auto 0.53 0.63 0.46 0.41 0.56 0.32 0.49 0.66 0.39 0.15 0.60 0.09
BiLSTM+CRF 0.58 0.64 0.51 0.56 0.61 0.51 0.58 0.59 0.58 0.44 0.54 0.37
mBERT 0.56 0.61 0.51 0.56 0.62 0.51 0.60 0.56 0.64 0.59 0.64 0.55
XLMR-base 0.64 0.69 0.59 0.51 0.58 0.46 0.59 0.59 0.59 0.43 0.60 0.34
XLMR-large 0.69 0.70 0.68 0.68 0.71 0.66 0.71 0.69 0.73 0.66 0.70 0.63

Cross-Lingual Transfer from EN (Ours)
XLTime-mBERT 0.62 0.62 0.62 0.65 0.70 0.61 0.61 0.58 0.66 0.68 0.72 0.65
XLTime-XLMRbase 0.67 0.67 0.68 0.60 0.63 0.58 0.64 0.62 0.66 0.64 0.68 0.60
XLTime-XLMRlarge 0.71 0.74 0.68 0.70 0.76 0.65 0.74 0.71 0.78 0.72 0.79 0.66

Cross-Lingual Transfer from EN and Additional Source Languages (Ours)
XLTime-mBERT 0.71 0.69 0.73 0.68 0.69 0.66 0.73 0.70 0.76 0.68 0.72 0.65
XLTime-XLMRbase 0.70 0.67 0.74 0.65 0.69 0.62 0.66 0.64 0.68 0.70 0.76 0.65
XLTime-XLMRlarge 0.75 0.72 0.78 0.70 0.76 0.65 0.81 0.79 0.84 0.74 0.79 0.69
Handcrafted Method
HeidelTime 0.80 0.81 0.79 0.85 0.90 0.80 0.57 0.60 0.53 / / /
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Table 8: Zero-shot low-resource language TEE with additional source languages (F1, precision, and recall scores w/ type). The
blue cells are expected to, while the underlined cells actually outperform (by ≥ 3%) using EN as the only source language.

F1
Target Language FR ES
Source Language(s) EN EN, EU EN, PT EN, ES EN EN, EU EN, PT EN, FR
XLTime-mBERT 0.62 0.61 0.61 0.71 0.65 0.66 0.65 0.68
XLTime-XLMRbase 0.67 0.67 0.66 0.70 0.60 0.61 0.64 0.65
XLTime-XLMRlarge 0.71 0.73 0.73 0.75 0.70 0.68 0.69 0.68

Target Language PT EU
Source Language(s) EN EN, FR EN, ES EN, EU EN EN, PT EN, ES EN, FR
XLTime-mBERT 0.61 0.72 0.59 0.73 0.68 0.66 0.66 0.68
XLTime-XLMRbase 0.64 0.66 0.55 0.52 0.64 0.66 0.66 0.70
XLTime-XLMRlarge 0.74 0.79 0.81 0.71 0.72 0.71 0.74 0.72

Precision
Target Language FR ES
Source Language(s) EN EN, EU EN, PT EN, ES EN EN, EU EN, PT EN, FR
XLTime-mBERT 0.62 0.59 0.62 0.69 0.70 0.69 0.71 0.69
XLTime-XLMRbase 0.67 0.66 0.67 0.67 0.63 0.64 0.67 0.69
XLTime-XLMRlarge 0.74 0.72 0.76 0.72 0.76 0.65 0.73 0.68

Target Language PT EU

Source Language(s) EN EN, FR EN, ES EN, EU EN EN, PT EN, ES EN, FR
XLTime-mBERT 0.58 0.68 0.56 0.70 0.72 0.70 0.69 0.72
XLTime-XLMRbase 0.62 0.64 0.51 0.49 0.68 0.73 0.69 0.76
XLTime-XLMRlarge 0.71 0.75 0.79 0.68 0.79 0.75 0.79 0.79

Recall
Target Language FR ES
Source Language(s) EN EN, EU EN, PT EN, ES EN EN, EU EN, PT EN, FR
XLTime-mBERT 0.62 0.62 0.59 0.73 0.61 0.64 0.60 0.66
XLTime-XLMRbase 0.68 0.67 0.64 0.74 0.58 0.59 0.61 0.62
XLTime-XLMRlarge 0.68 0.73 0.71 0.78 0.65 0.71 0.65 0.67

Target Language PT EU
Source Language(s) EN EN, FR EN, ES EN, EU EN EN, PT EN, ES EN, FR
XLTime-mBERT 0.66 0.75 0.62 0.76 0.65 0.63 0.64 0.64
XLTime-XLMRbase 0.66 0.68 0.60 0.55 0.60 0.60 0.63 0.65
XLTime-XLMRlarge 0.78 0.83 0.84 0.74 0.66 0.67 0.69 0.67

Table 9: Supervised English TEE results (w/| w/o type).

Model
Datasets

TE3 Wikiwars Tweets
F1 Pr. Re. F1 Pr. Re. F1 Pr. Re.

Rule-based Models
HeidelTime 0.77| 0.81 0.80| 0.84 0.75| 0.79 0.80| 0.85 0.86| 0.92 0.75| 0.80 0.80| 0.80 0.90| 0.90 0.72| 0.72
SynTime 0.65| 0.92 0.65| 0.91 0.66| 0.93 0.79| 0.79 0.79| 0.79 0.79| 0.79 0.63| 0.92 0.62| 0.91 0.65| 0.95
PTime 0.67| 0.85 0.68| 0.88 0.65| 0.83 0.86| 0.86 0.87| 0.87 0.86| 0.86 0.66| 0.95 0.65| 0.94 0.67| 0.96

Language Models
BERT-base 0.76| 0.82 0.78| 0.85 0.74| 0.80 0.94| 0.94 0.95| 0.95 0.94| 0.94 0.92| 0.94 0.90| 0.93 0.93| 0.95
BERT-large 0.79| 0.83 0.77| 0.82 0.80| 0.84 0.95| 0.95 0.94| 0.94 0.96| 0.96 0.86| 0.92 0.84| 0.92 0.88| 0.92
mBERT 0.79| 0.84 0.80| 0.86 0.77| 0.82 0.97| 0.97 0.96| 0.96 0.97| 0.97 0.87| 0.91 0.85| 0.88 0.90| 0.94
RoBERTa 0.78| 0.84 0.79| 0.86 0.77| 0.82 0.95| 0.95 0.94| 0.94 0.97| 0.97 0.91| 0.95 0.89| 0.93 0.94| 0.97
XLMR-base 0.79| 0.81 0.80| 0.82 0.77| 0.81 0.97| 0.97 0.95| 0.95 0.98| 0.98 0.90| 0.94 0.87| 0.92 0.93| 0.97
XLMR-large 0.78| 0.81 0.78| 0.82 0.78| 0.81 0.96| 0.96 0.94| 0.94 0.97| 0.97 0.93| 0.95 0.91| 0.93 0.95| 0.96
T5Encoder 0.79| 0.82 0.82| 0.85 0.78| 0.80 0.96| 0.96 0.95| 0.95 0.97| 0.97 0.87| 0.93 0.84| 0.91 0.91| 0.95
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