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ABSTRACT

Complex societal systems are characterized by heterogeneous agents engaging in
strategic interactions, yet current representative agent-based models (ABMs) strug-
gle to capture these dynamics. We present BiD (Behavioral Agents in Dynamic
Auctions), a novel ABM framework that focuses on modeling complex systems:
heterogeneous agent modeling and socioeconomic dynamics. Using Dutch auctions
as a microcosm, BiD models agent heterogeneity in risk preferences and dynamic
trust scores, while modeling socioeconomic interactions via strategic communica-
tion phases before bidding. Our theoretical equilibria analysis reveals how BiD
enables phenomena observed in real markets that are unexplained by classical
ABMs, i.e., successful low-valuation bidders win through strategic communication.
We formalize behavioral agent strategies under different communication protocols
and develop a reinforcement learning-guided policy for LLM-based agents to adapt
their behaviors based on market dynamics. Experimental results demonstrate BiD’s
capability in first modeling realistic market dynamics, providing socioeconomic
perspectives for studying multi-agent systems and complex societal systems.

1 INTRODUCTION

Complex societal systems (e.g., healthcare Boyd et al. (2022), social media Yang et al. (2024),
economics Deguchi (2011), crypto Shannon et al. (2024), cities Batty (2007), and financial mar-
kets Cristelli (2013)) consist of many interconnected agents whose interactions create emergent
behaviors. These behaviors cannot be predicted by analyzing individual actions alone Ladyman et al.
(2013). Although conducting experiments with these systems is crucial in our digital age, real-world
experiments are often costly or impossible An et al. (2021). Scientists thus rely on agent-based models
(ABMs) to analyze real-world phenomena that empirical experiments cannot capture, particularly in
understanding heterogeneous agent behaviors Zhang et al. (2021); Buchmann et al. (2016); Caiani
et al. (2016) and socioeconomic dynamics Chen et al. (2023); Speybroeck et al. (2013); Axtell &
Farmer (2022).

Representative ABMs, while effective in modeling basic agent interactions, struggle to capture the
nuanced complexity of human behavior An et al. (2021). These models typically simplify agent behav-
iors to measurable thresholds, failing to address fundamental elements in context-dependent strategic
decisions Wu et al. (2023), dynamic belief updating Zhang et al. (2024), and inter-agent communica-
tions Jin et al. (2024). The emergence of large language models (LLMs) has expanded the possibilities
in this domain, demonstrating remarkable capabilities to mimic human-like behaviors Park et al.
(2022); Zhou et al. (2023); Wang et al. (2023); Mou et al. (2024). These LLM-based agents can
engage in sophisticated role-playing, participate in natural interactions with other agents Zhang
et al. (2024), and execute complex decision-making tasks Park et al. (2022); Zhou et al. (2023)
involving tool use Achiam et al. (2023). Researchers design social scenarios Yang et al. (2024) and
distinct agent personas Jin et al. (2024), while developing scalable simulation platforms Yang et al.
(2024) for real-world research and analysis Park et al. (2023). However, effectively integrating LLMs
into ABMs requires moving beyond conventional benchmarks Ma et al. (2024). This integration is
particularly urgent for modeling complex socioeconomic systems, where representative ABMs fall
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short in capturing the interplay between heterogeneous agents and their strategic interactions under a
realistic ABM Zhang et al. (2021); Ma et al. (2024).

Dutch auctions provide an ideal microcosm for studying complex strategic interactions for realistic
ABMs. At system level, these descending price auctions exemplify key characteristics driving system
inefficiencies: information asymmetry between buyers and sellers Maskin & Riley (2000); Guerci
et al. (2014), allocation inefficiency from strategic waiting Gretschko & Wambach (2014), and agent
behaviors that systematically deviate from theoretical predictions. Empirical evidence consistently
shows that real-world outcomes diverge from oversimplified equilibrium predictions Bapna et al.
(2004); Sow et al. (2012), i.e., coordinated bidding in procurement auctions Patel (2021); Hortaçsu
& Perrigne (2021), persistent price anomalies in agricultural markets Badau & Rada (2022). At
agent level, homogeneity assumptions for agent characteristics have been challenged, including
the agent’s prior heterogeneity Pham & Yamashita (2024) and distributional entry cost Moreno &
Wooders (2011). Currently, existing tools face tractability constraints in modeling agent heterogeneity.
Multi-agent simulations offer a promising alternative, capable of capturing complex patterns such
as diverse risk preferences, trust scores, and agent-specific valuations. Thus, we propose BiD, a
multi-agent-based ABM, to support research community studies in understanding Socioeconomic
Dynamics, and Heterogeneous Agent Modeling.

Focus. Our work addresses the fundamental challenge of modeling complex socioeconomic systems
through the lens of Dutch auctions. We propose BiD (Behavioral Agents in Dynamic Auctions), a
novel ABM framework that advances conventional systems in two interconnected dimensions. First,
we focus on capturing and analyzing socioeconomic dynamics in auction systems, particularly how
information asymmetry, strategic communication, and trust relationships shape market outcomes.
Using Dutch auctions as a microcosm, we demonstrate how these dynamics and interactions lead
to empirically observed phenomena that deviate from classical predictions, such as successful low-
valuation bidders and strategic waiting behaviors. Second, we develop a behavioral agent-based
modeling approach that integrates heterogeneous agent characteristics with learning-based strategies.
BiD combines heterogeneous agent modeling with reinforcement learning to capture how agents adapt
their strategies based on heterogeneous characteristics, market dynamics, and historical interactions.

Contributions. (1) We demonstrate how BiD enables the exploration of previously unobservable
decision-making processes in Dutch auctions, revealing strategic behaviors of low-valuation bidders
that traditional economic models fail to capture. (2) By introducing a strategic communication
mechanism, we provide a multi-agent framework for modeling heterogeneous agent interactions in
complex socioeconomic systems. (3) Our approach bridges the gap between equilibrium predictions
and empirical market dynamics, offering insights into how agents adapt their strategies under both
private and public information.

Why Socioeconomic Dynamics matters and how BiD supports such analysis. BiD introduces
strategic communication phases where agents exchange information strategically before bidding.
This communication mechanism captures crucial socioeconomic dynamics missing from traditional
models: in reality agents can signal, bluff, or cooperate to influence others’ decisions. Hautus et al.
(2021) documented how communication among construction firms in Japanese procurement auctions
led to systematic departures from efficient allocation, Robinson (1985) studied why certain auction
mechanisms can lead bidders to form cartels to collude and some do not, but overall communications
cannot be prevented. Our equilibrium analysis demonstrates how low-valuation bidders can win
through strategic communication, a phenomenon observed in real markets but unexplained by
classical theory. BiD’s reinforcement learning approach further allows agents to build strategies
through experience, adapting their communication and bidding patterns based on market feedback
and historical interactions.

How BiD works and why BiD supports Heterogeneous Agent Modeling. BiD formalizes a game
of Multi-Round Mixed-Phase Dutch Auction (MRMP-DA), where agents compete through bidding
and strategic communication phases. BiD models agent heterogeneity through risk preferences, trust
scores, and belief updating mechanisms. These enable agents to exhibit diverse behaviors: risk-averse
agents bid aggressively for assured wins, while risk-seeking agents strategically wait for higher
expected surpluses. The trust scores update the belief based on the agents’ communication history
and market dynamics, affecting how they perceive information from observation. Our results show
that the heterogeneity leads to equilibrium behaviors that match empirical patterns in real markets.
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Figure 1: BiD Illustration. BiD bridges socioeconomic dynamics in complex systems and heteroge-
neous modeling in agentic behavior through strategic communication and diverse agent properties.
As far as we know, this is the first time the Dutch auction has been studied in multi-agent systems
and complex societal systems.

Insighs. BiD’s heterogeneous agent modeling through risk preferences, trust scores, and action spaces
under MRMP-DA, extends beyond auctions to broader market mechanisms including financial trading
and resource allocation. The strategic communication phase and equilibrium analysis capture strategic
interaction patterns in systems where agents can optimize decisions under incomplete information.
Our dual focuses - heterogeneous agent modeling and socioeconomic dynamics - contribute to
developing behavioral strategies in multi-agent systems, particularly for dynamic environments with
strategic interactions.

2 SOCIOECONOMIC DYNAMICS OF DUTCH AUCTIONS

2.1 DUTCH AUCTION AS A GAME

A Dutch auction provides an ideal microcosm for studying complex strategic interactions 1 In the case
of selling, the auctioneer begins with a high asking price and lowers it with a fixed price reduction
in each round until the participant accepts the price. We employ multi-unit 2 Dutch auction where
m rounds of the auction run for n agents, where n −m = 1, and the winning agent is eliminated
from the bidders participating in the rest rounds; this setting is to encourage competition and prevent
bidders from waiting until the last round to get the item for ”free” and encourage more strategic
interaction. e.g., low-valuation bidders can lie about their valuation to induce high-valuation bidder to
accept the bids in earlier rounds, so that they have a better chance of winning in later rounds. When
multiple bidders accept in a certain iteration, the tie-breaking rules will be in effect (e.g., random
draw). Building on the multi-unit Dutch auction, we extend the classical setting by introducing
strategic communication opportunities and trust dynamics to enable the study of more complex
socioeconomic behaviors.

Game Formulation. A Multi-Round Mixed-Phase Dutch Auction (MRMP-DA) with heterogenous
agent can be formalized as a tuple (N ,Ψ,S,Θ,H, A, C, U) where: N represents the set of n agents
participating in the m-round auction, Ψ = {ψt,j |j ∈ {B,C}} defines the phases, where B represents
bidding and C represents strategic communication in period t, where period refers to the cumulative
number of phases, S is the state space Θ = ×ni=1Θ

i represents the joint type space, where Θi is
agent i’s set of possible types (values) Ai(ψt,j) defines the available actions for agent i in phase
ψt,j . H represents the information states, where each agent has perfect recall of their previous states
and actions (hi0, a

i
0, h

i
1, a

i
1, . . . , h

i
t). Cti is agent i’s vector of trust scores for other agents at period t,

updated based on information state hit and ui : Θ× S → Rn maps agents’ types and terminal states
to utilities.

1We use Bidders for socioeconomic dynamics to explore communication strategy. The next section details
the transition from Bidders to Agents and BiD.

2multi-round where the auctions where items across rounds are homogeneous.
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Figure 2: BiD Design Overview. A unified framework integrating dynamic auction mechanism
(MRMP-DA Env), strategic agent updates (Memory Module), and behavioral modeling (Heteroge-
neous Agents) orchestrated by (MRMP-DA Engine) for interaction and competition incentivization.
The RL-guided agents participate in MRMP-DA can align with real-world socioeconomic dynamics.

MRMP-DA Structure. MRMP-DA under imperfect-information Sevenster (2006); Friedman (2018)
has three components Items, Bidders, and Environment, with two phase types, Bidding Phase and
Strategic Communication Phase.

1. Environment. A rule-based env. that manages the auction flow, starting from price p0
and applying fixed decrements until acceptance or reaching pt.

2. Bidders. Bidders are heterogeneous and each of their type(valuation of item) is private
information; their valuations are drawn from a continuous probability distribution vi ∈ f(vi)
that is common knowledge to all bidders. bidder i with valuation vi in each round aims to
maximize utility: maxbi ui(vi− bi, ri) where bi is the accepted price of bidder i, and ui is a
function that depends on the difference between valuation and we assume that each bidder’s
budget equals to her valuation. ri is the risk-seekingness of bidder i, higher ri signifies that
i is more risk-loving, we use the functional form ui = er(vi)(vi−bi) throughout such that
r(·) is a weakly increasing function of vi.

3. Items. Items for auction are homogeneous in our multi-around descending auction, the
homogeneity indicates that in each round, the bidder’s private valuation toward the item
does not change.

1. Bidding Phase. Each round for the bidding phase, the auctioneer start from a high
selling price p0, then, for each iteration, the auctioneer call a fixed decrement to the price of
the item, such that pt − pt−1 = pt−1 − pt−2 for all discrete t ∈ [0, T ], the current round
ends when some bidder accepts the price pt, the auction be deemed unsuccessful if no one
accepts the price until pT , however this does not happen in our setting as accepting the price
pT yields a positive payoff for any bidder as we assumed that pT < f(vi) < p0, such that f
is the probability distribution of agents’ valuation.

2. Strategic Communication Phase. We also introduce a strategic communication
phase. Bidders are randomly matched in pairs before or during bidding phase, and when
that happens, matched agents can (simultaneously or sequentially) freely choose to reveal
any information(truth or lie) with the matched bidder with the goal of maximizing utility
calculated by ui. After the strategic communication phase is over, the game then is proceeded
back to the bidding phase such that the auctioneer continue to run price decrement following
from where the auction was left off.

Trust Score. Among bidders, each one keeps track of trust scores for other bidders in the form of
a vector, e.g. bidder i’s credit score vector is given by Ci = {ci,1, ci,2, ...ci,i−1, ci,i+1, ..ci,n}, the
trust scores bidder i assigns to other bidders. ci,j is affected when the bidder j does/does not obey
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the information or proposed action she conveyed during the strategic communication phase. This is
treated as a variant of belief updates across episodes.

While a complete equilibrium analysis of a full-fledged BiD model would be intractable, under-
standing its theoretical advantages is crucial. By examining the equilibrium properties of the final
round, we demonstrate how communication-enabled heterogeneous agents achieve superior allocation
efficiency and welfare outcomes compared to traditional representative agent-based models.

2.2 REPRESENTATIVE ABM v.s. BID

A Single-Round One-Phase Representative ABM Model. We analyze a no-strategic communica-
tion, representative-agent auction that serve as the benchmark system. Under our formulation, such
an traditional Dutch auction can be seen as a Single-Round One-Phase (Bidding only) auction for
two bidders,

Proposition 2.1 A pure strategy Nash equilibrium strategy for the auction above is given by
b∗(vi, ri) = vi − 1/ri.

Since ri(risk-seekingness) weakly increase with vi, we have that b∗ is strictly increasing in vi, which
means that low-valuation bidder never wins, however since dutch auctions run fixed decrement and
discrete biddable prices, low valuation bidders win through tie-breaking mechanisms if we constrain
strategies to be pure. However, empirical evidence suggests that outcomes frequently deviate from
this theoretical prediction in real scenarios and bidders’ behaviors can hardly be regulated to be
’no communication’. These observations motivate us to introduce a communication mechanism
that captures this prevalent feature of real-world auctions. Specifically, our mixed-phase framework
where bidders can engage in private communication before submitting their bids, allowing strategic
information sharing and signaling that may influence final allocations. This extension not only
better aligns our theoretical model with observed market behavior but also provides a rich setting for
analyzing how information exchange affects outcomes, efficiency, and strategic interactions.

A Single-Round Two-Phase BiD Model. To draw comparison, we analyze the last round of a
MRMP-DA with two bidders, which is a Single-Round Two-Phase Dutch Auction. We name them
bidder 1 and bidder 2, without loss of generality; we assume v1 > v2, and before communication,
the two bidders’ common knowledge is that their valuations are drawn from a uniform distribution
U [0, 1]; during strategic communication, bidder 1 reports her valuation first, and bidder 2 reports
conditioned on bidder 1’s report. After strategic communication ends, the Dutch auction starts and
ends when one bidder accepts the bid. Before diving into the main existence theorem, we provide a
proposition when bidders are at the strategic communication phase.

Proposition 2.2 Over-reporting in a single-round Dutch auction is a weakly dominated strategy for
any bidder.

Proof: Since the bidder’s valuation is drawn from a continuous distribution, we have P(vi =
vj) = 0. Therefore, we consider two cases of bidder j over-reporting to bidder i, when vi > vj
and vi < vj , about her valuation vj,i, the notation denotes that direction of message j → i. We
will mainly analyze how over-reporting would change opponents’ behavior.
Case 1. vi > vj , if bidder j over-report his valuation to i such that we denote as vj,i > vj ,
then for bidder i to secure a higher payoff, bidder i accept the price at pt > vj,i with higher
probability since he is afraid that bidder j might steal the item, which as a result bidder j has less
possibility of winning the item.
Case 2. vi < vj , even if bidder j over-report her valuation, bidder i would not accept any pt > vi
since that would yield negative payoff, therefore bidder i would not change her bidding strategy.

Thus proposition gives the equilibrium belief update in the upcoming existence theorem of a Perfect
Bayesian Equilibrium(PBE) in our Single-Round Two-Phase game.

Theorem 2.3 (Existence of Perfect Bayesian Equilibrium.) A PBE exists in the Single-Round Two-
Phase BiD model where the equilibrium belief update is given by 0 < ci < 1 that the opponent is
telling the truth and 1− ci that the opponent is lying based on Prop. 2.2; and ci here correspond to
the trust score we mentioned in Sec. 2. Furthermore, this equilibrium utility is weakly higher than
the equilibrium utility in Single-Round One-Phase case.
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Thm. 2.3 ensures the existence of an equilibrium under a sophisticated and realistic setting. In Table. 1
we numerically solve for this equilibrium and validated that this equilibrium elicit strategic interaction
and welfare gain; and secondly, with a full-fledged BiD model in Sec. 3., we are able to simulate
cases that matches realistic auction markets in Fig. 3.

3 MODELING AND LEARNING HETEROGENEOUS AGENT STRATEGIES

3.1 WORKFLOW OF BID

MRMP-DA Env under Socioeconomic Dynamics. It defines the fundamental structural parameters,
including the number of agents, items, and auction rounds following MRMP-DA Structure in Sec. 2.1
for socioeconomic dynamics. The environments’ functionalities include tracking auction state
progression, managing agent participation status, and calculating reward structures. The environment
generates initial auction conditions, determines agent elimination rules, and maintains an agent state
representation that supports market dynamics.

Heterogeneous Agents with Behavioral Strategies. We design a computational representation of
heterogeneous auction participants. Each agent is characterized by unique and private valuation
distributions, risk preferences, and adaptive behavioral strategies. Agents operate within a discrete
action space comprising five fundamental actions: WAIT, BID, HIGH BLUFF, LOW BLUFF, and
TRUTH, governed by a behavioral strategy that integrates belief modeling and strategic decision-
making.

Agent i’s behavioral strategy in phase ψ ∈ Ψ is defined as a mixed strategy πi(ψt,j) ∈ ∆(Ai(ψt,j))
which is a probability distribution over available actions given a phase. The reason we call it
’behavioral’ is that we programmed the agents to deviate from the strictly rational strategy with
some randomness. And πiψ(a

i|hi) denotes the probability that agent i takes action ai in phase ψ
given information state hi. Agent i’s strategy consists of belief modeling and action selection and is
expressed as

πiψ(a
i|hi) =

∑
θ∈Θ

bi(θ|hi, Ci)π̃iψ(ai|hi, θ, Ci) (1)

where π̃iψ is a belief-conditioned behavioral strategy for agent i in phase ψ. Denote π = (π1, . . . , πn)
as a collection of strategies of all agents, and the expected utility for agent i induced by strategy
profile π as Eπ[ui].

Memory Module for Belief Update. Implemented through a Bayesian learning framework Dekel et al.
(2004); Huang & Zhu (2019); Zhang et al. (2024), the memory enables agents to construct and update
beliefs about other agents’ types. This module maintains communication history, action records, and
dynamic trust scores, allowing for tractable belief updates based on historical interactions.

Given the imperfect information nature of MRMP-DA, agent i form a belief bi : Hi → ∆(Θ) on all
agents’ types based on its observation. We define agent i’s belief on information state hi ∈ Hi as:

bi(θ|hi) def= pi(θ)pi(hi|θ)∑
θ′∈Θ p

i(θ′)pi(hi|θ′) (2)

where pi(θ) is the prior probability of all agents’ types from agent i’s view, and pi(hi|θ) is the
probability that agent i observes hi given joint types θ. For each agent i, the trust score for agent j at
time t+ 1 can be expressed as:

Cit+1[j] = f(Cit [j], hit) (3)

where f is a trust update that considers the current trust score and observed history. Let ∆hit =
hit+1\hit denote the new information contained in hit+1 at step t+ 1 compared to hit, then agent i’s
belief can be updated via Bayes’ rule:

bit+1(θ|hit+1, Cit+1) =
bit(θ|hit, Cit)pi(∆hit|θ)∑

θ′∈Θ b
i
t(θ

′|hit, Cit)pi(∆hit|θ′)
(4)
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And bi0(θ|hi0) = bi0(θ) is set as a uniform distribution, which is an unbiased estimate if there is no
prior information.

MRMP-DA Engine for Efficiency Incentives. orchestrates the strategic interaction mechanism,
managing the descending price auction dynamics, and facilitating the strategic communication phases.
The engine designs communication protocols that incentivize strategic signaling while maintaining
private information. The engine compels agents to deviate from strictly rational decision-making
patterns.

MRMP-DA Engine orchestrates the interaction mechanism in a sequential manner: without informing
either agent, the agent with higher valuation is always selected to report first. This design engages
dynamic in ABM where the second agent can condition their strategy on the first agent’s reported
valuation. Thus, agents incorporate different strategic choices within a discrete action space Z. The
Engine extend the standard behavioral strategy by conditioning it on both the agent’s beliefs and their
strategic choices:

πiψ(a|h) =
∑
θ∈Θ

bi(θ|h)
∑
z∈Z

µi(z|h, θ)π̃iψ(a|h, θ, z) (5)

bi(θ|h) represents the agent’s belief function, µi(z|h, θ) denotes the strategy selection policy, and
π̃iψ(a|h, θ, z) is the belief-conditioned behavioral strategy. This formulation engages agents to
select actions based on their private information and beliefs about other Heterogeneous Agents’
valuations in MRMP-DA Env, either participate directly in the auction (WAIT, BID) or engage
in strategic sequential communication (HIGH BLUFF, LOW BLUFF, TRUTH) that influences other
agents’ beliefs and subsequent actions.

3.2 RL-GUIDED STRATEGY LEARNING

Building upon the theoretical foundations of BiD and the MRMP-DA framework, we implement a
RL approach that leverages Conservative Q-Learning (CQL) Kumar et al. (2020) to learn optimal
bidding and communication strategies. Our implementation addresses three key challenges: (1)
the complex mixed-phase nature of MRMP-DA, (2) the need to maintain strategic diversity while
optimizing behavior, and (3) the requirement for robust offline learning from demonstration data. We
first generate auction trajectories using LLM-guided actions, creating a dataset D = {s, z, r, s′} that
captures the full range of strategic interactions. Different from Kumar et al. (2020); Jin et al. (2024),
the state space s encompasses both explicit auction parameters (e.g., current price, remaining items)
and implicit strategic information (e.g., trust scores, belief distributions). The CQL loss function is
formulated as:

L(ϕ) =ρEs∼D

[
log

∑
z

expQϕ(s, z)− Ez∼D[Qϕ(s, z)]

]

+
1

2
Es,z,s′∼D

[
(Qϕ − BQϕ)2

]
+ λR(ϕ)

(6)

where ρ controls the conservatism-optimality trade-off, B represents the Bellman operator, and we
introduce a regularization term R(ϕ) to maintain strategic diversity. The hyperparameter λ balances
the importance of strategic diversity against pure reward maximization. The learned policy enables
agents to execute sophisticated strategic behaviors that align with our theoretical equilibrium analysis
while adapting to the dynamic nature of practical auction settings. To ensure robust learning, we
implement both episodic and step-based evaluation metrics, tracking not only traditional RL metrics
(TD error, cumulative rewards) but also auction-specific indicators, i.e., price efficiency and trust
evolution.

4 EXPERIMENT

We conduct three experiments to evaluate the performance of our proposed BiD, as a strategic agent-
based system for analyzing dynamic auction: (1) numerically computing and analyzing strategic
communication’s impact on bidders’ equilibrium utility in a two-bidder setting of Thm. 2.3, (2)
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Table 1: Convergence Utility Comparison. Rep. ABM
without (W/O) Communication vs. BiD with (W/)
Strategic Communication between High (H-) Low (L-)
value bidders on utility (Util.) convergence.

High Low Rep. ABM: W/O Communication BiD:W/ Communication

Value Value H-Util. L-Util. L-Win Rate H-Util. L-Util. L-Win Rate

0.50 0.10 0.9363 0.0000 0.00% 1.0242 0.0722 7.22%
0.54 0.14 1.0494 0.0002 0.02% 1.1487 0.1146 9.85%
0.59 0.19 1.1883 0.0002 0.02% 1.3184 0.1171 10.65%
0.63 0.23 1.3768 0.0090 0.89% 1.5470 0.1644 11.81%
0.68 0.28 1.6302 0.1565 15.28% 1.8514 0.2146 13.05%
0.72 0.32 1.9711 0.2142 20.69% 2.2582 0.2667 14.32%
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Figure 3: Bidding Behavior Distribution. Empirical
data (778 NFT Dutch auction bids, over 8 weeks) are
captured by BiD’s heterogeneous agents with regard to
diverse human behaviors and transaction distributions.
Real-market socioeconomic dynamics are reproduced
through 50 multi-round mixed-phase Dutch auctions.
(Sharp similarities, zoom in for more details.)

Table 2: Strategic Analysis Across
Agents. Quantitative evaluation of auc-
tion performance through (1) observation
conditions {W/, W/O prior}, (2) commu-
nication phases {W/, W/O strategic com-
munication}, and (3) agent frameworks
{Representative (Rep.) ABM, Heteroge-
neous (Heterg.) ABM, BiD}, measured by
reward distribution, bidding dynamics, and
market efficiency.

A
ge

nt
s

Metrics
Without Communication With Communication

Rep. ABM Rep. ABM Heterog. ABM BiD
(Avg.) (W/O Prior) (W/ Prior) LLM-guided (Ours)

G
PT

-4
o Total Rewards 185.88 202.90 435.25 450.28

Bid round 4.4 4.5 6.3 6.5
H-Rewards 24.31 25.61 51.98 54.11
L-Rewards 6.54 14.90 16.33 18.24

4o
-M

in
i Total Rewards 172.31 186.21 301.00 293.24

Bid round 4.6 4.9 5.1 5.2
H-Rewards 25.67 28.83 35.82 38.59
L-Rewards 4.53 4.69 16.18 17.24

3-
So

nn
et Total Rewards 89.72 133.74 186.66 201.09

Bid round 4.6 4.6 4.8 5.6
H-Rewards 16.12 28.82 25.17 33.10
L-Rewards Fail 8.30 4.53 11.80

3-
O

pu
s Total Rewards 174.56 193.29 233.47 282.67

Bid round 5.4 4.1 5.5 6.4
H-Rewards 24.45 26.09 43.02 53.70
L-Rewards 8.02 7.96 13.8 18.02

demonstrating its generalizability by studying real-world NFT Dutch auction data which reveals com-
plex socioeconomic phenomena, and (3) evaluating the system’s scalability with heterogeneous agents,
particularly focusing on how low-valuation bidders can compete through strategic communication.

Setup. We conduct experiments using OpenAI{GPT-4o, 4o-mini} Achiam et al. (2023), Claude{3-
Sonnet, 3-Opus} Anthropic (2024) for generating strategic communications under the MRMP-DA
structure. For modeling and learning the bidding and communication strategy, we collect interaction
trajectories as our offline dataset. We implement improved CQL for policy learning (learning rate:5e-
5, Step: 50000, Critic: 2, Interval: 1000, batch size: 64, Alpha: 2.5). We evaluate several variants of
bidding agents: (1) BiD: our full-fledged model with RL-guided strategy and LLM-based framework
with MRMP-DA setting, (2) LLM-guided: initialized agents using LLM for both strategy selection
and communication, can be seen as a simplified Heterogeneous ABM, (3) Representative ABM
W/ W/O prior: benchmark agents W/ WO common prior, while they can not conduct strategic
communication as Sec. 2.2. Each experiment is repeated 25 auctions for statistical significance.

Equilibrium Analysis. We first examine the impact of strategic communication in a two-bidder
setting in Table 1. This allows us to observe how strategic communication mechanism affects
bidders’ equilibrium utility and also validates the existence of equilibria where LLM-based agents
can approximate and converge to.

In the benchmarking representative ABM without communication, low-value bidders consistently
achieve near-zero utility (0.0000-0.2142) even if we allow for a mixed strategy, while high-value
bidders maintain high utilities (0.9363-1.9711). This aligns with our theoretical prediction in
Prop. 2.1 where low-value bidders are disadvantaged. However, with BiD’s strategic communication
mechanism, we observe a consistent improvement in low-value bidder utilities (0.0722-0.2667), and
even better outcomes for high-value bidders (1.0242-2.2582). This equilibrium convergence supports
Thm. 2.3’s prediction that strategic communication can lead to higher equilibrium utilities.

The last two rows of Table. 1 in low valuation bidder’s win rate may seem disadvantageous for the ’w/
communication’ group, however, they actually exemplifies how strategic interaction and risk-seeking
bidding behaviors leads to higher surplus (vi − bi), thus resulting in higher utility with lower win
rate; on the other hand, we can see that the ’w/o communication’ low valuation bidder hardly extract
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positive surplus from winning the bid because utility
win−rate → 1, which means that they win mostly by

bidding their own valuations.

Market Dynamics Analysis. To validate BiD’s generalizability and plausibility in capturing real-
world market dynamics, we analyze a global NFT (non-fungible token) Dutch auction dataset Shannon
et al. (2024). The transparent yet pseudonymous nature provides a unique window for studying
market interactions from real strategic wallet behaviors while maintaining privacy. The ’World of
V’ NFT dataset comprises 778 Dutch auction sales over an 8-week period, with sale prices ranging
from 537.44 VET (price) to 49,513.65 VET. We segmented the sales data into three subgroups by the
final sales price in VET to equal number of samples and plotted the Proportion of Valuation Retained,
which is given by b−pT

p0−pT , such that b is the successful bid price, p0, pT are start and end price of the
auction.

Surprisingly, the three subgroups exhibit very distinct bidding behaviors. For the high price segment,
successful prices are concentrated at high retention rate, which reflected the strong consensus in
valuation for expensive items and the fear of losing it, conversely, for the low price segment, bids
cluster at 20% - 40% retention rate, which shows that bidders are more willing to wait for a better
deal rather than winning the item; whereas for the middle price segment, they exhibit properties of
both H- and L- price segment and shows high frequencies on both ends. With full-fledged BiD model,
we are able to simulate the distribution that matches the real distribution for all price segments.

Strategic Behavior Analysis. Having validated BiD’s capability in modeling real-world market
dynamics, we now evaluate its generalization capabilities and robust performance in capturing
complex auction dynamics (Table 2).

Notably, BiD outperforms both rep. ABMs and heterg. ABM benchmarks across all metrics and
configurations. The higher total rewards achieved by BiD (450.28, GPT-4o) compared to rep. ABMs
(202.90, GPT-4o) shows the theoretical predictions from Thm. 2.3 regarding the benefits of strategic
communication. The increased number of bidding rounds (6.5 for BiD v.s. 6.3, 4.5, 4.4 for benchmark
models) also supports our market dynamics analysis in Fig. 3, suggesting more strategic waiting
behaviors and complex bidding patterns. Moreover, the dual improved distribution of rewards for
both high-value (38.59, 4o-Mini) and low-value (17.24, 4o-Mini) agents under BiD, compared to
the stark disparity in rep. ABMs (H: 28.83, L: 4.69), empirically supports our equilibrium analysis
from Table 1. L-agents have failed to bid on some occasions. the This demonstrates how BiD enables
low-value bidders to achieve better outcomes without compromising the utilities of high-value bidders,
ultimately contributing to improved allocation efficiency and global rewards.

5 DISCUSSION

Socioeconomic Dynamics in Practice. BiD’s architecture emerge from real-world strategic interac-
tions observed in various market mechanisms. Our framework captures essential behavioral patterns
through the integration of strategic communication phases, trust scoring, and belief updates - elements
that naturally arise in empirical market settings. The modular design allows BiD to model complex
phenomena like information cascades, strategic misrepresentation, and trust network formation that
are prevalent in real-world auctions but often overlooked in classical frameworks. This grounding in
empirical observations enables BiD to replicate and analyze market behaviors that emerge from agent
interactions rather than being explicitly programmed.

Scalable Heterogeneous Agent Modeling. BiD achieves scalability by focusing on essential charac-
teristics of Dutch auctions, while preserving key strategic elements. The framework abstracts away
non-critical auction parameters such as item heterogeneity, temporal dynamics, bidding increment
variations, and entry/exit mechanisms, while maintaining crucial features like imperfect information
and private valuations. This selective abstraction, combined with our modular agent architecture,
enables BiD to efficiently scale to large numbers of agents without compromising the fundamental
strategic dynamics. The framework’s ability to handle heterogeneous risk preferences, trust rela-
tionships, and belief systems demonstrates its capability for modeling diverse agent populations in
complex market environments.

RL-guided Agent Strategy Emergence. The learned policies exhibit four key strategic adaptations
that naturally emerge during learning: (1) value-conditional communication patterns, where agents’
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communication strategies adapt based on their position in the value distribution, (2) dynamic bid
timing in response to competitive pressure and trust network evolution, (3) trust-building behaviors
where agents sacrifice immediate gains for future cooperation, and (4) context-aware risk adjustment
based on auction progression. Our RL-guided agents autonomously discover many of the equilibrium
properties. BiD’s formulation is able to capture essential strategic dynamics.

Strategic Communication as an Engine. Our research demonstrates that strategic communication
is not a peripheral feature, but a fundamental dynamic that reshapes agent interactions and outcomes
of an agent network. By modeling communication protocols, we reveal how heterogeneous agents
can strategically exchange information, dynamically update trust, and ultimately alter allocation
efficiency. This approach transcends traditional equilibrium and representative models, showing that
designed communication is a strategic instrument through which agents can adaptively negotiate,
signal, and optimize their outcomes in complex socioeconomic systems. We further explore diverse
BiD variants of strategic communication in Appendix A.2.

Limitation. While BiD models strategic behaviors in Dutch auctions, the framework’s reliance
on pairwise communication for equilibrium analysis may not fully capture the complex network
effects present in large-scale markets where information diffuses through multiple channels simulta-
neously. This abstraction, though enabling tractable analysis, points to opportunities for extending
the framework to model large-scale propagation mechanisms in future work.

6 CONCLUSION

BiD is an agent-based modeling framework designed to capture complex strategic interactions in
Dutch auctions through heterogeneous agent modeling and socioeconomic dynamics, it demonstrates
how integrating strategic communication with behavioral modeling can better explain empirically
observed market phenomena, such as low-valuation winners and dynamic trust-based strategies.
Our theoretical analysis and experimental results validate BiD’s ability to model realistic market
dynamics while maintaining computational tractability. The framework’s success in capturing
emergent behaviors suggests its potential applications beyond auctions to broader market mechanisms
where strategic communication and trust dynamics are crucial.
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acknowledge that improved modeling of strategic behaviors could have broader societal implications.
However, as our framework focuses on analyzing and understanding existing agentic behaviors rather
than manipulating financial market outcomes, we believe the primary impact will be academic and
analytical in nature.

ACKNOWLEDGMENT

This work was supported by the JADS programme and UK Research and Innovation [UKRI Centre
for Doctoral Training in AI for Healthcare grant number EP/S023283/1].

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Li An, Volker Grimm, Abigail Sullivan, BL Turner Ii, Nicolas Malleson, Alison Heppenstall, Christian
Vincenot, Derek Robinson, Xinyue Ye, Jianguo Liu, et al. Challenges, tasks, and opportunities in
modeling agent-based complex systems. Ecological Modelling, 457:109685, 2021.

Anthropic. The claude 3 model family: Opus, sonnet, haiku. Online, https://www.anthropic.com,
2024.

Robert L Axtell and J Doyne Farmer. Agent-based modeling in economics and finance: Past, present,
and future. Journal of Economic Literature, pp. 1–101, 2022.

Flavius Badau and Nicholas Rada. Disequilibrium effects from misallocated markets: An application
to agriculture. Agricultural Economics, 53(4):592–604, 2022.

Ravi Bapna, Paulo Goes, Alok Gupta, and Yiwei Jin. User heterogeneity and its impact on electronic
auction market design: An empirical exploration. MIS quarterly, pp. 21–43, 2004.

Michael Batty. Cities and complexity: understanding cities with cellular automata, agent-based
models, and fractals. The MIT press, 2007.

Jennifer Boyd, Rebekah Wilson, Corinna Elsenbroich, Alison Heppenstall, and Petra Meier. Agent-
based modelling of health inequalities following the complexity turn in public health: a systematic
review. International Journal of Environmental Research and Public Health, 19(24):16807, 2022.

Carsten M Buchmann, Katrin Grossmann, and Nina Schwarz. How agent heterogeneity, model
structure and input data determine the performance of an empirical abm–a real-world case study
on residential mobility. Environmental modelling & software, 75:77–93, 2016.

Alessandro Caiani, Alberto Russo, Antonio Palestrini, and Mauro Gallegati. Economics with
heterogeneous interacting agents. New Economic Windows, Springer Series. DOI, 10:978–3, 2016.

Yufeng Chen, Liyan Xu, Xiao Zhang, Zilin Wang, Hailong Li, Yansheng Yang, Hong You, and Dihua
Li. Socio-econ-ecosystem multipurpose simulator (seems): An easy-to-apply agent-based model
for simulating small-scale coupled human and nature systems in biological conservation hotspots.
Ecological Modelling, 476:110232, 2023.

Matthieu Cristelli. Complexity in financial markets: modeling psychological behavior in agent-based
models and order book models. Springer Science & Business Media, 2013.

Hiroshi Deguchi. Economics as an agent-based complex system: toward agent-based social systems
sciences. Springer Science & Business Media, 2011.

11



Published as a conference paper at ICLR 2025 Workshop World Models

Eddie Dekel, Drew Fudenberg, and David K Levine. Learning to play bayesian games. Games and
economic behavior, 46(2):282–303, 2004.

Daniel Friedman. The double auction market institution: A survey. In The double auction market, pp.
3–26. Routledge, 2018.

Irving L Glicksberg. A further generalization of the kakutani fixed point theorem, with application to
nash equilibrium points. Proceedings of the American Mathematical Society, 3(1):170–174, 1952.

Vitali Gretschko and Achim Wambach. Information acquisition during a descending auction. Eco-
nomic Theory, 55:731–751, 2014.

Eric Guerci, Alan Kirman, and Sonia Moulet. Learning to bid in sequential dutch auctions. Journal
of Economic Dynamics and Control, 48:374–393, 2014.

Michael J Hautus, Neil A Macmillan, and C Douglas Creelman. Detection theory: A user’s guide.
Routledge, 2021.
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A APPENDIX

A.1 REPRESENTATIVE ABM: PROOF FOR PROPOSITION 2.1.

In a two-bidder Dutch auction where valuations are drawn independently from U[0,1] and bidders
have exponential utility functions u(x) = erx with heterogeneous risk parameters, the equilibrium
bidding strategy is β(v, r) = v − 1

r .

Consider a Dutch auction where the price p starts high and decreases continuously. At each price p, a
bidder must decide whether to accept the current price. Let β(v, r) denote the price at which a bidder
with value v and risk parameter r plans to accept. At the optimal acceptance price b, the expected
utility of accepting must equal the marginal expected utility of waiting:

d

dp

∣∣∣∣
p=b

E[u(v − p)|p ≤ b] = 0

Let F (β−1(p)) denote the probability that the other bidder has not yet accepted at price p. Then the
expected utility is:

E[u(v − p)|p ≤ b] = F (β−1(b))er(v−b)

Taking the derivative with respect to b:

d

db
[F (β−1(b))er(v−b)] = (β−1)′(b)er(v−b) − F (β−1(b))rer(v−b) = 0

Conjecture a linear bidding strategy of the form:

β(v, r) = v − c(r)

Therefore:
β−1(b) = b+ c(r)

(β−1)′(b) = 1

Substituting into the FOC:

er(v−b) − (b+ c(r))rer(v−b) = 0

1− (b+ c(r))r = 0

b+ c(r) =
1

r

At equilibrium, b = β(v, r) = v − c(r), so:

v − c(r) + c(r) =
1

r

v =
1

r

Therefore:

c(r) =
1

r

And the equilibrium bidding strategy is:

β(v, r) = v − 1

r

To verify this is indeed an equilibrium, since the strategy is strictly increasing in v, ensuring higher-
value bidders accept earlier. No bidder has incentive to deviate as accepting earlier reduces payoff if
won, while accepting later reduces probability of winning.
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A.2 BID: SIMULTANEOUS COMMUNICATION

(Existence of Perfect Bayesian Equilibrium) A mixed strategy PBE equilibrium exists for the
last round of MRMP-DA with Simultaneous Reporting.

Let Σ denote the space of probability measures over [0, 1]× [0, 1], representing mixed strategies over
prices and reports, endowed with the weak* topology. The expected payoff for a agent using mixed
strategy y against opponent’s strategy σ is:

E[π(y, σ)] =

∫ ∫ ∫
[c · 1{bi > bj} · ef(v)(v−bi)+

(1− c) ·
∫ 1

v̂j

1{bi > bj} · ef(v)(v−bi)dw]dσ(bj , v̂j)dy(bi, v̂i)

We establish the following properties:

Lemma A.1 (Strategy Space) Σ is nonempty, convex, and compact in the weak* topology. 3

Nonemptiness follows directly from the existence of pure strategies. Convexity follows directly
from the definition of probability measures. First, we show that Σ is a subset of the dual space of
continuous functions on [0, 1]× [0, 1].
As for the compactness, let C([0, 1]× [0, 1]) be the space of continuous functions on [0, 1]× [0, 1]
with supremum norm.

By definition, any σ ∈ Σ is a probability measure, so for any f ∈ C([0, 1]× [0, 1]):∣∣∣∣∫ fdσ

∣∣∣∣ ≤ ∥f∥∞

Therefore, Σ is contained in the unit ball of the dual space C([0, 1]× [0, 1])∗.

Then we need to show that Σ is closed in the weak* topology. To see this, let {σn} be a sequence
in Σ converging to σ in the weak* topology. Then first, for any non-negative f ∈ C([0, 1]× [0, 1]):∫
fdσ ≥ 0 by weak* convergence, and second,

∫
1dσ = limn→∞

∫
1dσn = 1. Therefore we get

that σ is a probability measure, so σ ∈ Σ.

By the Banach-Alaoglu theorem, the unit ball in C([0, 1]× [0, 1])∗ is compact in the weak* topology.
Since Σ is a closed subset of a compact set in the weak* topology, it is compact in the weak* topology.

To establish sequential compactness, let {σn} be a sequence in Σ. By weak* compactness, there exists
a subsequence {σnt

} and a measure σ ∈ C([0, 1]× [0, 1])∗ such that for all f ∈ C([0, 1]× [0, 1]):

lim
t→∞

∫
fdσnt =

∫
fdσ

By the closedness shown above, σ ∈ Σ.

Lemma A.2 (Payoff Continuity) E[π(y, σ)] is continuous in the weak* topology.

Consider sequences yn → y and σn → σ in the weak* topology. The integrand

h(bi, v̂i, bj , v̂j) =c · 1{bi > bj} · ef(v)(v−bi)+

(1− c) ·
∫ 1

v̂j

1{bi > bj} · ef(v)(v−bi)dw

is bounded since ef(v)(v−bi) is bounded on [0, 1] × [0, 1]. The discontinuities in the indicator
function occur only on the measure-zero set {bi = bj}. By the bounded convergence theorem
|E[π(yn, σn)]− E[π(y, σ)]| → 0 as n→ ∞

3the weak* topology on the space of probability measures Σ over [0, 1]× [0, 1] is defined by convergence
against continuous bounded functions. Specifically, a sequence of measures {σn} converges to σ if:

∫
fdσn →∫

fdσ → for all continuous bounded functions f
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Lemma A.3 (Upper Hemicontinuity) The best response correspondence BR : Σ → 2Σ is upper
hemicontinuous.

Take any alternative strategy z ∈ Σ (a probability measure over [0, 1]× [0, 1]). Since yn ∈ BR(σn),
for each n:

E[π(yn, σn)] =

∫ ∫ ∫
[c · 1{pi > pj} · ef(v)(v−pi)+

(1− c) ·
∫ 1

Rj

1{pi > pj} · ef(v)(v−pi)dw]dσn(pj , Rj)dyn(pi, Ri)

≥ E[π(z, σn)]

Consider |E[π(yn, σn)]− E[π(y, σ)]|. This difference converges to zero because:

• The integrand is bounded by some M (due to the boundedness of the exponential term on
[0, 1])

• The indicator function’s discontinuities occur on measure-zero set {pi = pj}
• σn → σ and yn → y in weak* topology

Therefore, ∃N1 such that for n > N1: |E[π(yn, σn)]− E[π(y, σ)]| < ε/2

Similarly, |E[π(z, σn)] − E[π(z, σ)]| → 0. Therefore ∃N2 such that for n > N2: |E[π(z, σn)] −
E[π(z, σ)]| < ε/2

Let N = max{N1, N2}. For n > N :

E[π(y, σ)] > E[π(yn, σn)]− ε/2 ≥ E[π(z, σn)]− ε/2 > E[π(z, σ)]− ε

Since ε, z was arbitrary, E[π(y, σ)] ≥ E[π(z, σ)] and y ∈ BR(σ)

The strategy space Σ is nonempty, convex, and compact by Lemma A.1 The payoff function is
continuous by Lemma A.2, and the best response correspondence is upper hemicontinuous with
nonempty, convex values by Lemma A.3. Therefore, by Glicksberg’s fixed point theorem Glicksberg
(1952), there exists a mixed strategy σ∗ such that σ∗ ∈ BR(σ∗), establishing the existence of a
mixed strategy equilibrium.

A.3 BID: SEQUENTIAL COMMUNICATION

Proof for Theorem 2.3

Theorem A.4 (Existence of Perfect Bayesian Equilibrium) A Perfect Bayesian Equilibrium exist
for the last round of MRMP-DA with Sequential Reporting.

The proof is rather similar to the one with the simultaneous reporting scheme; the only difference
comes from low valuation’s reporting strategy such that it now maps from her own valuation and
opponent’s report to an optimal report.

1) First, we define the strategy spaces. Let Σi be the space of probability measures over [0, 1]× [0, 1]
representing mixed strategies over reports and bids, endowed with the weak* topology. For σi ∈ Σi:

• σRi : [0, 1] → ∆([0, 1]) maps types to distributions over reports

• σBi : [0, 1] × [0, 1] × [0, 1] → ∆([0, 1]) maps (type, own report, opponent’s report) to
distributions over bids

2) For any observed report v̂H , the posterior belief µ(·|v̂H) is:

µ(vH |v̂H) = c · σ
R
H(v̂H |vH)f(vH)∫
σRH(v̂H |v)f(v)dv

+ (1− c) · U [v̂H , 1]

where f is the uniform density on [0, 1].
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3) The low valuation bidder’s best response problem is:

BRL(vL, v̂H) = arg max
σL∈ΣL

∫ 1

v̂H

∫ vL

0

∫ 1

0

πL(v̂L, bL, v̂H , bH , vL, vH)

dσBL (bL|vL, v̂L, v̂H)dσRL (v̂L|vL)dµ(vH |v̂H)

subject to v̂L ≤ vL (no over-reporting constraint).

4) The high valuation bidder’s best response problem is:

BRH(vH) = arg max
σH∈ΣH

∫ vH

0

∫ vH

0

∫ 1

0

πH(v̂H , bH , v̂L, bL, vH , vL)

dσBH(bH |vH , v̂H , v̂L)dσRH(v̂H |vH)dF (vL)

subject to v̂H ≤ vH .

5) Define correspondence Φ : ΣH × ΣL × P(V ) → 2ΣH×ΣL×P(V ) by:

Φ(σH , σL, µ) = (BRH(σL, µ), BRL(σH , µ),Bayes(σH , σL))

6) Φ is nonempty, convex and compact with the same argument from theorem ??.

Lemma A.5 (Closed Graph Property) The correspondence Φ : ΣH × ΣL × P(V ) →
2ΣH×ΣL×P(V ) has a closed graph in the product topology.

Take sequences:
(σnH , σ

n
L, µ

n) → (σH , σL, µ) in the product topology

(σ′n
H , σ

′n
L , µ

′n) ∈ Φ(σnH , σ
n
L, µ

n)

with
(σ′n
H , σ

′n
L , µ

′n) → (σ′
H , σ

′
L, µ

′) in the product topology

We need to show that (σ′
H , σ

′
L, µ

′) ∈ Φ(σH , σL, µ).

First, consider the best response correspondence for the high valuation bidder. Since σ′n
H ∈

BRH(σnL, µ
n), we have for all alternative strategies σ̃H ∈ ΣH :∫ vH

0

∫ vH

0

∫ 1

0

πH(v̂H , bH , v̂L, bL, vH , vL)dσ
′n
H (bH |vH , v̂H , v̂L)dσ′n

H (v̂H |vH)dF (vL)

≥
∫ vH

0

∫ vH

0

∫ 1

0

πH(v̂H , bH , v̂L, bL, vH , vL)dσ̃H(bH |vH , v̂H , v̂L)dσ̃H(v̂H |vH)dF (vL)

This inequality converges because:

1) The payoff function πH can be decomposed as:

πH = ef(vH)(vH−bH) · 1{bH > bL}

2) The exponential term ef(vH)(vH−bH) is bounded on [0, 1]× [0, 1] by some constant M since f(vH)
is continuous.

3) The indicator function 1{bH > bL} creates discontinuities only on the measure-zero set {bH =
bL}.

4) By the bounded convergence theorem Royden & Fitzpatrick (2010):

lim
n→∞

∫ vH

0

∫ vH

0

∫ 1

0

πHdσ
′n
Hdσ

′n
HdF

=

∫ vH

0

∫ vH

0

∫ 1

0

πHdσ
′
Hdσ

′
HdF
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Therefore, in the limit:
σ′
H ∈ BRH(σL, µ)

Similar argument holds for the low valuation’s best response.

For the belief component, note that with Bayes updating, we have

µ′n(vH |v̂H) = c · σ
n
H(v̂H |vH)f(vH)∫
σnH(v̂H |v)f(v)dv

+ (1− c) · U [v̂H , 1]

As n→ ∞, the first term converges by weak* convergence of σnH and continuity of the ratio and the
second term is constant in n thus automatically converges.

Thus, (σ′
H , σ

′
L, µ

′) ∈ Φ(σH , σL, µ), establishing that Φ has a closed graph.

Best responses exist by compactness of strategy spaces, convexity follows from linearity of expected
utility, and Bayes update is single-valued, thus Values of Φ are nonempty and convex.

7) By Kakutani’s fixed point theorem:

∃(σ∗
H , σ

∗
L, µ

∗) ∈ Φ(σ∗
H , σ

∗
L, µ

∗)

This fixed point constitutes a PBE because:

• Strategies are mutual best responses given beliefs
• Beliefs are consistent with Bayes’ rule where possible
• Sequential rationality holds at each information set

Then, we show that the equilibrium utility is weakly higher than the Single-Round One-Phase DA
case by showing that our Single-Round Two-Phase DA has a larger strategy space.
To simulate the Single-Round One-Phase case, we can let bidder 1 randomize reporting uniformly
over [0, 1] and bidder 2 ignore the reporting and play the Single-Round One-Phase equilibrium
strategy, therefore, we know that both bidders can be weakly better off because the strategy space is
strictly larger.
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