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ABSTRACT

The advent of large-scale foundation models has revolutionized EEG analysis;
however, their ability to generalize to Out-of-Distribution (OoD) brain signals re-
mains limited due to the inherent variability in physiological states, individual
differences, and experimental setups. To address these challenges, we introduce
Beatrix, a novel spectral EEG foundation model that achieves state-of-the-art OoD
generalization across diverse brain activity tasks. Beatrix leverages a unique ana-
lytic wavelet-based spectral tokenization that captures the intricate non-stationary
dynamics of EEG signals, and employs a semi-causal generative modeling ap-
proach during pre-training, enabling it to learn expressive latent representations
capable of both interpolation and extrapolation across temporal and frequency
domains. For fine-tuning, we propose an innovative Contrastive Invariant Fine-
Tuning (CIFT) method that enhances domain-invariant learning without the need
for explicit environment labels, thus significantly improving OoD generalizability
in a parameter-efficient manner. Our multi-view Transformer architecture further
integrates both spectral and temporal information, allowing Beatrix to compre-
hensively model EEG signals across channels. Extensive experiments demon-
strate that Beatrix consistently outperforms existing EEG models in tasks such as
seizure detection and forecasting, auditory neural decoding, motor imagery, and
sleep staging, showcasing its robustness and broad applicability. By achieving su-
perior performance with reduced fine-tuning costs, Beatrix represents a significant
advancement in the field of EEG foundation models.

1 INTRODUCTION

The advent of modern neuroelectrophysiological techniques such as electroencephalography (EEG)
has revolutionized our capacity to monitor neural functions with high precision, offering unprece-
dented insights into brain activity. These advances are particularly crucial for diagnosing neuro-
logical disorders and deepening our comprehension of brain function. Inspired by the success of
foundation models in other domains, we have witnessed a surge of interest in developing analogous
models for EEG analysis (Jiang et al.; Zhang et al., 2024; Yuan et al., 2024a;b; Wang et al., 2023;
Yang et al., 2023). These EEG Foundation Models (EFMs), developed on time or time-frequency
(spectral) domain representation of raw brain records, exhibit the potential to markedly enhance
EEG-based applications such as neural decoding and brain-computer interfaces, and to refine diag-
nosis and treatment strategies for neurological conditions like epilepsy.

Despite their promise, the development of general-purpose and domain-specific EFMs faces sig-
nificant challenges due to the inherent complexity and variability of EEG signals. These signals
are affected by a wide range of factors, such as age, cognitive state, eye movements, etc.. (Croce
et al., 2020). This variability is further amplified by differences in electrode setups and experi-
mental conditions across different institutions, making it difficult for EFMs to generalize well to
unseen data. Although efforts have been taken to promote robustness to distribution shifts in EEG
records, it is difficult to define and partition domains or environments, a necessity explicitly or
implicitly assumed for many OoD generalization techniques (Lai & Wang, 2024; Creager et al.,
2021), as the EEG signal is inherently nonstationary. This challenge is especially pronounced in
epilepsy-related tasks, where the diversity of seizures and the high inter- and intra-subject variabil-
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ity in EEG recordings—spanning interictal, pre-ictal, and ictal phases—complicate generalization
effortss (Yuan et al., 2024b; Guerrini et al., 2023; Assogba et al., 2010). Furthermore, most exist-
ing EFMs rely primarily on temporal domain representation, with few models leveraging time-
frequency or spectral one. This potentially limits their ability to fully capture the complexity of
EEG data, particularly in tasks where pure time-domain approaches may fall short (Ma et al., 2021).

While numerous large-scale, publicly accessible datasets support seizure detection research, a
scarcity exists for the intricate cases of rare epilepsy types and seizure forecasting due to privacy
concerns. Consequently, many existing EFMs (Yuan et al., 2024a; Jiang et al.; Yuan et al., 2024b)
have relied on private data for pre-training and/or evaluation, complicating the advancement of fur-
ther research.

To address these challenges, we present Beatrix, a pioneering spectral EFM designed for robust out-
of-distribution (OoD) generalization. Beatrix is subjected to a two-stage pre-training process using
the most extensive open-source EEG corpus to date, spectrally tokenizing EEG signals and disen-
tangling time-frequency and channel interactions to capture comprehensive spatiotemporal patterns.
Furthermore, we introduce a novel environment-aware fine-tuning method known as Contrastive
Invariant Fine-Tuning (CIFT). This method learns domain-invariant features without the need for
explicit environment information, thereby bolstering the downstream performance over challenging
benchmarks out-of-disease and out-of-institute seizure-related asks. CIFT achieves this by lever-
aging new information from the interaction between spectrally and temporally encoded prompts,
enhancing the model’s robustness to distribution shifts. Remarkably, our approach substantially
reduces computational costs compared to traditional full-parameter tuning. This improvement in
generalization is also observed across a variety of OoD generalization baselines.

Figure 1: Overview of Our Work. Illustration of Beatrix, an EEG foundational model consists
of Spetral and Multi-View Transformer, which perform self-attention on spectral token embeddings
within each channel and between all channels, respectively. Firstly, it is pre-trained on spectral to-
kens. Secondly, it is fine-tuned on temporal and spectral tokens through invariance-aware contrastive
learning with environment inference to improve OoD generalization without explicit domain parti-
tion.

Our main contributions are summarized as follows:

A Spectral EEG Foundation Model for Epiletic and Non-epileptic Subjects We present Beat-
rix, a spectral EEG foundation model pre-trained on over 32,900 hours of EEG data from both
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healthy and diseased individuals. Beatrix demonstrates excellent generalizability across heteroge-
neous epilepsy patients and shows promise in various biomedical applications, including auditory
brain decoding, motor imagery and sleep staging.

Environment-Aware Contrastive Fine-Tuning for OoD Generalization We propose a novel
environment-aware fine-tuning method that bolsters domain-invariant representation without ex-
plicit environment information. Beatrix, fine-tuned with CIFT, achieves state-of-the-art performance
in OoD seizure detection and forecasting, as well as non-epilepsy tasks such as auditory and motor
imagery decoding and sleep staging.

Spectrotemporal Integration of EEG Representation Our ablation study indicates that the inte-
gration of spectral and temporal information during fine-tuning is crucial for significant improve-
ments in performance.

2 PRELIMINARIES

2.1 TASK FORMULATION

We consider an EEG foundation model parameterized by θ unsupervisedly pre-trained on large-
scale EEG corpus, which will be fine-tuned on various downstream datasets involving heterogeneous
physiological and neurological conditions. The EEG recording of a subject is a multivariate time
series X1:T ∈ RT×N ,where T is the number of sampling points, and N is the number of electrodes,
which may alter depending on experimental settings. Given a spectral representation of EEG sample
X1:T in the time-frequency domain S ∈ RT×F×N , where F is the number of frequencies, and the
corresponding label y ∈ {0, 1}C , where C is the number of classes, defined and annotated by
clinical electroencephalographers, the main problem of interest is OoD generalizable fine-tuning for
K-class EEG recognition task, in which different subjects or disease subtypes can be regarded as a
domain or environment. Our goal is to learn a very small proportion of fine-tunable parameters ∆θ,
which is typically low-rank, so that the adapted model parameterized by θ + ∆θ can generalize to
unseen environments.

Formally, for a given heterogeneous EEG dataset D := {(Xi, yi) ∈ X × Y}ni=1, where X and Y
denote the input and target space, respectively, and the set of environment labels designated for each
sample Etrain, which is not necessarily available during learning. We aim to learn f in function
space F parameterized by θ + ∆θ, which is robust to distribution shifts with regard to the loss
function ℓ : Y × Y × Etrain → R and joint distribution PXe,ye through a minmax optimization
problem (Arjovsky et al., 2019; Lu et al., 2021)

min
f∈F

max
e∈Etrain

EPXe,Y e ℓ(f(x), y; e), (1)

which is the average between the predicted and the target value yi in e ∈ Etrain.

2.2 RELATED WORK

OoD Generalization in EEG-Based Applications Out-of-Distribution (OoD) generalization in
EEG-based biomedical applications is a significant challenge, particularly when dealing with hetero-
geneous data from diverse domains. The focus is on extracting consistent features across domains
while discarding misleading ones. Wang et al. propose data augmentation techniques to address
OoD scenarios (Wang et al., 2024b), while others enhance domain generalization through mutual
reconstruction strategies (Wang et al., 2022b) and mutual information-based methods (Jeon et al.,
2021). Yuan et al. present preprocessing techniques to improve the OoD generalizability of pre-
trained models (Yuan et al., 2024b).

EEG Foundation Models The development of foundational models for EEG has gained momen-
tum. Models like LaBraM (Jiang et al.), designed for general EEG analysis, and Brant (Zhang
et al., 2024), tailored for intracranial signals, have shown promise in seizure detection and fore-
casting. PPi (Yuan et al., 2024b), pre-trained on a large SEEG corpus, demonstrates robustness to
domain shifts and achieves state-of-the-art results in subject-independent seizure detection. Brant-
2, building on this, incorporates both stereo- and scalep-electroencephalography modalities during
pre-training (Yuan et al., 2024a).
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See more related work in Appendix F.

3 METHODS

3.1 TIME-FREQUENCY REPRESENTATION AND TOKENIZATION

Analytic Wavelet Spectral Analysis For effective EEG signal analysis, accurately capturing the
complex, non-stationary dynamics of brain activity is essential, with time-frequency representation
being key. Techniques like Short-Time Fourier Transform (STFT) and Continuous Wavelet Trans-
form (CWT) are utilized to achieve this balance. However, STFT faces limitations due to the fixed
trade-off between temporal and spectral resolutions, which can result in spectrogram leakage when
the window length is set, impacting the accuracy of the analysis (Wang et al., 2023). The CWT
addresses these limitations by decomposing the signal into a set of dilated and translated versions of
a predefined mother wavelet. This approach allows for a more favorable balance between temporal
and spectral resolutions compared to STFT (Arts & van den Broek, 2022).

In this work, we employ the Analytic Wavelet Transform (AWT) Lilly & Olhede (2010), a complex-
valued extension of CWT, to extract both magnitude and phase information from the time-scale or
time-frequency domain. This approach is especially beneficial for non-stationary signals, where
frequency content fluctuates over time. The AWT provides a more accurate estimation of instanta-
neous frequency and superior frequency reassignment properties than real-valued CWT and STFT.
Formally, the AWT of a signal f(t) with respect to a mother wavelet ψ(t) is defined as

AWTf (a, b) =
1√
|a|

∫ ∞

−∞
f(t)ψ∗

(
t− b

a

)
dt, (2)

where a and b are scaling and translation parameters controllinnf the scale and position of the
wavelet. ψ∗(t) represents the complex conjugate of ψ(t).

Mother wavelets from Generalized Morse Wavelet (GMW) family, defined by its Fourier transform

ψ̂β,γ(ω) =

∫ ∞

−∞
ψβ,γ(t)e

−iωtdt = cβ,γΘ(ω) ωβe−ωγ

, (3)

where cβ,γ is the normalization factor, Θ(·) is the Heaviside function, and β and γ are two control-
ling parameters, are used within the scope of this work. During pre-training, we uniformly sample
β from [1, 16] and γ from [0.5, 2.0] uniformly to ensure our model can handle diverse spectral
representations and minimize biases resulted from wavelet shape variations. The log-transformed
amplitude spectrogram of the signal undergo z-score normalization to ensure numerical stability.
Unless otherwise stated, we use GMW mother wavelet with β = 16, γ = 1 during fine-tuning.

Spectral Tokenizer Previous studies (Jiang et al.; Cai et al., 2023; Yuan et al., 2024b) have in-
vestigated time-domain EEG tokenization using techniques such as Vector-Quantized Variational
Autoencoders (VQVAEs) and linear projections. We propose a spectral tokenizer that transforms
raw EEG signals into a rich time-frequency representation using a Vector-Quantized Generative
Adversarial Network (VQGAN). This model employs a linear patch embedding layer followed by
a Transformer and convolutional downsampling layers, which efficiently reduce the input spectro-
grams into a lower-resolution latent space. A decoder is then trained to reconstruct the input from
the quantized latent vectors. The VQGAN encoder is used as the tokenizer. Further details are
provided in Appendix C.1.

Temporal Tokenizer During the fine-tuning phase, we employ a convolutional neural network
to encode temporal features from raw EEG signals, which complements the spectral domain fea-
tures in our proposed contrastive fine-tuning approach. Unlike spectral tokenizer, this network is
uniquely trained-from-scratch for each specific downstream dataset. Further details are provided in
Appendix C.3.

3.2 MAIN ARCHITECTURE

Following recent work on foundation models, our network is based on Transformer. Previous EEG
foundation models (Zhang et al., 2024; Yuan et al., 2024a; Jiang et al.) have primarily focused on
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processing a single or fixed number of EEG channels. By contrast, Beatrix employs two distinct
Transformers. The first, termed the spectral Transformer, captures interactions among tokens
within the same channel. The second, known as the multiview Transformer, captures interactions
among tokens across different channels. Additionally, inspired by previous work such as (Shazeer,
2020; Nguyen et al., 2024), we introduce several minor modifications: 1) SwiGLU. We replace
the feedforward layer with SwiGLU (Shazeer, 2020), a gated linear unit with Swish nonlinearity to
improve network capacity and expressivity. 2) Feature Scaling. Transformer’s expressivity may
deteriorate due to the low-pass nature of attention, which causes oversmoothing issue where token
become identical as the depth grows (Nguyen et al., 2024; Wang et al., 2022a; Shi et al., 2022).
Therefore, we adds a feature scaling layer (Nguyen et al., 2024) after multi-head self-attention.
After being trained on the curated pre-training data corpus, the tokenizer is frozen and the main
part of Beatrix is pretrained on the tokenized data. The tokenizer extract latent embeddings for
each channel independently and leave modeling of the interchannel correlations to the main part of
Beatrix. More details about the main architecture can be found in Appendix C.2.

3.3 MODEL DEVELOPMENT AND DOWNSTREAM ADAPATION

Open-source pre-training EEG corpus We have assembled an extensive corpus, exceeding 32,900
hours, for pre-training purposes, from a diverse arrange of publicly available datasets that have been
free of security and privacy issues for academic purposes. A comprehensive description of the data
collection, cleansing, and preprocessing procedures can be found in Appendix E. To our knowledge,
this is arguably one of the largest openly accessible EEG corpus curated specifically for pre-training.

Two-Stage Pre-Training We adopt a two-stage pre-training process of Beatrix, beginning with
training the VQGAN tokenizer, which is then frozen while the foundational model is trained on the
same EEG data corpus. As illustrated in Figure 2, unlike previous work (Jiang et al.; Zhang et al.,
2024; Wang et al., 2023), we adopt a semi-causal generative modeling approach. The purpose is
to enforce the model to acquire not only the ability to interpolate corrupted spectral patches but
to extrapolate across both temporal and frequency dimensions as well, allowing for developing a
genuinely expressive latent representation.

Formally, given an input sequence x = (x1, x2, . . . , xn), we assume there are k non-causal spans
{xm1

s1 , . . . ,x
mk
sk

}, where xmi
si = (xsi , . . . , xmi−1). Within each non-causal span xmi

si , we randomly
replace a proportion of the tokens with a special placehoder [MASK] and use bidirectional attention
to obtain contextual information. Unidirectional attention is used to predict tokens autoregressively
in causal spans. Negative log-likelihood of reconstructed spectrograms are used as learning goal

LNLL = Ex

k∑
i=0

s(i+1)∑
t=mi

logP (xt|x<t, {xmj
sj }j<i,unmasked)P ({xmj

sj }masked|{xmj
sj }unmasked), (4)

where m0 = 1, s(k+1) = n, and {xmj
sj }j<i = {xm1

s1 , · · · ,x
m(i−1)
s(i−1)

}. Non-causal spans and their
positions are randomly sampled and do not overlap with one another. More details about pre-training
are available in Appendix D.

Figure 2: Illustration of Semi-Causal Generative Modeling in Pre-training of Beatrix. (a)
Masked AWT spectrogram processed by the tokenizer and encoder, where masked tokens within
the non-causal span are highlighted in black, and those within the causal span are marked in dark
red. (b) Full AWT spectrogram reconstructed by the decoder, a step that is utilized during pre-
training only.

Contrastive Invariant Fine-Tuning We design Contrastive Invariant Fine-Tuning (CIFT) to adapt
our spectrally pre-trained foundation model to downstream datasets with minimal additional train-
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able parameters. CIFT leverages parameter-efficient low-rank adapters to reduce computational cost
while facilitating out-of-distribution (OoD) generalization.

At the core of CIFT is an automated prompt generation system powered by cross-attention mecha-
nisms. This system devises continuous prompts based on token embeddings from both the spectral
tokenizer and a complementary temporal tokenizer. The temporal tokenizer is equipped with induc-
tive biases optimized for handling multiscale time-series data, ensuring that the prompts effectively
capture the nuances of EEG signals across both spectral and temporal domains. These prompts are
instrumental in guiding the main tokens, which are derived from the time-frequency representation
of EEG data by the spectral tokenizer. The resulting embeddings are then utilized to meet the spe-
cific objectives of the downstream tasks. Furthermore, CIFT includes an automatic environment
partitioner that segments the training data into a predefined number of virtual environments. This
partitioning is achieved without relying on costly or privacy-sensitive domain annotation informa-
tion, which is commonly required by many OoD generalization algorithms.

The technical details of CIFT are provided as follows.

Parameter-efficient adaptors CIFT incorporates three distinct parameter-efficient adapters, draw-
ing inspiration from parameter-efficient fine-tuning strategies employed in large language models.
These adapters enable the model to maintain its pretrained parameters θ fixed while introducing only
a few adaptable, low-rank parameters ∆θ into the existing architecture.

As shown in Figure 3 (a), our approach employs the following trainable modules: 1) Bottleneck
adapter (Houlsby et al., 2019): A low-rank multilayer perceptron (MLP) with ReLU activation is
integrated sequentially over the SwiGLU and attention modules. 2) LoRA adapter (Hu et al., 2021):
It is implemented by inserting low-rank decomposition linear projection layers into the key-value
projection layer of the attention modules parallelly. 3) Layer Normalization: The parameters of
the normalization layers are made trainable to enhance adaptability during fine-tuning. Our empir-
ical findings show that these adapters reduce the memory footprint and improve OoD performance
compared to full-parameter tuning while offering greater adaptability than linear probings (Kumar
et al., 2022; Alain & Bengio, 2018) for assessing large pre-trained models. The rank of bottleneck
and LoRA adapters, denoted by r, is a tunable hyperparameter.

Figure 3: (a) Illustration of Trainable Modules During Fine-Tuning. Three types of trainable
modules are inserted to pre-trained Transformer blocks to achieve low-resource generalization on
downstream tasks. (b) Illustration of Out-of-Domain Generalization Tasks for EEG in Our Work.

Contrastive fine-tuning loss We adopt a dual approach to our loss functions, working together to-
wards a common objective. For classification tasks, we implement Cross-Entropy (CE) loss, the
standard fine-tuning target in previous studies. While this straightforward classification loss has
yielded promising results through various fine-tuning strategies, we can further enhance it by ad-
dressing potential biases in the training environments. As illustrated in Figure 3 (b), EEG data is
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highly heterogeneous; even samples from the same subject may not neatly fit into distinct domains
conducive to effective domain adaptation or generalization.

Given a common trainable prompt W = {wi, . . . , wL} ∈ Rd×L, where d represents the model di-
mension and L the prompt length, we introduce an automated prompt generation method to enhance
the richness of EEG information: spectral and temporal prompt generation. In this method, spec-
tral and temporal tokens are processed through a cross-attention module, yielding modal-specific
prompts U = {ui, . . . , uL} and V = {vi, . . . , vL} ∈ Rn×L. We append a special trainable token
[CLS] to the sequence of each EEG channel at the initial position to capture global features for en-
vironment inference. The concatenated quadruple Concat([CLS];U, V ;X) is processed as a whole
by the network, where X is the spectral tokens similar to those fed to the model in the pre-training
stage, Concat denotes concatenation operation. The prompts U and V are then projected into a
d-dimensional latent space by two MLP projectors g and h. For the temporal and spectral vectors
in latent space, we apply CLIP loss for contrast. Thus, the overall loss function for our model is a
combination of these two distinct losses, expressed as

ℓCIFT = λ · ℓCLIP + (1− λ) · ℓCE, (5)

where λ is a tunable hyperparameter. Unless otherwise stated, we set λ = 0.1

Environment-aware reweighting While CLIP loss enhances model performance by maximizing
the boundaries between different samples and incorporating additional temporal information along-
side spectral data, it does not necessarily lead to the learning of environment-invariant embeddings
for decision-making. As depicted in Figure 4, we introduce an environment partitioner specified
by an MLP-parameterized function ρ with hyperparameter K. Here, K denotes the number of vir-
tual environments; in our context, determining exact environment labels for each sample is often
costly or involves sensitive personal information. Consequently, K is empirically set and serves as
a surrogate rather than a representation of ground truth environment labels. We assume that each
environment can be represented by a vector in a K-dimensional simplex ∆K , meaning each envi-
ronment is a linear combination of K basis environments. The environment labels are predicted
by a function ρ : X → ∆K parameterized by η ∈ RD. As we will demonstrate empirically, this
approach yields comparable or superior results compared to methods that explicitly use environment
labels for domain generalization.

Before calculating the training loss, we first aggregate the spectral and temporal features using a
feature aggregation operator, which in this work is implemented as a simple global averaging:

Û , V̂ = Aggregate(U),Aggregate(V ). (6)

We assume that Û and V̂ contain environment-invariant attributes useful for classification, as
well as environment-specific parts sensitive to environmental shifts. Our strategy prioritizes the
environment-invariant features through a feature selection operator using masks generated by a dif-
ferentiable Heaviside function (Otte, 2024):

mU ,mV = DifferentiableHeaviside(Û), DifferentiableHeaviside(V̂ ),

Ûspecific, V̂specific = Û ⊙ (1−mU ), V̂ ⊙ (1−mV )

ê = ρ(Aggregate(Concat{Ûspecific; V̂specific}))

(7)

where ê represents the estimated environment labels, ⊙ is the Hadamard product. The target class
labels are predicted by aggregating the invariant parts, which is achieved by addition, and fed to the
classification head.

ℓCE = y log(ŷ)+(1− y) log(1− ŷ), ŷ = (ClassificationHead{Ûinvariant + V̂invariant}),
Ûinvariant, V̂invariant = Û ⊙mU , V̂ ⊙mV

(8)

The contrastive objective is calculated as:

ℓCLIP = − log
exp

(
⟨Ûinvariant,i, V̂invariant,i⟩/τ

)
∑B

j=1 exp
(
⟨Ûinvariant,i, V̂invariant,j⟩/τ

) +log
exp

(
⟨V̂invariant,i, Ûinvariant,i⟩/τ

)
∑B

j=1 exp
(
⟨V̂invariant,i, Ûinvariant,j⟩/τ

) ,
(9)
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where B is the batch size. Finally, the CIFT loss (5) is calculated using (9) and (8), then reweighted
using ê for each sample with the batch, along with a Jacobian regularizer to transform objective (1)
into a more feasible form, and we only have to minimize the surrogate loss functsion with regard to
fine-tuning parameters ∆θ as follows:

LCIFT = EP
Xê,yê

ℓCIFT(f(x), y)ê+ βmax
η

∥∇ηEP
Xê,yê

ℓCIFT(f(x), y)ê∥22, (10)

where beta is a hyperparameter. Unless otherwise stated, we set β = 10.

Figure 4: Illustration of our proposed CIFT. CIFT employs a dual-branch approach to generate
spectral and temporal prompts, facilitating environment-aware learning for the learning of general-
izable embeddings.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

OoD baselines We adopt the following baselines for comparison: VRM (Zhang et al., 2018),
IRM (Arjovsky et al., 2019), V-REx (Krueger et al., 2021), IB-IRM (Ahuja et al., 2021), and
EIIL (Creager et al., 2021), all of which, like our method, utilize Jacobian regularization for domain
generalization. Additionally, we include a range of other baselines, such as Group DRO (Ghosal &
Li, 2023), LearnMixin (Clark et al., 2019), CORAL (Sun et al., 2017), HEX (Wang et al., 2019),
EnD (Ghaddar et al., 2021), DFA (Wang et al., 2024a), RUBI (Tian et al., 2022), and LfF (Nam
et al., 2020). Unlike our approach, these methods explicitly use subject identities as environment
labels to enhance domain generalization. We also incorporate contrastive algorithms known to
benefit OoD generalization that, which can perform spectrotemporal alignment like CIFT, includ-
ing InfoNCE (Harary et al., 2022), HSIC (Galstyan et al., 2022), SelfReg (Kim et al., 2021), and
RELIC (Mitrovic et al., 2020)

Evaluation metrics To comprehensively evaluate the experimental results, we use precision, recall,
F1- and F2-score as evaluation metrics. F2-score is adopted in critical applications that value in-
formation retrieval more than accuracy (i.e., accepting a relatively large number of false positives
but virtually guaranteeing that all the true positives are found). In the biomedical scenario, F2-
score is more valued than F1-score, since ignoring any seizure is costly in diagnosis. Other metrics,
including accuracy, AUCROC and AUCPR, are also reported. For tasks involving non-epileptic sub-
jects, we employ metrics that are most sensitive to performance nuances and align with established
research practices, which are detailed in their respective sections.

4.2 MAIN RESULTS

In this section, we present our primary findings on the challenging tasks of Out-of-Distribution
(OoD) Seizure Detection (SD) and Seizure Forecasting (SF). Our focus transcends the traditional
assessment of an algorithm’s average performance, as we seek to evaluate CIFT’s capacity to gen-
eralize across diverse disease subtypes and institutes. This approach is critical for practical epilepsy
monitoring applications. Typically, neurologists have limited prior knowledge of a patient’s pathol-
ogy until a sufficient number of seizures have been clinically validated. Thus, a model’s ability to
generalize effectively over heterogeneous patient profiles and data sources is of paramount impor-
tance for its real-world utility in seizure prediction and detection.
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Datasets For SD, we evaluate our approach on a self-collected dataset featuring recordings from
patients with clonic seizures for training and atonic seizures for testing, providing a benchmark for
out-of-disease generalization. Details are provided in Appendix E.4. For SF, we utilize a benchmark
constructed from intracranial EEG recorded in four hospitals (Li et al., 2023). Its heterogeneity
stems from variations in epileptogenic lesions and recording conditions, further complicates fore-
casting tasks and serves as a benchmark for out-of-institute generalization. Details are provided in
Appendix E.3.To ensure fair comparison, all baselines are equipped with identical PEFT adapters
used in this study during fine-tuning, except for ERM-Full, ERM-LP, and ERM-LoRA, which de-
note full-parameter, linear probing, and LoRA baselines, respectively. The rank of adapters r = 16,
and the number of virtual environments K = 8. Results are averaged over three runs of random
seeds.

Method Category Acc. F1 F2 AUCROC AUPRC
SD SF SD SF SD SF SD SF SD SF

ERM-LoRA SF 0.688 0.674 0.489 0.310 0.476 0.260 0.692 0.681 0.614 0.252
ERM SF 0.799 0.719 0.416 0.280 0.449 0.254 0.859 0.673 0.654 0.245

ERM-LP SF 0.750 0.527 0.548 0.364 0.605 0.272 0.702 0.719 0.654 0.339
ERM-Full SF 0.833 0.644 0.574 0.331 0.658 0.267 0.776 0.685 0.699 0.269

VRM VR 0.672 0.810 0.472 0.267 0.681 0.374 0.662 0.809 0.470 0.367
IRM INVR 0.709 0.729 0.595 0.086 0.676 0.092 0.790 0.490 0.733 0.145

V-REx INVR 0.708 0.733 0.612 0.103 0.634 0.145 0.794 0.621 0.739 0.197
IB-IRM INVR 0.806 0.707 0.623 0.128 0.588 0.109 0.829 0.635 0.748 0.194

EIIL INVR 0.853 0.686 0.760 0.146 0.609 0.119 0.903 0.636 0.878 0.207
Group DRO RO 0.827 0.724 0.578 0.235 0.712 0.229 0.832 0.686 0.790 0.228
LearnMixin DA 0.695 0.738 0.020 0.282 0.400 0.292 0.877 0.689 0.843 0.235

CORAL DA 0.854 0.645 0.714 0.322 0.689 0.331 0.873 0.680 0.838 0.233
HEX FD 0.807 0.711 0.542 0.028 0.831 0.049 0.864 0.368 0.837 0.121
EnD FD 0.717 0.768 0.662 0.457 0.667 0.461 0.833 0.797 0.786 0.351
DFA FD 0.866 0.717 0.668 0.488 0.781 0.487 0.865 0.840 0.803 0.414
RUBI FD 0.864 0.173 0.750 0.280 0.652 0.085 0.887 0.782 0.854 0.366
LfF FD 0.876 0.788* 0.784* 0.540 0.712 0.521* 0.903* 0.875* 0.876* 0.595*

InfoNCE CL 0.869 0.662 0.727 0.361 0.692* 0.364 0.894 0.701 0.850 0.428
HSIC CL+FD 0.859 0.756 0.722 0.386 0.640 0.401 0.892 0.835 0.834 0.441

SelfReg CL+DA 0.436 0.321 0.350 0.322 0.322 0.371 0.516 0.590 0.423 0.173
RELIC CL+INVR 0.874* 0.865 0.796 0.520 0.588 0.605 0.909 0.936 0.879 0.769

Beatrix + CIFT CL+INVR 0.938 0.918 0.901 0.753 0.901 0.742 0.988 0.948 0.975 0.832

Table 1: Comparison of CIFT with Other Methods on Seizure Detection (SD) and Seizure Fore-
casting (SF) Tasks Across Key Metrics. Methods that explicitly leverage environment partitioning
of training data, requiring annotations from domain experts and/or subject identity information, are
highlighted in light green. In contrast, methods that do not rely on explicit ground truth environment
labels are marked in dark green. Those fine-tuned naı̈vely with ERM but using distinct parameter
configurations are denoted in light blue. We categorize the algorithms based on their underlying
mechanisms as follows: VR: Vicinal Representation; INVR: Invariant Representation; RO: Robust
Optimization; DA: Domain Alignment; FD: Feature Disentanglement; CL: Contrastive Learning.
We mark metric values ranking the first, the second and the third*.

CIFT improves OoD generalization among epileptic subjects As demonstrated in Table 1, our
approach surpasses alternative domain generalization methods. Beatrix, when fine-tuned in the spec-
tral domain, showed comparable OoD performance across full-parameter, linear probing, and LoRA
methods. However, low-rank fine-tuning excelled in OoD generalization with reduced memory re-
quirements. Additional OoD techniques led to incremental performance gains.

Remarkably, incorporation of temporal prompts via tokenization and contrastive alignment has
demonstrated consistently better performance across non-contrastive baselines with the exception
of SelfReg, which, despite its optimization for image data, exhibits less effectiveness on EEG data
due to its structural prior. More significantly, our approach outperforms InfoNCE, a baseline lack-
ing CIFT’s environment predictor and gradient regularization. This highlights the significant role
of environment-aware design, in conjunction with spectrotemporal information integration, in en-
hancing the model’s effectiveness. Besides, RELIC achieves the second-best performance overall
but did not surpass CIFT. This can be attributed to the implicit treatment of each distinct sample
as a separate environment when enforcing domain invariance (Mitrovic et al., 2020), whereas ours
partitions the training data into a manageable number of environments.
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Can CIFT be extended to other architectures? We investigate the flexibility of CIFT by applying
it to other architectures that operate on the time-frequency representation of EEG, assessing whether
CIFT can enhance the performance of spectral EFMs despite inherent discrepancies in pre-trained
models due to differing data and architectural specifications. We utilize BrainBERT (Wang et al.,
2023) and ScatterFormer (Zheng et al., 2023), both of which are Transformer-based models trained
on extensive epilepsy datasets. Table 2 demonstrates CIFT’s significant performance enhancements.
Strikingly, Beatrix outperforms BrainBERT in seizure forecasting despite BrainBERT’s specializa-
tion in intracranial recordings and Beatrix’s lack of such data in pre-training. This underscores
Beatrix’s superior representations, which CIFT further bolsters. BrainBERT’s isolated electrode
processing misses out on the interchannel dynamics present in Beatrix, and ScatterFormer’s fixed
electrode requirement hinders its versatility with variable intracranial EEG setups. Our approach is
able to overcome these deficiencies in a multi-faceted manner.

Method Acc. F1 F2 AUC-ROC AUPRC
SD SF SD SF SD SF SD SF SD SF

ScatterFormer-RELIC 0.771 0.788 0.540 0.424 0.582 0.461 0.818 0.781 0.473 0.465
ScatterFormer-CIFT 0.875 0.807 0.644 0.508 0.778 0.512 0.763 0.830 0.752 0.513
BrainBERT-RELIC 0.750 0.668 0.792 0.367 0.906 0.364 0.960 0.703 0.813 0.314
BrainBERT-CIFT 0.792 0.793 0.890 0.402 0.910 0.460 0.981 0.814 0.963 0.460
Beatrix + RELIC 0.874 0.865 0.796 0.520 0.588 0.605 0.909 0.936 0.879 0.769
Beatrix + CIFT 0.938 0.918 0.901 0.753 0.901 0.742 0.988 0.948 0.975 0.832

Table 2: OoD Performance comparison of CIFT in different spectrally pre-Trained EEG Mod-
els This table demonstrates how CIFT enhances the performance across various EEG models initially
pre-trained on spectrogram representation of brain signals. It is observed that CIFT consistently im-
proves performance in terms of multiple metrics, especially F1, F2 and AUCROC, despite variations
in pre-training data and architectural designs.

Ablation study and hyperparameter analysis We perform an extensive ablation study along with
hyperparameter analysis of CIFT. The outcomes of these experiments are detailed in Appendix A.2
and A.3. Additional experiments on the self-collected dataset as well as another two open datasets
can be found in Appendix A.1

4.3 FURTHER EXTENSIONS

Building upon our preliminary findings, we explore the potential of the proposed approach by con-
ducting more experiments on OoD tasks involving EEG records from non-epileptic subjects.

Auditory Brain Decoding Evaluating our approach on a public EEG audio decoding bench-
mark (Broderick et al., 2018) in alignment with the experimental protocols established by Défossez
et al. (2023). Notably, our results, as delineated in Table 8, Appendix A.4, corroborate the capability
of the CIFT-tuned Beatrix model to amplifies the model’s efficacy in deciphering neuroelectrophys-
iological responses to natural speech.

Motor Imagery Motor imagery classification, which involves identifying brain activity associated
with mentally simulated movements, is a pivotal area of research with substantial implications for
developing rehabilitation strategies and assistive technologies.We experimented on a PhysioNet mo-
tor imagery benchmark (Schalk et al., 2004) used in previous works such as (Yuan et al., 2024a)
As delineated in Table 9, Appendix A.5, our approach demonstrates superiority over not only other
spectral EEG models, such as BrainBERT and TSFF-Net (Miao & Zhao, 2024), a fully supervised
baseline but also temporal EFMs like Brant and MBrain that has been proven achieving strong
results for BCI tasks, underscoring the model’s proficiency in discerning event-related potentials
across individuals.

Sleep Staging Sleep staging serves as a fundamental benchmark in EEG analysis for assessing a
model’s OoD generalizability in multi-class scenario. Our approach surpasses various EEG foun-
dation models and even some fully-supervised models that have been specifically tailored for sleep
monitoring. More details of sleep staging are in Appendix A.6.
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5 CONCLUSION AND FUTURE WORK

In this paper, we introduce Beatrix, a pioneering EEG foundation model that demonstrates superior
out-of-distribution (OoD) generalization over current state-of-the-art (SOTA) models for a range of
seizure-related and non-seizure tasks, all with a significantly reduced fine-tuning cost. To bolster
Beatrix’s OoD generalization capabilities, we have developed CIFT, a novel contrastive invariance
learning technique. CIFT delivers substantial performance improvements by effectively inferring
environmental contexts and seamlessly integrating spectrotemporal information.

While Beatrix is currently optimized for domain-specific applications, such as epilepsy monitor-
ing and forecasting, it has yielded promising results for both healthy individuals and those with
non-epileptic neurological conditions. Looking ahead, our future research will be directed towards
expanding the versatility of our approach. We aim to embrace an even broader array of downstream
tasks and to incorporate a variety of brain modalities, including MEG and fMRI, into a unified,
comprehensive generative multimodal foundation model. This advancement will not only amplify
its predictability and generalizability in real-world clinical settings.

6 ETHICS STATEMENT

The public datasets utilized in this study are freely accessible and designated for academic research
purposes and are not associated with any privacy or security concerns. We adhere to the ethical
guidelines for data usage with meticulous attention to each dataset’s specific requirements. Regard-
ing the private data incorporated in our research, stringent measures were taken to ensure anonymity
and data desensitization. The use of such data was granted by the hospital’s ethics committee after a
thorough review process. Furthermore, we obtained explicit informed consent from all participants,
ensuring they agree that their data would be employed and shared for academic purposes.

It is crucial to emphasize that the results of this study are purely for scientific exploration and have
not been subjected to clinical validation. Consequently, they should not be interpreted as support for
any clinical advice or practice.

7 REPRODUCIBILITY STATEMENT

To bolster the reproducibility of our research and to pave the way for future studies on EEG foun-
dation models, we have meticulously compiled an extensive collection of open EEG datasets, which
we believe to be the most comprehensive to date. These datasets are publicly accessible, and we
have detailed their characteristics along with download links in Appendix ??. Additionally, we have
included a comprehensive description of the data cleansing and preprocessing steps employed in this
study. The source code is included in the supplementary materials. For the convenience of repro-
ducing the experimental outcomes, the preprocessed private benchmark dataset can be accessed via
the following anonymous link: https://drive.google.com/drive/folders/1eLzx_
FrfLjZLs3cnkATsRUrkaU-L0HPd?usp=sharing. Upon publication of the paper, the raw
EEG recordings from the subjects in the private benchmark will also be released. This will support
the advancement of out-of-distribution (OoD) generalizable EEG applications and contribute to the
progress of clinical research of seizure-related neurological disorders.
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A MORE EXPERIMENTAL RESULTS

A.1 ADDITIONAL EXPERIMENTS AMONG EPILEPTIC SUBJECTS

We expand upon our primary experiments by benchmarking Beatrix against a range of pre-trained
EEG models on more epileptic subjects.

Model
Dataset CHB-MIT Siena

Modality Pre. Rec. F1 F2 Modality Pre. Rec. F1 F2
TF-C TD + FD 0.178 0.614 0.180 0.276 TD + FD 0.080 0.616 0.137 0.249

SimMTM TD 0.543 0.368 0.428 0.388 TD 0.323 0.434 0.275 0.330
One Fits All TD 0.511 0.566 0.512 0.537 TD 0.473 0.437 0.430 0.430

MBrain TD 0.534 0.529 0.494 0.504 TD 0.389 0.610 0.459 0.533
LaBraM TD 0.410 0.570 0.529 0.477 TD 0.318 0.680 0.433 0.548

BIOT TD 0.177 0.277 0.205 0.216 TD 0.269 0.353 0.305 0.173
Brant TD 0.574 0.614 0.580 0.597 TD 0.431 0.660 0.484 0.553

Brant-2 TD + FD 0.538 0.670 0.595 0.637 TD + FD 0.499 0.700 0.566 0.634
BrainBERT SD 0.525 0.594 0.551 0.574 SD 0.473 0.606 0.486 0.535

ScatterFormer SD 0.557 0.649 0.598 0.627 SD 0.503 0.675 0.535 0.590
Beatrix + CIFT SD 0.603 0.752 0.652 0.703 SD 0.574 0.750 0.649 0.705

Table 3: OoD Performance Comparison of different models on Two Public EEG Seizure Detec-
tion Benchmarks. Models that are fine-tuned from publicly available checkpoints are highlighted
in green, and models that cannot be reproduced for fine-tuning due to lack of publicly available
implementations and/or pre-trained checkpoints are highlighted in blue, for which the metrics were
reported using the results reported in their respective works. TD: Temporal Domain. FD: Fourier
Domain. SD: Spectral Domain. Pre.: Precision. Rec.: Recall. Model names highlighted in blue
represent outcomes reported in their original publications, whereas those highlighted in green are
outcomes reproduced by our own work. We mark metric values ranking the first, the second and the
third*.

Seizure SubType Model Modality F1 F2 AUCROC AUCPR
Absence Seizure LaBraM TD 0.515 0.631 0.473 0.430

BIOT TD 0.514 0.603 0.499 0.542
Beatrix + CIFT SD + TD 0.607 0.648 0.774 0.652

Atonic Seizure LaBraM TD 0.465 0.525 0.561 0.893
BIOT TD 0.558 0.648 0.674 0.911

Beatrix + CIFT SD + TD 0.772 0.733 0.967 0.848
Clonic Seizure LaBraM TD 0.491 0.590 0.721 0.538

BIOT TD 0.399 0.440 0.542 0.354
Beatrix + CIFT SD + TD 0.788 0.750 0.868 0.810

Table 4: OoD performance comparison of different models on the self-collected dataset in out-
of-subject scenario. CIFT significantly improves out-of-subject generalization on various seizure
subtypes. TD: Temporal Domain; SD: Spectral Domain.

A.1.1 MORE EXPERIMENTS ON THE SELF-COLLECTED DATASET

We have demonstrated our approach’s effectiveness in an out-of-disease case in the main results.
In Table 4, we further present outcomes in an out-of-subject scenario,further illustrating that CIFT
enhances out-of-subject performance. The results are averaged over 5 randomly split folds, ensuring
that no subjects overlap between folds.

A.1.2 MORE EXPERIMENTS ON CHB-MIT AND SIENA DATASETS

We evaluate our approach using two scalp EEG datasets in an out-of-subject setting to assess its
out-of-distribution (OoD) generalizability across different subjects. Additionally, we benchmark
our model against other state-of-the-art EEG models to demonstrate its effectiveness in capturing
variability across diverse populations.

Experimental setup We describe the datasets and experimental settings as follows.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

The CHB-MIT dataset (Shoeb, 2009) comprises 23-channel EEG recordings captured at a sampling
rate of 256 Hz from a cohort of 22 subjects diagnosed with intractable epilepsy. These subjects
exhibit a wide variety of seizure types, adding to the complexity and diversity of the dataset.

The Siena dataset (Detti et al., 2020), conversely, consists of 27-channel EEG recordings from 14
patients, with a higher sampling rate of 512 Hz, providing a denser temporal resolution of brain
activity.

For a comprehensive comparison, we not only focus on spectral domain models such as BrainBert
and ScatterFormer but also include several time-domain EEG feature models (EFMs), including
MBrain, Brant and Brant-2. These models are noted for their significantly larger parameter counts
during both pre-training and fine-tuning stages, offering a stark contrast to our approach.

Our performance metrics, the F1 and F2 scores, are derived from the average of five cross-validation
folds, ensuring that each fold contains distinct subjects. To ensure fair comparison, we conduct
the experiments following setups used in previous work such as Yuan et al. (2024a;b); Yang et al.
(2023). This rigorous cross-validation strategy eliminates any bias that might arise from subject
overlap across folds. However, due to some previous works not providing their code or model
checkpoints for reproduction—often due to intellectual property concerns or the reliance on private
datasets—some metrics mentioned in Section 4.2 could not be directly compared. As a result, we
report the maximum overlap of available metrics from the various studies for a fair comparison. The
rank of adaptors r = 16, and the number of virtual environments K = 8.

Results As shown in Table 3, our approach demonstrates a significant improvement in out-of-
distribution (OoD) generalization on both the CHB-MIT and Siena datasets. Notably, our model
outperforms large-scale time-domain EFMs in both F1 and F2 scores, highlighting its ability to cap-
ture the subtle complexities of EEG data across diverse subject populations and recording conditions.
These results further reinforce the OoD generalizability of our model.

Interestingly, we observed that other spectral domain models also exhibit impressive performance
compared to time-domain models such as LaBraM and BIOT, with our approach trailing only behind
Brant and Brant-2. These latter models, however, benefit from a significantly larger parameter count
and incorporate Fourier domain features to complement their time-domain representations. This
finding underscores the critical role of spectral representation in effectively integrating both time
and frequency domain information for enhancing EEG analysis.

A.2 ABLATION STUDY

Do Mother Wavelets Affect Beatrix’s OoD Performance? We investigate the effect of mother
wavelet choice on model performance during testing. As Table 5 shows, the impact is minimal.
Since our pre-training protocol randomly selects mother wavelet functions for each training itera-
tion, the variability in time-frequency representations, generated by a diverse set of analytic mother
wavelets, appears to inoculate the model against overfitting to specific patterns associated with any
single wavelet. By exposing the model to a wide array of wavelet functions, we effectually desen-
sitize the model against these subtleties, thereby maintaining its robustness during the fine-tuning
phase.

Configuration Acc. F1 F2 AUCROC AUPRC
SD SF SD SF SD SF SD SF SD SF

CMH 0.865 0.911 0.659 0.697 0.623 0.733 0.952 0.954 0.845 0.839
GMW(β = 16, γ = 1) 0.917 0.915 0.791 0.860 0.813 0.910 0.960 0.954 0.906 0.936

Table 5: Influence of mother wavelets on seizure detection and forecasting tasks. Performance
discrepancies caused by different mother wavelet at feature extraction stage is minor. CMH: Com-
plex Mexican Hat. GMW: Generalized Morse Wavelet.

Do Low-Rank Adaptors Affect Beatrix’s OoD Performance? We assess the impact of various
low-rank adaptors within the CIFT framework on Beatrix’s out-of-distribution (OoD) performance.
Experimental results in Table 6, indicate that the removal of any adaptor module leads to decline in
performance, albeit to varying degrees. The negative effect resulted from removal of the normaliza-
tion module is minimal. This may stem from the compensatory capabilities of the bottleneck and
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LoRA modules, which can counteract the absence of adjustable parameters of layer normalization
to some extent.

Configuration Acc. F1 F2 AUCROC AUPRC
SD SF SD SF SD SF SD SF SD SF

CIFT w/o Bottleneck 0.8292 0.8639 0.5773 0.6755 0.5738 0.5930 0.8778 0.9476 0.7004 0.7160
CIFT w/o LoRA 0.7542 0.8444 0.2716 0.4286 0.4167 0.4817 0.8052 0.9124 0.5600 0.6371
CIFT w/o Norm 0.8458 0.8806 0.7517 0.7034 0.6780 0.6281 0.9301 0.9569 0.8447 0.7961

Table 6: Influence of low-Rank adaptor configurations on seizure detection and forecasting
tasks. The table illustrates the substantial decline in performance following the removal of the
LoRA module, while the deletion of layer normalization has the least detrimental effect.

A.3 HYPERPARAMETER ANALYSIS

In this section, we delve into the sensitivity analysis of two pivotal hyperparameters within the Con-
trastive Invariant Fine-Tuning (CIFT) method: the rank r and the count of virtual environments K
The rank indictates the dimensionality of the low-rank adaptation, while K influences the granular-
ity of environmental distinctions. During our analysis of r, we fixed K at 8, and for the examination
of K, we set r to 16.

Figure 5: Hyperparameter analysis of rank r. (a) Seizure detection. (b) Seizure forecasting.

Results in Figure 5 reveal a positive correlation r and the model’s performance. Notably, there is a
progressive enhancement in performance with an increase in r, yet the rate of improvement tapers off
as r grows larger. This suggests a diminishing return on increasing the rank, indicating an optimal
range for r beyond which the gains in performance are marginal. Still, a higher rank allows the
model to capture more complex patterns, leading to better performance.

Configuration Acc. F1 F2 AUC-ROC AUPRC
SD SF SD SF SD SF SD SF SD SF

CIFT K = 4 0.823 0.864 0.731 0.676 0.669 0.593 0.869 0.948 0.674 0.716
CIFT K = 8 0.917 0.915 0.791 0.860 0.813 0.910 0.960 0.954 0.906 0.936

Table 7: Hyperparameter analysis of number of virtual environments K.

The performance of the Contrastive Invariant Fine-Tuning (CIFT) method is also influenced by the
number of virtual environments K, but not as significant as r. Performance metrics reported in
Table 7 and t-SNE manifold analysis of learned domain-invariant embeddings shown in Figure 6
suggest that an increased K can be beneficial for learning environment-invariant features, which
results in less scattered distribution of unseen data at test time by forcing the model to discard more
fine-grained domain-specific features during fine-tuning time.
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Given that CIFT is designed to automatically identify environments and reweight the loss to pre-
vent the acquisition of domain-specific features, we recommend tuning K based on the underlying
domains of the development dataset. In practical applications, K should be set higher than the
potential number of domains, taking into account real-world variables like patient outcomes and
MRI structural features. However, caution should be exercised not to set K excessively high, as
an overly granular partitioning of environments may be susceptible to the stochastic fluctuations in
brain dynamics. This could not only increase the computational burden during fine-tuning but also
potentially compromise the model’s ability to generalize across unseen data.

Figure 6: t-SNE analysis of domain-invariant feature embedding used for classification with
different Ks at test time. (a) Seizure forecasting (K = 4). (b) Seizure forecasting (K = 8). (c)
Seizure detection (K = 4). (d) Seizure detection (K = 8).

A.4 AUDITORY BRAIN DECODING

The realm of auditory brain decoding presents a significant challenge for EEG analysis, requiring
models to accurately interpret complex neural signals associated with hearing.

Experimental Setup We use the EEG data recorded from English-speaking participants listened to
extracts of The Old Man and the Sea by (Broderick et al., 2018). To ensure fair comparison, we
follow settings in Défossez et al. (2023).

Method Random model CNN CLIP Deep Mel Wav2vec Beatrix + CIFT

Acc. 0.005 0.010 0.020 0.154 0.177 0.501

Table 8: Performance in auditory EEG neural decoding.
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A.5 MOTOR IMAGERY CLASSIFICATION

Detailed experimental results are shown in 9.

Models
Metrics Motor Imagery

Acc. F1
TSFF-Net 73.00 73.87
TF-C 60.06 57.79
SimMTM 57.48 57.37
One Fits All 71.25 72.56*
BrainBERT 64.84 70.32
MBrain 61.06 60.42
Brant 72.00* 71.84
Beatrix + CIFT 74.93 80.42

Table 9: Performance on motor imagery classification. Our approach brings significant gains
in F1-score in comparison to both finetuned EEG foundation models and fully supervised models
specially adapted for motor imagery tasks. Model names highlighted in blue represent outcomes
reported in their original publications, whereas those highlighted in green are outcomes reproduced
by our own work. We mark metric values ranking the first, the second and the third*.

A.6 SLEEP STAGING

In sleep health research, sleep staging is essential for deepening our understanding of sleep states
and patterns, aiding in the prevention and diagnosis of sleep-related disorders. We adopt definition
in American Academy of Sleep Medicine (AASM) manual where sleep is divided into five stages:
wake, N1, N2, N3, and REM. Thus, sleep stage classification is framed as a 5-class problem.

Experimental setup To evaluate model performance in sleep stage classification, we utilize two
EEG datasets: SleepEDF and the Haaglanden Medisch Centrum (HMC) sleep staging database.

For SleepEDF, we use the SleepEDF-78 dataset, which consists of 153 whole-night polysomno-
graphic recordings from 78 subjects during sleep cassette studies. The EEG data, sampled at 100Hz,
includes one EEG channel, with recordings segmented into 30-second epochs. Subjects are ran-
domly divided into five groups.

The HMC dataset contains 151 whole-night polysomnographic (PSG) recordings from 151 subjects,
sampled at 256Hz across four EEG channels. Similar to SleepEDF, subjects are split into five groups,
and the EEG signals are segmented into 30-second epochs.

In our comparative analysis, include several robust fully-supervised sleep staging models that have
been specifically tailored for this task, including sDreamer (Chen et al., 2023), Eognet (Fan et al.,
2021). For sepctral domain models, given that ScatterFormer is specialized for epilepsy-related
tasks, we’ve chosen BrainBERT as the sole spectral domain model for our baseline compari-
son.Additionally, we benchmark against pre-trained EEG models operating in the time-domain,
namely TF-C, Sim-MTM, One Fits All, MBrain, and Brant.

For the hyperparameters of CIFT, the rank of adaptors is set r = 16, and the number of virtual
environments K = 16.

Results As demonstrated in Tables 10 and 11, our model not only achieves competitive performance
but also surpasses existing benchmarks in critical metrics such as F1-score and Cohen’s κ. These
metrics are particularly significant as they directly reflect the model’s ability to accurately classify
sleep stages, a complex multi-class task fraught with inter- and intra-subject variability. In particular,

The consistent superiority of our model across diverse datasets, including the SleepEDFx and HMS
Sleep Staging Benchmarks, underscores its robustness. This robustness is a testament to the model’s
sophisticated handling of the nuanced patterns present in EEG data during sleep staging. Further-
more, the model’s broader applicability is underscored by its ability to enhance out-of-subject per-
formance, a critical factor in real-world clinical applicability.
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As shown in Table 10 and 11, our model achieves competitive or better performance in terms of
F1-score and Cohen’s κ. The outcomes further validate the broader applicability of our model to
enhance out-of-subject performance in terms of multi-class tasks.

Model Modality Rec. Spe. F1 Cohen’s κ
sDreamer TD - - 0.705† -

Eognet TD - - 0.693*† -
TF-C TD + FD 0.514 0.902 0.494 0.507

Sim-MTM TD 0.363 0.890 0.494 0.507
One Fits All TD 0.563 0.912 0.548 0.550

MBrain TD 0.584* 0.922 0.582 0.598
Brant TD 0.583 0.916 0.568 0.565

BrainBERt SD 0.594 0.918* 0.587 0.571
Beatrix + CIFT SD + TD 0.788 0.958 0.788 0.721

Table 10: Out-of-Subject Generalization on SleepEDFx Dataset. CIFT consistently improves out-
of-subject generalization for all multi-class metrics. TD: Temporal Domain. FD: Fourier Domain.
SD: Spectral Domain. † Performance of fully-supervised models reported in previous work. Model
names highlighted in blue represent outcomes reported in their original publications, whereas those
highlighted in green are outcomes reproduced by our own work. We mark metric values ranking the
first, the second and the third*.

Model Modality Rec. Spe. F1 Cohen’s κ
sDreamer TD - - 0.688*† -

Eognet TD - - 0.719† -
TF-C TD + FD 0.353* 0.843 0.302 0.239

Sim-MTM TD 0.315 0.832 0.273 0.177
One Fits All TD 0.511 0.884 0.505 0.435

MBrain TD 0.540 0.895 0.515 0.487
Brant TD 0.419 0.859 0.381 0.304

BrainBERT SD 0.531 0.890 0.520 0.465*
Beatrix + CIFT SD + TD 0.736 0.941 0.736 0.637

Table 11: OoD performance comparison of different models on HMC dataset. CIFT consis-
tently improves out-of-subject generalization for all multi-class metrics. TD: Temporal Domain.
FD: Fourier Domain. SD: Spectral Domain. † Performance of fully-supervised models reported
in previous work. Model names highlighted in blue represent outcomes reported in their original
publications, whereas those highlighted in green are outcomes reproduced by our own work.

B DETAILS OF BASELINES

B.1 MODEL BASELINES

In this section, we elaborate the model detailed introductions to the baselines used in our experi-
ments.

• TF-C (Zhang et al., 2022). The time-frequency consistency model uses EEG features from
both time and frequency domains for training. It employs contrastive learning with aug-
mentations to ensure the consistency of embeddings across these domains. The model uses
a novel consistency loss to align time-based and frequency-based representations effec-
tively. It is trained on diverse datasets including EEG, EMG, and ECG signals.

• SimMTM (Dong et al., 2024). Simple Masked Time-series Modeling (SimMTM) leverages
EEG features from time series data for pre-training. It utilizes a unique masked modeling
approach by masking parts of the time series and training the model to reconstruct the orig-
inal series from multiple masked versions. This method incorporates contrastive learning
and masked modeling techniques. SimMTM is trained on a substantial amount of unlabeled
data to improve the representations for downstream tasks like forecasting and classification.
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• One Fits All (Zhou et al., 2023). This model uses EEG features represented through em-
beddings obtained from pre-trained language models like GPT-2. It employs a contrastive
learning approach and masked modeling techniques to fine-tune the model for various time
series analysis tasks, including classification, anomaly detection, and forecasting. This
method leverages extensive pre-training on large datasets, typically exceeding 10GB, to
ensure robust performance across different applications.

• BrainBERT (Wang et al., 2023). BrainBERT is a self-supervised Transformer model de-
signed for analyzing intracranial EEG recordings. It is trained using time-frequency repre-
sentations of EEG data, specifically leveraging both Short-Time Fourier Transform (STFT)
and superlet transform spectrograms. The model employs a masked reconstruction strat-
egy, where random parts of the spectrogram are masked and the model learns to predict the
missing portions from the surrounding context. BrainBERT is pretrained on 43.7 hours of
unannotated neural recordings, providing robust and reusable neural embeddings.

• MBrain (Cai et al., 2023). MBrain is a multi-channel self-supervised learning framework
designed to pre-train both EEG and SEEG signals by capturing spatial and temporal cor-
relations among channels. It leverages Contrastive Predictive Coding (CPC) to maximize
mutual information and employs tasks such as instantaneous time shift, delayed time shift,
and replace-discriminative learning to enhance feature representation. Extensive experi-
ments on large-scale real-world datasets validate its effectiveness in seizure detection.

• LaBraM (Jiang et al.). LaBraM is a unified foundation model for EEG called Large Brain
Model (LaBraM). LaBraM enables cross-dataset learning by segmenting the EEG signals
into EEG channel patches. Vector-quantized neural spectrum prediction is used to train a
semantically rich neural tokenizer that encodes continuous raw EEG channel patches into
compact neural codes

• BIOT (Yang et al., 2023). BIOT is a pre-trained EEG model that can enable cross-data
learning with mismatched channels, variable lengths, and missing values by tokenizing dif-
ferent biosignals into unified ”sentences” structure. Specifically, it tokenizes each channel
separately into fixed-length segments containing local signal features and then rearrange
the segments to form a long ”sentence”. Channel embeddings and relative position embed-
dings are added to each segment (viewed as ”token”) to preserve spatio-temporal features.

• PPi (Yuan et al., 2024b). PPi is a pretraining-based model for patient-independent seizure
detection that leverages SEEG data. It employs self-supervised learning tasks, including
contrastive and masked modeling, to extract rich information from the SEEG signals while
preserving the unique characteristics of different brain areas. The model is pretrained on
a large amount of SEEG data to handle the domain shift between different patients effec-
tively.

• Brant (Zhang et al., 2024). Brant is a foundation model designed for intracranial neural
signal analysis, utilizing EEG features. It employs techniques such as contrastive learning
and masked signal modeling for training. The model is pretrained on a substantial dataset
of 1.01 TB of intracranial data, enabling it to capture long-term temporal dependencies and
spatial correlations across channels.

• Brant-2 (Yuan et al., 2024a). Brant-2 is a foundation model for brain signals that utilizes a
diverse pre-training corpus of nearly 4 TB of SEEG and EEG data from over 15,000 sub-
jects. It integrates time and frequency information and employs techniques such as data
augmentation, mask-prediction, and future signal forecasting for training. This approach
enhances its robustness to data variations and its ability to generalize across various down-
stream tasks.

• ScatterFormer (Zheng et al., 2023). ScatterFormer is a transformer-based model designed
for patient-independent detection of epileptiform discharges using multispectral EEG fea-
ture representations. It captures fine-grained, high-frequency features through invariant
scattering transform and frequency-aware attention mechanisms. The model is trained
using a combination of contrastive learning and masking techniques on a comprehensive
dataset of EEG records, though specific details on the pre-training dataset size are not pro-
vided in the document.
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C ARCHITECTURE AND IMPLEMENTATION DETAILS

C.1 VQGAN SPECTRAL TOKENIZER

In this section, we provide further details about the architecture of VQGAN spectral tokenizer, and
its implementation and training details.

Architecture details The VQGAN is based on an encoder-decoder architecture. The encoder con-
sists of a pyramid stacking of Transformer and convolutional blocks that downsamples the input
spectrograms to a low-resolution latent space, while the decoders upsamples from the quantized
embeddings of the latent features to original shape and outputs the reconstructed spectrograms. We
use rotary positional encoding (Heo et al., 2024), which is more flexible than absolute positional en-
coding methods. s The model operates at a dimension of 768, utilizing convolution and transposed
convolution layers with a kernel size of 4x4 and a stride of 2x2 for downsampling and upsampling,
respectively. The embedding layer transforms 16x16 non-overlapping spectrogram patches using a
linear layer.

Let x,x̂ be the original and reconstructed samples by the generator G, and D denotes the discrimi-
nator, which is a convolutional neural network of 5 convolutional layers with kernel size 3 × 3 and
stride 2×2 that downsamples inputs to multi-scale intermediate features during forward propagation
and outputs predictions for whether the input sample is generated byG, then output labels indicating
whether the sample is predicted or generated through global average pooling and a linear classifier
head. The quantization bottleneck module is a grouped residual lookup-free quantizer with latent
dimension d. The hyperparameters of the quantizer is listed in Table 12.

Implementation details We use the following loss during training of VQGAN.

1. Reconstruction loss. It measures the difference between original and reconstructed time-
frequency features. To mitigate oversmoothing of high-frequency details, we use a combi-
nation of L1 and focal frequency loss (Jiang et al., 2021) Lfocal

2. Perceptual Loss. For the original and reconstructed samples x,x̂, intermediate activa-
tions are extracted from the multiscale discriminator of M intermediate layers as ai,âi,i =
1, . . . ,M . The perceptual loss is formulated as

Lperceptual = Ex∼p(x)

M∑
i=1

∥ai − âi∥. (11)

3. Generator Loss. It measures the dissimilarity between reconstructed and original samples:

Lgenerator = −Ex̂∼p(x̂)[logD(x̂)] (12)

4. Discriminator Loss. It is used to train the discriminator for distinguishing reconstructed
and original samples.

Ldiscriminator = −Ex∼pdata(x)[logD(x)]− Ex̂∼p(x̂)[log(1−D(x̂)] (13)

5. Commitment Loss. Let z,ẑ be the latent representations before and after quantization, the
commitment loss Lcommitment are defined as

Lcommitment = Ex∼p(x)

d∑
i=1

∥∥∥z − sg
[
ẑ(i)

]∥∥∥2
2
, (14)

where sg[·] is the stop-gradient operator, and the straightthrough estimator is used for the
backpropagation through the quantization module. Note that Lcommit is the sum of quan-
tization errors from every i = 1, 2, . . . , d. It aims to make ˆz(i) sequentially decrease the
quantization error of z as i increases. Thus, it approximates the feature map in a coarse-to-
fine manner and keeps the training stable. To encourage codebook utilization, we add an
entropy regularization term

Lentropy = Ex∼p(x)

d∑
i=1

EH(ẑ(i))−H(Eẑ(i)), (15)

where H is the entropy function.
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Architectural Hyperarameters Value
group 4

latent dimension 512
codebook size 16384

depth 8

Table 12: Architectural hyperparameters of the quantization bottleneck.

Architectural Hyperarameters Value
Embedding Dimension 768

Number of Heads 16
Number of Spectral Transformers 12

Number of Multi-View Transformers 4
Number of Decoder Transformers 4

Expanding Factor in SwiGLU 4

Table 13: Architectural hyperparameters of Beatrix.

Training Details The network is implemented in PyTorch 2.1.0. The code is available in supple-
mentary materials. We use AdamW optimizer with β1 = 0.9, β2 = 0.99 and weight decay of 1e-4
during training. The generator loss is formulated as

L = Lgenerator + λ1Lcommit + λ2Lentropy + λ3Lperceptual + λ4LL1
+ λ5Lfocal, (16)

where λ1 = 0.1, λ2 = 0.01, λ3 = 0.05, λ4 = 2.0, λ5 = 2.0. A cosine annealing scheduler with 1k
warm-up steps is used to adjust learning rate. The network is trained for 10k steps.

C.2 MAIN ARCHITECTURE

Architecture details

Beatrix is architected with a spectral Transformer composed of M layers of Transformer encoders
and a multiview Transformer comprising N layers. The generative reconstruction of spectrograms
is handled by a decoder consisting of P layers of Transformer blocks. The spectral Transformer op-
erates by applying self-attention to tokens within each channel in isolation, whereas the multiview
Transformer facilitates attention across tokens that share the same time-frequency location across
various channels. This design efficiently reduces computational expenses while capturing interchan-
nel correlations. It is important to note that the decoder operates independently for each channel and
is not engaged during the fine-tuning phase. In addition, we use rotary positional encoding (Heo
et al., 2024), which is more flexible than absolute positional encoding methods

Table 13 shows the architectural hyperparameters of Beatrix.

Implementation details The model is implemented using PyTorch 2.1. In particular, we use
FlashAttention and SwiGlu implemented using Xformers to accelerate running speed.

Further discussion about semi-causal generative pre-training Mainstream generative pre-
training currently relies on the sequence modeling paradigm, wherein data from diverse modalities
undergo tokenization to form sequential data. Within this framework, various sequence modeling
methods have been developed.

Causal sequence modeling stands out for its robust capabilities in zero-shot generalization and in-
context learning, attributed to its high sample efficiency. This approach leverages the participation
of all tokens in prediction, thereby providing comprehensive supervision information. It has demon-
strated state-of-the-art (SOTA) performance across domains such as general-purpose natural lan-
guage generation, reasoning, decision-making, and has found applications in vision and audio mod-
eling. On the other hand, non-causal sequence modeling, based on an encoder-decoder architecture,
fosters transferability across tasks and modalities while achieving enhanced fine-tuning efficiency.
Widely employed in language understanding, sentiment analysis in natural language processing, as
well as image and video classification, segmentation, and reconstruction in vision tasks, this method
has been the cornerstone of previous EEG foundation models. Semi-causal sequence modeling rep-
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resents a hybrid approach that combines elements of both causal and non-causal methods. Here, the
model is tasked with predicting each token outside the prefix given all preceding tokens.

Prior work on EEG foundation models, exemplified by references such as (Jiang et al.; Zhang et al.,
2024; Yuan et al., 2024b), predominantly adopts non-causal sequence modeling. However, it is
worth noting that the bidirectional attention mechanism utilized in non-causal modeling suffers from
a rank degeneration issue, where representations with degenerated ranks become indistinguishable
due to the absence of informative components. Conversely, unidirectional attention, while less ef-
fective than its bidirectional counterpart in capturing global context information, offers a solution to
the rank degeneration problem. Thus, we advocate for the adoption of semi-causal sequence mod-
eling, which encompasses both autoregressive and non-autoregressive prediction of masked and
subsequent tokens.

C.3 TEMPORAL TOKENIZER

The temporal tokenizer used in CIFT is a one-dimensional convolutional neural network of 5 layers,
each convolutional layer has a kernel size of 3 and a stride size of 2. The temporal tokenizer, similar
to the spectral tokenizer, process different EEG channels independently. Through a linear projection
layer, all the output feature embeddings are simply concatenated sequentially, which will be used to
calculate temporal prompts through cross attention mechanism.

D TRAINING DETAILS

To make the model adaptive to variable input signals, we select the context length of Beatrix uni-
formly from L = {2s, 4s, 6s, 8s, 10s, 16s}. Within non-causal spans we mask 75% of the total
tokens. For a sequence we sample M ∈ [0, L − 1] uniformly, L is the total length, and M is the
length of the non-causal span. To make the training process simple, we designate the first M tokens
for non-causal modeling, and the rest are used for causal modeling. The channel number of EEG
samples is uniformly chosen between 1 and C, C is the maximal number of utilizable channels for
each record. The model is pre-trained for a total of 100,000 steps on 4 GPUs (NVIDIA Tesla A100
40G). The optimizer is AdamW with β1 = 0.99, β2 = 0.999 and a weight decay rate of 1e-4 and
initial learning rate of 1e-6. A cosine annealing scheduler is used with a total of 5,000 warm-up
steps and maximum learning rate of 1e-4. At fine-tuning stage, we use 100 warmup steps and a
maximum learning rate of 1e-5 on one GPU.

E DATASETS

In this section, we present a comprehensive list of datasets utilized in both pre-training and fine-
tuning, along with necessary details. We also present the data collection and cleansing procedure
which pays a special attention on privacy and fairness in training of foundation model.

For the public datasets, we provide downloading links. For the private dataset used in this work,
we provide the preprocessed, anonymized data in an anonymous link for reproducibility and fur-
ther research. The full, raw recordings used for contructing the private dataset are available upon
reasonable request.

E.1 DATA COLLECTION AND CLEANSING

The diversity and quality of the data utilized significantly influence the training process and subse-
quent performance on downstream tasks. Therefore, it is crucial to curate a comprehensive collection
of data to train the foundation model on a wide array of datasets.

During the pre-training stage, we gather a substantial amount of openly available neuroelectro-
physiological signals, with a particular focus on EEG data. While EEG datasets are increasingly
available online, large-scale datasets are still relatively scarce due to the costs associated with data
recording and privacy concerns. To ensure a diverse and representative corpus that encompasses
various subjects, diseases, and tasks, we carefully curate the collected datasets. Unlike previous
works that predominantly rely on clinical resting state EEG records of patients and normal controls,
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we extensively gather data from a range of diseases and normal states, including resting state and
task/event-evoked brain activities. Some datasets are allowed to be downloaded freely, others need
registration.

Uncensored pre-training corpora often contain numerous corrupted data records due to discrepancies
in data recording and preprocessing conditions. To address this, we strictly exclude unusable or
corrupted data and harness about 32,900 hours of EEG data for pre-training. We checked the data
using EDFBrowser and MATLAB EEGLAB and excluded the unusable sessions manually before
preprocessing. Sinc interpolation is used for resampling and Notch filter with a quality factor of 50
and an order of 2 is used at 50 or 60 Hz.

We ensure all data are anonymized and de-identified and store them in FIF data format using Python
MNE to avoid loss of floating-point precision.

Given the lack of consensus on the sampling and segmentation of EEG data, during training, we load
each data record into memory as a whole and randomly segment it into epochs of varying lengths.
Furthermore, we resample the data to 256Hz and apply a 50 and/or 60 Notch filter to filter out utility
frequency noise.

To alleviate distributional bias in the pre-trained model, we rebalance the data distribution of the
train dataloader based on the total number of subjects in each dataset.

E.2 PRE-TRAINING EEG CORPUS

We provide a comprehensive list of publicly available datasets used to construct the EEG corpus for
pre-training our models as follows.

• TUH EEG Corpus. This dataset contains 26,846 clinical EEG recordings collected at
Temple University Hospital (TUH) from 2002 to 2017, covering health and disease condi-
tions.
Link: https://isip.piconepress.com/projects/tuh_eeg/html/
downloads.shtml.

• TDBRAIN. This dataset contains resting-state, raw EEG-data complemented with relevant
clinical and demographic data of a heterogenous collection of 1274 psychiatric patients
collected between 2001 to 2021.
Link: https://brainclinics.com/resources/

• Neuroforecasting. This dataset contains EEG data recorded in studying neural activity
during value-based decision-making. It involves resting-state and visually-evoked EEG
activities associated with individual choice and market outcomes.
Link: https://openneuro.org/datasets/ds004284/versions/1.0.0

• HD-EEGTask. This dataset contains task-evoked EEG during visual object naming and
spelling tasks.
Link: https://openneuro.org/datasets/ds003420/versions/1.0.2

• DepressionRest.This dataset contains resting-state EEG data with 122 college-age partic-
ipants. Task included in DMDX programming language, with instructions for eyes open
and eyes closed triggers.
Link: https://openneuro.org/datasets/ds003478/versions/1.1.0

• TBI. This dataset contains EEG records of traumatic brain injuries (TBIs), involving three
stimulus auditory oddball data in control, sub-acute mild TBI, and chronic TBI. Rest-state
data is also included.
Link: https://openneuro.org/datasets/ds003522/versions/1.1.0

• Improvision and Music Structures. This dataset contains EEG data recorded during a
study of musicians’ brain responses to chords, involving resting-state and audio-evoked
activities in different tasks.
Link: https://openneuro.org/datasets/ds003570/versions/1.0.0

• Reward Biases. This dataset contains EEG data recorded during sleep EEG for 1-2 hours
in participants who played at 2 different games during wakefulness.

26

https://isip.piconepress.com/projects/tuh_eeg/html/downloads.shtml
https://isip.piconepress.com/projects/tuh_eeg/html/downloads.shtml
https://brainclinics.com/resources/
https://openneuro.org/datasets/ds004284/versions/1.0.0
https://openneuro.org/datasets/ds003420/versions/1.0.2
https://openneuro.org/datasets/ds003478/versions/1.1.0
https://openneuro.org/datasets/ds003522/versions/1.1.0
https://openneuro.org/datasets/ds003570/versions/1.0.0


1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Link: https://openneuro.org/datasets/ds003574/versions/1.0.2

• Verbal Working Memory. This dataset contains EEG records in a modified Sternberg
working memory paradigm with two types of task: with mental manipulations (alphabet-
ization) and simple retention (TASK) and 3 levels of load: 5, 6, or 7 letter to memorize
(LOAD).
Link: https://openneuro.org/datasets/ds003655/versions/1.0.2

• Social Memory Cuing. This dataset contains EEG records from subjects who participate
in a memory task presented in virtual reality.
Link: https://openneuro.org/datasets/ds003702/versions/1.0.1

• CSA. This dataset contains EEG records in a neurobehavioral study on women with child-
hood sexual abuse and problem drinking at Washington University.
Link: https://grantome.com/grant/NIH/R01-AA025646-04

• Trance Channeling. This dataset contains 13 participants that went through a thorough
screening and did 2 sessions (different days) each. Experiment design corresponded in
alternating (5 minutes) blocs of trance channeling and resting state (3 periods per session
for each condition).
Link: https://openneuro.org/datasets/ds004040/versions/1.0.0

• SRM. This dataset contains resting-state EEG extracted from the experimental paradigm
used in the Stimulus-Selective Response Modulation (SRM) project at University of Oslo.
Link: https://openneuro.org/datasets/ds003775/versions/1.2.1

• Resting and Cognitive States. This dataset contains resting(eyes closed, eyes open) and
cognitive(subtraction, music, memory) state EEG recordings with 60 participants dur-
ing three experimental sessions together with sleep, emotion, mental health, and mind-
wandering related measures.
Link: https://openneuro.org/datasets/ds004148/versions/1.0.1

• Sound Source Elevation.The dataset consists of data from two experiments in which sub-
jects were presented bursts of noise from loudspeakers at different elevations. Subjects
who participated in either experiment were initially tested in their ability to localize ele-
vated sound sources. Both experiments were conducted in a hemi-anechoic chamber.
Link: https://openneuro.org/datasets/ds004256/versions/1.0.5

• HBN. This dataset 2952 children’s eyes-open and eyes-closed EEG. Eyes-open lasted for
20 seconds, and eyes closed for 40 seconds.
Link: https://openneuro.org/datasets/ds004186/versions/2.0.0

• Reversal Learning. This dataset contains EEG records during two reversal learning tasks
with different reinforcer (monetary reward versus primary threat reinforcer). Positive feed-
back in the reward task indicated monetary reward and negative feedback monetary non-
reward.
Link: https://openneuro.org/datasets/ds004295/versions/1.0.0

• Large Spanish EEG. This dataset contains EEG responses to silent and perceive speech
on 30 spanish sentences.
Link: https://openneuro.org/datasets/ds004279/versions/1.1.1

• Executive Functioning Tasks. This dataset contains task-evoked EEG data in executive
functioning battery consisting of three separate tasks: 1) N-Back (NB); 2) Sustained Atten-
tion to Response Task (SART); 3) Local Global (LG).
Link: https://openneuro.org/datasets/ds004350/versions/1.1.1

• PEERS. This dataset contains EEG records in a study on the behavioral and electrophysio-
logical (EEG) correlates of memory encoding and retrieval in highly practiced individuals.
Across five experiments, more than 300 subjects contributed more than 7,000 90 minute
memory testing sessions.
Link: https://openneuro.org/datasets/ds004395/versions/2.0.0

• Continuous Naturalistic Speech. This dataset contains EEG responses of healthy, neu-
rotypical adults who listened to naturalistic speech. The subjects listened to segments from
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an audio book version of ”The Old Man and the Sea” and their brain activity was recorded
using a 128-channel ActiveTwo EEG system (BioSemi).
Link: https://openneuro.org/datasets/ds004408/versions/1.0.8

• Vicarious Touch. This dataset contains EEG records with and without vicarious touch
experiences to test whether seen touch evokes overlapping neural representations with
the first-hand experience of touch. Participants felt touch to the fingers (tactile trials) or
watched carefully matched videos of touch to another person’s fingers (visual trials).
Link: https://openneuro.org/datasets/ds004563/versions/1.0.1

• Normal Infants This dataset contains resting EEG for a sample of 103 normal infants (41
female and 62 male) in the first year of life.
Link: https://openneuro.org/datasets/ds004577/versions/1.0.1

• Neuma. This dataset contains multi-modal brain data from 42 individuals who partic-
ipated in an advertising brochure-browsing scenario is introduced here. In more detail,
participants were exposed to a series of supermarket brochures (containing various prod-
ucts) and instructed to select the products they intended to buy. The data collected for each
individual executing this protocol included: 1) encephalographic (EEG) recordings, 2) eye
tracking (ET) recordings, 3) questionnaire responses (demographic, profiling and product
related questions), and 4) computer mouse data.
Link: https://openneuro.org/datasets/ds004588/versions/1.2.0

• Infant Microstate Reliability. This dataset contains EEG records from infants watching
video.
Link: https://openneuro.org/datasets/ds004635/versions/3.0.0

• ERP. This dataset contains EEG data recorded in a multi-site study of event-related brain
potential (ERPs) and their task-specific relationships.
Link: https://openneuro.org/datasets/ds004602/versions/1.0.1

• Python Reading Task. This dataset contains EEG data records during Python code read-
ing.
Link: https://openneuro.org/datasets/ds004771/versions/1.0.0

• TNO. This dataset contains task-evoked P300 responses.
Link: https://openneuro.org/datasets/ds004660/versions/1.0.2

• Loneliness. This dataset contains EEG data recorded in a study on distinguishing how
lonely individuals respond to negative social stimuli in a roving oddball paradigm.
Link: https://openneuro.org/datasets/ds004802/versions/1.0.0

• Music Therapy. This dataset contains EEG data recorded from adult burn patients in the
intensive care unit during music therapy.
Link: https://openneuro.org/datasets/ds004840/versions/1.0.1

E.3 MULTI-CENTER INTRACRANIAL EEG DATASET

We construct a benchmark from intracranial EEG records sourced from National Institute of Health
(NIH), University of Maryland Medical Center (UMMC), Johns Hopkins Hospital (JHH), and Uni-
versity of Miami Florida Hospital (UMFH) (Li et al., 2023). It poses a significant challenge for
generalizable, subject-independent seizure forecasting up to 5 minutes in advance. The individ-
ual variability in epileptogenic lesions, discerned through MRI scans and post-surgical treatment
outcomes, contributes to this complexity. Additionally, the diversity in recording conditions and
electrode montages across these hospitals makes the dataset highly heterogeneity. Fine-tuning and
model selection use data from NIH, UMMC, and JHH, while reserving the UMFH data for evalua-
tion.

E.4 SELF-COLLECTED DATASET

Dataset description and preprocessing Our dataset stands out for its comprehensive collection
of resting-state EEG data from patients exhibiting a range of epilepsy subtypes, including clonic,
absence, and tonic seizures. With 16 participants diagnosed with absence seizures, 5 with clonic
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seizures, and 6 with atonic seizures, our dataset offers a rich tapestry of well-annotated EEG record-
ings. This dataset is particularly valuable because, to our knowledge, no other benchmark exists that
provides such a diverse and meticulously annotated set of EEG data for these relatively uncommon
but clinically significant epilepsy subtypes for EEG domain generalization. While the famous TUH
EEG Corpus does encompass various seizure patterns, the uniqueness of our dataset is amplified
by the distinct geographical origins and genetic backgrounds of our participants, markedly different
from those in the TUH EEG Corpus.

Our experimental protocol involves continuous monitoring of patients across both awake and sleep
stages, enabling a more exhaustive observation of ictal and non-ictal events. This approach captures
the necessary intra-subject variability, which is crucial for understanding the dynamics of epileptic
dynamics.

Our dataset includes annotations of epileptiform discharges for both ictal and interictal stages, span-
ning conscious and sleep states. By extracting samples with a 2-second window and a sampling
rate of 256 Hz, we have constructed a challenging benchmark for out-of-distribution (OoD) seizure
detection across different disease types.

In the main body of the paper, we concentrate on domain generalization between clonic and abtonic
seizures, which represent two mechanistically distinct forms of epilepsy. Additionally, we present
supplementary experiments in the appendix, exploring other potential scenarios to further demon-
strate the versatility and robustness of our dataset.

Ethical statement and data availability The collection and use of this data have been rigorously
reviewed and approved by the hospital’s ethics committee, with all participants providing their in-
formed consent, ensuring the ethical standards are maintained throughout our research. The pre-
processed samples are available for further development of OoD EEG algorithms. The raw data is
available upon request and we are working to formally publish it in the future.

F MORE RELATED WORK

OoD Generalization and Fine-Tuning Various fine-tuning methods have been developed to ef-
ficiently adapt pre-trained models to new tasks with minimal parameter adjustments. However,
standard fine-tuning can compromise OoD generalizability (Li et al., 2024; Lee et al., 2023; Kumar
et al., 2022; Wortsman et al., 2022; Andreassen et al., 2021). Salman et al. demonstrate that fine-
tuning can degrade pre-trained features, adversely affecting OoD performance (Salman et al., 2020).
New techniques have emerged to counteract these effects (Lee et al., 2022; Wortsman et al., 2022;
Kumar et al., 2022). Parameter-Efficient Fine-Tuning (PEFT) strategies, such as those illustrated by
Lee et al. and Kim et al., effectively mitigate distribution shift issues (Lee et al., 2023; Kim et al.).
Empirical evidence suggests that parameter-efficient fine-tuning, often employing adaptors (Sung
et al., 2022; He et al., 2021; Houlsby et al., 2019), enhances OoD generalization, especially when
downstream data is limited (Chen et al., 2024; Goyal et al., 2023; Zheng et al., 2022). Prompt tun-
ing, a variant of PEFT, introduces flexible trainable prompts for multi-modal extensions (Li et al.,
2024; Samadh et al., 2023; Shu et al., 2022).
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