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Abstract001

Subword tokenization methods like Byte Pair002
Encoding (BPE) are widely used in large lan-003
guage models due to their balance of vocabu-004
lary compactness and representational power.005
However, they suffer from inefficiencies in006
representing rare words and require large em-007
bedding matrices. Character-level models ad-008
dress these issues but introduce performance009
bottlenecks, particularly in Transformer-based010
architectures. Recent hierarchical models at-011
tempt to merge the benefits of both paradigms012
by grouping characters into patches, but exist-013
ing patching strategies either rely on whites-014
pace—limiting applicability to certain lan-015
guages—or require auxiliary models that in-016
troduce new dependencies. In this paper, we017
propose a dynamic character grouping method018
that leverages the structure of existing BPE to-019
kenization without requiring additional models.020
By appending explicit end-of-patch markers021
to BPE tokens and introducing a second-level022
BPE compression stage to control patch gran-023
ularity, our method offers efficient, flexible,024
and language-agnostic representations. Em-025
pirical results demonstrate that our approach026
matches or exceeds the performance of dy-027
namic entropy- and whitespace-based patching028
strategies, while maintaining a compact vocab-029
ulary.030

1 Introduction031

Subword tokenization algorithms, particularly Byte032

Pair Encoding (BPE), have become the de facto033

standard for text representation in large language034

models due to their balance between vocabulary035

compactness and representational flexibility. How-036

ever, despite their widespread use, subword meth-037

ods introduce notable limitations. Embedding ma-038

trices tied to large vocabularies become parameter039

inefficient, for which rare words often have bad040

representations. While BPE provides a degree of041

compression over raw byte sequences—enhancing042

Figure 1: Hierarchical Model: Next patch prediction
with autoregressive character prediction per patch. A
patch is given by a BPE token.“<>” represent end of
token.

computational efficiency, the achievable compres- 043

sion is fundamentally constrained by the vocabu- 044

lary size. For example, modern tokenizers used in 045

models such as Gemma 2 and LLaMA 3 employ 046

vocabularies of around 250K tokens, which inher- 047

ently limits the extent to which sequence length 048

can be reduced. 049

Character-level models directly address many 050

of the limitations inherent in subword-based to- 051

kenization, particularly with regard to rare word 052

handling and parameter efficiency. However, this 053

comes at the cost of runtime performance, espe- 054

cially in quadratic-complexity architectures such 055

as standard Transformers. To bridge this gap, re- 056

cent work has explored hierarchical representations 057

that aim to combine the flexibility of character- 058

level input with the efficiency of subword models. 059

These approaches typically group characters into 060
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larger units—referred to as “patches”—and learn061

representations via neural networks rather than em-062

bedding tables.063

The effectiveness of such models is closely tied064

to the patching strategy. Naively grouping consecu-065

tive characters has been shown to underperform rel-066

ative to traditional BPE tokenization (Pagnoni et al.,067

2024; Slagle, 2024). In contrast, dynamic group-068

ing strategies, particularly those that treat whites-069

pace as a delimiter, have achieved competitive or070

state-of-the-art results. However, whitespace-based071

segmentation does not generalize to logographic072

writing systems such as Chinese, where spacing is073

not semantically meaningful.074

One proposed solution involves training a075

lightweight character-level model to identify patch076

boundaries based on information-theoretic criteria,077

such as local entropy. In this setup, new patches are078

initiated in regions of high entropy (i.e., high sur-079

prise). While promising, this approach introduces080

a dependency on an additional model, which may081

be sensitive to domain shifts and data variability.082

In this paper, we address the limitations of083

character-level and subword-based models by intro-084

ducing a dynamic character grouping method that085

avoids the need for training an additional model to086

determine patch boundaries. Our approach defines087

each patch as the sequence of characters that con-088

stitute a BPE token, effectively repurposing the to-089

kenization process itself as a grouping mechanism.090

To enable incremental processing, we modify the091

standard BPE encoder by appending an explicit092

end-of-patch marker after each token. While prior093

work has briefly mentioned this idea, to the best of094

our knowledge, we are the first to provide a detailed095

empirical evaluation.096

To offset the additional cost introduced by ap-097

pending an end-of-patch symbol to each patch,098

we introduce a hierarchical BPE algorithm that099

compresses each character-level patch to a maxi-100

mum predefined length S. This compression lever-101

ages the observation that short n-grams appear102

frequently across tokens, allowing for effective103

merging and shorter patch lengths. Consequently,104

our method can be viewed as performing dynamic105

grouping of tokens, rather than operating solely at106

the character level.107

Empirically, our model outperforms entropy-108

based patching and achieves comparable perfor-109

mance with whitespace-based dynamic grouping,110

while maintaining broader applicability across writ-111

ing systems. Moreover, compared to standard112

BPE where the vocabulary is a large, our ap- 113

proach yields better efficiency, requiring signifi- 114

cantly fewer FLOPs. 115

2 Methodology 116

We introduce a hierarchical representation model 117

that enables more effective trade-offs between 118

granularity, sequence length, and run-time effi- 119

ciency. Given an input sequence of characters 120

c1, c2, . . . , cL, we apply a pre-trained BPE to- 121

keniser to produce a sequence of variable-length 122

subword tokens x1, . . . ,xT . Each token is se- 123

quence of characters, which we pass to our hi- 124

erarchical BPE algorithm. Our algorithm takes 125

the sequence of characters and compresses it to a 126

shorter sequence of integers and adds an end of 127

sequence marker. Then the sequence representing 128

the initial BPE token is padded to the maximum 129

length S1 and passed to the neural network detailed 130

in section 2.2. 131

2.1 Hierarchical BPE 132

While representing BPE tokens as sequences of 133

characters which are modelled by local networks 134

effectively leverages syntactic correlations and han- 135

dles rare tokens, we observe notable computational 136

inefficiencies. An analysis of the GPT-2 tokenizer 137

( a pre-trained BPE tokenizer, reveals that although 138

the longest token spans 93 bytes, the distribution of 139

token lengths is highly skewed, with the majority 140

containing fewer than 15 bytes (figure 2, left). This 141

skew leads to memory spikes in the local models. 142

Additionally, appending a delimiter (e.g., “<>”) to 143

each patch increases patch length, further slowing 144

down the decoding process. 145

To address these issues, we propose a novel hi- 146

erarchical tokenization strategy that incorporates 147

a secondary BPE algorithm. This second-stage to- 148

kenizer operates on character sequences derived 149

from the initial BPE tokens. Specifically, the al- 150

gorithm identifies all tokens shorter than a prede- 151

fined threshold S (the maximum patch length), se- 152

lects the most frequent byte pair among them, and 153

merges the pair into a new symbol. This procedure 154

is repeated until all tokens conform to the length 155

constraint S. The full algorithm in described in 156

figure 1. 157

The algorithm can be easily understood with an 158

example. Let us assume a pre-trained BPE tok- 159

1One can reduce the amount of padding by concatenating
the patches and applying a sliding window approach. A mask
can be used to delimit the sequences.
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Algorithm 1 Hierarchical BPE with Fixed Patch
Size
Require: Maximum patch size S
Require: Tokens T = {x1:S

v | v ∈ {1, . . . , V }}
1: merges← [ ]
2: V ′ ← 0
3: while |T | > 0 do
4: pair← MOSTFREQPAIR(T )
5: V ′ ← V ′ + 1
6: P ← MERGE(pair, merges, T )
7: for all t ∈ P do
8: if len(t) ≤ S then
9: Remove t from T

10: end if
11: end for
12: end while
13: return V ′, merges

enizer splits the text “This is a test!” into four160

tokens as in figure 1. Also, we set S = 6. The161

algorithm then looks at the entire vocabulary and162

sees that “is” the most frequent pair2, therefore163

merging the pair into a new symbol with encod-164

ing “257”. The representation of “tok1” becomes165

(84, 104, 257, 32, 257, 256), where 84, 104 and 32166

are the ASCII representations of “T”, “h” and space.167

256 represents the end of patch marker. Since the168

length of the representation for “tok1” is smaller169

than or equal to S, this token will not be further170

compressed.171

Our hierarchical BPE framework can also be172

viewed as a mechanism for dynamic grouping173

over tokens from the vocabulary V ′. Concretely,174

a sequence of tokens xt ∈ V ′ can be grouped175

into patches using a secondary, pre-trained BPE176

tokenizer with a much larger vocabulary V ≫177

V ′. This approach enables the model to dynam-178

ically form higher-order token groupings, captur-179

ing richer structure in the data while maintaining180

computational efficiency.181

2.2 Hierarchical Model182

We give an overview of the hierarchical model in183

figure 1. More precisely, the model can be decom-184

posed into a local encoder gϕ, a latent transformer185

fθ and a local decoder mψ. The encoder fϕ inde-186

pendently maps all the sub-sequences to a fixed187

continuous representation:188

et = gϕ(x
1:S
t ) ∈ RD (1)189

2If other pairs are more frequent, they are used first.
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Figure 2: Histogram of lengths for all tokens in the
GPT2 tokenizer. The first plot is truncated on the x-axis,
from maximum token length M = 93.

We subsequently apply a causal latent transformer 190

fθ to the sequence e1, . . . , eT , producing the hid- 191

den representation: 192

ht = fθ(e<t) ∈ RD
′

(2) 193

Compared to the local encoder and decoder, the 194

latent transformer is substantially larger, dedicat- 195

ing greater computational capacity to modeling the 196

more complex global structure across the sequence 197

of patches. Finally, we pass the hidden representa- 198

tions to a local autoregressive decoder mψ, which 199

will predict the sub-sequence representation of the 200

next token: 201

p(xst = c|x<st , x1:S<t ) =
emψ(x

<s
t ,ht−1)[c]∑

v∈V emψ(x
<s
t ,ht−1)[v]

(3)

202

2.3 Metrics 203

As our experiments involve both subword and 204

character-level sequence segmentations, it is nec- 205

essary to normalize evaluation metrics to enable 206

meaningful comparison. To this end, we convert 207

token-level perplexities to bits per byte (BPB), 208

based on the standard definition of information con- 209

tent. Assuming a learned model pθ and a sequence 210

x of size |bytes|, BPB is given by: 211

bpb =
− log2 pθ(x)

|bytes|
(4) 212

One can show the above by considering that the to- 213

tal information content I(x) of the test set remains 214
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invariant across segmentation schemes:215

I(x) = |toks|× bits

token
= |bytes| × bits

byte
(5)216

⇒ bits

token
=
|bytes|
|toks|

× bpb (6)217

⇒ I(x) = |toks| |bytes|
|toks|

× bpb⇒ bpb =
I(x)

|bytes|
(7)

218

We can then use the fact that for a data distribution219

pD and a model pθ, the information contained in a220

sample x is:221

I(x) = H[pd, pθ] = − log2 pθ(x) (8)222

⇒ bpb =
− log2 Pθ(x)

|bytes|
(9)223

In the above, H refers to entropy, bpb = bits
byte ,224

|toks| means the number of tokens in the test set,225

and |bytes| refers to the number of bytes in the test226

set.227

Finally, we define token fertility as F = |tokens|
|words| ,228

which quantifies the degree of compression applied229

to the global sequence on which the latent model230

fθ operates. When fertility is less than 1, the latent231

model processes shorter sequences than the origi-232

nal word-level input, leading to increased computa-233

tional efficiency.234

3 Experiments235

3.1 Experimental Setup236

Our experiments target both language modeling237

and downstream tasks such as question answering,238

using the evaluation benchmark introduced by Gao239

et al. (2024). For language modeling, we use the240

first two chunks of the SlimPajama dataset (Sobol-241

eva et al., 2023), which notably contain Chinese242

characters interspersed with English text. We eval-243

uate two model sizes: a smaller 123M-parameter244

baseline and a larger 359M-parameter model, each245

trained on token counts ranging from 2.5B to 15B.246

While model sizes vary, the Latent Transformer247

architecture remains fixed across all experiments.248

The only architectural modification involves the249

embedding layers, which are substituted with local250

models when applicable. A summary of hyper-251

parameter configurations is provided in Table 1.252

We also release our code with all the experimen-253

tal configuration3. Our experiments were run on 4254

A100, and take between 4 hours to 24 hours to run,255

depending on the experiment.256

3Anonymised git url.

Table 1: Model hyperparameters for 359M and 123M
parameter LLMs

Hyperparameter Medium Small

Latent Layers 24 12
Latent Hidden Dim. 1024 768
Latent FFN 2816 2048
Latent Heads 16 12
Local Hidden Dim 512 512
Local FFN 512 512
Local Heads 8 8
Enc/Dec. Layers 3 3
Learning Rate 6e-4 4e-4

3.2 Baseline Comparison 257

We begin by comparing our method against four 258

alternative text encoding approaches. The first base- 259

line employs standard Byte Pair Encoding (BPE), 260

implemented using the GPT-2 tokenizer. The sec- 261

ond is a character-level model trained on sequences 262

of length 8192. We further evaluate two dynamic 263

patching methods: space-based and entropy-based 264

grouping. For both, we adopt the codebase and ex- 265

perimental setup from Pagnoni et al. (2024), includ- 266

ing the same pre-trained entropy model. Notably, 267

these patching baselines incorporate additional pa- 268

rameters due to the use of hash embeddings in 269

their local encoders—components that our model 270

does not include. However, we do not introduce 271

any cross-attention layers, ensuring that the local 272

encoder architecture remains consistent across all 273

experiments. 274

Space Entropy Entropy* GPT2
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h 
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4.29
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4.49
4.12

Figure 3: Average Patch Lengths for SlimPajama
dataset. "*" represents the unbounded entropy model.

In the space-based setting, we enforce a maxi- 275

mum patch size of 6. For the entropy-based method, 276

we explore two configurations: one with the same 277

maximum patch size of 6, and another with no 278

patch size constraint, allowing the model to de- 279

termine boundaries solely based on local entropy. 280
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Interestingly, although the maximum patch size281

is set to 6, the actual average patch length on the282

SlimPajama dataset is only 4.29 for the space-based283

method. This can be attributed to the prevalence of284

short words; by enforcing an upper bound, the aver-285

age is naturally skewed toward shorter sequences.286

For the entropy-based method, the average patch287

length is 3.45 in the bounded setting and 4.49 in288

the unbounded setting. These relatively short patch289

lengths may be explained by a domain mismatch,290

as the entropy model was not trained on the SlimPa-291

jama dataset. We consider this comparison fair, as292

our method, based on dynamic grouping using the293

GPT-2 tokenizer, is also not specifically adapted to294

SlimPajama. For reference, the GPT-2 tokenizer295

produces an average patch length of 4.12 charac-296

ters per token on this dataset. After introducing the297

end-of-patch marker and applying our second stage298

BPE with a maximum patch size of 10, the average299

patch length becomes 4.13. Figure3 summarises300

the average patch lengths for all the grouping strate-301

gies. The average patch length has a direct effect302

on the number of FLOPs, since it affects the length303

seen by the big latent model fθ.304

FLOPs Calculation. We estimate the total num-305

ber of FLOPs in a forward pass based on the aver-306

age patch length, the local encoder/decoder models,307

and the latent global model:308

F = T · Tr(p,Denc, Lenc, V = 0) (10)309

+ T · Tr(p,Ddec, Ldec, V = V ′) (11)310

+ Tr(T,DG, LG, V = 0) (12)311

In the above, p denotes the average patch length,312

and T is the number of latent tokens, i.e., T = Y/p,313

where Y is the total input length in bytes. Dx314

represents the hidden dimension, Lx the number315

of layers, and V the vocabulary size. The function316

Tr(·) refers to the standard FLOPs computation for317

a Transformer model as defined in Hoffmann et al.318

(2022), with the note that embedding operations319

are assumed to have zero FLOPs.320

Results. Table 2 shows that our approach out-321

performs all baselines in this experimental setup.322

Notably, the entropy-patching method yields the323

weakest results, likely due to a domain mismatch324

between the entropy model’s training data and the325

SlimPajama dataset. While the unbounded entropy326

model is more efficient, the longer patch lengths327

require the local models to learn more complex328

4We enforce the maximum space size to be 6, resulting in
a fertility higher than 1.

Model FLOPs↓ Fertility↓ Params BPB↓
Entropy-Patch* 509 1.41 351M 1.24
Entropy-Patch 668 1.83 351M 1.20
Space-Patch 534 1.454 351M 1.14
Char - Level 4214 4.5 85M 1.16
BPE 562 1.51 123M 1.16
BPE-Patch 554 1.51 99.7M 1.11

Table 2: Comparison between our model for S = 10,
BPE tokenisation, Space and Entropy patching for
128M models trained on 13500 steps. FLOPs are
provided in billions. "*" represents the unbounded
model. We report mean over multiple runs on the test
dataset. Maximum standard deviation across experi-
ments: ±0.007.

representations with limited capacity, leading to a 329

significant drop in performance. Imposing a maxi- 330

mum patch length of 6 improves results, albeit at a 331

higher FLOPs cost, but the performance still lags 332

behind our method. 333

The space-based patching model is the most effi- 334

cient among the baselines and performs reasonably 335

well. Our model achieves the best overall perfor- 336

mance, with a higher computational cost. However, 337

it offers a crucial advantage: unlike space-based 338

methods, it generalizes to languages that do not use 339

whitespace as a word separator. 340

The character-level model uses fewer parameters 341

but suffers from poor runtime efficiency and lower 342

predictive performance. Interestingly, our approach 343

also surpasses standard BPE, despite using fewer 344

parameters. This suggests that the local encoders 345

in our architecture are capable of learning richer 346

token-level representations than those provided by 347

a fixed embedding matrix. 348

3.3 Increasing the training time. 349

We also examine whether the performance gains 350

of our model persist throughout training. To this 351

end, we compare our approach against character- 352

level modeling as well as space- and entropy-based 353

patching, across different numbers of training steps. 354

We use the same model configurations as in Ta- 355

ble 2. As illustrated in Figure 4, the BPE-patching 356

method consistently outperforms all baselines as 357

training progresses. Notably, the structure-level 358

representation appears to improve over time, in- 359

dicating that, in some cases, employing a more 360

granular model—despite its higher computational 361

cost—may lead to better long-term performance. 362
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Figure 4: Test performance for different amounts of
training.

3.4 Evaluation on Chinese language363

We evaluate our method on the Skypile dataset (Wei364

et al., 2023), a large-scale Chinese corpus. Small365

models are trained on a next-byte prediction task366

for 4,800 steps, and the results are presented in367

Table 3. While space-based splitting yields a rel-368

atively high patch size, this is due to the use of369

additional heuristics beyond simple space separa-370

tion. In contrast, the low patch size observed with371

the entropy-based tokenizer can be attributed to its372

neural grouping model, which was not trained on373

this corpus. Our method achieves the largest patch374

size—resulting in the lowest FLOPs—while also375

demonstrating strong performance on this dataset.376

Model Patch Size↑ BPB↓

Space-Patch 3.06 1.24
Entropy-Patch 1.66 1.27
BPE-Patch (LLaMA3) 3.62 1.20

Table 3: Comparison of different patching strategies on
the Skypile dataset. LLaMA3 refers to the LLaMA3
tokenizer used in the first-stage BPE. Patch size indi-
cates the average number of bytes per patch under each
grouping method.

3.5 Increasing the vocabulary377

As previously discussed, increasing the vocabulary378

size V improves compression of the sequence input379

to the global latent model fθ. Shorter sequences380

lead to faster runtime, benefiting both the quadratic381

attention and MLP layers. However, this introduces382

a tradeoff: as V increases, the local models must en-383

code more information using fewer tokens, which384

can strain their capacity. To examine this effect,385

we conduct an ablation study on vocabulary size.386

Specifically, we train three SentencePiece tokeniz-387
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Figure 5: NLL on the test data for varying vocabu-
lary sizes.
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Figure 6: Flops of a forward pass.

ers with vocabulary sizes of 50K, 200K, and 500K, 388

and compare the performance of the standard BPE 389

approach with our model in each setting. 390

Figure 5 shows that the overall performance, 391

measured by the Negative Log Likelihood (NLL), 392

decreases as vocabulary size increases. However, 393

BPE-patching consistently outperforms the stan- 394

dard BPE approach across all vocabulary sizes. 395

Moreover, our approach demonstrates better scal- 396

ability with increasing vocabulary size. This be- 397

haviour is expected, as the local encoder and de- 398

coder in our model generalize more effectively to 399

rare words. In contrast, as the vocabulary size 400

grows, the number of rare tokens increases, leaving 401

many entries in the embedding matrix untrained or 402

unused. 403

Furthermore, we compare the floating point op- 404

erations (FLOPs) required by our model to those 405

of the standard BPE approach. The key architec- 406

tural difference lies in the use of local encoder and 407

decoder modules in our model. To compute the 408

FLOPs for a full forward pass across all layers, we 409

follow the methodology described in Section3.2. 410

Figure 6 illustrates that our approach scales more 411

efficiently in terms of FLOPs as the vocabulary 412

size increases. This advantage arises from the large 413
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Figure 7: Ablation on the patch size (S) for a small
hierarchical model.

embedding matrix in the standard BPE approach,414

which incurs significant computational overhead415

during logits computation. In contrast, our method416

avoids this bottleneck by replacing the embedding417

matrix with local encoder-decoder modules.418

3.6 Ablation on S419

The patch size S does not affect the length of the420

sequence processed by the latent transformer fw;421

that is, global sequence compression is determined422

solely by the BPE tokenizer. However, S has a423

direct impact on the speed and memory require-424

ments of the local transformer. In general, shorter425

patches are preferable—particularly during infer-426

ence, which is performed autoregressively—due to427

reduced computational load. The tradeoff is that428

smaller patches limit the ability of the local trans-429

former to model higher-level linguistic structures.430

Being able to provide this trade-off is part of our431

contrinution.432

We experiment with the small model, and only433

vary S in algorithm 1. We note that for patches434

smaller than S we just use padding. The hyperpa-435

rameters are the same as used in Table1. Figure 7436

shows that the optimal maximum patch size in this437

setting is 8. For lower values, we see a modest per-438

formance drop, while for S = 10, the NLL stays439

the same.440

3.7 Downstream Tasks441

To further verify our model we conduct experi-442

ments on question answering tasks. First, we pre-443

train a medium model on the next token prediction444

task, for 15B tokens. For the other baselines, we445

use the same hyperarameters as defined in Table1,446

alongside a maximum patch size S = 10. Then we447

perform zero-shot evaluations on:448

• Commonsense Reasoning (0-shot): Hel- 449

laSwag (Zellers et al., 2019), PIQA (Bisk 450

et al., 2019), WinoGrande (Sakaguchi et al., 451

2019), and ARC-e/-c (Clark et al., 2018). 452

• Broad Context Understanding: Lambada- 453

OpenAI(Paperno et al., 2016). 454

• Popular Aggregated Results: MMLU 455

(Hendrycks et al., 2021). 456

To obtain the scores we simply calculate the log- 457

likelihood per character in each patch and select 458

the answer with the highest log-likelihood. Ta- 459

ble 4 shows that we outperform the standard BPE 460

approach and the entropy based patching, while 461

performing comparable to space patching in most 462

benchmarks. 463

We also evaluate the language modelling capac- 464

ity of the medium model by measuring the BPB 465

score. The results in Table 4 show that our model 466

improves with scale (better BPB score than the 467

small model) and also outperforms the other base- 468

lines at larger sizes. 469

4 Related Work 470

Model-based dynamic grouping. Numerous prior 471

works have explored hierarchical models, partic- 472

ularly those involving dynamic grouping of char- 473

acters into patches. The Byte-Level Transformer 474

(BLT) (Pagnoni et al., 2024) employs a lightweight 475

model trained on next-character prediction to de- 476

termine patch boundaries. A new patch is initiated 477

either when the entropy is high or when the current 478

patch exceeds a predefined maximum length. This 479

approach eliminates the need for an explicit end- 480

of-patch token but introduces an auxiliary model 481

solely for patching. In contrast, our method avoids 482

the need for such a model and handles the overhead 483

introduced by end-of-patch tokens via a second- 484

stage BPE compression, which effectively reduces 485

the average patch size. 486

Other works, such as Nawrot et al. (2023), ex- 487

plore dynamic pooling through learnable models. 488

While they also incorporate groupings informed 489

by subword tokenizers, a key distinction is that 490

they explicitly train a model to replicate the be- 491

havior of a BPE tokenizer—an essential step in 492

the absence of explicit patch boundary markers. 493

Earlier research has also attempted character-level 494

compression using convolutional layers prior to ap- 495

plying a global Transformer (Clark et al., 2022; 496

Salesky et al., 2021; Rust et al., 2023). 497
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Model Param BPB MMLU Hella Lmb. ARC-c ARC-e Wino. Piqa
↓ acc ↑ acc_norm ↑ acc ↑ acc_norm ↑ acc ↑ acc ↑ acc ↑

BPE 359M 1.02 23 31.3 29.89 23.63 38.05 50.5 61.43
Entropy-Patch 575M 1.10 23.07 32.91 29.4 20.9 36.6 48.8 59.6
Space-Patch 575M 1.03 23.24 35.9 32.8 21.5 39.02 52.5 64.2
BPE-Patch 323M 0.98 22.9 34.6 32.5 22.1 40.6 53.4 63.3

Table 4: Common Academic Evaluation Benchmarks comparison between standard embedding matrix and our
learnable embeddings. The individual task performance is measured via zero-shot.

Space-based grouping. Space patching is a498

well-studied method, with several recent works ex-499

ploring its effectiveness at medium to large scales,500

including Neitemeier et al. (2025), Slagle (2024),501

Sun et al. (2023), and Thawani et al. (2023). The502

latter introduces a minor modification to the hier-503

archical architecture, where the local encoder and504

decoder utilize more than one hidden representa-505

tion per patch. Prior to space patching, grouping of506

consecutive characters was explored by YU et al.507

(2023).508

Token Grouping. Recent work has also investi-509

gated the consecutive grouping of tokens (Ho et al.,510

2024). This is related to our approach in that our511

hierarchical BPE tokenization can be interpreted512

as a form of dynamic grouping, where tokens are513

composed from a much smaller vocabulary V ′.514

5 Conclusion515

In this work, we presented a dynamic character516

grouping method that leverages BPE token bound-517

aries to define patches, eliminating the need for518

an auxiliary neural network to determine patch519

segmentation. By augmenting the BPE process520

with an explicit end-of-patch token and introduc-521

ing a second-stage compression step, we control522

patch granularity while maintaining a compact vo-523

cabulary. This design bridges the gap between524

character-level flexibility and subword-level effi-525

ciency, resulting in a hierarchical representation526

that generalizes beyond whitespace-delimited lan-527

guages. Furthermore, our method can also be inter-528

preted as a dynamic token grouping strategy. The529

empirical results demonstrate improved efficiency530

and performance over entropy-based patching and531

standard BPE, with competitive results relative to532

space-based grouping. These findings highlight533

the effectiveness of token-level dynamic grouping534

as a lightweight yet expressive alternative to con-535

ventional tokenization strategies in large language536

models. 537

Limitations 538

While our method demonstrates strong perfor- 539

mance across several benchmarks, there are key 540

limitations worth highlighting. 541

First, we do not evaluate our approach in large- 542

scale regimes involving models with billions of 543

parameters. It remains an open question how 544

well token-level dynamic grouping scales in such 545

settings, where training dynamics, memory con- 546

straints, and optimization challenges may differ 547

substantially. 548

Finally, our experiments are limited to the GPT- 549

2, LLaMA3 pre-trained tokenizer and Sentence- 550

Piece tokenizers trained in-house. While this setup 551

allows us to evaluate our method in a controlled and 552

reproducible manner, future research should inves- 553

tigate the impact of using other widely adopted pre- 554

trained tokenizers—such as those used in Gemma, 555

or PaLM—to assess the generality of our approach 556

across different tokenizer vocabularies. 557
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