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Abstract

Subword tokenization methods like Byte Pair
Encoding (BPE) are widely used in large lan-
guage models due to their balance of vocabu-
lary compactness and representational power.
However, they suffer from inefficiencies in
representing rare words and require large em-
bedding matrices. Character-level models ad-
dress these issues but introduce performance
bottlenecks, particularly in Transformer-based
architectures. Recent hierarchical models at-
tempt to merge the benefits of both paradigms
by grouping characters into patches, but exist-
ing patching strategies either rely on whites-
pace—limiting applicability to certain lan-
guages—or require auxiliary models that in-
troduce new dependencies. In this paper, we
propose a dynamic character grouping method
that leverages the structure of existing BPE to-
kenization without requiring additional models.
By appending explicit end-of-patch markers
to BPE tokens and introducing a second-level
BPE compression stage to control patch gran-
ularity, our method offers efficient, flexible,
and language-agnostic representations. Em-
pirical results demonstrate that our approach
matches or exceeds the performance of dy-
namic entropy- and whitespace-based patching
strategies, while maintaining a compact vocab-
ulary.

1 Introduction

Subword tokenization algorithms, particularly Byte
Pair Encoding (BPE), have become the de facto
standard for text representation in large language
models due to their balance between vocabulary
compactness and representational flexibility. How-
ever, despite their widespread use, subword meth-
ods introduce notable limitations. Embedding ma-
trices tied to large vocabularies become parameter
inefficient, for which rare words often have bad
representations. While BPE provides a degree of
compression over raw byte sequences—enhancing
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Figure 1: Hierarchical Model: Next patch prediction
with autoregressive character prediction per patch. A
patch is given by a BPE token.“<>" represent end of
token.

computational efficiency, the achievable compres-
sion is fundamentally constrained by the vocabu-
lary size. For example, modern tokenizers used in
models such as Gemma 2 and LLaMA 3 employ
vocabularies of around 250K tokens, which inher-
ently limits the extent to which sequence length
can be reduced.

Character-level models directly address many
of the limitations inherent in subword-based to-
kenization, particularly with regard to rare word
handling and parameter efficiency. However, this
comes at the cost of runtime performance, espe-
cially in quadratic-complexity architectures such
as standard Transformers. To bridge this gap, re-
cent work has explored hierarchical representations
that aim to combine the flexibility of character-
level input with the efficiency of subword models.
These approaches typically group characters into



larger units—referred to as “patches”—and learn
representations via neural networks rather than em-
bedding tables.

The effectiveness of such models is closely tied
to the patching strategy. Naively grouping consecu-
tive characters has been shown to underperform rel-
ative to traditional BPE tokenization (Pagnoni et al.,
2024; Slagle, 2024). In contrast, dynamic group-
ing strategies, particularly those that treat whites-
pace as a delimiter, have achieved competitive or
state-of-the-art results. However, whitespace-based
segmentation does not generalize to logographic
writing systems such as Chinese, where spacing is
not semantically meaningful.

One proposed solution involves training a
lightweight character-level model to identify patch
boundaries based on information-theoretic criteria,
such as local entropy. In this setup, new patches are
initiated in regions of high entropy (i.e., high sur-
prise). While promising, this approach introduces
a dependency on an additional model, which may
be sensitive to domain shifts and data variability.

In this paper, we address the limitations of
character-level and subword-based models by intro-
ducing a dynamic character grouping method that
avoids the need for training an additional model to
determine patch boundaries. Our approach defines
each patch as the sequence of characters that con-
stitute a BPE token, effectively repurposing the to-
kenization process itself as a grouping mechanism.
To enable incremental processing, we modify the
standard BPE encoder by appending an explicit
end-of-patch marker after each token. While prior
work has briefly mentioned this idea, to the best of
our knowledge, we are the first to provide a detailed
empirical evaluation.

To offset the additional cost introduced by ap-
pending an end-of-patch symbol to each patch,
we introduce a hierarchical BPE algorithm that
compresses each character-level patch to a maxi-
mum predefined length S. This compression lever-
ages the observation that short n-grams appear
frequently across tokens, allowing for effective
merging and shorter patch lengths. Consequently,
our method can be viewed as performing dynamic
grouping of tokens, rather than operating solely at
the character level.

Empirically, our model outperforms entropy-
based patching and achieves comparable perfor-
mance with whitespace-based dynamic grouping,
while maintaining broader applicability across writ-
ing systems. Moreover, compared to standard

BPE where the vocabulary is a large, our ap-
proach yields better efficiency, requiring signifi-
cantly fewer FLOPs.

2 Methodology

We introduce a hierarchical representation model
that enables more effective trade-offs between
granularity, sequence length, and run-time effi-
ciency. Given an input sequence of characters
c1,¢C2,...,cr, we apply a pre-trained BPE to-
keniser to produce a sequence of variable-length
subword tokens xi,...,xp. Each token is se-
quence of characters, which we pass to our hi-
erarchical BPE algorithm. Our algorithm takes
the sequence of characters and compresses it to a
shorter sequence of integers and adds an end of
sequence marker. Then the sequence representing
the initial BPE token is padded to the maximum
length S' and passed to the neural network detailed
in section 2.2.

2.1 Hierarchical BPE

While representing BPE tokens as sequences of
characters which are modelled by local networks
effectively leverages syntactic correlations and han-
dles rare tokens, we observe notable computational
inefficiencies. An analysis of the GPT-2 tokenizer
( a pre-trained BPE tokenizer, reveals that although
the longest token spans 93 bytes, the distribution of
token lengths is highly skewed, with the majority
containing fewer than 15 bytes (figure 2, left). This
skew leads to memory spikes in the local models.
Additionally, appending a delimiter (e.g., “<>") to
each patch increases patch length, further slowing
down the decoding process.

To address these issues, we propose a novel hi-
erarchical tokenization strategy that incorporates
a secondary BPE algorithm. This second-stage to-
kenizer operates on character sequences derived
from the initial BPE tokens. Specifically, the al-
gorithm identifies all tokens shorter than a prede-
fined threshold .S (the maximum patch length), se-
lects the most frequent byte pair among them, and
merges the pair into a new symbol. This procedure
is repeated until all tokens conform to the length
constraint .S. The full algorithm in described in
figure 1.

The algorithm can be easily understood with an
example. Let us assume a pre-trained BPE tok-

'One can reduce the amount of padding by concatenating

the patches and applying a sliding window approach. A mask
can be used to delimit the sequences.



Algorithm 1 Hierarchical BPE with Fixed Patch

Size

Require: Maximum patch size S

Require: Tokens 7 = {z}¥ |v e {1,...,V}}
1: merges < []

22 V0

3: while |7| > 0 do

4: pair - MOSTFREQPAIR(T)
5: ViV +1

6: P+ MERGE(pair, merges,T)
7: forallt € P do

8: if len(t) < S then

9: Remove ¢ from T

10: end if

11: end for

12: end while

13: return V' merges

12

enizer splits the text “This is a test!” into four
tokens as in figure 1. Also, we set S = 6. The
algorithm then looks at the entire vocabulary and
sees that “is” the most frequent pair®, therefore
merging the pair into a new symbol with encod-
ing “257”. The representation of “tok1” becomes
(84,104, 257,32,257,256), where 84, 104 and 32
are the ASCII representations of “T”, “h” and space.
256 represents the end of patch marker. Since the
length of the representation for “tok1” is smaller
than or equal to S, this token will not be further
compressed.

Our hierarchical BPE framework can also be
viewed as a mechanism for dynamic grouping
over tokens from the vocabulary V’. Concretely,
a sequence of tokens x; € V' can be grouped
into patches using a secondary, pre-trained BPE
tokenizer with a much larger vocabulary V' >
V'. This approach enables the model to dynam-
ically form higher-order token groupings, captur-
ing richer structure in the data while maintaining
computational efficiency.

2.2 Hierarchical Model

We give an overview of the hierarchical model in
figure 1. More precisely, the model can be decom-
posed into a local encoder g4, a latent transformer
fo and a local decoder m,;,. The encoder fy4 inde-
pendently maps all the sub-sequences to a fixed
continuous representation:

e; = go(x}) e RP (1)

2If other pairs are more frequent, they are used first.
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Figure 2: Histogram of lengths for all tokens in the
GPT?2 tokenizer. The first plot is truncated on the x-axis,
from maximum token length M = 93.

We subsequently apply a causal latent transformer
fo to the sequence ey, . .., er, producing the hid-
den representation:

/

hy = fole<t) € RP 2)

Compared to the local encoder and decoder, the
latent transformer is substantially larger, dedicat-
ing greater computational capacity to modeling the
more complex global structure across the sequence
of patches. Finally, we pass the hidden representa-
tions to a local autoregressive decoder m,;, which
will predict the sub-sequence representation of the
next token:

e (@ he—1)[c]
> vey e (@5 he—1)[v]

3)

plaf = clai®,2Zf) =

2.3 Metrics

As our experiments involve both subword and
character-level sequence segmentations, it is nec-
essary to normalize evaluation metrics to enable
meaningful comparison. To this end, we convert
token-level perplexities to bits per byte (BPB),
based on the standard definition of information con-
tent. Assuming a learned model pg and a sequence
x of size |bytes|, BPB is given by:

bph = —22707 “4)

One can show the above by considering that the to-
tal information content I(x) of the test set remains



invariant across segmentation schemes:

bits bits
I(z) = |toks\><t0k€n = |bytes| x byte 3)
bits |bytes|
= bpb 6
token  |toks| P ©
|bytes| I(x)
= I(x) = [tok bpb = bpb =
(z) = ltoks| |toks| op P |bytes|

(N

We can then use the fact that for a data distribution
pp and a model py, the information contained in a
sample x is:

I(x) = H[pg, pg] = —logapg(z)  (8)

— log, P
|bytes|
In the above, H refers to entropy, bpb = g;i‘z,

|toks| means the number of tokens in the test set,
and |bytes| refers to the number of bytes in the test
set.

Finally, we define token fertility as I’ = ||t$1;f§:“ ,
which quantifies the degree of compression applied
to the global sequence on which the latent model
fo operates. When fertility is less than 1, the latent
model processes shorter sequences than the origi-
nal word-level input, leading to increased computa-
tional efficiency.

3 Experiments

3.1 Experimental Setup

Our experiments target both language modeling
and downstream tasks such as question answering,
using the evaluation benchmark introduced by Gao
et al. (2024). For language modeling, we use the
first two chunks of the SlimPajama dataset (Sobol-
eva et al., 2023), which notably contain Chinese
characters interspersed with English text. We eval-
uate two model sizes: a smaller 123M-parameter
baseline and a larger 359M-parameter model, each
trained on token counts ranging from 2.5B to 15B.
While model sizes vary, the Latent Transformer
architecture remains fixed across all experiments.
The only architectural modification involves the
embedding layers, which are substituted with local
models when applicable. A summary of hyper-
parameter configurations is provided in Table 1.
We also release our code with all the experimen-
tal configuration®. Our experiments were run on 4
A100, and take between 4 hours to 24 hours to run,
depending on the experiment.

3 Anonymised git url.

Table 1: Model hyperparameters for 359M and 123M
parameter LLMs

Hyperparameter Medium Small
Latent Layers 24 12
Latent Hidden Dim. 1024 768
Latent FFN 2816 2048
Latent Heads 16 12
Local Hidden Dim 512 512
Local FFN 512 512
Local Heads 8 8
Enc/Dec. Layers 3 3
Learning Rate 6e-4 4e-4

3.2 Baseline Comparison

We begin by comparing our method against four
alternative text encoding approaches. The first base-
line employs standard Byte Pair Encoding (BPE),
implemented using the GPT-2 tokenizer. The sec-
ond is a character-level model trained on sequences
of length 8192. We further evaluate two dynamic
patching methods: space-based and entropy-based
grouping. For both, we adopt the codebase and ex-
perimental setup from Pagnoni et al. (2024), includ-
ing the same pre-trained entropy model. Notably,
these patching baselines incorporate additional pa-
rameters due to the use of hash embeddings in
their local encoders—components that our model
does not include. However, we do not introduce
any cross-attention layers, ensuring that the local
encoder architecture remains consistent across all
experiments.
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Figure 3: Average Patch Lengths for SlimPajama
dataset. "*" represents the unbounded entropy model.

In the space-based setting, we enforce a maxi-
mum patch size of 6. For the entropy-based method,
we explore two configurations: one with the same
maximum patch size of 6, and another with no
patch size constraint, allowing the model to de-
termine boundaries solely based on local entropy.



Interestingly, although the maximum patch size
is set to 6, the actual average patch length on the
SlimPajama dataset is only 4.29 for the space-based
method. This can be attributed to the prevalence of
short words; by enforcing an upper bound, the aver-
age is naturally skewed toward shorter sequences.

For the entropy-based method, the average patch
length is 3.45 in the bounded setting and 4.49 in
the unbounded setting. These relatively short patch
lengths may be explained by a domain mismatch,
as the entropy model was not trained on the SlimPa-
jama dataset. We consider this comparison fair, as
our method, based on dynamic grouping using the
GPT-2 tokenizer, is also not specifically adapted to
SlimPajama. For reference, the GPT-2 tokenizer
produces an average patch length of 4.12 charac-
ters per token on this dataset. After introducing the
end-of-patch marker and applying our second stage
BPE with a maximum patch size of 10, the average
patch length becomes 4.13. Figure3 summarises
the average patch lengths for all the grouping strate-
gies. The average patch length has a direct effect
on the number of FLOPs, since it affects the length
seen by the big latent model fj.

FLOPs Calculation. We estimate the total num-
ber of FLOPs in a forward pass based on the aver-
age patch length, the local encoder/decoder models,
and the latent global model:

F=T. Tl'(p, Denc, Lene, V = 0) (10)
+T'Tr(p7Ddec7Ld607V = V/) (11)
+Te(T, Dg, L, V = 0) (12)

In the above, p denotes the average patch length,
and 7" is the number of latent tokens, i.e., 7' = Y /p,
where Y is the total input length in bytes. D,
represents the hidden dimension, L, the number
of layers, and V' the vocabulary size. The function
Tr(-) refers to the standard FLOPs computation for
a Transformer model as defined in Hoffmann et al.
(2022), with the note that embedding operations
are assumed to have zero FLOPs.

Results. Table 2 shows that our approach out-
performs all baselines in this experimental setup.
Notably, the entropy-patching method yields the
weakest results, likely due to a domain mismatch
between the entropy model’s training data and the
SlimPajama dataset. While the unbounded entropy
model is more efficient, the longer patch lengths
require the local models to learn more complex

“We enforce the maximum space size to be 6, resulting in
a fertility higher than 1.

Model ‘ FLOPs/| Fertility| Params BPB
Entropy-Patch*| 509 141 351M 1.24
Entropy-Patch 668 1.83  35IM 1.20
Space-Patch 534  145% 351M 1.14
Char - Level 4214 4.5 85M 1.16
BPE 562 .51 123M 1.16
BPE-Patch 554 .51 99.7M 1.11

Table 2: Comparison between our model for S = 10,
BPE tokenisation, Space and Entropy patching for
128M models trained on 13500 steps. FLOPs are
provided in billions. "*" represents the unbounded
model. We report mean over multiple runs on the test
dataset. Maximum standard deviation across experi-
ments: £0.007.

representations with limited capacity, leading to a
significant drop in performance. Imposing a maxi-
mum patch length of 6 improves results, albeit at a
higher FLOPs cost, but the performance still lags
behind our method.

The space-based patching model is the most effi-
cient among the baselines and performs reasonably
well. Our model achieves the best overall perfor-
mance, with a higher computational cost. However,
it offers a crucial advantage: unlike space-based
methods, it generalizes to languages that do not use
whitespace as a word separator.

The character-level model uses fewer parameters
but suffers from poor runtime efficiency and lower
predictive performance. Interestingly, our approach
also surpasses standard BPE, despite using fewer
parameters. This suggests that the local encoders
in our architecture are capable of learning richer
token-level representations than those provided by
a fixed embedding matrix.

3.3 Increasing the training time.

We also examine whether the performance gains
of our model persist throughout training. To this
end, we compare our approach against character-
level modeling as well as space- and entropy-based
patching, across different numbers of training steps.
We use the same model configurations as in Ta-
ble 2. As illustrated in Figure 4, the BPE-patching
method consistently outperforms all baselines as
training progresses. Notably, the structure-level
representation appears to improve over time, in-
dicating that, in some cases, employing a more
granular model—despite its higher computational
cost—may lead to better long-term performance.
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3.4 Evaluation on Chinese language

We evaluate our method on the Skypile dataset (Wei
et al., 2023), a large-scale Chinese corpus. Small
models are trained on a next-byte prediction task
for 4,800 steps, and the results are presented in
Table 3. While space-based splitting yields a rel-
atively high patch size, this is due to the use of
additional heuristics beyond simple space separa-
tion. In contrast, the low patch size observed with
the entropy-based tokenizer can be attributed to its
neural grouping model, which was not trained on
this corpus. Our method achieves the largest patch
size—resulting in the lowest FLOPs—while also
demonstrating strong performance on this dataset.

Model Patch Sizet BPB|
Space-Patch 3.06 1.24
Entropy-Patch 1.66 1.27
BPE-Patch (LLaMA3) 3.62 1.20

Table 3: Comparison of different patching strategies on
the Skypile dataset. LLaMA3 refers to the LLaMA3
tokenizer used in the first-stage BPE. Patch size indi-
cates the average number of bytes per patch under each
grouping method.

3.5 Increasing the vocabulary

As previously discussed, increasing the vocabulary
size V improves compression of the sequence input
to the global latent model fy. Shorter sequences
lead to faster runtime, benefiting both the quadratic
attention and MLP layers. However, this introduces
atradeoff: as V increases, the local models must en-
code more information using fewer tokens, which
can strain their capacity. To examine this effect,
we conduct an ablation study on vocabulary size.
Specifically, we train three SentencePiece tokeniz-

—e— BPE
484 Patch-BPE

4.6

4.4 4

NLL ({)

4.2+

4.0 4

3.8 1

3.6

T T
200K(1.21) 500K(1.16)

V(Fertility)

50K(1.35)
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ers with vocabulary sizes of 50K, 200K, and 500K,
and compare the performance of the standard BPE
approach with our model in each setting.

Figure 5 shows that the overall performance,
measured by the Negative Log Likelihood (NLL),
decreases as vocabulary size increases. However,
BPE-patching consistently outperforms the stan-
dard BPE approach across all vocabulary sizes.
Moreover, our approach demonstrates better scal-
ability with increasing vocabulary size. This be-
haviour is expected, as the local encoder and de-
coder in our model generalize more effectively to
rare words. In contrast, as the vocabulary size
grows, the number of rare tokens increases, leaving
many entries in the embedding matrix untrained or
unused.

Furthermore, we compare the floating point op-
erations (FLOPs) required by our model to those
of the standard BPE approach. The key architec-
tural difference lies in the use of local encoder and
decoder modules in our model. To compute the
FLOPs for a full forward pass across all layers, we
follow the methodology described in Section3.2.

Figure 6 illustrates that our approach scales more
efficiently in terms of FLOPs as the vocabulary
size increases. This advantage arises from the large
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embedding matrix in the standard BPE approach,
which incurs significant computational overhead
during logits computation. In contrast, our method
avoids this bottleneck by replacing the embedding
matrix with local encoder-decoder modules.

3.6 Ablationon S

The patch size S does not affect the length of the
sequence processed by the latent transformer f,,;
that is, global sequence compression is determined
solely by the BPE tokenizer. However, S has a
direct impact on the speed and memory require-
ments of the local transformer. In general, shorter
patches are preferable—particularly during infer-
ence, which is performed autoregressively—due to
reduced computational load. The tradeoff is that
smaller patches limit the ability of the local trans-
former to model higher-level linguistic structures.
Being able to provide this trade-off is part of our
contrinution.

We experiment with the small model, and only
vary S in algorithm 1. We note that for patches
smaller than S we just use padding. The hyperpa-
rameters are the same as used in Tablel. Figure 7
shows that the optimal maximum patch size in this
setting is 8. For lower values, we see a modest per-
formance drop, while for S = 10, the NLL stays
the same.

3.7 Downstream Tasks

To further verify our model we conduct experi-
ments on question answering tasks. First, we pre-
train a medium model on the next token prediction
task, for 15B tokens. For the other baselines, we
use the same hyperarameters as defined in Tablel,
alongside a maximum patch size S = 10. Then we
perform zero-shot evaluations on:

* Commonsense Reasoning (0-shot): Hel-
laSwag (Zellers et al., 2019), PIQA (Bisk
et al., 2019), WinoGrande (Sakaguchi et al.,
2019), and ARC-e/-c (Clark et al., 2018).

* Broad Context Understanding: Lambada-
OpenAl(Paperno et al., 2016).

* Popular Aggregated Results: MMLU

(Hendrycks et al., 2021).

To obtain the scores we simply calculate the log-
likelihood per character in each patch and select
the answer with the highest log-likelihood. Ta-
ble 4 shows that we outperform the standard BPE
approach and the entropy based patching, while
performing comparable to space patching in most
benchmarks.

We also evaluate the language modelling capac-
ity of the medium model by measuring the BPB
score. The results in Table 4 show that our model
improves with scale (better BPB score than the
small model) and also outperforms the other base-
lines at larger sizes.

4 Related Work

Model-based dynamic grouping. Numerous prior
works have explored hierarchical models, partic-
ularly those involving dynamic grouping of char-
acters into patches. The Byte-Level Transformer
(BLT) (Pagnoni et al., 2024) employs a lightweight
model trained on next-character prediction to de-
termine patch boundaries. A new patch is initiated
either when the entropy is high or when the current
patch exceeds a predefined maximum length. This
approach eliminates the need for an explicit end-
of-patch token but introduces an auxiliary model
solely for patching. In contrast, our method avoids
the need for such a model and handles the overhead
introduced by end-of-patch tokens via a second-
stage BPE compression, which effectively reduces
the average patch size.

Other works, such as Nawrot et al. (2023), ex-
plore dynamic pooling through learnable models.
While they also incorporate groupings informed
by subword tokenizers, a key distinction is that
they explicitly train a model to replicate the be-
havior of a BPE tokenizer—an essential step in
the absence of explicit patch boundary markers.
Earlier research has also attempted character-level
compression using convolutional layers prior to ap-
plying a global Transformer (Clark et al., 2022;
Salesky et al., 2021; Rust et al., 2023).



Model Param BPB MMLU Hella Lmb. ARC-c ARC-e Wino. Piqa

d accT acc_norm? acctT acc_norm?T acctT accT acct
BPE 350M  1.02 23 31.3 29.89 23.63 38.05 50.5 6143
Entropy-Patch 575M  1.10  23.07 3291 29.4 20.9 36.6 48.8 59.6
Space-Patch 575M 1.03  23.24 35.9 32.8 21.5 39.02 525 64.2
BPE-Patch 323M  0.98 22.9 34.6 32.5 22.1 40.6 534 633

Table 4: Common Academic Evaluation Benchmarks comparison between standard embedding matrix and our
learnable embeddings. The individual task performance is measured via zero-shot.

Space-based grouping. Space patching is a
well-studied method, with several recent works ex-
ploring its effectiveness at medium to large scales,
including Neitemeier et al. (2025), Slagle (2024),
Sun et al. (2023), and Thawani et al. (2023). The
latter introduces a minor modification to the hier-
archical architecture, where the local encoder and
decoder utilize more than one hidden representa-
tion per patch. Prior to space patching, grouping of
consecutive characters was explored by YU et al.
(2023).

Token Grouping. Recent work has also investi-
gated the consecutive grouping of tokens (Ho et al.,
2024). This is related to our approach in that our
hierarchical BPE tokenization can be interpreted
as a form of dynamic grouping, where tokens are
composed from a much smaller vocabulary V.

5 Conclusion

In this work, we presented a dynamic character
grouping method that leverages BPE token bound-
aries to define patches, eliminating the need for
an auxiliary neural network to determine patch
segmentation. By augmenting the BPE process
with an explicit end-of-patch token and introduc-
ing a second-stage compression step, we control
patch granularity while maintaining a compact vo-
cabulary. This design bridges the gap between
character-level flexibility and subword-level effi-
ciency, resulting in a hierarchical representation
that generalizes beyond whitespace-delimited lan-
guages. Furthermore, our method can also be inter-
preted as a dynamic token grouping strategy. The
empirical results demonstrate improved efficiency
and performance over entropy-based patching and
standard BPE, with competitive results relative to
space-based grouping. These findings highlight
the effectiveness of token-level dynamic grouping
as a lightweight yet expressive alternative to con-
ventional tokenization strategies in large language

models.

Limitations

While our method demonstrates strong perfor-
mance across several benchmarks, there are key
limitations worth highlighting.

First, we do not evaluate our approach in large-
scale regimes involving models with billions of
parameters. It remains an open question how
well token-level dynamic grouping scales in such
settings, where training dynamics, memory con-
straints, and optimization challenges may differ
substantially.

Finally, our experiments are limited to the GPT-
2, LLaMA3 pre-trained tokenizer and Sentence-
Piece tokenizers trained in-house. While this setup
allows us to evaluate our method in a controlled and
reproducible manner, future research should inves-
tigate the impact of using other widely adopted pre-
trained tokenizers—such as those used in Gemma,
or PaLM—to assess the generality of our approach
across different tokenizer vocabularies.
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