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Abstract

Text-to-motion generation is essential for advancing the creative industry but
often presents challenges in producing consistent, realistic motions. To address
this, we focus on fine-tuning text-to-motion models to consistently favor high-
quality, human-preferred motions—a critical yet largely unexplored problem. In
this work, we theoretically investigate the DPO under both online and offline
settings, and reveal their respective limitation: overfitting in offline DPO, and
biased sampling in online DPO. Building on our theoretical insights, we introduce
Semi-online Preference Optimization (SoPo), a DPO-based method for training
text-to-motion models using “semi-online” data pair, consisting of unpreferred
motion from online distribution and preferred motion in offline datasets. This
method leverages both online and offline DPO, allowing each to compensate for
the other’s limitations. Extensive experiments demonstrate that SoPo outperforms
other preference alignment methods, with an MM-Dist of 3.25% (vs e.g. 0.76% of
MoDiPO) on the MLD model, 2.91% (vs e.g. 0.66% of MoDiPO) on MDM model,
respectively. Additionally, the MLD model fine-tuned by our SoPo surpasses the
SoTA model in terms of R-precision and MM Dist. Visualization results also
show the efficacy of our SoPo in preference alignment. Project page: https:
//xiaofeng-tan.github.io/projects/SoPo/.

1 Introduction

Text-to-motion generation aims to synthesize realistic 3D human motions based on textual descrip-
tions, unlocking numerous applications in gaming, filmmaking, virtual and augmented reality, and
robotics [1–4]. Recent advances in generative models [5–7], particularly diffusion models [1, 2, 8–
14], have significantly improved text-to-video generation. However, text-to-motion models often
encounter challenges in generating consistent and realistic motions due to several key factors.

Firstly, models are often trained on diverse text-motion pairs where descriptions vary widely in style,
detail, and purpose. This variance can cause inconsistencies, producing motions that do not always
meet realism or accuracy standards [15–17]. Secondly, text-to-motion models are probabilistic,
allowing diverse outputs for each description. While this promotes variety, it also increases the
chances of generating undesirable variations [4]. Lastly, the complexity of coordinating multiple
flexible human joints results in unpredictable outcomes, increasing the difficulty of achieving smooth
and realistic motion [16]. Together, these factors limit the quality and reliability of current methods
of text-to-motion generation.
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Figure 1: Visual results on HumanML3D dataset. We integrate our SoPo into MDM [13] and MLD
[1], respectively. Our SoPo improves the alignment between text and motion preferences.

In this work, we focus on refining text-to-motion models to consistently generate high-quality and
human-preferred motions, a largely unexplored but essential area given its wide applicability. To our
knowledge, MoDiPO [9] is the only work directly addressing this. MoDiPO applies a preference
alignment method, DPO [18], originally developed for language and text-to-image models, to the
text-to-motion domain. This approach fine-tunes models on datasets where each description pairs
with both preferred and unpreferred motions, guiding the model toward more desirable outputs.
Despite MoDiPO’s promising results, challenges remain, as undesired motions continue to arise,
as shown in Fig. 1. Unfortunately, this issue is still underexplored, with limited efforts directed at
advancing preference alignment approaches to mitigate it effectively.

Contributions. Building upon MoDiPO, this work addresses the above problem, and derives some
new results and alternatives for text-to-motion generation alignment. Particularly, we theoretically
investigate the limitations of online and offline DPO, and then propose a Semi-Online Preference
Optimization (SoPo) to solve the alignment issues in online and offline DPO for text-to-motion
generation. Our contributions are highlighted below.

Our first contribution is the explicit revelation of the limitations of both online and offline DPO.
Online DPO is constrained by biased sampling, resulting in high-preference scores that limit the
preference gap between preferred and unpreferred motions. Meanwhile, offline DPO suffers from
overfitting due to limited labeled preference data, especially for unpreferred motions, leading to poor
generalization. This leads to inconsistent performance in aligning preferences for existing methods.

Inspired by our theory, we propose a novel and effective SoPo method to address these limitations.
SoPo trains models on “semi-online” data pairs that incorporate high-quality preferred motions from
offline datasets alongside diverse unpreferred motions generated dynamically. This blend leverages
the offline dataset’s human-labeled quality to counter online DPO’s preference gap issues, while the
dynamically generated unpreferred motions mitigate offline DPO’s overfitting.

Finally, extensive experimental results like Fig. 1 show that our SoPo significantly outperforms the
SoTA baselines. For example, on the HumanML3D dataset, integrating our SoPo into MLD brings
0.222 in Diversity and 3.25% in MM Dist improvement. By comparison, combining MLD with
MoDiPO only bring 0.091 and −0.01% respectively. These results underscore SoPo’s effectiveness
in improving human-preference alignment in text-to-motion generation.

2 Related Works

Text-to-Motion Generation. Text-to-motion generation [10, 19–21] is a key research area with broad
applications in computer vision. Recently, diffusion-based models have shown remarkable progress
by enhancing both the quality and diversity of generated motions with stable training [2, 11–13].
MotionDiffuse [14] is a pioneering text-driven diffusion model that enables fine-grained body control
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and flexible, arbitrary-length motion synthesis. Tevet et al. [13] propose a transformer-based diffusion
model using geometric losses for better training and performance. Chen et al. [1] improve efficiency
by combining latent space and conditional diffusion. Kong et al. [8] enhance diversity with a discrete
representation and adaptive noise schedule. Dai et al. [2] present a real-time controllable model
using latent consistency distillation for efficient and high-quality generation. Despite these advances,
generating realistic motions that align closely with text remains challenging. Despite significant
progress in skeleton-based motion understanding achieved by unified foundational models [22, 23],
these generative models still exhibit limitations in the semantic and spatial complexities understanding.
Thus, how to enhance the generative ability by discriminative model remain necessary to explore.

Direct Preference Optimization. RLHF [24] aims to align model distributions over pre-defined
preference distributions under the same conditions. As a representative RL method, Direct Preference
Optimization (DPO) has shown great success in large language models (LLMs) [18, 25], text-to-
3D [26], and image generation [27–31], offering a promising solution to the aforementioned issue.
Existing methods are broadly categorized into offline [27, 32] and online DPO [28–31]. Offline DPO
trains on fixed datasets with preference labels from humans [27] or AI feedback [9]. In contrast,
online DPO generates data online using a policy [31] or a reference model [29], and forms preference
pairs via human [28] or AI feedback [32]. While effective in text-to-image generation, DPO methods
for text-to-motion—e.g., MoDiPO [9]—remain underexplored and face challenges such as overfitting
and insufficient preference gaps. More discussion about recent RL research are shown in App. D.

3 Motivation: Rethink Offline & Online DPO

Preliminaries. Here we analyze DPO in MoDiPO to explain its inferior alignment performance for
text-to-motion generation. To this end, we first briefly introduce DPO [18]. Let D be a preference
dataset which comprises numerous triples, each containing a text condition c and a motion pair
xw ≻ xl where xw and xl respectively denote the preferred motion and unpreferred one. With this
dataset, Reinforcement Learning from Human Feedback (RLHF) [33] first trains a reward model
r(x, c) to access the quality of x under the condition c. Then RLHF maximizes cumulative rewards
while maintaining a KL constraint between the policy model πθ and a reference model πref:

max
πθ

E
c∼D,x∼πθ(·|c)

[r(x, c)− βDKL (πθ(x|c) ∥πref(x|c))] . (1)

Here one often uses the frozen pretrained model as the reference model πref and current trainable
text-to-motion model as the policy model πθ.

Building upon RLHF, DPO [18] analyzes the close solution of problem in Eq. (1) to simplify its loss:

LDPO(θ)=E(xw,xl,c)∼D

[
− log σ

(
βHθ(x

w, xl, c)
)]

, (2)

where Hθ(x
w, xl, c) = hθ(x

w, c)− hθ(x
l, c), hθ(x, c) = log πθ(x|c)

πref(x|c) , and σ is the logistic function.
When there are multiple preferred motions (responses) under a condition c, i.e., x1≻x2≻ · · · ≻
xK (K ≥ 2), by using Plackett-Luce model [34], DPO can be extended as:

Loff(θ) = −E(x1:K ,c)∼D

[
log

K∏
k=1

exp(βhθ(x
k, c))∑K

j=k exp(βhθ(xj , c))

]
. (3)

When K = 2, Loff degenerates to LDPO. Since MoDiPO uses multiple preferred motions for
alignment, we will focus on analyze the general formulation in Eq. (3).

3.1 Offline DPO

Analysis. In Eq. (3), its training data are sampled from an offline dataset D. So DPO in Eq. (3) is
also called “offline DPO". Here we analyze its preference optimization with its proof in App. C.1
Theorem 1. Given a preference motion dataset D, a reference model πref , and ground-truth prefer-
ence distribution pgt, the gradient of ∇θLoff can be written as:

∇θLoff(θ) =Ec∼D,x1:K∇θDKL(pgt||pθ). (4)

Here pθ(x
1:K |c) =

∏K
k=1pθ(x

k|c) represents the likelihood that policy model generates motions

x1:Kmatching their rankings, where pθ(x
k|c)= (exphθ(x

k,c))β∑K
j=k(exphθ(xj ,c))β

.
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Theorem 1 shows that the gradient of offline DPO aligns with the gradient of the forward KL
divergence, DKL(pgt||pθ). This suggests that the policy model pθ (i.e., the trainable text-to-motion
model) is optimized to match its distribution with the ground-truth motion preference distribution pgt.

Discussion. However, since training data is drawn from a fixed dataset D, the model risks overfitting,
particularly on unpreferred samples. Due to limited annotations, text-to-motion datasets typically
contain only one preferred motion group x1:K

c per condition c, making pgt(·|c) resemble a one-point
distribution, i.e., pgt(x1:K

c |c) = 1. In this case, minimizing DKL(pgt∥pθ) reduces to maximizing

Preference

Probability 𝜋!(𝑥|𝑐)

Unpreferred regions not covered by dataset

Aligned Probability
Overfitting

Figure 2: Overfitting in offline DPO:
green/red points are preferred/unpre-
ferred motions; blue shows bias from
fixed unpreferred data, red indicates
uncovered unpreferred regions.

likelihood: minDKL(pgt∥pθ) ⇔ min− log pθ(x
1:K
c |c).

As a result, offline DPO progressively increases pθ(x1:K
c |c),

widening the preference gap between preferred and unpre-
ferred motions. As illustrated in Fig. 2, the model primarily
learns from the fixed motion group x1:K

c for each c, caus-
ing the internal gap within x1:K

c to expand. This overfitting
effect, also noted in [35], suggests that with limited unpre-
ferred data, the model learns to avoid only specific patterns
(e.g., red regions in Fig. 2) while ignoring many common un-
preferred motions. Despite this limitation, the offline dataset
is manually labeled and provides valuable preference infor-
mation, where the gap between preferred and unpreferred
motions is large, benefiting learning preferred motions.

3.2 Online DPO

Analysis. In each online DPO training iteration, the current policy model πθ generates K samples for a
given text c. A pretrained reward model r ranks them by preference as x1

π̄θ ≻ x2
π̄θ ≻ · · · ≻ xK

π̄θ, where
xπ̄θi is sampled from πθ without gradient backpropagation. Using the Plackett-Luce model [34], the
probability of xk

π̄θ
being ranked k-th is given by:

pr(x
k
π̄θ
|c) =

exp r(xk
π̄θ
, c)∑K

i=k exp r(x
i
π̄θ
, c)

. (5)

Then we can analyze online DPO below.
Theorem 2. Given a reward model r and a reference model πref , for the online DPO loss Lon, its gradient is:

∇θLon(θ) = Ec∼D,x1:K∇θ pπ̄θ (x
1:K |c)DKL(pr||pθ), (6)

where pπ̄θ (x
1:K |c) =

∏K
k=1 pπ̄θ (x

k|c) with pπ̄θ (x
k|c) being the generative probability of policy model to

generate xk conditioned on c, and pθ(x
k) = (exphθ(xk,c))

β∑K
j=k

(exphθ(xj ,c))β)β
denotes the likehood that policy model

generates motion xk with the k-th largest probability.

See the proof in App. C.2. Theorem 2 indicates that online DPO minimizes the forward KL divergence
DKL(pr||pθ). Thus, online DPO trains the policy model πθ, i.e., the text-to-motion model, to align
its text-to-motion distribution with the online preference distribution pr(x|c).
Discussion. We discuss the training bias and limitations of online DPO. Specifically, motions with
high generative probability pπ̄θ

(xπ̄θ
|c) are frequently synthesized and thus dominate the training of πθ.

In contrast, motions with low generative probability—despite potentially high human preference—are
rarely generated and scarcely contribute to training. Notably, when pπ̄θ

(xπ̄θ
|c) → 0 but the reward

r(xπ̄θ
, c) → 1, the gradient still vanishes: limpπθ

(xπ̄θ
|c)→0,r(xπ̄θ

,c)→1 ∇θLon = 0 (see derivation
in App. C.2). This highlights a key limitation: online DPO tends to ignore valuable but infrequent
preferred motions, focusing instead on commonly generated ones regardless of their actual preference.

Additionally, online DPO aligns the generative probability pπ̄θ
(xπ̄θ

|c) with the preference distribution
pr(xπ̄θ

|c), leading to a positive correlation. Thus, motions with higher generative probabilities often
exhibit higher preferences. However, since preference rankings are determined by a reward model,
roughly half of these high-preference motions—those with lower rankings k despite high scores
r(xk

π̄θ
, c)—are still treated as unpreferred. As a result, many unpreferred training motions retain

considerable preference, reducing the preference gap compared to manually labeled offline datasets.

On the other hand, online DPO dynamically generates diverse motions, particularly unpreferred
motions, in each iteration. This dynamic process enriches preference information and mitigates the
overfitting observed in offline DPO, enabling the model to avoid the undesired patterns.
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Figure 3: Comparison of offline, online DPO, and our SoPo on synthetic data. Offline DPO suffers
from mining unpreferred motions with high probability, and online DPO is limited by biased sampling.
Our SoPo utilizes the dynamic unpreferred motions and preferred motions from unbiased offline
dataset, overcoming their advantage. Here, the blue region is the distribution of generative model.

3.3 DPO-based methods for Text-to-Motion

Analysis. DPO in MoDiPO [9] uses an offline dataset D that is indeed generated by a pre-trained
model πp, denoted as:

{
xw
πp

= argmaxx1:K
πp

∈π̄p
exp r(xk

πp
, c),

xl
πp

= argminx1:K
πp

∈π̄p
exp r(xk

πp
, c),

D = {(xw
πp

, xl
πp

, c)|c ∈ offline textural sets}. (7)

For discussion, we formulate its sampled distribution as:

pMo
gt (xw, xl|c) = I((xw, xl, c) ∈ D), (8)

where the indication function I(E) = 1 if event E happens; otherwise, I(E) = 0.

From Eq. (7), we observe that, like online DPO, MoDiPO samples preference motions from the
distribution pπp

(x|c) induced by the pre-trained model πp. This leads to two main issues like online
DPO. 1) Samples with low generative probability pπp(x|c) but high preferences r(x, c) are rarely
generated by πp and thus seldom contribute to training, even though they are highly desirable motions.
2) As discussed in Sec. 3.2, the motions xπp

generated by πp typically exhibit both high generative
probability and preference scores, which causes half of the preferred samples to be selected as
unpreferred, skewing the model’s learning process. See the detailed discussion in Sec. 3.2.

Additionally, from Eq. (8), we see that for a given condition c, MoDiPO trains on fixed preference
data, similar to offline DPO. Consequently, MoDiPO is limited to avoiding only the unpreferred
motions valued by the pre-trained model πp, rather than those relevant to the policy model πθ. Thus,
it inherits the limitations of both online and offline DPO, constraining the alignment performance.
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4 Semi-Online Preference Optimization

4.1 Overview of SoPo

We introduce our Semi-Online Preference Optimization (SoPo) to address the limitations in both
online and offline DPO for text-to-motion generation. Its core idea is to train the text-to-motion
model on semi-online data pairs, where high-preference motions are from offline datasets, while
low-preference and high-diversity unpreferred motions are generated online.

As discussed in Sec. 3, offline DPO provides high-preference motions with a clear preference gap
from unpreferred ones but tends to overfit due to reliance on fixed, single-source unpreferred motions.
In contrast, online DPO benefits from diverse, dynamically generated data but often lacks a sufficient
preference gap and overlooks low-probability preferred motions. To leverage the strengths of both,
SoPo samples diverse unpreferred motions xl

π̄θ
from online generation and high-preference motions

xw
D from offline datasets, ensuring a broad gap between them. Thus, SoPo mitigates the overfitting of

offline DPO and the insufficient preference gaps in online DPO. Accordingly, we arrive at our SoPo:

LDSoPo(θ) =− E(xw,c)∼DExl∼π̄θ(x|c) log σ
(
βHθ(x

w, xl, c)
)
, (9)

where Hθ(x
w, xl, c) is defined below Eq. (2), xw is preferred motion from the offline dataset, and xl

is unpreferred motion sampled from online DPO. To demonstrate the advantages of SoPo, we conduct
experiments on synthetic data, as shown in Fig. 3 (Detailed experimental settings in App. A.2).

However, direct online generation of unpreferred motions from the policy model presents challenges,
given the positive correlation between the generative distribution pπ̄θ

and preference distribution pr.
Additionally, a large gap between preferred and unpreferred motions remains essential for effective
SoPo. In Sec. 4.2 and 4.3, we receptively elaborate on SoPo’s designs to address these challenges.

4.2 Online Generation for Unpreferred Motions

Here we introduce our generation pipeline for diverse unpreferred motions. Specifically, given a
condition c, we first generate K motions {xk

π̄θ
}Kk=1 from the policy model πθ, and select the one with

the lowest preference value:

xl
π̄θ

= argmin{xk
π̄θ

}K
k=1∼πθ

r(xk
πθ
, c). (10)

However, xl
π̄θ

could still exhibit a relatively high preference r(xl
π̄θ
, c) due to the positive correlation

between the generative probability pπ̄θ
and preference distribution pr (see Sec. 3.2 or 3.3). To

identify genuinely unpreferred motions, we apply a threshold τ to the set {xk
π̄θ
}Kk=1 and check if any

preference score is below it. This leads to two training strategies based on the result.

Case 1: The group {xk
π̄θ
}Kk=1 contains a low-preference unpreferred motion xl

π̄θ
. Then we

select these unpreferred motions iteratively which ensure diversity due to randomness of online
generations and address the diversity lacking issue in offline DPO.
Case 2: The group contains no low-preference unpreferred motion xl

π̄θ
, meaning all sampled

motions are of high preference and should not be treated as unpreferred. This suggests the model
performs well under condition c, so training should focus on high-quality preferred motions from
offline data to further enhance generation quality.

To operationalize this, we apply: (1) distribution separation and (2) training loss amendment.

(1) Distribution separation: With a threshold τ , we separate the distribution pπ̄θ
(x1:K

π̄θ
|c) into two

sub-distributions:
pπ̄θ (x

1:K
π̄θ

|c) = pπ̄θ (x
1:K
π̄θ

|c)pτ (r(xl
π̄θ
, c)≥τ)︸ ︷︷ ︸

relatively high-preference unpreferred motions π̄hu
θ

+ pπ̄θ (x
1:K
π̄θ

|c)pτ (r(xl
π̄θ
, c)<τ)︸ ︷︷ ︸

valuable unpreferred motions π̄vu
θ

,
(11)

where pπ̄θ
(x1:K |c) =

∏K
k=1 pπ̄θ

(xk|c), pπ̄θ
(xk|c) is the generative probability of policy model πθ

to generate xk conditioned on c, pτ (r(xl
π̄θ
, c)≥τ) is the probability of the event r(xl

π̄θ
) ≥ τ , and

pτ (r(x
l
π̄θ
, c)≤τ) has similar meaning.

Eq. (11) indicates that the online generative distribution π̄θ(x
1:K
π̄θ

|c) can be separated according to
whether the sampled motion x1:K

π̄θ
group contains valuable unpreferred motions. Accordingly, our
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objective loss in Eq. (9) can also be divided into two ones: LDSoPo(θ) = Lvu(θ) + Lhu(θ), where
Lvu(θ) targets valuable unpreferred motions and Lhu(θ) targets high-preference unpreferred motions:

Lvu=− E(xw,c)∼DZvu(c)Ex1:K
π̄θ

∼π̄vu∗
θ

(·|c)log σ
(
βHθ(x

w, xl
π̄θ
, c)

)
,

Lhu=− E(xw,c)∼DZhu(c)Ex1:K
π̄θ

∼π̄hu∗
θ

(·|c)log σ
(
βHθ(x

w, xl
π̄θ
, c)

)
,

(12)

where Hθ(x
w, xl

π̄θ
, c) is defined in Eq. (2), pπ̄vu∗

θ
(·) =

pvu
π̄θ

(·)
Zvu(c)

and phu∗π̄θ
(·) =

phu
π̄θ

(·)
Zhu(c)

respectively
denote the distributions of valuable unpreferred and high-preference unpreferred motions. Here
Zvu(c) =

∫
pπ̄vu

θ
(x)dx and Zhu(c) =

∫
pπ̄hu

θ
(x)dx are the partition functions, and are unnecessary

to be computed in our implementation (More discussion are provided in App. C.3).

(2) Training loss amendment: As discussed above, unpreferred motions in case 2 have relatively
high-preference (score ≥ τ ), and thus should not be classified into unpreferred motions for training.
Accordingly, we rewrite the loss Lhu(θ) into LUSoPo−hu(θ) for filtering them:

LUSoPo−hu(θ) = −E(xw,c)∼DZhu(c) log σ
(
βhθ(x

w, c)
)
, LUSoPo(θ) = LUSoPo−hu(θ) + Lvu(θ). (13)

See more discussion on LUSoPo/LDSoPo in App. C.4.

4.3 Offline Sampling for Preferred Motions

As discussed, online DPO suffers from a limited preference gap between preferred and unpreferred
motions. While high-quality motions from offline datasets can help mitigate this issue, they may not
always differ significantly from generated motions—especially when the model is well-aligned with
the dataset. Thus, motions with larger preference gaps (Sec. 4.2) are crucial and should be prioritized.

To utilize the generated unpreferred motion set Dc conditioned on c from Sec. 4.2, we calculate its
proximity with the unpreferred motions in Dc using cosine similarity:

S(xw) = min
xk
π̄θ

∼Dc

cos(xw, xk
π̄θ
).

Then we reweight the loss using βw(xw) = β(C − S(xw)) with a constant C ≥ 1:

LSoPo(θ) =− E(xw,c)∼D,x1:K
π̄θ

∼π̄vu∗
θ

(·|c)Zvu(c)
[
log σ

(
βw(x

w)hθ(x
w, c)− βhθ(x

l, c)
)]

− E(xw,c)∼DZhu(c) log σ
(
βw(x

w)hθ(x
w, c)

)
.

(14)

As similar samples have similar preferences, this reweighting strategy guides the model to priori-
tize preferred motions with a significant preference gap from unpreferred ones. Accordingly, this
reweighting strategy relieves and even addresses the small preference gap issue in online DPO.

4.4 SoPo for Diffusion-Based Text-to-Motion

Recently, diffusion text-to-motion models have achieved remarkable success [2, 6, 11, 12], enabling
the generation of diverse and realistic motion sequences. Inspired by [27], we derive the objective
function of SoPo for diffusion-based text-to-image generation (See proof in App. C.5):

Ldiff
SoPo = Ldiff

SoPo−vu + Ldiff
SoPo−hu, (15)

Ldiff
SoPo−vu = −E

t∼U(0,T ),(xw,c)∼D,x1:K
π̄θ

∼π̄vu∗
θ

(·|c)Zvu(c)
[
log σ

(
− Tωt

(
βw(xw)(L(θ, ref, x

w
t ) − βL(θ, ref, x

l
t)
))]

Ldiff
SoPo−hu=−Et∼U(0,T ),(xw,c)∼DZhu(c)

[
log σ

(
− Tωtβw(xw)L(θ, ref, x

w
t )

)]
,

(16)

where L(θ, ref, xt) = L(θ, xt) − L(ref, xt), and L(θ/ref, xt) = ∥ϵθ/ref(xt, t) − ϵ∥22 denotes the
loss of the policy or reference model. Equivalently, we optimize the following form

Ldiff
SoPo(θ) = −E

t∼U(0,T ),(xw,c)∼D,x1:K
π̄θ

∼π̄θ(·|c)

log σ
(
− Tωt

(
βw(xw)L(θ, ref, xw

t ) − βL(θ, ref, xl
t)
))

, if r(xl, c) < τ,

log σ
(
− Tωtβw(xw)L(θ, ref, xw

t )
)
, otherwise.

(17)

where xl = argmin{xk
π̄θ

}K
k=1∼πθ

r(xk
πθ
, c). Proof and more details are provided in App. B.
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Table 1: Quantitative results of preference alignment methods for text-to-motion generation on
the HumanML3D test set. Results are borrowed from those reported in [9]. The subscripts in each
cell denotes the relative performance change. Superscript “†" marks the largest improvement across
all models; gray background highlights the largest improvement for each model. “Time∗” denotes
estimated online/offline motion generation time, with “1X” as the time for MLD [1] to generate all
HumanML3D motions and “K” (unspecified in [9], typically 2∼6) as the number of motion pairs.

Methods Time∗ R-Precision ↑ MM Dist ↓ Diversity → FID ↓
Top 1 Top 2 Top 3

Real - 0.511±0.003 0.703±0.003 0.797±.002 2.974±0.008 9.503±0.065 0.002 ±0.000

MLD [1] +0 X 0.453±0.003 0.679±0.003 0.755±0.003 3.292±0.010 9.793±0.072 0.459±0.011

+ MoDiPO-T [9] +121K X 0.455±0.002 0.682±0.003 0.758±0.002
+0.40% 3.267±.010

+0.76% 9.747±0.073
+0.046 0.303±0.031

+33.9%

+ MoDiPO-G [9] +121K X 0.452±0.003 0.678±0.003 0.753±0.003
−0.26% 3.294±0.010

−0.01% 9.702±.075
+0.091 0.281±0.031

+38.8%

+ MoDiPO-O [9] - 0.406±0.003 0.609±0.003 0.677±0.003
−10.3% 3.701±0.013

−12.4% 9.241±.079
−0.018 0.276±0.007

+39.9%
†

+ SoPo (Ours) +20 X 0.463±0.003
+2.21% 0.682±0.003

+2.23% 0.763±0.003
+1.06% 3.185±0.012

+3.25%
† 9.525±0.065

+0.268
† 0.374±0.007

+18.5%

MDM [13] +0 X 0.418±0.005 0.604±0.005 0.703±0.005 3.658±0.025 9.546±0.066 0.501±0.037

+ MoDiPO-T [9] +121K X 0.421±0.006 0.635±0.005 0.706±0.004
+0.42% 3.634±.026

+0.66% 9.531±0.073
+0.015 0.451±0.031

+9.98%

+ MoDiPO-G [9] +121K X 0.420±0.006 0.632±0.005 0.704±0.001
+0.14% 3.641±0.025

+0.46% 9.495±0.071
+0.035 0.486±0.031

+2.99%

MDM (fast) [13] +0 X 0.455±0.006 0.645±0.007 0.749±0.004 3.304±0.023 9.948±0.084 0.534±0.052

+ SoPo (Ours) +60 X 0.479±0.006
+5.27%

† 0.674 ±.005
+4.50%

† 0.770±0.006
+2.80%

† 3.208±0.025
+2.91% 9.906±.083

+0.042 0.480±0.046
+10.1%

5 Experiment

Datasets & Evaluation Metrics. For text-to-motion generation, we evaluate SoPo on two widely
used datasets, HumanML3D [3] and KIT-ML [36], focusing on two key aspects: alignment and
generation quality. Alignment is assessed using R-Precision and MM Dist, while generation quality
is measured by Diversity and FID. For text-to-image generation, we utilize Flux-Dev [37] as the
foundational model and employ HPSv2 [38] as the reward model. Further results and details are in
App. A.1.

Implementation Details. Due to limited preference-labeled motion data, we use existing datasets
(e.g., HumanML3D, KIT-ML) as offline preferred motions. For online generation of unpreferred
motions, we use TMR, a text-to-motion retrieval model [39], as the reward model. Hyperparameters
K and τ are tuned through preliminary experiments to balance performance and efficiency, with
τ = 0.45, C = 2, and β = 1 in Eq. (14). We set K = 4 for MDM [40] and K = 2 for MLD [1]. All
models are trained in 100 minutes on a single NVIDIA GeForce RTX 4090D GPU. Since MLD∗ [2]
is tailored for HumanML3D, we use MLD [1] for KIT-ML. More details are in App. A.4.

5.1 Main Results on Text-to-Motion Generation

Settings. We evaluate SoPo for preference alignment and motion generation, comparing it with
state-of-the-art preference alignment [9] and text-to-motion methods [1, 7]. For fairness, we fine-tune
MLD [1] and MDM [13] with SoPo, using a fast diffusion variant [13] with 50 sampling steps. We
also fine-tune MLD∗ [2] as a stronger baseline. Since MLD∗ is not adapted to KIT-ML, we use
MLD [1] and MoMask [44] for diffusion-based and autoregressive methods, respectively.

Table 2: Quantitative comparison of state-of-the-art text-to-motion generation on the Hu-
manML3D test set. ‘MLD∗” refers to the enhanced reproduction of MLD [1] from [2]. For a fair
comparison, we selected the “LMM-T” [41] with a similar size to ours.

Methods Year R-Precision ↑ MM Dist ↓ Diversity → Multimodal ↑ FID ↓
Top 1 Top 2 Top 3 Avg.

Real - 0.511±0.003 0.703±0.003 0.797±0.002 0.670 2.794±0.008 9.503±0.065 - 0.002±0.000

TEMOS [40] 2022 0.424±0.002 0.612±0.002 0.722±0.002 0.586 3.703±0.008 8.973±0.071 0.368±0.018 3.734±0.028

T2M [3] 2022 0.457±0.002 0.639±0.003 0.740±0.003 0.612 3.340±0.008 9.188±0.002 2.090±0.083 1.067±0.002

MDM [13] 2022 0.418 ±0.005 0.604±0.005 0.703±0.005 0.575 3.658±0.025 9.546±0.066 2.799±0.072 0.501±0.037

MLD [1] 2023 0.481±0.003 0.673±0.003 0.772±0.002 0.642 3.196±0.016 9.724±0.082 2.413±0.079 0.473±0.013

MotionGPT [42] 2023 0.492±0.003 0.681±0.003 0.778±0.002 0.650 3.096±0.008 9.528±0.071 2.008±0.084 0.232±0.008

MotionDiffuse [14] 2024 0.491±0.004 0.681±0.002 0.782±0.001 0.651 3.113±0.018 9.410±0.049 1.553±0.042 0.630±0.011

OMG [43] 2024 - - 0.784±0.002 - - 9.657±0.085 - 0.381±0.008

Wang et. al. [6] 2024 0.433±0.007 0.629±0.007 0.733±0.006 0.598 3.430±0.061 9.825±0.159 2.835 0.352±0.109

MoDiPO-T [9] 2024 0.455±0.003 0.682±0.003 0.758±0.002 - 3.267±0.010 9.747±0.073 2.663±0.111 0.303±0.031

PriorMDM [12] 2024 0.481±0.002 - - - 5.610±0.023 9.620±0.074 - 0.600±0.053

LMM-T1 [41] 2024 0.496 ±0.002 0.685 ±0.002 0.785±0.002 0.655 3.087±0.012 9.176±0.074 1.465±0.048 0.415±0.002

CrossDiff3 [11] 2024 - - 0.730±0.003 - 3.358±0.011 9.577±0.082 - 0.281±0.016

Motion Mamba [7] 2024 0.502±0.003 0.693±0.002 0.792±0.002 0.662 3.060±0.009 9.871±0.084 2.294±0.058 0.281±0.011

MLD∗ [1, 2] 2024 0.504±0.002 0.698±0.003 0.796±0.002 0.666 3.052±0.009 9.634±0.064 2.267±0.082 0.450±0.011

MLD∗ [2]+ SoPo 2025 0.528 +4.76% 0.722+3.44% 0.827 +3.89% 0.692 +3.90% 2.939 +3.70% 9.584+38.1% 2.301±0.076 0.174 +61.3%
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Comparison with Preference Alignment Methods. Table 1 compares preference alignment methods.
MoDiPO, a DPO-based method for motion generation, faces overfitting and biased sampling issues
[18]. Conversely, our SoPo method uses diverse high-probability unpreferred and high-quality
preferred motions, improving generation quality and reducing unpreferred motions. SoPo excels in
most metrics except FID, with R-Precision gains of 5.27%, 4.50%, and 2.80% (vs. baseline 0.42%)
and a 3.25% MM Dist. improvement (vs. MoDiPO’s −12.4% to +0.76%). SoPo boosts Diversity
by 0.268 (vs. MoDiPO’s −0.018 to 0.091). Despite MoDiPO’s slight FID edge, SoPo’s results
are comparable, owing to conservative training on low-probability, high-preference samples. SoPo
also eliminates pairwise labels and cuts preference data generation time to ∼1/10 of that MoDiPO.

Table 3: Comparison of text-to-motion generation
performance on the KIT-ML dataset.

Methods R Precision ↑ FID ↓ MM Dist ↓ Diversity →
Top 1 Top 2 Top 3

Real 0.424 0.649 0.779 0.031 2.788 11.08

TEMOS [40] 0.370 0.569 0.693 2.770 3.401 10.91
T2M [3] 0.361 0.559 0.681 3.022 2.052 10.72
MLD [1] 0.390 0.609 0.734 0.404 3.204 10.80
T2M-GPT [45] 0.416 0.627 0.745 0.514 3.007 10.86
MotionGPT [42] 0.366 0.558 0.680 0.510 3.527 10.35
MotionDiffuse[14] 0.417 0.621 0.739 1.954 2.958 11.10
Mo.Mamba [7] 0.419 0.645 0.765 0.307 3.021 11.02
MoMask [44] 0.433 0.656 0.781 0.204 2.779 10.71

MLD [1]+ SoPo 0.412 0.646 0.759 0.384 3.107 10.93
MoMask [44]+ SoPo 0.446 0.673 0.797 0.176 2.783 10.96

Comparison with Motion Generation
Methods. We evaluate SoPo on Hu-
manML3D [3], with results in Table 2. Us-
ing preference alignment, SoPo surpasses
state-of-the-art methods in R-Precision,
MM Dist, and FID, achieving the best per-
formance. Although MotionGPT [42] has
slightly higher Diversity (9.584 vs. 9.528),
SoPo improves R-Precision by 6.46%, FID
by 33.5%, and MM Dist by 5.34%. Com-
pared to Motion Mamba and CrossDiff,
SoPo increases Diversity by 0.287 and re-
duces MM Dist by 12.5%. It also enhances
MLD∗’s FID by 61.3%. On KIT-ML (Table 3), SoPo with MoMask [44] achieves the best results
across all metrics: Top-k R-Precision (0.446, 0.673, 0.797), MM Dist (2.783), and FID (0.176). MLD
w/ SoPo outperforms its original version, confirming its effectiveness across model architectures.

Quantitative Evaluation of Spatial-Perception Motion Generation via SoPo. We quantitatively
analyze the efficacy of our SoPo in resolving issues related to Spatial-Perception Motion Generation
shown in Fig.1. Experimental setting detailed in App. A.3. As exhibited in Fig. 4(a), these results
confirm SoPo’s effectiveness in enhancing spatial-perception capabilities.

5.2 Ablation Studies

Impact of Sample Size K. Due to computational and memory constraints, we recommend keeping
K < 8. As shown in Table 4, increasing K significantly improves generation quality. A larger
sample pool allows the reward model to better evaluate and filter unpreferred motions, leading to
more accurate guidance and higher-quality results.

Table 4: Ablation study on alignment methods, thresholds
τ , and sampled number K.
Methods R Precision ↑ FID ↓ MM Dist ↓ Diversity →

Top 1 Top 2 Top 3

MDM (fast) [13] .455 .645 .749 3.304 9.948 .534

+DSoPo .460+1.08% .655+1.55% .756+0.93% 3.297+0.02% 9.925+0.033 .495+7.30%

+SoPo w/o VU .460+1.08% .656+1.71% .756+0.93% 3.295+0.02% 9.915+0.033 .486+8.98%

+USoPo .473+3.96% .668+3.57% .767+2.40% 3.226+2.36% 9.901+0.047 .556−4.12%

+SoPo .479+5.27% .674+4.50% .770+2.80% 3.208+2.91% 9.906+0.042 .480+10.1%

+SoPo (τ = 0.40) .475+4.40% .661+2.48% .768+2.53% 3.272+0.97% 10.04−0.088 .600−12.4%

+SoPo (τ = 0.45) .479+5.27% .674+4.50% .770+2.80% 3.208+2.91% 9.906+0.042 .480+10.1%

+SoPo (τ = 0.50) .468+2.86% .663+2.79% .764+2.01% 3.256+1.45% 9.900+0.048 .491+8.05%

+SoPo (τ = 0.55) .466+2.41% .660+1.86% .763+1.87% 3.263+1.24% 9.896+0.041 .430+19.5%

+SoPo (τ = 0.60) .461+1.31% .656+1.71% .758+1.20% 3.288+0.48% 9.803+0.145 .399+25.3%

+SoPo (K = 2) .480+5.50% .671+4.03% .771+2.94% 3.212+2.78% 9.907+0.041 .502+5.99%

+SoPo (K = 4) .479+5.27% .674+4.50% .770+2.80% 3.208+2.91% 9.906+0.042 .480+10.1%

Impact of Objective Functions. We
fine-tune MDM [13] using four ob-
jectives: DSoPo (Eq. (12)), USoPo
(Eq. (13)), SoPo without value-
unpreferred (VU), and full SoPo
(Eq. (14)). As shown in Table 4,
DSoPo alleviates limitations of of-
fline/online DPO (Sec. 4.1) and im-
proves FID by 7.30%. Removing VU
further boosts FID to 8.98% by em-
phasizing preferred motions that differ
from unpreferred ones. USoPo, using
a threshold τ to filter unpreferred mo-
tions, enhances R-Precision (+3.96%),
MM Dist (+2.36%), and Diversity (+0.047), though FID slightly drops (–4.12%). Combining all
advantages, SoPo achieves the best results: +5.27% R-Precision and +10.1% FID.

Impact of Cut-Off Thresholds τ . Table 4 reports results with τ ranging from 0.40 to 0.60. A lower
τ leads to stricter filtering, yielding more reliable unpreferred motions. As τ decreases, R-Precision
and MM Dist improve, indicating better alignment. In contrast, higher τ values improve FID and
Diversity, suggesting enhanced generative quality due to exposure to more diverse samples. More
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Figure 4: Quantitative results on (a) spatial-preception motion generation, and (b) user study.

experimental results, including ablation of training strategy and DPO hyper-parameter are shown in
App. A.5.

Table 5: Ablation study on training strategy.

Methods R Precision ↑ FID ↓ MM Dist ↓ Diversity →
Top 1 Top 2 Top 3

MLD* [2] 0.504 0.698 0.796 3.052 9.634 0.450

Off.DPO 0.498 0.692 0.791 3.080 9.620 0.470
On.DPO 0.514 0.709 0.808 3.010 9.610 0.410
Com.DPO 0.517 0.712 0.811 2.985 9.605 0.340
SoPo 0.528 0.722 0.827 2.939 9.584 0.174

Impact of Training Strategy. To
compare different training strategy,
we conducted new experiments com-
paring online DPO (ON. DPO), of-
fline DPO (Off. DPO), their naive
combination (Com. DPO), and com-
bination with our proposed strategies
(SoPo), as shown in Table 5. These
results highlight that SoPo’s hybrid
semi-online design provides more effective and data-efficient alignment, avoiding the limitations of
both pure online and offline DPO.

5.3 Discussion on Reward Hacking.

User Study & Visualization. To assess whether our fine-tuned model exhibits reward hacking, we
conducted a user study and visualized the corresponding motions, as shown in Fig. 4(b). Additionlly,
we visualize results of our SoPo and existing methods, provided in App. A.6. These results confirm
that our SoPo can avoid reward hacking by KL-Divergence in Eq.(1).

6 Conclusion

In this study, we introduce a semi-online preference optimization method: a DPO-based fine-tune
method for the text-to-motion model to directly align preference on “Semi-online data" consisting of
high-quality preferred and diverse unpreferred motions. Our SoPo leverages the advantages both of
online DPO and offline DPO, to overcome their own limitations. Furthermore, to ensure the validity
of SoPo, we present a simple yet effective online generation method along with an offline reweighing
strategy. Extensive experimental results show the effectiveness of our SoPo.

Limitation discussion. SoPo relies on a reward model to motion quality evaluation and identify
usable unpreferred samples. However, research on reward models in the motion domain remains
scarce, and current models, trained on specific datasets, exhibit limited generalization. Consequently,
SoPo inherits these limitations, facing challenges in seamlessly fine-tuning diffusion models with
reward models across diverse, open-domain scenarios.
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SoPo: Text-to-Motion Generation Using Semi-Online Preference
Optimization

Supplementary Material

(a) A person is running then takes big leap.
w/o SoPo w/ SoPo w/o SoPo w/ SoPo

(b) A man jumps from right to left.

Incline

(c) Person walks quickly down a 
short incline

w/o SoPo w/ SoPo

w/o SoPo w/ SoPo
(f) A man is running with arms 

at side.

w/o SoPo w/ SoPo
(d) The person slides to their right 3 times, 

slides to their left 4 times, and slides to 
their left 2 times.

w/o SoPo w/ SoPo
(e) A man throws an object with 
his right hand while lifting his 

right leg off the ground.

w/o SoPo w/ SoPo
(g) A person jumps in the air, then abruptly 

stumbles to his left as if he had been 
pushed, and finally he regains his balance.

w/o SoPo w/ SoPo
(i) A person kneels down onto all 
four, crawls towards the left, and 

then stands back up.

w/o SoPo w SoPo
(h) A person walks forward, briefly 
sits down, and then stands and walk 

back in the opposite direction.

(j) A person walks forward in a zig zag pattern, 
stepping over something along the way.

w/o SoPo w SoPo w/o SoPo w SoPo
(k) A person raises both their arms over their head while bending their 
elbows, they then bend their knees in a squat, and then come out of it.

Figure S1: Visual results on HumanML3D dataset. We integrate our SoPo into MDM [13] and MLD
[1], respectively. Our SoPo improves the alignment between text and motion preferences. Here, the
red text denotes descriptions inconsistent with the generated motion.

This supplementary document contains the technical proofs of results and some additional experi-
mental results. It is structured as follows. Sec. A presents the additional experiment information,
including additional experimental details (Sec. A.2 and A.4) and results (Sec. A.6). Sec. B provides
the implementation and theoretical analysis of our SoPo. Sec. C gives the proofs of the main results,
including Theorem 1, Theorem 2, the objective function of DSoPo, the objective function of USoPo,
and theorem of SoPo for text-to-motion generation. Sec. D provides more related works.
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Flux DPO SoPo (Ours) DPOFlux

Prompt: A still of Doraemon from "Shaun the Sheep" by Aardman Animation. Prompt: A book about the history of Pepe the Frog. 

SoPo (Ours)

Figure S2: Visualization of text-to-image generation on the HPD dataset.

A Experiment

A.1 Details of Experiments on Text-to-Motion Generation

For text-to-image generation, we utilize Flux-Dev [37] as the foundational generation model and
employ HPSv2 [38] as the reward model. To construct the offline training pairs, we first sample
data from the HPDv2 dataset. However, due to the inferior image quality in HPDv2, compared to
that produced by Flux-Dev, we generated 20,000 high-fidelity image pairs using Flux-Dev to create
the final offline dataset. We evaluate text-to-image the performance on Pick Score [46], CLIP [47],
Image Reward [48] and Unified Reward [49]. The text-to-image model was trained for 330 GPU
hours across 8 NVIDIA GPUs using LoRA, configured with a rank of r = 128 and a scaling factor
α = 256.

Table S1: Comparison of text-to-image genera-
tion on HPD dataset.

Method HPS [38] CLIP [47] PS [46] IR [48] UR[49] GPU Hours
FLUX 0.313 0.388 0.227 1.088 3.370 -

+ On.DPO 0.317 0.390 0.228 1.154 3.421 316
+ Off.DPO 0.318 0.392 0.230 1.177 3.402 41

+ SoPo 0.321 0.396 0.232 1.194 3.439 32

Results on Text-to-Image Generation. As
shown in Table S1, the proposed SoPo con-
sistently achieves superior performance across
all evaluated text-to-image metrics, including
HPS(0.321) and IR(1.194), outperforming the
base FLUX model and standard DPO variants.
Visualization is shown in Fig.S2.

A.2 Details of Experiments on Synthetic Data

To simulate our preference optimization framework, we design a 2D synthetic setup with predefined
generation and reward distributions. The generator distribution πθ is modeled as a Gaussian with
mean [−2, 1] and covariance matrix diag(2.0, 2.0). The reward model is defined as a mixture of two

Gaussians with means [−3, 2] and [2,−2], covariances
[

1 ±0.5
±0.5 1

]
, and equal weights of 0.5.

For the offline dataset, preferred samples are randomly drawn from the reward distribution, while
unpreferred samples are sampled from a manually specified distribution dissimilar to the reward
model. These are used to fine-tune the generator via offline preference optimization. For the online
setting, we draw samples from the reference model and assign preference labels using the reward
model to distinguish preferred and unpreferred motions. This process is repeated iteratively to
optimize the model online.In SoPo, we combine offline preferred samples with online-generated
unpreferred ones to perform semi-online preference optimization, thereby leveraging the strengths of
both offline and online data.

A.3 Details of Spatial-Perception Motion Generation via SoPo

The core insight to solve this issue is that reward models (discriminators) are better at judging
spatial semantics than generative models (generator), and SoPo leverages reward feedback to improve
alignment.

We divide this issue into three sub-issues:

1. Can the reward model distinguish left/right correctly?

2. Can the diffusion model generate motions consistent with left/right prompts?
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3. Can SoPo improve generation via preference optimization?

Reward Model Discrimination Ability of Spatial Misalignment. From the HumanML3D test
set (2,192 prompts), 783 prompts (35.72%) contain spatial information (e.g., “left” or “right”),
highlighting the prevalence of this issue. For a text-motion pair (x, t), we computed the reward score
r(x, t). We then created a misaligned text t′ by swapping “left” with “right” and computed r(x, t′).
The reward model is considered successful if r(x, t) > r(x, t′).

Diffusion Model Generative Ability of Spatial Alignment Generation. We randomly selected 100
spatial prompts from the 783 and generated 5 motions per prompt (500 total). Human annotators
judged whether motions matched the spatial constraints.

These results in Fig. 4 (a) demonstrate that:

1. The reward model is capable of detecting spatial misalignments;

2. The original diffusion model struggles with spatial understanding;

3. SoPo effectively enhances spatial alignment in generated motions.

Thus, SoPo offers a practical solution to address spatial misalignment by integrating spatial semantic
information from the text-motion-aligned reward model.

A.4 Additional Experimental Datails

Datasets & Evaluation. HumanML3D is derived from the AMASS [50] and HumanAct12 [51]
datasets and contains 14,616 motions, each described by three textual annotations. All motion is split
into train, test, and evaluate sets, composed of 23384, 1460, and 4380 motions, respectively. For both
HumanML3D and KIT-ML datasets, we follow the official split and report the evaluated performance
on the test set.

We evaluate our experimental results on two main aspects: alignment quality and generation quality.
Following prior research [2, 7, 11], we use motion retrieval precision (R-Precision) and multi-modal
distance (MM Dist) to evaluate alignment quality, while diversity and Fréchet Inception Distance
(FID) are employed to assess generation quality. (1) R-Precision evaluates the similarity between
generated motion and their corresponding text descriptions. Higher values indicate better alignment
quality. (2) MM Dist represents the average distance between the generated motion features and
their corresponding text embedding. (3) Diversity calculates the variation in generated samples. A
diversity close to real motions ensures that the model produces rich patterns rather than repetitive
motions. (4) FID measures the distribution proximity between the generated and real samples in
latent space. Lower FID scores indicate higher generation quality.

Implementation Details. For the preference alignment of MDM [13], we largely adopt the original
implementation’s settings. The model is trained using the AdamW optimizer [52] with a cosine decay
learning rate scheduler and linear warm-up over the initial steps. We use a batch size of 64, with a
guidance parameter of 2.5 during testing. Diffusion employs a cosine noise schedule with 50 steps,
and an evaluation batch size of 32 ensures consistent metric computation. For fine-tuning MLD [1],
we similarly follow its original parameter settings.

Table S2: Hyperparameters analysis of our SoPo.

Methods R Precision ↑ FID ↓ MM Dist ↓
Top 1 Top 2 Top 3

SoPo(C=1,β=0.25) 0.523 0.717 0.823 2.941 0.176
SoPo(C=1,β=0.5) 0.524 0.718 0.824 2.940 0.175
SoPo(C=1,β=1) 0.525 0.719 0.825 2.939 0.174
SoPo(C=2,β=0.25) 0.527 0.721 0.826 2.938 0.173
SoPo(C=2,β=0.5) 0.528 0.722 0.827 2.937 0.172
SoPo(C=2,β=1) 0.528 0.722 0.827 2.939 0.174
SoPo(C=3,β=0.5) 0.532 0.726 0.831 2.935 0.170
SoPo(C=3,β=1) 0.530 0.724 0.829 2.934 0.169
SoPo(C=3,β=2) 0.529 0.723 0.828 2.936 0.171
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up

w/o SoPo w/ SoPo

(a) A person runs to their right and then curves to the left
and continues to run then stops.

(b) A man jumps and brings both arms above his head as … and then
moves them back into the original position.

down

w/o SoPo w/ SoPo

up

down

Figure S3: Visual results on HumanML3D dataset.

A.5 Additional Ablation Results

Impact of Hyperparameters Setting. The hyperparameters of our SoPo can be divided into two
types: (1). From SoPo: filtering threshold τ , candidate number K, weight C; (2). From DPO:
temperature β. For SoPo-specific hyperparameters, Table. S2 shows they have minor influence.
Below, we report results on MLD* to analyze the sensitivity to β and C:

A.6 Additional Experimental Results

We visualize the generated motion for our SoPo. As shown in Fig. S3, our proposed approach helps
text-to-motion models avoid frequent mistakes, such as incorrect movement direction and specific
semantics. Additionally, we also present additional results generated by text-to-motion models with
SoPo, as illustrated in Fig. S1. Our proposed SoPo significantly enhances the ability of text-to-motion
models to comprehend text semantics. For instance, in Fig. S1 (j), a model integrated with SoPo can
successfully interpret the semantics of “zig-zag pattern”, whereas a model without SoPo struggles to
do so.

B Details of SoPo for Text-to-Motion Generation

In this section, we first examine the objective function of SoPo and argue that it presents significant
challenges for optimization. Fortunately, we then discover and derive an equivalent form that is easier
to optimize (Sec. B.1). Finally, we design an algorithm to optimize it and finish discussing their
correspondence (Sec. B.2).

B.1 Equivalent form of SoPo

In Eq. (15) and (16), the objective function of SoPo is defined as:

Ldiff
SoPo = Ldiff

SoPo−vu + Ldiff
SoPo−hu, (S1)

Ldiff
SoPo−vu = −Et∼U(0,T ),(xw,c)∼D,x1:K

π̄θ
∼π̄vu∗

θ
(·|c)Zvu(c)[

log σ
(
− Tωt

(
βw(xw)

(
L(θ, ref, xw

t )− βL(θ, ref, xl
t)
)))]

,

Ldiff
SoPo−hu = −Et∼U(0,T ),(xw,c)∼DZhu(c)[

log σ
(
− Tωtβw(xw)L(θ, ref, xw

t )
)]

,

(S2)

4



However, these objectives can not be directly optimized, since the distribution π̄vu∗
θ and π̄hu∗

θ are not
defined explicitly. To this end, we begin by inducing its equivalent form:

Ldiff
SoPo(θ) =− Et∼U(0,T ),(xw,c)∼D,x1:K

π̄θ
∼π̄θ(·|c)log σ

(
− Tωt

(
βw(xw)

(
L(θ, ref, xw

t )− βL(θ, ref, xl
t)
)))

, if r(xl, c) < τ,

log σ
(
− Tωtβw(xw)L(θ, ref, xw

t )
)
, otherwise.

(S3)

where xl = argmin{xk
π̄θ

}K
k=1∼πθ

r(xk
πθ
, c).

Proof. Recall our definition of Ldiff
SoPo(θ) in Eq. (15) and (16). Through algebraic maneuvers, we

have:
Ldiff

SoPo = Ldiff
SoPo−vu + Ldiff

SoPo−hu

= −Et∼U(0,T ),(xw,c)∼D,x1:K
π̄θ

∼π̄vu∗
θ

(·|c)Zvu(c)[
log σ

(
− Tωt

(
βw(xw)

(
L(θ, ref, xw

t )− βL(θ, ref, xl
t)
)))]

− Et∼U(0,T ),(xw,c)∼DZhu(c)
[
log σ

(
− Tωtβw(xw)L(θ, ref, xw

t )
)]

= −Et∼U(0,T ),(xw,c)∼DEx1:K
π̄θ

∼π̄vu∗
θ

(·|c)Zvu(c)[
log σ

(
− Tωt

(
βw(xw)

(
L(θ, ref, xw

t )− βL(θ, ref, xl
t)
)))]

− Et∼U(0,T ),(xw,c)∼DEx1:K
π̄θ

∼π̄hu∗
θ

(·|c)Zhu(c)
[
log σ

(
− Tωtβw(xw)L(θ, ref, xw

t )
)]

= −Et∼U(0,T ),(xw,c)∼DEx1:Kpvuπ̄θ
(x1:K

π̄θ
|c)[

log σ
(
− Tωt

(
βw(xw)

(
L(θ, ref, xw

t )− βL(θ, ref, xl
t)
)))]

− Et∼U(0,T ),(xw,c)∼DEx1:Kphuπ̄θ
(x1:K

π̄θ
|c)

[
log σ

(
− Tωtβw(xw)L(θ, ref, xw

t )
)]

1
= −Et∼U(0,T ),(xw,c)∼DEx1:K

π̄θ
∼π̄θ(·|c)pτ (r(x

l
π̄θ
, c) < τ)[

log σ
(
− Tωt

(
βw(xw)

(
L(θ, ref, xw

t )− βL(θ, ref, xl
t)
)))]

− Et∼U(0,T ),(xw,c)∼DEx1:K
π̄θ

∼π̄θ(·|c)pτ (r(x
l
π̄θ
, c) ≥ τ)

[
log σ

(
− Tωtβw(xw)L(θ, ref, xw

t )
)]

= −Et∼U(0,T ),(xw,c)∼D,x1:K
π̄θ

∼π̄θ(·|c)log σ
(
− Tωt

(
βw(xw)

(
L(θ, ref, xw

t )− βL(θ, ref, xl
t)
)))

, if r(xl, c) < τ,

log σ
(
− Tωtβw(xw)L(θ, ref, xw

t )
)
, otherwise.

where
1
= holds since pπ̄vu∗

θ
(·) =

pvu
π̄θ

(·)
Zvu(c)

and pvuπ̄θ
(x1:K

π̄θ
|c) = pπ̄θ

(x1:K
π̄θ

|c) · pτ (r(xl
π̄θ
, c) ≥ τ). The

proof is completed.

B.2 The process of SoPo for text-to-motion generation

Based on the equivalent form of SoPo in Eq. (S3), we can design an algorithm to directly optimize it,
as shown in Algorithm 1.

The SoPo optimizes a policy model πθ for text-to-motion generation through an iterative process
guided by a reward model. In each iteration, given a preferred motion xw and a conditional code c,
a random diffusion step t is selected, and K candidate motions are generated by πθ. The motion
with the lowest preference score is then treated as the unpreferred motion. To determine the weight
of the preferred motion xw, the similarities between all generated motions are computed, and the
lowest cosine similarity value is used to calculate its weight. Finally, the loss is calculated in two
ways, determined based on the preference scores of the unpreferred motion. If the preference score
of the selected unpreferred motion falls below a threshold τ , it is identified as a valuable unpreferred
motion and used for training. Otherwise, it indicates that the motions generated by the policy model
πθ are satisfactory. In such cases, the policy model is trained exclusively on high-quality preferred
motions, rather than on both preferred motions and relatively high-preference unpreferred motions.
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Algorithm 1 SoPo for text-to-motion generation
Input: Preference dataset D; diffusion steps T ; iterations I; samples K; ref model πref ; policy πθ;

threshold τ
Output: Aligned model πθ

1: for i = 1 to I do
2: for each (xw, c) ∈ D do
3: Sample t ∼ U(0, T )
4: Sample x1:K

π̄θ
∼ π̄θ(·|c)

5: Compute S(xw) = mink cos(x
w, xk

π̄θ
)

6: xl = argmink r(x
k
πθ
, c)

7: if r(xl, c) < τ then
8: L = log σ(−Tωtβw(x

w)(L(θ, ref, xw
t )− βL(θ, ref, xl

t)))
9: else

10: L = log σ(−Tωtβw(x
w)L(θ, ref, xw

t ))
11: end if
12: Accumulate loss: Ldiff

SoPo+ = L
13: end for
14: Update πθ using ∇θLdiff

SoPo
15: end for
16: return πθ

To further understand the objective function, we analyze the correspondence between the objective
function in Eq. (S3) and Algorithm 1:

Ldiff
SoPo(θ) =− E

(xw, c) ∼ D︸ ︷︷ ︸
Line 2

,t ∼ U(0, T )︸ ︷︷ ︸
Line 3

,x1:K
π̄θ

∼ π̄θ(·|c)︸ ︷︷ ︸
Line 4

log σ
(
− Tωt

(
βw(xw)(L(θ, ref, xw

t )− βL(θ, ref, xl
t)
))

︸ ︷︷ ︸
Line 8

, If r(xl, c) < τ,︸ ︷︷ ︸
Line 7

log σ
(
− Tωtβw(xw)L(θ, ref, xw

t )
)

︸ ︷︷ ︸
Line 10

, Otherwise︸ ︷︷ ︸
Line 9

.

(S4)

C Theories

C.1 Proof of Theorem 1

Proof. The offline DPO based on Plackett-Luce model [34] can be denoted as:

Loff(θ) = −E(x1:K ,c)∼D

[
log

K∏
k=1

exp(βhθ(x
k, c))∑K

j=k exp(βhθ(xj , c))

]
, (S5)
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where hθ(x, c) = log πθ(x|c)
πref(x|c) . Then we have:

Loff(θ) = −E(x1:K ,c)∼D

[
log

K∏
k=1

exp(βhθ(x
k, c))∑K

j=k exp(βhθ(xj , c))

]
= −Ec∼D,x1:K pgt(x

1:K |c)
[
log

K∏
k=1

exp(βhθ(x
k, c))∑K

j=k exp(βhθ(xj , c))

]

= −Ec∼D,x1:K pgt(x
1:K |c)

[
log

K∏
k=1

exp(β log πθ(x
k|c)

πref (xk|c) )∑K
j=k exp(β log πθ(xj |c)

πref (xj |c) )

]

= −Ec∼D,x1:K pgt(x
1:K |c)

[
log

K∏
k=1

exp log( πθ(x
k|c)

πref (xk|c) )
β)]∑K

j=k exp log(
πθ(xj |c)
πref (xj |c) )

β

]

= −Ec∼D,x1:K pgt(x
1:K |c)

[
log

K∏
k=1

( πθ(x
k|c)

πref (xk|c) )
β∑K

j=k(
πθ(xj |c)
πref (xj |c) )

β︸ ︷︷ ︸
pθ(xk|c)

]

= −Ec∼D,x1:K pgt(x
1:K |c)

[
log

K∏
k=1

pθ(x
k|c)︸ ︷︷ ︸

pθ(x1:K |c)

]

= −Ec∼D,x1:K pgt(x
1:K |c)

[
log pθ(x

1:K |c)− log pgt(x
1:K |c) + log pgt(x

1:K |c)
]

= Ec∼D,x1:K pgt(x
1:K |c)

[
log

pgt(x
1:K |c)

pθ(x1:K |c)
− log pgt(x

1:K |c)
]

= Ec∼D,x1:K DKL(pgt|pθ)− pgt(x
1:K |c) log pgt(x1:K |c)

(S6)

Therefore, we have:

∇θLoff(θ) =Ec∼D,x1:K∇θDKL(pgt||pθ). (S7)

The proof is completed.

C.2 Proof of Theorem 2

Proof. Inspired by [53], we replace the one-hot vector in DPO with Plackett-Luce model [34], and
then the online DPO can be expressed as

LDPO−On(θ) = −Ec∼D,x1:K∼π̄θ(·|c)

[ K∑
k=1

pr(xk|c) log
( πθ(x

k|c)
πref(xk|c) )

β∑K
j=k(

πθ(xj |c)
πref(xj |c) )

β

]
, (S8)
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where pr(x
k
π̄θ
|c) =

exp r(xk
π̄θ

,c)∑K
i=k exp r(xi

π̄θ
,c)

.Then we have:

Lon(θ) = −Ec∼D,x1:K∼π̄θ(·|c)

[ K∑
k=1

pr(xk|c) log
( πθ(x

k|c)
πref(xk|c) )

β∑K
j=k(

πθ(xj |c)
πref(xj |c) )

β

]

= −Ec∼D pπ̄θ
(x1:K |c)

[ K∑
k=1

pr(xk|c) log
( πθ(x

k|c)
πref(xk|c) )

β∑K
j=k(

πθ(xj |c)
πref(xj |c) )

β

]

= −Ec∼D pπ̄θ
(x1:K |c)

[ K∑
k=1

pr(x
k|c) log

( πθ(x
k|c)

πref (xk|c) )
β∑K

j=k(
πθ(xj |c)
πref (xj |c) )

β︸ ︷︷ ︸
pθ(xk|c)

]

= −Ec∼D pπ̄θ
(x1:K |c)

[ K∑
k=1

pr(x
k|c) log pθ(xk|c)

]
= −Ec∼D pπ̄θ

(x1:K |c)
[ K∑
k=1

pr(x
k|c)(log pθ(xk|c)− log pr(x

k|c) + log pr(x
k|c))

]
= Ec∼D pπ̄θ

(x1:K |c)
[
DKL(pr|pθ)− pr(x

k|c) log pr(xk|c)
]

(S9)

Therefore, we have:

∇θLon(θ) = Ec∼D∇θ pπ̄θ
(x1:K |c)DKL(pr||pθ). (S10)

The proof is completed.

Given a sample x with a tiny generative probability pπ̄θ|c(x) → 0, and large reward value r(x, c) → 1,
we have limpπθ

(x|c)→0,r(x,c)→1 ∇θLon = 0.

Proof. Since x is contained in the sampled motion group x1:K , we have:

lim
pπθ

(x|c)→0,r(x,c)→1
∇θLon

= lim
pπθ

(x|c)→0,r(x,c)→1
∇θ pπ̄θ

(x1:K |c)DKL(pr||pθ)

1
= lim

pπθ
(x1:K |c)→0,r(x,c)→1

∇θ pπ̄θ
(x1:K |c)DKL(pr||pθ)

=0,

(S11)

where 1 holds since pπθ
(x1:K |c) = pπθ

(x|c)pπθ
(xM |c) ≤ pπθ

(x|c), and xM denotes a motion group
obtained by removing the given motion x from the group x1:K , i.e., satisfying that xM = x1:K −{x}.
The proof is completed.

C.3 Proof of DSoPo

Proof. Eq. (10) suggests that DSoPo samples multiple unpreferred motion candidates instead of a
single unpreferred motion. Thus, we should first extend Eq. (9) as:

LDSoPo(θ) =− E(xw,c)∼DEx1:K∼π̄θ(x|c) log σ
(
βHθ(x

w, xl, c)
)
, (S12)
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where xl = argmin{xk
π̄θ

}K
k=1∼πθ

r(xk
πθ
, c). Then, we have:

LDSoPo(θ) =− E(xw,c)∼DEx1:K∼π̄θ(x|c) log σ
(
βHθ(x

w, xl, c)
)

=− E(xw,c)∼DEx1:K pπ̄θ (x
1:K |c)︸ ︷︷ ︸

Substituting with (11)

log σ
(
βHθ(x

w, xl, c)
)

=− E(xw,c)∼DEx1:K

(
pπ̄θ (x

1:K
π̄θ

|c)pτ (r(xl, c)≥τ) + pπ̄θ (x
1:K
π̄θ

|c)pτ (r(xl, c)<τ)
)
log σ

(
βHθ(x

w, xl, c)
)

=− E(xw,c)∼DEx1:K pπ̄θ (x
1:K
π̄θ

|c)pτ (r(xl, c)≥τ)︸ ︷︷ ︸
phu
π̄θ

(x1:K |c)

log σ
(
βHθ(x

w, xl, c)
)

− E(xw,c)∼DEx1:K pπ̄θ (x
1:K
π̄θ

|c)pτ (r(xl, c)<τ)︸ ︷︷ ︸
pvu
π̄θ

(x1:K |c)

log σ
(
βHθ(x

w, xl, c)
)

=− E(xw,c)∼DEx1:KZhu(c)p
hu
π̄θ

(x1:K |c) log σ
(
βHθ(x

w, xl, c)
)

− E(xw,c)∼DEx1:KZvu(c)p
vu∗
π̄θ

(x1:K |c) log σ
(
βHθ(x

w, xl, c)
)

=− E(xw,c)∼DZhu(c)Ex1:Kphu∗π̄θ
(x1:K |c) log σ

(
βHθ(x

w, xl, c)
)

− E(xw,c)∼DZvu(c)Ex1:Kpvu∗π̄θ
(x1:K |c) log σ

(
βHθ(x

w, xl, c)
)

=− E(xw,c)∼DZhu(c)Ex1:K∼π̄hu∗
θ

log σ
(
βHθ(x

w, xl, c)
)

− E(xw,c)∼DZvu(c)Ex1:K∼π̄vu∗
θ

log σ
(
βHθ(x

w, xl, c)
)

=Lvu(θ) + Lhu(θ),
(S13)

where pπ̄vu∗
θ

(·) =
pvu
π̄θ

(·)
Zvu(c)

and phu∗π̄θ
(·) =

phu
π̄θ

(·)
Zhu(c)

respectively denote the distributions of valuable
unpreferred and high-preference unpreferred motions. The proof is completed.

Accordingly, we rewrite Lhu(θ) and obtain the objective function of USoPo:

LUSoPo−hu(θ) = −E(xw,c)∼DZhu(c) log σ
(
βhθ(x

w, c)
)
,

LUSoPo(θ) = LUSoPo−hu(θ) + Lvu(θ).
(S14)

Implementation Now, we discuss how to deal with the computation of Zvu(c) and Zhu(c) in our
implementation. As discussed in Sec. B, directly optimizing the objective function Ldiff

SoPo(θ) is
challenging, and we used Algorithm 1 optimized its equivalent form:

Ldiff
SoPo(θ) = −Et∼U(0,T ),(xw,c)∼D,x1:K

π̄θ
∼π̄θ(·|c)log σ

(
− Tωt

(
βw(xw)

(
L(θ, ref, xw

t )− βL(θ, ref, xl
t)
)))

, if r(xl, c) < τ,

log σ
(
− Tωtβw(xw)L(θ, ref, xw

t )
)
, otherwise.

(S15)

Similarly, we can optimize the equivalent form of UDoPo to avoid the computation of Zvu(c) and
Zhu(c):

LUSoPo(θ) = −E(xw,c)∼D,x1:K
π̄θ

∼π̄θ(·|c)

log σ
(
βHθ(x

w, xl, c)
)
, If r(xl, c) < τ,

log σ
(
βhθ(x

w, c)
)
, Otherwise.

(S16)

The proof of Eq. (S16) follows the same steps as the proof of Eq. (S15) in Sec. B.

C.4 Discussion of USoPo and DSoPo

In this section, we discuss the relationship between USoPo and DSoPo and the difference between
their optimization. Here, USoPo and DSoPo are defined as:

LUSoPo(θ) = −E(xw,c)∼DZhu(c) log σ
(
βhθ(x

w, c)
)
+ Lvu(θ). (S17)
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LDSoPo(θ) = Lvu(θ) + Lhu(θ), (S18)

Relationship between USoPo and DSoPo We begin by analyzing the size relationship between
USoPo and DSoPo:
LDSoPo(θ)− LUSoPo(θ)

=Lhu(θ) + E(xw,c)∼DZhu(c) log σ
(
βhθ(x

w, c)
)

=− E(xw,c)∼DZhu(c)Ex1:K∼π̄hu∗
θ

log σ
(
βHθ(x

w, xl, c)
)
+ E(xw,c)∼DZhu(c) log σ

(
βhθ(x

w, c)
)

=− E(xw,c)∼DZhu(c)Ex1:K∼π̄hu∗
θ

[
log σ

(
βHθ(x

w, xl, c)
)
− log σ

(
βhθ(x

w, c)
)]

.

(S19)
Considering that Hθ(x

w, xl, c) = hθ(x
w, c)− hθ(x

l, c) and hθ(x, c) = log πθ(x|c)
πref(x|c) , we have:

LDSoPo(θ)− LUSoPo(θ)

=− E(xw,c)∼DZhu(c)Ex1:K∼π̄hu∗
θ

[
log σ

(
βHθ(x

w, xl, c)
)
− log σ

(
βhθ(x

w, c)
)]

=− E(xw,c)∼DZhu(c)Ex1:K∼π̄hu∗
θ

[
log

expβhθ(x
w, c)

expβhθ(xw, c) + expβhθ(xl, c)
− log

expβhθ(x
w, c)

expβhθ(xw, c) + 1

]
=− E(xw,c)∼DZhu(c)Ex1:K∼π̄hu∗

θ

[
log

expβhθ(x
w, c) + 1

expβhθ(xw, c) + expβhθ(xl, c)

]
=− E(xw,c)∼DZhu(c)Ex1:K∼π̄hu∗

θ

[
log

( πθ(x
w|c)

πref(xw|c) )
β + 1

( πθ(xw|c)
πref(xw|c) )

β + ( πθ(xl|c)
πref(xl|c) )

β

]
.

(S20)
In general, DPO focuses on reducing the generative probability of loss samples (unpreferred motions).
Consequently, the generative probability of the policy model πθ(x

l|c) will be lower than that of
the reference model πref(x

l|c), i.e., πθ(x
l|c) ≤ πref(x

l|c), resulting in πθ(x
l|c)

πref(xl|c) ≤ 1. Hence, the
following relationship holds:

πθ(x
l|c)

πref(xl|c)
≤ 1

⇒(
πθ(x

w|c)
πref(xw|c)

)β + 1 ≥ (
πθ(x

w|c)
πref(xw|c)

)β + (
πθ(x

l|c)
πref(xl|c)

)β

⇒
( πθ(x

w|c)
πref(xw|c) )

β + 1

( πθ(xw|c)
πref(xw|c) )

β + ( πθ(xl|c)
πref(xl|c) )

β
≥ 1

⇒ log
( πθ(x

w|c)
πref(xw|c) )

β + 1

( πθ(xw|c)
πref(xw|c) )

β + ( πθ(xl|c)
πref(xl|c) )

β
≥ 0

⇒−E(xw,c)∼DZhu(c)Ex1:K∼π̄hu∗
θ

[
log

( πθ(x
w|c)

πref(xw|c) )
β + 1

( πθ(xw|c)
πref(xw|c) )

β + ( πθ(xl|c)
πref(xl|c) )

β

]
︸ ︷︷ ︸

LDSoPo(θ)−LUSoPo(θ)

≤ 0

⇒LDSoPo(θ) ≤ LUSoPo(θ).

(S21)

Eq. (S21) indicates that LUSoPo is one of upper bounds of LDSoPo.

Difference between the optimization of USoPo and DSoPo The difference between the opti-
mization of USoPo and DSoPo can be measured by that between their objective function. Let
Ld(θ) = LUSoPo(θ)−LDSoPo(θ), the difference between their objective function can be denoted as:

Ld(θ) =LUSoPo(θ)− LDSoPo(θ)

=E(xw,c)∼DZhu(c)Ex1:K∼π̄hu∗
θ

[
log

( πθ(x
w|c)

πref(xw|c) )
β + 1

( πθ(xw|c)
πref(xw|c) )

β + ( πθ(xl|c)
πref(xl|c) )

β

] 1
≥ 0

(S22)

10



where 1 holds due to Eq. (S21). As discussed above, the generative probability of the policy model
πθ(x

l|c) will be lower than that of the reference model πref(x
l|c), and thus πθ(x

l|c) falls in the range
between 0 and πref(x

l|c), i.e., 0 ≤ πθ(x
l|c) ≤ πref(x

l|c).

Assuming that the value of πθ(x
w|c) is fixed, the value of Ld(θ) is negatively correlated with πθ(x

l|c),
since we have:

∇θLd(θ) =∇θ − E(xw,c)∼DZhu(c)Ex1:K∼π̄hu∗
θ

[
log

( πθ(x
w|c)

πref(xw|c) )
β + 1

( πθ(xw|c)
πref(xw|c) )

β + ( πθ(xl|c)
πref(xl|c) )

β

]
=E(xw,c)∼DZhu(c)Ex1:K∼π̄hu∗

θ
∇θ − log

[
(
πθ(x

w|c)
πref(xw|c)

)β + (
πθ(x

l|c)
πref(xl|c)

)β
]

=E(xw,c)∼DZhu(c)Ex1:K∼π̄hu∗
θ

1

( πθ(xw|c)
πref(xw|c) )

β + ( πθ(xl|c)
πref(xl|c) )

β
−∇θ(

πθ(x
l|c)

πref(xl|c)
)β

1∼−∇θ(
πθ(x

l|c)
πref(xl|c)

)β .

(S23)

where 1 holds since 1

(
πθ(xw|c)
πref(x

w|c) )
β+(

πθ(xl|c)
πref(x

l|c)
)β

> 0.

Hence, when the generative probability of unpreferred motions πθ(x
l|c) is lower, the difference

between the optimization of USoPo and DSoPo is larger. However, the unpreferred motions are
sampled from the relatively high-preference distribution πhu∗

θ̄
, and thus should not be treated as

unpreferred motions. Using LUSoPo(θ) to optimize policy model πθ instead of LDSoPo(θ) can avoid
unnecessary optimization of these relatively high-preference unpreferred motion Ld(θ).

C.5 Proof of Eq. (16)

Before proving Eq. (16), we first present some useful lemmas from [27].
Lemma 1. [27] Given a winning sample xw and a losing sample xl, the DPO denoted as

LDPO(θ)=E(xw,xl,c)∼D

[
− log σ

(
β log

πθ(x
w|c)

πref(xw|c)
− β log

πθ(x
l|c)

πref(xl|c)

)]
. (S24)

Then the objective function for diffusion models can be denoted as:

LDPO-Diffusion(θ) =− E(xw
0 ,xl

0)∼D log σ(βExw
1:T∼πθ(xw

1:T |xw
0 ),xl

1:T∼πθ(xl
1:T |xl

0)

[log
πθ(x

w
0:T )

πref(xw
0:T )

− log
πθ(x

l
0:T )

πref(xl
0:T )

]),
(S25)

where x∗
t denoted the noised sample x∗ for the t-th step.

Lemma 2. [27] Given the objective function of diffusion-based DPO denoted as Eq. (S25), it has an
upper bound LUB(θ):

LDPO-Diffusion(θ) ≤− E(xw
0 ,xl

0)∼D,t∼U(0,T ),xw
t−1,t∼πθ(xw

t−1,t|xw
0 ),xl

t−1,t∼πθ(xl
t−1,t|xl

0)
log σ(

βT log
πθ(x

w
t−1|xw

t )

πref(xw
t−1|xw

t )
−βT log

πθ(x
l
t−1|xl

t)

πref(xl
t−1|xl

t)

)
︸ ︷︷ ︸

LUB(θ)

, (S26)

where T denotes the number of diffusion steps.

Lemma 3. [27] Given the objective function for diffusion model denoted as Eq. (S26), it can be
rewritten as :
LUB(θ) = −E(xw

0 ,xl
0)∼D,t∼U(0,T ),xw

t ∼q(xw
t |xw

0 ),xl
t∼q(xl

t|x
l
0)
log σ(−βTωt

(∥ϵ− ϵθ(x
w
t , t)∥22 − ∥ϵ− ϵref(x

w
t , t)∥22 −

(
∥ϵ− ϵθ(x

l
t, t)∥22 − ∥ϵ− ϵref(x

l
t, t)∥22

)
)),

(S27)

where x∗
t = αtx

∗
0 + σtϵ, ϵ ∼ N (0, I) is a draw from the distribution of forward process q(x∗

t |x∗
0).
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Now, we proof Eq. (16) based on these lemmas.

Proof. This proof has three steps. In each step, we apply the three lemmas introduced above in
succession. We begin with the loss function of SoPo for probability models:

LSoPo(θ) =−E(xw,c)∼D,x1:K
π̄θ

∼π̄vu∗
θ

(·|c)Zvu(c)
[
log σ

(
βw(x

w)hθ(x
w, c)− βhθ(x

l, c)
)]

︸ ︷︷ ︸
LSoPo−vu(θ)

− E(xw,c)∼DZhu(c) log σ
(
βw(x

w)hθ(x
w, c)

)
︸ ︷︷ ︸

LSoPo−hu(θ)

.
(S28)

Based on Lemma 1, we can rewrite the objective function for diffusion models:

LSoPo−Diffusion(θ) = Ldiff−ori
SoPo−vu(θ) + Ldiff−ori

SoPo−hu(θ)

Ldiff−ori
SoPo−vu(θ) =− E(xw

0 ,c)∼D,x1:K
0 ∼π̄vu∗

θ
(·|c)Zvu(c)

log σ(Exw
1:T

∼πθ(x
w
1:T

|xw
0 ),xl

1:T
∼πθ(x

l
1:T

|xl
0)
[βw(x

w
0 ) log

πθ(x
w
0:T )

πref(xw
0:T )

− β log
πθ(x

l
0:T )

πref(xl
0:T )

]),

Ldiff−ori
SoPo−hu(θ) =− E(xw

0 ,c)∼DZhu(c) log σ(Exw
1:T

∼πθ(x
w
1:T

|xw
0 )[βw(x

w) log
πθ(x

w
0:T )

πref(xw
0:T )

]),

(S29)
where x∗

t denoted the noised sample x∗ for the t-th step. According to Lemma 2, the upper bound of
Ldiff−ori
SoPo−vu(θ) and Ldiff−ori

SoPo−hu(θ) can be denoted as:

Ldiff−ori
SoPo−vu(θ) ≤− E(xw

0 ,c)∼D,x1:K
0 ∼π̄vu∗

θ
(·|c),t∼U(0,T ),xw

t−1,t∼πθ(x
w
t−1,t|x

w
0 ),xl

t−1,t∼πθ(x
l
t−1,t|x

l
0)

log σ

(
βw(x

w
0 )T log

πθ(x
w
t−1|xw

t )

πref(xw
t−1|xw

t )
−βT log

πθ(x
l
t−1|xl

t)

πref(xl
t−1|xl

t)

)
︸ ︷︷ ︸

Ldiff
SoPo−vu(θ)

,

Ldiff−ori
SoPo−hu(θ) ≤−E(xw

0 ,c)∼D,t∼U(0,T ),xw
t−1,t∼πθ(x

w
t−1,t|x

w
0 ) log σ

(
βw(x

w
0 )T log

πθ(x
w
t−1|xw

t )

πref(xw
t−1|xw

t )

)
︸ ︷︷ ︸

Ldiff
SoPo−hu

(θ)

,

LSoPo−Diffusion(θ) =Ldiff−ori
SoPo−vu(θ) + Ldiff−ori

SoPo−hu(θ) ≤ Ldiff
SoPo−vu(θ) + Ldiff

SoPo−hu(θ) = Ldiff
SoPo(θ).

(S30)
Applying Lemma 3 to Ldiff

SoPo−vu(θ) and Ldiff
SoPo−hu(θ) , we have

Ldiff
SoPo−vu(θ) = −E(xw

0 ,c)∼D,x1:K
0 ∼π̄vu∗

θ
(·|c),t∼U(0,T ),xw

t ∼q(xw
t |xw

0 ),xl
t∼q(xl

t|x
l
0)

log σ

(
− Tωt

(
βw(x

w
0 )

(
∥ϵ− ϵθ(x

w
t , t)∥22 − ∥ϵ− ϵref(x

w
t , t)∥22

)
− β

(
∥ϵ− ϵθ(x

l
t, t)∥22 − ∥ϵ− ϵref(x

l
t, t)∥22

)))
,

Ldiff
SoPo−hu(θ) = −E(xw

0 ,c)∼D,t∼U(0,T ),xw
t−1,t∼πθ(x

w
t−1,t|x

w
0 )

log σ
(
− Tωtβw(x

w
0 )

(
∥ϵ− ϵθ(x

w
t , t)∥22 − ∥ϵ− ϵref(x

w
t , t)∥22

))
,

Ldiff
SoPo(θ) = Ldiff

SoPo−vu(θ) + Ldiff
SoPo−hu(θ)

(S31)

To simplify the symbolism, the objective functions can be rewritten as:

Ldiff
SoPo−vu = −Et∼U(0,T ),(xw,c)∼D,x1:K

π̄θ
∼π̄vu∗

θ
(·|c)Zvu(c)[

log σ
(
− Tωt

(
βw(xw)

(
L(θ, ref, xw

t )− βL(θ, ref, xl
t)
)))]

,

Ldiff
SoPo−hu = −Et∼U(0,T ),(xw,c)∼DZhu(c)[

log σ
(
− Tωtβw(xw)L(θ, ref, xw

t )
)]

,

(S32)

where L(θ, ref, xt) = L(θ, xt) − L(ref, xt), and L(θ/ref, xt) = ∥ϵθ/ref(xt, t) − ϵ∥22 denotes the
loss of the policy or reference model. The proof is completed.
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D More Related Works

Fine-tuning pre-trained diffusion models [54–57] using task-specific reward functions [46, 48] is
a widely adopted approach for adapting models to specific downstream tasks. Current approaches
are broadly classified into three mechanisms: those relying on differentiable rewards [54, 57],
conventional reinforcement learning algorithms [58, 59], and Direct Preference Optimization (DPO)
[25]. Our work is most closely related to methods based on DPO, which provides a remarkably
straightforward path to align the model with specific downstream objectives by directly utilizing
pairs of motions reflecting human judgments. Recently, some research focus on the issues of fine-
grained human preference [60], visually consistence [61], and personalized preference [62] for image
generation. As a powerful alignment method, DPO is also extended to video generation [63], 3D
generation [64], and audio generation [65].
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paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims in the abstract accurately reflect our contributions.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of this work in Sec. 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
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• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
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Justification: The proof are provided in App. C.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide complete experimental details in Sec. A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: We plan to release the code and detailed documentation after the acceptance of
the paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We describe the complete experimental details and hyperparameter choices in
Sec 5.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The confidence intervals based on 20 independent repetitions are reported in
Table 1.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
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of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report the computational resource requirements of our proposed method in
Sec 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research aligns with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our paper focuses on advancing the field of machine learning. Although our
work may have various societal implications, we consider none are significant enough to
warrant specific mention here.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We plan to release the code and datasets after the acceptance of the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We plan to release the code and detailed documentation after the acceptance of
the paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
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Answer: [NA]

Justification: This work does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This paper does not use LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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