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ABSTRACT

This paper introduces a new constraint-free concave dual formulation for the
Wasserstein barycenter. Tailoring the vanilla dual gradient ascent algorithm to the
Sobolev geometry, we derive a scalable Sobolev gradient ascent (SGA) algorithm
to compute the barycenter for input distributions discretized over a regular grid.
Despite the algorithmic simplicity, we provide a global convergence analysis that
achieves the same rate as the classical subgradient descent methods for minimizing
nonsmooth convex functions in the Euclidean space. A central feature of our SGA
algorithm is that the computationally expensive c-concavity projection operator en-
forced on the Kantorovich dual potentials is unnecessary to guarantee convergence,
leading to significant algorithmic and theoretical simplifications over all existing
primal and dual methods for computing the exact barycenter. Our numerical exper-
iments demonstrate the superior empirical performance of SGA over the existing
optimal transport barycenter solvers.

1 INTRODUCTION

Recent years have seen an increasing trend of interest in applying the theory of optimal transport
(OT) in statistics and machine learning. In these data-driven fields, a fundamental question is how
to average? Averaging is useful to find common patterns in the input data and to summarize the
algorithm output from multiple data sources. Unlike the tabular data, where each row is a data point
with features being viewed as a vector in an Euclidean space, information in data with complex and
often geometric structures (such as 2D images and 3D shapes) cannot be effectively extracted with
conventional techniques. A pervasive OT analog of the mean for a collection of distributional input
data µ1, . . . , µn as probability measures on Rd is the Wasserstein barycenter introduced by Agueh &
Carlier (2011), which is defined as any minimizer of the following barycenter functional

B(ν) =∆
m∑
i=1

αi

2
W 2

2 (µi, ν), (1)

where αi’s are positive weights such that
∑m

i=1 αi = 1 and W2(µ, ν) is the 2-Wasserstein distance
between two probability distributions µ and ν. This variational formulation of “middle point" in
Problem (1) is a natural extension of the variance functional for Euclidean random variables, and it is
applicable to general metric spaces. As in the conventional setting, the Wasserstein barycenter has
been used in several machine learning tasks such as modeling the centroids in clustering measure-
valued data (Zhuang et al., 2022; Ho et al., 2017) and aggregating distributional outputs from subsets
of a massive dataset in Bayesian methods (Srivastava et al., 2018b).

It remains a major challenge to compute the Wasserstein barycenter in a tractable (or even scalable)
way with principled theoretical guarantees in the literature. For high-dimensional distributions,
computing or even approximating the barycenter is worst-case NP-hard (Altschuler & Boix-Adsera,
2022). In light of the curse of dimensionality obstacle, we focus on computing the barycenter for
fixed dimension d in this paper. There are various primal-dual reformulations of the barycenter
functional in (1) that lead to different optimization methods (Álvarez-Esteban et al., 2016; Zemel &
Panaretos, 2019; Zhou & Parno, 2024; Kim et al., 2025) (cf. Literature review in Section 1.1).
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1.1 LITERATURE REVIEW

Barycenter computation can be broadly categorized into two types, depending on whether the
optimization problem (1) is solved in the primal space or dual space. Carlier, Guillaume et al. (2015);
Ge et al. (2019) noted that the Wasserstein barycenter problem can be recast as a linear program (LP),
which, despite being tractable, has poor scalability for large-scale problems (e.g., high-resolution
grids or dense point clouds). Álvarez-Esteban et al. (2016) proposed a method directly solving the
fixed point iterations on the primal variable in (1), which empirically works for the location-scatter
family of distributions without quantitative convergence guarantee. First-order methods such as the
Wasserstein gradient descent were considered in (Zemel & Panaretos, 2019; Chewi et al., 2020). In
each iteration, one needs to compute m OT maps, a highly undesirable feature for problems with
a large (or even moderate) number of marginal distributions. Quantitative convergence rate is only
available for Bures-Wasserstein barycenter, when all marginals are Gaussian distributions (Chewi
et al., 2020).

On the other hand, a dual approach based on the multimarginal OT (MOT), originated from (Gangbo
& Świȩch, 1998), was proposed by Zhou & Parno (2024), where the MOT problem was represented by
a fully connected undirected graph. This approach avoids the computation of OT maps as in the primal
problem, however with the cost of introducing O(m2) constraints in the dual problem, thus resulting
an algorithm with per-iteration time complexity of O(m2×n log n) for m input distributions observed
on a grid of size n. Moreover, there is no convergence guarantee established for this approach. More
recently, Kim et al. (2025) proposed a nonconvex-concave minimax formulation that leverages
the benefits from both the primal and dual structures. The resulting Wasserstein descent Ḣ1-ascent
(WDHA) algorithm achieves a convergence rate of O(T−1/2) for T iterations under a fairly expensive
convex and smooth projection operation with a quadratic time complexity O(n2) in grid size n per
iteration. In practice, the projection is replaced with a conjugate envelope operation, which reduces
the per-iteration complexity to O(n log n). Nonetheless, this substitution introduces a gap between
the theoretically analyzable algorithm and the one that is computationally feasible in practice.

It is worth mentioning that there is an extensive literature on regularized notions and algorithms for
OT barycenters (Cuturi & Doucet, 2014; Bigot et al., 2019; Janati et al., 2020; Li et al., 2020; Carlier
et al., 2021; Fan et al., 2022; Chizat, 2023; Li & Chen, 2025). Nevertheless, we emphasize that the
current paper is mainly concerned with the computation of the exact Wasserstein barycenter without
any regularization. High-accuracy Wasserstein barycenter has seen applications in, for example,
medical imaging (Gramfort et al., 2015) and scalable Bayesian inference (Srivastava et al., 2018a).

1.2 CONTRIBUTION AND LIMITATION

The goal of this paper is to compute the exact barycenter for a collection of input distributions with
densities discretized over a regular grid. We propose a novel constraint-free and concave formulation
of the Wasserstein barycenter optimization problem that achieves strong duality. Our barycenter
formulation fully operates in the dual space, thus avoiding the OT map computations in the primal
problem. This unconstrained concave structure allows us to derive a computationally simple and
efficient gradient method in an appropriate dual geometry. Remarkably, we show that, without
the computationally expensive c-concave projection steps (or equivalently, the convex conjugate
projection) in existing algorithms, our proposed Sobolev gradient ascent (SGA) algorithm retains
a strong algorithmic convergence guarantee. In particular, we prove a global convergence rate that
matches the rate of classical subgradient descent methods for minimizing nonsmooth convex functions
in the Euclidean space (Nesterov, 2013; Lan, 2020). We report via numerical studies on 2D and
3D examples to demonstrate the superior performance of SGA over all existing exact Wasserstein
barycenter algorithms.

On the other hand, we would like to mention some computational limitation of the current approach.
The SGA algorithm is mainly designed to compute the Wasserstein barycenter of 2D and 3D
distributions discretized over the grid in a compact domain. Since the grid size scales exponentially
in the domain dimension, how to make the SGA approach viable to higher-dimensional domains
is an open problem that we leave to future research. However, to the best of our knowledge,
almost all existing barycenter algorithms such as those entropic methods implemented in the POT
library Flamary et al. (2021) are limited to 2D problems, except for WDHA which can operate in the
3D high-resolution setting Kim et al. (2025).
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1.3 NOTATIONS

Given u, v ∈ Rd, we denote the standard vector inner product and the Euclidean norm by ⟨u, v⟩
and ∥v∥2 =

√
⟨v, v⟩ respectively. Let Ω ⊂ Rd be a compact and convex set. The set of probability

measures on Ω with finite second moments is denoted by P2(Ω). For any µ ∈ P2(Ω), T#µ represents
the pushforward of µ by T : Ω → Ω. Finally, we use Tµ→ν to denote the optimal transport map
that pushes µ to ν. For any f : Ω → R and continuous symmetric function c : Ω × Ω 7→ R,
the c-transform of f , denoted as f c : Ω → R, is defined as f c(x) := infy∈Ω{c(x, y) − f(y)}.
In this paper, we focus on the case that c(x, y) := ∥x − y∥22/2. The homogeneous Sobolev space
Ḣ1(Ω) := {f : Ω → R|

∫
Ω
fdx = 0 and ∥f∥Ḣ1 < ∞} is a Hilbert space equipped with the Ḣ1-inner

product ⟨f, g⟩Ḣ1 :=
∫
Ω
⟨∇f(x),∇g(x)⟩dx and Ḣ1-norm ∥f∥Ḣ1 =

√
⟨f, f⟩Ḣ1 . To distinguish it

from the standard gradient ∇f , we denote the Ḣ1-gradient of the functional I : Ḣ1 → R as ∇I,
which is identified by the Riesz representation theorem via ⟨∇I(f), h⟩Ḣ1 = δIf (h), where δIf (h) is
the Gateaux derivative of the functional I at f ∈ Ḣ1 in the direction h. With a slight abuse of notation,
we also use µ to denote its density, and define ∥µ∥∞ := maxx∈Ω µ(x). For any two probability
densities µ, ν, the dual of Ḣ1-norm is defined as ∥µ− ν∥Ḣ−1 := max{

∫
Ω
ϕd[µ− ν] : ∥ϕ∥Ḣ1 ⩽ 1}.

Further information on Ḣ−1-norm can be found in Section 5.5.2 of Santambrogio (2015).

2 PRELIMINARY: OPTIMAL TRANSPORT COMPUTATION

A function f : Ω → R is called c-concave if f = gc for some g : Ω → R. In this case, f cc = f . For
any µ, ν ∈ P2(Ω) that are absolutely continuous with respect to the Lebesgue measure, the optimal
transport Tµ→ν can be obtained by solving the Kantorovich dual problem,

max
f :c-concave

{
I(f) :=

∫
Ω

fdµ+

∫
Ω

f cdν
}
, (2)

where the supremum is taken over all c-concave functions. Let f̃ be a maximizer, we have

Tν→µ = Tf̃c and Tµ→ν = Tf̃ , where Th := id−∇h. (3)

The optimal transport map Tµ→ν , Tν→µ are also called the Brenier maps (Brenier, 1991). Moreover,
W2(µ, ν) = [2I(f̃)]1/2. For more details, we refer the reader to Santambrogio (2015).

Our barycenter algorithm in Section 4 is motivated by the exact computation of the two-marginal
optimal transport problem with distributions discretized over a grid of size n. The Ḣ1-gradient based
approach proposed by Jacobs & Léger (2020) is a popular algorithm due to its numerical stability
and effectiveness in handling large n. In particular, the Ḣ1-gradient of I(f) is defined as

∇I(f) = g, (4)

where g is the solution to the Neumann problem (Santambrogio, 2015, Subsection 5.5.3),{
−∆g = µ− (Tfc)#ν, in Ω,
∂g
∂n = 0, on ∂Ω.

(5)

Then, Algorithm 1, consisting of a Ḣ1 gradient ascent step and a double c-transform step, has been
introduced to solve (2) (Jacobs & Léger, 2020). Numerically, both ∇I(f) and f cc can be computed
with time complexity O(n log n) and space complexity O(n), assuming the probability measures
have known densities on a grid of size n. In contrast, the exact approach via linear programming for
computing optimal transport between two discrete distributions has a time complexity of O(n3) and
a space complexity of O(n2) (Kuhn, 1955; Bertsekas & Castanon, 1989; Luenberger & Ye, 2008).

In practice, Algorithm 1 can be enhanced by a back-and-forth approach (Jacobs & Léger, 2020), where
the idea is to apply the Ḣ1 gradient ascent step and the double c-transform step iteratively by hopping
between Problem (2) and its twin problem, in order to bound the Hessian in one problem by its twin.
The double c-transform is employed for two main reasons: (1) applying the double c-transform to
f (t− 1

2 ) does not decrease the objective value, i.e., I(f (t)) = I((f (t− 1
2 ))cc) ⩾ I(f (t− 1

2 )); (2) The
double c-transform step ensures that {f (t)}Tt=1 produced by Algorithm 1 are all c-concave. The
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Algorithm 1 Constrained Ḣ1-Gradient Ascent Algorithm

Initialize f (0);
for t = 1, 2, . . . , T do

f (t− 1
2 ) = f (t−1) + ηt∇I(f (t−1));

f (t) = (f (t− 1
2 ))cc;

end for

functions f c and f cc share the same regularity as c(x, y) = ∥x− y∥22/2, which is generally not the
case for f itself.

Issues. Despite the empirical advantages of applying the double c-transform, it also has theoretical
drawbacks, most notably, it is not an orthogonal projection, and consequently, for any c-concave func-
tion g, the inequality∥f cc − g∥Ḣ1 ⩽∥f − g∥Ḣ1 does not necessarily hold. As a result, Algorithm 1
is a constrained algorithm and the global convergence guarantee is still open, despite the fact that
I : Ḣ1 → R is a concave functional.

3 CONSTRAINT-FREE SOBOLEV GRADIENT ASCENT

Before moving to the barycenter problem, we first discuss a simplified unconstrained Ḣ1-gradient
ascent algorithm for the two-marginal OT computation. This algorithm provides the backbone
structure for developing our new coordinate-wise version of the barycenter optimization algorithm in
Section 4.

Our starting point is the key observation that the first variation of I(f), and consequently ∇I(f),
exist even when f is not c-concave (cf. Proposition 2.9 in (Gangbo, 2004)), and the computation
of ∇I(f (t)) at each iteration in Algorithm 1 depends solely on T(f(t))c . Recall f ccc = f c for
any continuous function f , it follows that ∇I(f (t)) remains unchanged regardless of whether the
double c-transform step is applied. Therefore, the Kantorovich dual problem (2) can be relaxed to
be optimized among continuous functions while retaining the same maximum value (Santambrogio,
2015, Section 1.2); that is,

argmax{I(f) : f is c-concave} = argmax{I(f) : f is continuous}.
These together allow us to consider the unconstrained problem maxf I(f) (beyond continuity) and
to propose the following one-step Sobolev gradient ascent method.

Algorithm 2 Sobolev Gradient Ascent (SGA) Algorithm

Initialize f (0);
for t = 1, 2, . . . , T do

f (t) = f (t−1) + ηt−1∇I(f (t−1));
end for

The proposed one-step Algorithm 2 enjoys the following global convergence guarantee, with a rate
that aligns with subgradient descent methods for minimizing nonsmooth convex functions in the
Euclidean space; see Theorem 3.2.2 in (Nesterov, 2013) or Chapter 3.1 in (Lan, 2020).

Theorem 1 (Convergence rate for SGA). Let {f (t)}Tt=1 be the sequence computed from Algorithm
2. Assuming that µ and ν are absolutely continuous with respect to the Lebesgue measure, and
{f (t)}Tt=1 are continuous on Ω. Then,

I(f̃)− I(f (best)) ⩽
∥f (0) − f̃∥2Ḣ1 +M2

∑T
t=1 η

2
t−1

2
∑T

t=1 ηt−1

,

where M = maxTt=1 ∥∇I(f (t−1))∥Ḣ1 , f̃ is any c-concave maximizer and f (best) is the best solution
found, i.e., I(f (best)) ⩾ maxTt=1 I(f (t)).
Remark 2. The boundedness of M plays the role as the Lipschitz condition in Euclidean space
when the objective function lacks stronger smoothness. We note that ∥∇I(f (t−1)∥Ḣ1 = ∥µ −
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(T(f(t−1))c)#ν∥Ḣ−1 . The values of rt :=
∥∥µ− (T(f(t−1))c)#ν

∥∥
Ḣ−1 computed in the implementation

of Algorithm 2 for the 2D densities in Section 5.1 are reported in Table 3 (Appendix). They decrease
with t, thus supporting the boundedness assumption on M and indicating convergence to the target
solution. The continuity assumption on the trajactory of updates {f (t)}Tt=1 is mild and may be
inferred from the boundedness condition M , depending on dimension d, see Subsection A.3 in the
Appendix for more details.

4 WASSERSTEIN BARYCENTER COMPUTATION

Now, we are ready to introduce a new constraint-free concave dual formulation for the Wasserstein
barycenter problem as follows:

max
f1,...,fm−1

{
D(f1, . . . , fm−1) :=

m−1∑
i=1

αi

∫
Ω

f c
i dµi + αm

∫
Ω

f c
mix dµm

}
, (6)

where fmix = −
∑m−1

i=1
αi

αm
fi and the supremum over f1, . . . , fm−1 is unconstrained beyond being

continuous (cf. Lemma 8). This formulation also facilitates the analysis of the signed Wasserstein
barycenter problem (Jacobs & Zhou, 2025), in which negative weights are permitted.

First, we show that the functional D is jointly concave.

Lemma 3. The mapping (f1, . . . , fm−1) 7→ D(f1, . . . , fm−1) is jointly concave.

The Wasserstein barycenter is unique provided with at least one marginal µi that is absolutely
continuous (Agueh & Carlier, 2011; Kim & Pass, 2017). Our next result characterizes this unique
barycenter by the maximizer to (6).

Theorem 4 (Strong duality and barycenter characterization). Assume that µ1, . . . , µm are absolutely
continuous with respect to the Lebesgue measure. Then the followings are true.

(i) If (f̃1, . . . , f̃m−1) is optimal to D(f1, . . . , fm−1), then for any i = 1, 2, . . . ,m − 1, f̃i is
identitical to a c-concave function µi-almost everywhere. Moreover, f̃mix := −

∑m−1
i=1

αi

αm
f̃i is

identical to a c-concave function µm-almost everywhere.

(ii) The strong duality holds: minν∈P2(Ω) B(ν) = maxf1,...,fm−1
D(f1, . . . , fm−1).

Let (f̃1, . . . , f̃m−1) be c-concave maximizer to D(f1, . . . , fm−1). Then the unique Wasserstein
barycenter can be obtained via the formula

ν̃ = (Tf̃c
i
)#µi = (Tf̃c

mix
)#µm. (7)

4.1 SOBOLEV GRADIENT ASCENT FOR BARYCENTER COMPUTATION

We propose a Sobolev gradient ascent (SGA) approach for solving Problem (6). Our algorithm to
maximize D, as detailed in Algorithm 3, admits a global convergence guarantee and meanwhile
enjoys a time complexity O(m× n log(n)) per iteration for distributions whose densities are known
on the same grid of size n. To describe the SGA algorithm, we first derive the formula for the Sobolev
gradient of D in the following lemma.

Lemma 5 (Dual gradient). Assume for i = 1, 2, . . . ,m− 1 that fi are continuous. Then,

(i) The first variation of D at fi, denoted as δDfi can be expressed as

δDfi = −αi

(
(Tfc

i
)#µi − (Tfc

mix
)#µm

)
.

(ii) The Ḣ1-gradient of D at fi, denoted as ∇fiD can be expressed as

∇fiD = (−∆)−1δDfi = (−∆)−1
(
− αi

(
(Tfc

i
)#µi − (Tfc

mix
)#µm

))
,

where (−∆)−1 denotes the negative inverse Laplacian operator with zero Neumann boundary
condition.
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Algorithm 3 SGA Algorithm for Barycenter Computation

Initialize f
(0)
i , i = 1, 2, . . . ,m− 1;

for t = 1, 2, . . . , T do
for i = 1, 2, . . . ,m− 1 do

f
(t)
i = f

(t−1)
i + ηt−1∇fiD(f

(t−1)
1 , . . . , f

(t−1)
m−1 );

end for
end for

We show that the SGA Algorithm 3 enjoys the following global convergence, which is the main
theoretical result of this paper.

Theorem 6 (Main theorem: convergence rate for barycenter optimization with SGA). Let {f (t)
i : i =

1, . . . ,m− 1}Tt=1 be the sequence produced from Algorithm 3. Assuming that {µi}mi=1 are absolutely
continuous with respect to the Lebesgue measure, and that the functions {f (t)

i : i = 1, . . . ,m−1}Tt=1
are continuous on Ω. Then, we have the following two scenarios.

(i) Constant step size. If the total number of iterations T is fixed a priori, then by setting M =

maxTt=1(
∑m−1

i=1 α2
i ∥(T(f

(t−1)
i )c

)#µi − (T
(f

(t−1)
mix )c

)#µm∥2Ḣ−1)
1/2 and ηt−1 = (

∑m−1
i=1 ∥f (0)

i −
f̃i∥2Ḣ1)

1/2/(M
√
T ), we have

D(f̃1, . . . , f̃m−1)−D(f
(best)
1 , . . . , f

(best)
m−1 ) ⩽ M(

m−1∑
i=1

∥f (0)
i − f̃i∥2Ḣ1)

1/2 1√
T
,

where f
(t−1)
mix = −

∑m−1
i=1

αi

αm
f
(t−1)
i , (f̃1, . . . , f̃m−1) is any c-concave maximizer of D, and

D(f
(best)
1 , . . . , f

(best)
m−1 ) ⩾ maxTt=1 D(f

(t)
1 , . . . , f

(t)
m−1).

(ii) Annealing step size. If the total number of iterations T is not fixed a priori, then by setting
ηt−1 = (

∑m−1
i=1 ∥f (0)

i − f̃i∥2Ḣ1)
1/2/(M

√
t), we have

D(f̃1, . . . , f̃m−1)−D(f
(best)
1 , . . . , f

(best)
m−1 ) ⩽ M(

m−1∑
i=1

∥f (0)
i − f̃i∥2Ḣ1)

1/2 ln(T ) + 2√
T

.

Similar to Remark 2, the continuity assumption of potential functions {f (t)
i } is mild in the lit-

erature of optimal transport theory and can be inferred from the boundedness condition that
maxi,t ∥(T(f

(t−1)
i )c

)#µi∥ < ∞. The two schemes on the step size choice in our Theorem 6 strongly
resonates with the standard convergence results of subgradient methods for minimizing convex
nonsmooth functions in Rd. Specifically, it is known from Theorem 3.2.2 in (Nesterov, 2013) that the
subgradient method with a constant step size (equivalently, with fixed iteration number T ) is optimal
for such problem uniformly in all dimension d and the annealing step size scheme is sub-optimal
with an extra lnT factor. Therefore, we see that Theorem 6 extends the Euclidean convergence rates
to the Wasserstein barycenter optmization setting with essential structures.
Remark 7. Yao et al. (2025) derived a proximal method for minimizing the general nonsmooth convex
functionals in the space of probability measures based on the idea of discretizing the KL divergence
gradient flow. Their coordinate KL divergence gradient descent (CKLGD) algorithm operates solely
in the primal space, achieving a similar rate to our Theorem 6 and the classical subgradient methods
in the Euclidean space (Nesterov, 2013; Lan, 2020). However, the computation of CKLGD relies
heavily on the specialized form of the objective functional in certain entropic regularized problems
by sampling. Even though the functional (1) is convex in the linear structure, it is unclear and highly
nontrivial how to derive an algorithm to minimize the Wasserstein barycenter functional without
entropic regularization.

5 EMPIRICAL STUDY

We compare our method with the Debiased Sinkhorn Barycenter (DSB) algorithm (Janati et al., 2020),
the Convolutional Wasserstein Barycenter (CWB) (Solomon et al., 2015), and the recently proposed

6
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Table 1: Barycenter functional value and runnting time for SGA, WDHA, CWB, and DSB for the 2D
synthetic distribution example in Section 5.1. [↓] means the smaller number, the better performance.
Bold numbers indicate the best performer among the four methods under comparison.

Weights
Barycenter Functional Value (×103) [↓] Time (in sec) [↓]

SGA WDHA CWB DSB SGA WDHA CWB DSB

( 23 , 0, 0,
1
3 ) 3.917 3.940 4.202 3.926 298 625 1346 3643

( 13 , 0, 0,
2
3 ) 3.917 3.923 4.160 3.925 221 569 1328 3679

( 23 ,
1
3 , 0, 0) 5.257 5.275 5.559 5.260 257 602 1145 3728

( 13 ,
1
4 ,

1
6 ,

1
4 ) 5.923 5.952 6.153 5.936 700 1064 2290 5003

( 14 ,
1
6 ,

1
4 ,

1
3 ) 5.299 5.313 5.513 5.314 640 1049 2464 5192

(0, 0, 1
3 ,

2
3 ) 1.646 1.649 1.821 1.648 202 550 1262 3798

( 13 ,
2
3 , 0, 0) 5.257 5.268 5.513 5.263 214 537 1256 3885

( 14 ,
1
3 ,

1
4 ,

1
6 ) 5.964 5.987 6.182 5.977 672 984 2520 5062

( 16 ,
1
4 ,

1
3 ,

1
4 ) 5.219 5.232 5.424 5.239 626 961 2515 5076

(0, 0, 2
3 ,

1
3 ) 1.645 1.647 1.841 1.648 206 498 1255 3664

(0, 2
3 ,

1
3 , 0) 3.812 3.833 4.006 3.814 211 550 1247 3675

(0, 1
3 ,

2
3 , 0) 3.813 3.814 4.023 3.814 209 510 1251 3648

Wasserstein-Descent Ḣ1-Ascent (WDHA) algorithm (Kim et al., 2025). For DSB and CWB, we used
the implementations provided in the “POT: Python Optimal Transport” library (Flamary et al., 2021),
and for WDHA, we used the implementation available at https://kaheonkim.github.io/
WDHA/. All computations are performed on a Dell PowerEdge R6525 server equipped with two
32-core AMD EPYC 7543 CPUs.

5.1 2D SYNTHETIC DISTRIBUTION

Figure 1: Empirical convergence rates of par-
allel (Algorithm 3), sequential (Algorithm 4),
and random (Algorithm 5) SGA algorithms.

In this example, the goal is to compute the weighted
Wasserstein baycenter of four densities supported on
different shapes whose values are know on a equally
spaced grid of size 1024 × 1024. The stepsizes of
WDHA and SGA are set to be ηt = 0.1 for all t, and
the regularization parameter of CWB and DSB is set to
be reg = 0.005. The computed barycenters using 300
iterations are shown in Figure 2. The results of WDHA
and SGA with annealing step sizes (ηt = 0.5/

√
t) are

provided in Appendix, Subsection B.1. Although the
barycenters computed by SGA and WDHA show no
obvious visual differences between them, they exhibit
clearer and sharper details compared to those from
CWB and DSB. This is expected, as SGA and WDHA
are exact methods based on the Ḣ1-gradient, whereas
CWB and DSB rely on entropic approximations and
are not exact. In addition, we report the computation runtime and barycenter values in Table 1, where
we apply the back-and-forth approach Jacobs & Léger (2020) to compute the Wasserstein distance
between the estimated barycenter and each distribution. SGA achives the smallest barycenter value
for all cases. In terms of computation time, SGA requires approximately half the time of WDHA,
one-third the time of CWB, and one-seventh the time of DSB. In addition, SGA is advantageous over
WDHA in terms of simplicity, faster runtime, and guaranteed global convergence.

Algorithm 3 outlines a parallel scheme for computing the Wasserstein barycenter. As in (Yao
et al., 2024) for coordinate-wise optimization, we also report the empirical convergence rate of
this parallel scheme alongside two alternative variants: (1) SGA-S: sequential scheme outlined in
Algorithm 4; (2) SGA-R: random scheme outlined in Algorithm 5. By default, we refer SGA for

7
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DSB CWB

WDHA SGA

Figure 2: Comparison of weighted Wasserstein barycenter of densities supported on different shapes.

SGA with the parallel scheme. Using (f (best)
1 , . . . , f (best)

m−1) as an estimation for (f̃1, . . . , f̃m−1), we
plot log(D(f (best)

1 , . . . , f (best)
m−1)−D(f

(t)
1 , . . . , f

(t)
m−1)) against t in Figure 1.

Algorithm 4 SGA-S

Initialize f
(0)
i , i = 1, 2, . . . ,m− 1;

for t = 1, 2, . . . , T do
for i = 1, 2, . . . ,m− 1 do

f
(t)
i = f

(t−1)
i + ηt−1∇fiD(f

(t)
1 , . . . , f

(t)
i−1, f

(t−1)
i , . . . , f

(t−1)
m−1 );

end for
end for

5.2 3D INTERPOLATION

We apply Wasserstein barycenter algorithms to interpolate between a 3D ball and a 3D cube, dis-
cretized over a grid of size 200 × 200 × 200. Currently, optimal transport computations for 3D
distributions are not supported by the POT library (Flamary et al., 2021). In this experiment, an
annealing step size of ηt = 5× 10−3/

√
t is used for both SGA and WDHA. The results of SGA are

shown in Figure 3, with barycenter values (in 10−3) of 1.443, 1.577, and 1.455 from left to right. In-

8
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Algorithm 5 SGA-R

Initialize f
(0)
i , i = 1, 2, . . . ,m− 1;

for t = 1, 2, . . . , T do
Sample it uniformly from {1, 2, . . . ,m− 1};
f
(t)
it

= f
(t−1)
it

+ ηt−1∇fit
D(f

(t−1)
1 , . . . , f

(t−1)
m−1 );

end for

terestingly, the WDHA algorithm diverges under this setting, indicating that SGA is numerically more
stable. This increased stability may stem from SGA’s simpler structure and its global convergence
guarantees.

Figure 3: Interpolation using SGA between a 3D ball and a 3D cube.

5.3 REAL DATA EXAMPLE

The Wasserstein barycenter can be used to compress meaningful information from video frames.
Such compressed representations may be valuable for tasks like object detection, motion track-
ing, and behavior analysis. Figure 4 (left) displays 16 frames from a video of the electric
scooter tracking data, available from Kaggle (URL https://www.kaggle.com/datasets/
trainingdatapro/electric-scooters-tracking). In these frames, two prominent
moving objects are observed: a person walking toward the surveillance camera from the top right,
and a car in the center making a right turn. The static elements include the grass, trees, and road. We
compute the Wasserstein barycenter of the frames, treating each image as a probability density. We
set ηt = 0.1 for WDHA and SAG, and reg = 0.0005 for CWB and DSB. The resulting barycenters
are shown in Figure 4 (right). Among the methods compared, the SGA algorithm appears to provide
the most informative representation, clearly capturing the trajectories of the moving objects while
preserving a sharper background for the static components with less distortion than the other three
methods.

Figure 4: Left half displays 16 surveillance video frames. Right half displays their baryceters
computed by CWB (top left), DSB (top right), WDHA (bottom left) and SGA (bottom right).
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REPRODUCIBILITY STATEMENT

Detailed proofs of all theorems are provided in the Appendix. The code used to produce the simulation
results is available as supplementary material. The electric scooter tracking data is publicly available
on Kaggle (URL https://www.kaggle.com/datasets/trainingdatapro/electric-scooters-tracking).

REFERENCES

M. Agueh and G. Carlier. Barycenters in the Wasserstein space. SIAM J. Math. Anal., 43(2):904–924,
2011. ISSN 0036-1410. doi: 10.1137/100805741.

Jason Altschuler and Enric Boix-Adsera. Wasserstein barycenters are NP-hard to compute. SIAM
Journal on Mathematics of Data Science, 4(1):179–203, 2022.

Pedro C. Álvarez-Esteban, E. del Barrio, J. A. Cuesta-Albertos, and C. Matrán. A fixed-point
approach to barycenters in Wasserstein space. J. Math. Anal. Appl., 441(2):744–762, 2016.
ISSN 0022-247X,1096-0813. doi: 10.1016/j.jmaa.2016.04.045. URL https://doi.org/10.
1016/j.jmaa.2016.04.045.

L. Ambrosio and N. Gigli. A user’s guide to optimal transport. In Modelling and optimisation of
flows on networks, volume 2062 of Lecture Notes in Math., pp. 1–155. Springer, Heidelberg, 2013.
doi: 10.1007/978-3-642-32160-3\_1.

Dimitri P. Bertsekas and David A. Castanon. The auction algorithm for the transportation problem.
Annals of Operations Research, 20(1):67–96, 1989.

Jérémie Bigot, Elsa Cazelles, and Nicolas Papadakis. Penalization of Barycenters in the Wasser-
stein Space. SIAM Journal on Mathematical Analysis, 51(3):2261–2285, 2019. doi: 10.1137/
18M1185065. URL https://doi.org/10.1137/18M1185065.

Y. Brenier. Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure
Appl. Math., 44(4):375–417, 1991. ISSN 0010-3640. doi: 10.1002/cpa.3160440402.

Guillaume Carlier, Katharina Eichinger, and Alexey Kroshnin. Entropic-Wasserstein Barycenters:
PDE Characterization, Regularity, and CLT. SIAM Journal on Mathematical Analysis, 53(5):5880–
5914, 2021. doi: 10.1137/20M1387262. URL https://doi.org/10.1137/20M1387262.

Carlier, Guillaume, Oberman, Adam, and Oudet, Edouard. Numerical methods for matching for teams
and Wasserstein barycenters. ESAIM: M2AN, 49(6):1621–1642, 2015. doi: 10.1051/m2an/2015033.
URL https://doi.org/10.1051/m2an/2015033.

Sinho Chewi, Tyler Maunu, Philippe Rigollet, and Austin J. Stromme. Gradient descent algorithms
for Bures-Wasserstein barycenters. In Jacob Abernethy and Shivani Agarwal (eds.), Proceedings
of Thirty Third Conference on Learning Theory, volume 125 of Proceedings of Machine Learning
Research, pp. 1276–1304. PMLR, 09–12 Jul 2020. URL https://proceedings.mlr.
press/v125/chewi20a.html.

Lénaïc Chizat. Doubly Regularized Entropic Wasserstein Barycenters. arXiv:2303.11844, 2023.
URL https://arxiv.org/abs/2303.11844.

Marco Cuturi and Arnaud Doucet. Fast computation of Wasserstein barycenters. In Proceedings of
the 31st International Conference on Machine Learning, pp. 685–693, 2014.

Lawrence C. Evans. Partial differential equations, volume 19 of Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI, second edition, 2010. ISBN 978-0-8218-4974-3.
doi: 10.1090/gsm/019. URL https://doi.org/10.1090/gsm/019.

J. Fan, I. Haasler, J. Karlsson, and Y. Chen. On the complexity of the optimal transport problem
with graph-structured cost. In Proceedings of The 25th International Conference on Artificial
Intelligence and Statistics, pp. 9147–9165. PMLR, 2022. URL https://proceedings.mlr.
press/v151/fan22a.html.

10

https://doi.org/10.1016/j.jmaa.2016.04.045
https://doi.org/10.1016/j.jmaa.2016.04.045
https://doi.org/10.1137/18M1185065
https://doi.org/10.1137/20M1387262
https://doi.org/10.1051/m2an/2015033
https://proceedings.mlr.press/v125/chewi20a.html
https://proceedings.mlr.press/v125/chewi20a.html
https://arxiv.org/abs/2303.11844
https://doi.org/10.1090/gsm/019
https://proceedings.mlr.press/v151/fan22a.html
https://proceedings.mlr.press/v151/fan22a.html


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z. Alaya, Aurélie Boisbunon, Stanislas
Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, Léo Gautheron,
Nathalie T.H. Gayraud, Hicham Janati, Alain Rakotomamonjy, Ievgen Redko, Antoine Rolet,
Antony Schutz, Vivien Seguy, Danica J. Sutherland, Romain Tavenard, Alexander Tong, and
Titouan Vayer. POT: Python optimal transport. Journal of Machine Learning Research, 22(78):
1–8, 2021. URL http://jmlr.org/papers/v22/20-451.html.
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A TECHNICAL DETAILS

A.1 TECHNICAL LEMMAS

In this section, all lemmas are adapted from existing literature under the specific setting where the
cost function c : Ω × Ω 7→ R is given by c(x, y) = 1

2∥x− y∥22 for some convex compact subset
Ω ∈ Rd. This assumption allows us to avoid introducing concepts such as the c-superdifferential.
Specifically, Lemma 8 is adapted from Gangbo (2004); Jacobs & Léger (2020); Lemma 9 from
Jacobs & Zhou (2025); Lemma 10 from Brenier (1991); Ambrosio & Gigli (2013).

Lemma 8. Let f ∈ C(Ω) be a continuous function on a convex compact subset Ω ∈ Rd. Then it
holds

(i) f cc(y) ⩾ f(y) and f ccc(x) = f c(x).

(ii) f c is differentiable almost everywhere.

(iii) For any h ∈ C(Ω), we have
∥∥(f + εh)c − f c

∥∥
∞ ⩽ |ε|∥h∥∞.

(iv) If f c is differentible at x, then

lim
ε→0

(f + εh)c(x)− f c(x)

ε
= −h ◦ Tfc(x).

Lemma 9. For any Lipschitz continuous function ϕ, constant a > 0, and absolutely continuous
probability measure µ, we have

min
ν∈P2(Ω)

∫
Ω

ϕdν +
a

2
W 2

2 (µ, ν) =

∫
Ω

a(−ϕ

a
)cdµ.

Lemma 10. Consider µ ∈ P2(Ω) for some convex compact subset Ω ∈ Rd. If a map T is in the form
of Tfc = id−∇f c for some c-concave function f , then T is the optimal map between µ and (T )#µ.
Consequently,

1

2
W 2

2 (µ, (Tfc)#µ) =

∫
Ω

1

2

∥∥x− Tfc(x)
∥∥2
2
dµ =

∫
Ω

f c dµ+

∫
Ω

f d[(Tfc)#µ].

A.2 PROOF TO THEOREM 1

Since Ω is compact, we can define R := maxx∈Ω ∥x∥22 < ∞. If f is continuous, then by Proposition
2.9 (ii) in Gangbo (2004), for any x1, x2 ∈ Ω, we have

|f c(x1)− f c(x2)| ⩽ 2R∥x1 − x2∥2.

This implies that f c is 2R-Lipschitz continuous, and hence differentiable almost everywhere on Ω
with respect to the Lebesgue measure. Since µ and ν are absolutely continuous with respect to the
Lebesgue measure, it follows that f c is also differentiable ν-almost everywhere. By Proposition 2.9
(iii) of Gangbo (2004), the first variation of I at f , denoted δIf , is given by

δIf (h) :=
∫
Ω

h dµ−
∫
Ω

h ◦ Tfc dν = ⟨∇I(f), h⟩Ḣ1

for any continuous function h on Ω. Using the concavity of I, we have the inequality

I(f2)− I(f1)− ⟨∇I(f1), f2 − f1⟩Ḣ1 ⩽ 0.

Following standard subgradient descent arguments for non-smooth convex functions in Euclidean
space, cf. (Nesterov, 2013), we have

I(f̃)− I(f (best)) ⩽
∥f (0) − f̃∥2Ḣ1 +M2

∑T
t=1 η

2
t−1

2
∑T

t=1 ηt−1

,

where M = maxTt=1 ∥µ− (T(f(t−1))c)#ν∥Ḣ−1 .
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A.3 SUPPLEMENT TO REMARK 2

The following lemma summarize results (Mikha˘ ilov, 1978, Theorem 4 on page 217) and (Evans,
2010, page 366) on the regularity of a solution to the Poisson equation with zero Neumann boundary
condition.

Lemma 11. Consider a bounded open subset Ω ⊂ Rd, assume ρ ∈ Hk(Ω) with
∫
Ω
ρdx = 0 and

∂Ω ∈ Ck+2 for certain k ⩾ 0, then the solution g to the Poisson equation with zero Neumann
boundary condition belongs to Hk+2(Ω):


∆g = ρ in Ω;

∂g

∂n
= 0 on ∂Ω.

Lemma 12 (Morrey’s inequality). Consider a bounded open subset Ω ⊂ Rd, assume g ∈ Hk+2(Ω).

If (k + 2) > d
2 , then g ∈ Ck+2−⌈ d

2 ⌉,γ , where γ =


⌈d
2
⌉ − d

2
,

d

2
̸∈ Z;

any element in (0, 1),
d

2
∈ Z.

Here ⌈d
2⌉

denotes ceiling integer of d
2 .

In Theorem 1, we assume that the trajactory {f (t)}Tt=1 are continuous functions. Recalling the itera-
tive update in Algorithm 2, we just need a simple induction to show that ∇I(f (t−1)) is continuous
whenever f (t−1) is continuous. Note that ∇I(f (t−1)) is a solution to the Neumann problem (see
equation 4 and equation 5), thus we may combine the above lemmas to propose alternative assumption
ensuring continuity of the Poisson solution.

Specifically, let Ω ⊂ Rd be a bounded open subset. To ensure g used in above lemmas continuous, it
suffices to require ρ ∈ Hk(Ω) with

∫
Ω
ρdx = 0 and ∂Ω ∈ Ck+2 for any integer k > d

2 − 2.

For example,

• In 1D, k = −1 is sufficient. The continuity assumption can be replaced by ∂Ω ∈ C1 and∥∥∥∇I(f (t))
∥∥∥
Ḣ1

=
∥∥∥µ− (T(f(t))c)#ν

∥∥∥
Ḣ−1

remains bounded.

• In 2D or 3D, k = 0 is sufficient. The continuity assumption can be replaced by ∂Ω ∈ C2 and∥∥∥µ− (T(f(t))c)#ν
∥∥∥
2

remains bounded. In particular, given initial distributions µ, ν with L2

densities, one just needs to check the density (T(f(t))c)#ν to stay L2 bounded.

A.4 PROOF TO LEMMA 3

We first show that f 7→ f c is concave. For any f̂ , f̄ , and t ∈ [0, 1],

[(1− t)f̂ + tf̄ ]c(x) = inf
y∈Ω

1

2
∥x− y∥22 − (1− t)f̂(y)− tf̄(y)

= inf
y∈Ω

(1− t)

[
1

2
∥x− y∥22 − f̂(y)

]
+ t

[
1

2
∥x− y∥22 − f̄(y)

]
⩾ (1− t)(f̂)c(x) + t(f̄)c(x).
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To show D(f1, . . . , fm−1) is jointly concave, we just need to show (f1, . . . , fm−1) 7→
(−

∑m−1
i=1

αi

αm
fi)

c is concave, as the other terms are separable.

−m−1∑
i=1

αi

αm
((1− t)f̂i + tf̄i)

c

(x)

= inf
y∈Ω

1

2
∥x− y∥22 +

m−1∑
i=1

αi

αm
((1− t)f̂i(y) + tf̄i(y))

⩾(1− t)

 inf
y∈Ω

1

2
∥x− y∥22 +

m−1∑
i=1

αi

αm
f̂i(y)

+ t

 inf
y∈Ω

1

2
∥x− y∥22 +

m−1∑
i=1

αi

αm
f̄i(y)


=(1− t)

−
m−1∑
i=1

αi

αm
f̂i

c

(x) + t

−
m−1∑
i=1

αi

αm
f̄i

c

(x).

A.5 PROOF TO THEOREM 4

(i) We first observe that c-transform is ordering reverse, i.e, suppose f(x) ⩾ g(x) for any x ∈ Ω, then

f c(x) = inf
y∈Ω

1

2
∥x− y∥22 − f(y) ⩽ inf

y∈Ω

1

2
∥x− y∥22 − g(y) ⩽ gc(x).

Recall for any f , one has f cc ⩾ f and f ccc = f c. Suppose f̃ cc
1 > f̃1 on a set of positive measure,

then fmix := − α1

αm
f̃ cc
1 −

∑m−1
i=2

αi

αm
f̃i < f̃mix = −

∑m−1
i=1

αi

αm
f̃i on a set of positive measure. then

note that ∫
Ω

f̃ c
1 dµ1 =

∫
Ω

f̃ ccc
1 dµ1;∫

Ω

f c
mix dµm ⩾

∫
Ω

f̃ c
mix dµm.

Consequently, D(f̃ cc
1 , f̃2, . . . , f̃m−1) ⩾ D(f̃1, . . . , f̃m−1). Repeating these steps, we may replace

the maximizer (f̃1, . . . , f̃m−1) by (f̃ cc
1 , . . . , f̃ cc

m−1), which is c-concave. As a result, one can always
select a c-concave maximizer, still denoted by (f̃1, . . . , f̃m−1).

Assume that f̃mix = −
∑m−1

i=1
αi

αm
f̃i is not c-concave, that is, f̃ cc

mix > f̃mix on a set of positive measure.

Now we replace f̃1 by f
(1)
1 := f̃1 − αm

α1
(f̃ cc

mix − f̃mix) < f̃1, resulting in

(f
(1)
1 )c ⩾ f̃ c

1 ;

f
(1)
mix := − α1

αm
f
(1)
1 −

m−1∑
i=2

αi

αm
f̃i = − α1

αm
f
(1)
1 +

α1

αm
f̃1 −

m−1∑
i=1

αi

αm
f̃i

= − α1

αm
[−αm

α1
(f̃ cc

mix − f̃mix)] + f̃mix = f̃ cc
mix.

Consequently, D(f
(1)
1 , f̃2, . . . , f̃m−1) ⩾ D(f̃1, f̃2, . . . , f̃m−1). Since (f̃1, . . . , f̃m−1) is a maximizer

to D(f1, . . . , fm−1), which yields that f (1)
1 is identitical to a c-concave function f̃1 µ1-almost

everywhere, while f
(1)
mix is c-concave. As a result, we may select a c-concave maximizer, still denoted

by (f̃1, · · · , f̃m−1), such that f̃mix = −
∑m−1

i=1
αi

αm
f̃i is identical to a c-concave function µm-almost

everywhere.
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(ii) We show minν∈P2(Ω) B(ν) ⩾ maxf1,...,fm−1
D(f1, . . . , fm−1) by noting that

min
ν∈P2(Ω)

B(ν) = min
ν∈P2(Ω)

m∑
i=1

αiW
2
2 (µi, ν)

= min
ν∈P2(Ω)

m−1∑
i=1

αi[max
fi

∫
Ω

f c
i dµi +

∫
Ω

fi dν] + αmW 2
2 (µm, ν)

⩾ max
f1,...,fm−1

m−1∑
i=1

∫
Ω

αif
c
i dµi + min

ν∈P2(Ω)

∫
Ω

[

m−1∑
i=1

αifi] dν + αmW 2
2 (µm, ν)

= max
f1,...,fm−1

m−1∑
i=1

∫
Ω

αif
c
i dµi + αm

∫
Ω

(−
m−1∑
i=1

αi

α1
fi)

c dµm,

where the last equality is due to Lemma 9.

To complete the strong duality, let us choose a c-concave maximizer (f̃1, . . . , f̃m−1) such that
f̃mix = −

∑m−1
i=1

αi

αm
f̃i is c-concave as well. We will show that D(f̃1, . . . , f̃m−1) = B(ν̃), where

ν̃ = (Tf̃c
i
)#µi = (Tf̃c

mix
)#µm, is defined in (7). Thanks to Lemma 10, Tf̃c

i
is the optimal map

between µi and ν̃ = (Tf̃c
i
)#µi and Tf̃c

mix
is the optimal map between µm and ν̃ = (Tf̃c

mix
)#µm. That

is,

αi

2
W 2

2 (µi, ν̃) = αi[

∫
Ω

f̃ c
i dµi +

∫
Ω

f̃i dν̃], for i = 1, . . . ,m− 1;

αm

2
W 2

2 (µm, ν̃) = αm[

∫
Ω

f̃ c
mix dµm +

∫
Ω

f̃mix dν̃].

Consequently,

D(f̃1, . . . , f̃m−1) =

m−1∑
i=1

αi

∫
Ω

f̃ c
i dµi + αm

∫
Ω

f̃ c
mix dµm

=

m−1∑
i=1

αi

∫
Ω

f̃ c
i dµi + αm

∫
Ω

f̃ c
mix dµm −

m∑
i=1

αi

2
W 2

2 (µi, ν̃) + B(ν̃)

= −
m−1∑
i=1

αif̃i dν̃ − αm

∫
Ω

f̃mix dν̃ + B(ν̃)

= B(ν̃),

where the last equality is due to the fact that −
∑m−1

i=1 αif̃i − αmf̃mix = −
∑m−1

i=1 αif̃i −
αm(−

∑m−1
i=1

αi

αm
f̃i) = 0.

Now, max
f1,...,fm−1

D(f1, . . . , fm−1) ⩾ D(f̃1, . . . , f̃m−1) = B(ν̃) ⩾ min
ν∈P2(Ω)

B(ν), which completes

the strong duality.

A.6 PROOF TO LEMMA 5

(i) We first calculate the first variation of (− αi

αm
fi −

∑
j ̸=i

αj

αm
fj)

c.

Let u = −
∑

j ̸=i
αj

αm
fj , apply Lemma 8:

lim
ε→0

(− αi

αm
fi + u− αi

αm
εh)c − (− αi

αm
fi + u)c

ε
= −(− αi

αm
h) ◦ T(− αi

αm
fi+u)c =

αi

αm
h ◦ Tfc

mix
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Apply this result, the Gateaux derivative δDfi(h) with fixed other inputs fj ̸=i is given by

δDfi(h)

= lim
ε→0

αi

∫
Ω

(fi + εh)c − f c

ε
dµi + αm

∫
Ω

(− αi

αm
fi + u− αi

αm
εh)c − (− αi

αm
fi + u)c

ε
dµm

=αi

∫
(−h ◦ Tfc

i
) dµi + αm

∫
αi

αm
h ◦ Tfc

mix
dµm

=− αi

∫
hd[(Tfc

i
)#µi − (Tfc

mix
)#µm].

Consequently, the first variation δDfi = −αi((Tfc
i
)#µi − (Tfc

mix
)#µm).

(ii) is a consequence from the fact that the Ḣ1-gradient is defined via ⟨∇fiD(fi; fj ̸=i), h⟩Ḣ1 =
δDfi(h). Similarly with equation 4 and equation 5, we obtain that

∇fiD = (−∆)−1
(
− αi

(
(Tfc

i
)#µi − (Tfc

mix
)#µm

))
.

A.7 PROOF TO THEOREM 6

We note that D is a functional over the product space (Ḣ1)m−1 := Ḣ1 × · · · × Ḣ1. For any
f = (f1, . . . , fm−1) and g = (g1, . . . , gm−1), (Ḣ1)m−1 is a Hilbert space with inner product

⟨f ,g⟩(Ḣ1)m−1 :=

m−1∑
i=1

⟨fi, gi⟩Ḣ1 .

We let ∇D(f) = (∇Df1(f), . . . ,∇Dfm−1
(f)). Using the concavity of D and the concave inequality

D(g) − D(f) − ⟨∇D(f),g − f⟩(Ḣ1)m−1 ⩽ 0, it follows similarly from Theorem 1 and standard
analysis of subgradient descent that

D(f̃1, . . . , f̃m−1)−D(f (best)
1 , . . . , f (best)

m−1) ⩽

∑m−1
i=1 ∥f (0)

i − f̃i∥2Ḣ1 +M2
∑T

t=1 η
2
t−1

2
∑T

t=1 ηt−1

,

where M = maxTt=1(
∑m−1

i=1 α2
i ∥(T(f

(t−1)
i )c

)#µi − (T
(f

(t−1)
mix )c

)#µm∥2Ḣ−1)
1/2. If we fix the total

number of iterations T a priori, the optimal step size that minimize the right hand side is ηt−1 =

(
∑m−1

i=1 ∥f (0)
i − f̃i∥2Ḣ1)

1/2/(M
√
T ). This gives us

D(f̃1, . . . , f̃m−1)−D(f (best)
1 , . . . , f (best)

m−1) ⩽
M(

∑m−1
i=1 ∥f (0)

i − f̃i∥2Ḣ1)
1/2

√
T

.

If we don’t fix T a priori, then by letting ηt−1 = (
∑m−1

i=1 ∥f (0)
i − f̃i∥2Ḣ1)

1/2/(M
√
t), we have

D(f̃1, . . . , f̃m−1)−D(f (best)
1 , . . . , f (best)

m−1) ⩽ M(

m−1∑
i=1

∥f (0)
i − f̃i∥2Ḣ1)

1/2 log(T ) + 2√
T

,

where we used inequlities
∑T

t=1
1
t ⩽ ln(T ) + 1 and

∑T
t=1

1√
t
⩾

√
T .

A.8 PROOF TO LEMMA 9

Given that µ is absolutely continuous, for any ν ∈ P2(Ω), there exists a measurable map T that
pushes µ to ν (Santambrogio, 2015, Corollary 1.29). Thus,

min
ν∈P2(Ω)

∫
ϕdν +

a

2
W 2

2 (µ, ν) =a min
ν∈P2(Ω)

∫
ϕ

a
dν +

1

2
W 2

2 (µ, ν)

=a inf
T

∫
ϕ

a
d[(T )#µ] +

∫
1

2

∥∥x− T (x)
∥∥2
2
dµ

=a inf
T

∫
[
ϕ(T (x))

a
+

1

2

∥∥x− T (x)
∥∥2
2
] dµ

=a

∫
inf

y=T (x)
[
1

2
∥x− y∥22 +

ϕ(y)

a
] dµ = a

∫
(−ϕ

a
)c(x) dµ.
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Table 2: Barycenter functional value and runnting time for SGA and WDHA using annealing step
sizes for the example in Section 5.1.

Weights
Barycenter Functional Value (×103) [↓] Time (in sec) [↓]

SGA WDHA CWB DSB SGA WDHA CWB DSB

( 23 , 0, 0,
1
3 ) 3.917 4.012 4.202 3.926 328 497 1346 3643

( 13 , 0, 0,
2
3 ) 3.915 3.931 4.160 3.925 215 458 1328 3679

( 13 ,
1
4 ,

1
6 ,

1
4 ) 5.917 5.999 6.153 5.936 678 822 2290 5003

( 23 ,
1
3 , 0, 0) 5.256 5.340 5.559 5.260 280 477 1145 3728

( 14 ,
1
6 ,

1
4 ,

1
3 ) 5.288 5.323 5.513 5.314 639 811 2464 5192

(0, 0, 1
3 ,

2
3 ) 1.646 1.646 1.821 1.648 201 447 1262 3798

( 13 ,
2
3 , 0, 0) 5.256 5.263 5.513 5.263 224 470 1256 3885

( 14 ,
1
3 ,

1
4 ,

1
6 ) 5.958 6.019 6.182 5.977 690 822 2520 5062

( 16 ,
1
4 ,

1
3 ,

1
4 ) 5.205 5.231 5.424 5.239 646 814 2515 5076

(0, 0, 2
3 ,

1
3 ) 1.646 1.648 1.841 1.648 218 440 1255 3664

(0, 2
3 ,

1
3 , 0) 3.812 3.871 4.006 3.814 211 452 1247 3675

(0, 1
3 ,

2
3 , 0) 3.813 3.817 4.023 3.814 219 433 1251 3648

B ADDITIONAL NUMERICAL RESULTS

B.1 2D SYNTHETIC EXAMPLE WITH ANNEALING STEP SIZE

We examine the annealing step sizes (ηt = 0.5/
√
t) for SGA and WDHA using the synthetic example

introduced in Subsection 5.1. The computed barycenters are shown in Figure 5, with corresponding
barycenter values and computation times reported in Table 2. SGA continues to outperform the other
methods. In certain cases, such as when weights = (1/4, 1/6, 1/4, 1/3), visual inspection suggests
that the algorithm has not yet converged. This observation aligns with our expectations based on
Theorem 6, which indicates that for fixed total number of iterations (T = 300), constant step sizes
are optimal.

WDHA SGA

Figure 5: Comparison of weighted Wasserstein barycenter of densities supported on different shapes.
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Table 3: rt × 103 computed in the implementation of Algorithm 2 with 2D densities in Section 5.1.
The first column refers to marginals used to compute OT.

(µ, ν) t = 100 t = 200 t = 300

(1, 2) 2.459 1.943 1.813

(1, 3) 1.411 0.952 0.817

(1, 4) 2.348 1.915 1.820

(2, 1) 2.320 1.357 1

(2, 3) 0.666 0.397 0.300

(2, 4) 1.169 0.737 0.573

(3, 1) 2.909 1.792 1.368

(3, 2) 2.061 1.236 0.924

(3, 4) 1.008 0.593 0.436

(4, 1) 2.930 1.838 1.435

(4, 2) 1.715 1.155 0.958

(4, 3) 0.593 0.388 0.331

B.2 BOUNDEDNESS OF M IN THEOREM 1

The radius of the bounded ball (i.e., M in Theorem 1) can be easily computed and the boundedness
checked in the process. Further more, rt := ∥µ− (T(f(t−1))c)#ν∥Ḣ−1 is expected to decrease as t
increases, as it quantifies the distance between µ and the pushforward measure ν by T(f(t−1))c . If
f (t−1) is optimal for I(f) :=

∫
Ω
f dµ+

∫
Ω
f c dν, we have mt = 0. Empirically, we compute mt

at different t for pairwise 2D densities in Section 5.1, shown in Table 3. The results confirm that
rt decreases with t, indicating that the boundedness assumption of M is true and the solution will
converge to the truth.

C THE USE OF LARGE LANGUAGE MODELS (LLMS)

A Large Language Model (LLM) was used solely to identify grammar mistakes, polish language, and
detect typographical errors. No part of the research ideation, discovery, or substantive content was
generated by the LLM.
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