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Abstract

Machine learning solutions are rapidly adopted to enable a variety of key use
cases, from conversational Al assistants to scientific discovery. This growing
adoption is expected to increase the associated lifecycle carbon footprint, including
both operational carbon from training and inference and embodied carbon from
Al hardware manufacturing. We introduce CATransformers—the first carbon-
aware co-optimization framework for Transformer-based models and hardware
accelerators. By integrating both operational and embodied carbon into early-stage
design space exploration, CATransformers enables sustainability-driven model
architecture and hardware accelerator co-design that reveals fundamentally different
trade-offs than latency- or energy-centric approaches. Evaluated across a range
of Transformer models, CATransformers consistently demonstrates the potential
to reduce total carbon emissions—by up to 30%—while maintaining accuracy
and latency. We further highlight its extensibility through a focused case study
on multi-modal models. Our results emphasize the need for holistic optimization
methods that prioritize carbon efficiency without compromising model capability
and execution time performance. The source code of CATransformers is available
athttps://github.com/facebookresearch/CATransformers.

1 Introduction

As machine learning (ML) systems become more widespread across various industries, it is crucial to
take a closer examination of their carbon footprint and find strategies to mitigate it across the system
stack. Sustainable ML system design requires a holistic approach that considers both operational
carbon (energy used during training and inference) and embodied carbon (emissions from hardware
manufacturing and lifecycle) [GEH™ 22|, which together contribute to total emissions. This work
tackles the question: How does incorporating carbon footprint metrics into optimization workflows
influence the design of ML models and hardware architectures as a co-optimization?

A fundamental challenge in designing sustainable Al systems stem from the tight coupling between
model architecture and hardware design, which together shape both operational and embodied carbon.
Model execution on a particular hardware determines runtime characteristics, such as compute
intensity and memory access patterns, which affect operational carbon, while hardware parameters
like chip area, memory hierarchy, and fabrication technology drive embodied carbon. Carbon
optimization requires joint model-hardware exploration, particularly during early accelerator design,
to uncover opportunities that align model demands with hardware capabilities in a carbon-efficient
way. Co-design is even more important for multi-modal workloads like vision-language models.
Each modality introduces distinct bottlenecks—e.g., vision transformers usually have compute-bound
workloads [DGC24], while text transformers have more memory-bound workloads [Fu24]. Co-
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Figure 1: CarbonCLIP models achieve lower carbon footprint and higher accuracy compared to
baseline CLIP models.

optimization across modalities and system layers is essential to minimize the total carbon footprint
without compromising performance.

While this sustainability challenge applies across the entire Al lifecycle, the rapid adoption of Al
on edge devices presents a particularly acute and fast-growing problem [QPFM™23, IGKL™"22].
With billions of products like smartphones and AR/VR headsets requiring specialized, custom
accelerators [WLS™ 24, [SWL 22| [HAI25,[Goo20, Nvi23]], the embodied carbon from manufacturing
constitutes a massive, upfront environmental cost. Furthermore, the cumulative operational carbon
from continuous inference over a device’s multi-year lifespan represents a substantial and often
overlooked energy demand [App21]]. Addressing the tightly coupled model-hardware system at
the edge is therefore a critical first step, offering a high-impact domain to develop and validate the
carbon-aware co-design principles needed for sustainable Al.

Prior hardware-aware neural architecture search (NAS) methods have focused primarily on latency
or energy and are not suitable for total carbon optimization. This is because carbon is a complex
metric that cannot be captured by optimizing latency or energy in isolation. These approaches either
neglect embodied carbon by optimizing only the model on fixed hardware [WWL™20] or treat latency,
energy, and chip area as orthogonal constraints [ZDM™22]], overlooking the tightly coupled nature of
operational (latency- and energy-driven) and embodied (chip area-driven) carbon. As a result, these
methods are fundamentally limited in their ability to minimize total carbon emissions. Furthermore,
prior work often assumes fixed hardware or fixed model backbones, limiting their applicability to a
broader range of emerging hardware platforms and modern, multi-modal models.

We introduce CATransformers—the first framework to jointly optimize model and hardware archi-
tecture with the specific goal of minimizing total carbon emissions for edge inference-only devices.
Distinct from prior latency- or energy-centric methods, our approach incorporates both operational
and embodied carbon into a unified optimization pipeline, revealing carbon-efficient configurations
previously overlooked. We observe that optimizing traditional metrics in isolation frequently results
in suboptimal trade-offs. For example, accelerating inference by increasing compute density may
inadvertently increase power consumption and embodied carbon due to larger chip area or more
resource-intensive fabrication. By prioritizing total carbon as a first-class objective, CATransformers
yields fundamentally different and more sustainable design choices.

CATransformers systematically explores the joint design space of model architectures and hardware
accelerators using multi-objective optimization. It comprises three main components: (1) a Multi-
Objective Bayesian Optimizer that balances accuracy, latency, energy, and carbon emissions; (2) an
ML Model Evaluator that efficiently navigates model variants using importance-based pruning and
fine-tuning; and (3) a Hardware Estimator that profiles latency, energy, and carbon footprint.

We evaluate CATransformers on language, vision, and multi-modal Transformer-based models and
show that its co-optimized model-hardware configurations reduce total carbon by 30% over latency-
optimized and 8% over energy-optimized baselines. To further highlight its utility, we present
CarbonCLIP, a family of CATransformers-optimized CLIP models.

Figure [I| shows CarbonCLIP achieves up to 17% lower total carbon emissions compared to state-
of-the-art CLIP variants on edge devices, while maintaining similar accuracy and latency. Joint



optimization enables low-carbon, high-accuracy designs that outperform approaches that optimize
only hardware configurations.

Our key contributions include:

1. Insights and Analysis: Empirical insights showing how carbon-aware optimization shifts
model-hardware trade-offs relative to traditional metrics, enabling early-stage design explo-
ration for next-generation ML accelerators.

2. Quantification Framework: We develop the first open-source toolchain to estimate both
operational and embodied carbon for custom accelerators during design-space exploration.

3. Carbon-Aware Co-optimization: CATransformers uses multi-objective Bayesian opti-
mization to jointly explore model and hardware design spaces, balancing accuracy, latency,
energy, and carbon. It leverages fine-tuning—based proxy signals to reduce evaluation cost.

4. Sustainable Multi-Modal Models: Using CATransformers, we co-optimize CLIP variants
(CarbonCLIP) that reduce total carbon by up to 17% compared to edge-deployed CLIP
baselines, without sacrificing accuracy or latency.

CATransformers is designed as a modular, extensible framework that supports the seamless integra-
tion of diverse model architectures, optimization strategies, and carbon estimation techniques. The
goal is not to outperform other NAS frameworks on traditional metrics, but to highlight the fundamen-
tally different design trade-offs that emerge under carbon-centric optimization objectives. Through
systematic comparisons across multiple optimization modes and model families, we demonstrate the
practical impact of carbon-aware design, which is the core contribution of this work.

2 Background and Related Works

Hardware Accelerator Search: Specialized hardware accelerators have been developed to efficiently
run deep learning workloads, with tensor cores for matrix operations [JKL ™23, MPAT16, PSM™17,
CKES16] and vector cores for element-wise operations [JYP™17,I(GKX™24]. Prior accelerator search
frameworks [APK™24| PMK™'22, WTPM?24|, PMT25| |ZHS 22, [ISSL23]] optimize for throughput
and energy, but do not jointly optimize hardware and model architectures or consider carbon footprint
in the design process.

Hardware and Neural Architecture Co-optimization: Co-optimization methods [ZDM™22,
CHY ™21, 1YS™20, [CYH2T] typically focus on latency or energy, ignoring carbon as a primary
design objective. Approaches that do consider carbon [ECA™23,I[ECA ™25, [ZG23] often optimize
either the model or hardware in isolation. Furthermore, prior work often assumes fixed hardware or
fixed model backbones, limiting applicability to a broader range of emerging hardware platforms and
modern, heterogeneous models—particularly multi-modal architectures. Our work addresses this gap
by jointly optimizing both hardware and model architectures with total carbon footprint—including
embodied and operational emissions—as a first-class objective.

The Carbon Footprint of AI Systems: Much of the research on the carbon footprint of Al fo-
cuses on operational emissions, with three main directions: (1) quantifying the emissions from
training [BBL23, [SGM20, [LLSD19, (WRG™22], (2) analyzing energy use during deployment and
inference [LJS24) [LGH™24], and (3) developing techniques to reduce emissions while exploring
energy—performance trade-offs [GHL 25, ZLIG24| LJGT24, ALK 23].

Embodied carbon, however, remains underexplored. Tools like ACT [GEH™22], IMEC.netzero
[IME23]], and LLMCarbon [FKW 24| have begun to estimate embodied emissions, but a holistic
framework that quantifies and minimizes both operational and embodied carbon remains lacking.
CORDOBA [ECA™23] introduces a carbon-aware accelerator design tool, but it is not open-sourced,
limiting reproducibility and extensibility. Unlike CE-NAS [ZLJG24], which reduces carbon emissions
during neural architecture search, CATransformers is the first to optimize total carbon emissions from
both model and hardware, during early-stage design.

Al Systems on the Edge: Al models are no longer confined to large-scale datacenters and are
now widely deployed on edge devices like smartphones, AR/VR headsets, robotics, and vehi-
cles [QPFM ™23, ISWL 22| [HAI23]. These edge settings present unique challenges, including
strict resource constraints, hardware heterogeneity, and communication bottlenecks that impact
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Figure 2: Overview of the CATransformers framework. The Bayesian optimizer iteratively explores
model and hardware configurations using accuracy, carbon, and latency estimates from evaluation
modules, outputting optimized co-designs.

performance [WNM23| HYW 23| bJRET23||. This wide adoption, however, also raises significant
environmental concerns. The sheer scale of device production means embodied carbon from chip
fabrication is a major contributor to total emissions [GKL'22]. Simultaneously, the cumulative
operational carbon from frequent inference over a device’s multi-year lifespan presents a distinct
and growing sustainability challenge. CATransformers aims to address this gap by enabling holistic,
carbon-aware co-design of Al models and hardware accelerators specifically for edge systems.

CLIP Models and Edge Variants: Multi-modal models like CLIP [RKH™21|] combine Transformer-
based text encoders with image encoders (ResNet [HZRS16] or ViT [DBK™21]) and are trained
on large datasets [SVBT 21| XXT"24,[SBV 22| IGIF"23] to learn cross-modal associations. These
models support tasks like zero-shot classification and retrieval. Several variants [WPZ 23| [LBL* 24,
STJ"23, [VPF" 24| adapt CLIP for edge devices through pruning and efficient training, but focus
solely on accuracy and latency. Our work is the first to optimize CLIP models for edge deployment
with total carbon emissions in mind, without sacrificing accuracy or latency.

3 Framework Overview

In this section, we introduce CATransformers, a carbon-aware architecture search framework for
sustainability-driven co-optimization of ML models and hardware architectures. As illustrated in
Figure 2] CATransformers framework takes three inputs: (1) a base ML model, (2) a hardware
architecture template, and (3) a set of optimization objectives and constraints that define the joint
model-hardware search space. The framework consists of three key components: a multi-objective
optimizer, an ML model evaluator, and a hardware estimator.

3.1 CATransformers Inputs

Base Model: The base model is a large, pre-trained Transformer that serves as the foundation for
generating pruned variants. It defines the architecture’s shape, functionality, and search space. As
shown in Figure|3al pruning is applied along several dimensions, including the number of layers,
hidden size, feedforward network width, attention heads, and embedding dimensions.

Hardware Architecture Template: The accelerator template (Figure 3b) captures key components
and tunable parameters inspired by academic and industry designs [JYPT 17, |APK*24, [ZHS 22|
WTPM?24]. It features tensor cores with Processing Elements (PEs) arranged in X and Y dimensions
for GEMM operations, vector units for element-wise operations, local buffers for data reuse, and
a shared global SRAM and off-chip memory—consistent with existing edge inference accelera-
tors [SWL 22, (WL.S™24]|. Increasing PEs or cores boosts performance but raises area and energy
costs; more on-chip memory lowers latency but adds energy overhead. The optimal hardware config-
uration depends on the model architecture, size, and performance constraints. Table [l|summarizes
the hardware design space parameters.

3.2 ML Model Evaluator

The ML model evaluator estimates the accuracy of candidate model architectures during the search.
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Figure 3: Overview of model pruning dimensions and hardware template for CATransformers

Table 1: Architecture design space parameters.

Parameter Description Notation Potential Values
Design Space (S)

Number of Cores TC 1 to 4 powers of 2

PE Array X dim PE, 1 to 256 powers of 2
PE Array Y dim PE, 1 to 256 powers of 2
Global Buffer Size GLB 1 to 8 MB powers of 2
Local Buffer Size L2 256 KB to 4 MB powers of 2
Local Bandwidth L2hw 1 to 256 words/cycle
Vector Unit width Ve = PE,

Fixed Parameters

Global Bandwidth GLB-BW 256 words/cycle
Off-chip DRAM Size HBM 1GB

Technology Tech 22 nm

BitWidth B 8

Maximum TOPS Tinax 20 TOPS

Frequency f 500 MHz

Pruning: The evaluator prunes the pre-trained base model along key dimensions, including the
number of layers, feedforward network size, attention heads, and embedding dimension. For multi-
modal models like CLIP, each Transformer (text and vision) is pruned independently using strategies
from prior work [LBL™24,[SDDN20, WWL™20]. Each layer is pruned uniformly. See Appendix
for pruning details and empirical observations.

Fine-tuning for Accuracy Proxy: Direct evaluation of untrained pruned models results in poor
accuracy, while fully retraining every model is computationally infeasible. Instead, we use lightweight
fine-tuning to approximate accuracy. Our ablation studies show that this method yields a high
Spearman correlation (0.98) with fully trained accuracy, making it a reliable proxy for ranking
candidate models (Appendix [C). This approach allows accurate and efficient evaluation within the
optimization loop, enabling scalable exploration of Transformer-based models without full retraining.
For language models we use the MRPC task from the GLUE dataset [WSM™ 18] for semantic
similarity detection, for vision models, the CIFAR-10 dataset [Kri09] for image classification; and
for CLIP models, the MSCOCO dataset [LMB T 135 for retrieval.

3.3 Hardware Estimator

The hardware estimator provides unified, end-to-end analysis of inference latency and total carbon
footprint—including both embodied and operational emissions—for each model-hardware configu-
ration. It leverages performance and energy models to estimate operator-level latency, energy, and
area [WES19,IONFL23|, and incorporates carbon modeling for manufacturing-related emissions and
location-specific operational carbon, scaled over the system’s deployment lifetime [GEH ™22, [Map23)].
To the best of our knowledge, this represents the first open-source toolchain built for early-stage
design space exploration that holistically quantifies latency, energy, and total carbon emissions of
custom ML accelerators. A detailed workflow is provided in Appendix B}

3.4 Multi-Objective Optimization

CATransformers uses multi-objective Bayesian optimization to efficiently explore the joint de-
sign space of model architectures and hardware configurations building on Ax [MP24]] and



BoTorch [BKJ™20] with the gNEHVI algorithm [DBB21]]. Compared to reinforcement learning or
evolutionary search, Bayesian optimization offers better sample efficiency and uncertainty modeling,
making it ideal for our static, high-dimensional search space where each configuration takes 5-15
minutes to evaluate. While prior work [WWL™20] explored just 125 models over 30 iterations,
CATransformers scales to a search space of 100 million configurations in only 100 iterations.

The optimization maximizes accuracy while minimizing latency, energy, and total carbon (embodied
+ operational), exploring model (Figure [3a) and hardware parameters (Table|l) under a TOPS-based
compute budget based on publicly available edge accelerators. Our framework supports four compute-
constrained modes: (1) Accuracy & Total Carbon (with latency constraint), (2) Accuracy & Latency,
(3) Accuracy & Energy, and (4) Accuracy, Latency, & Total Carbon.

3.5 Outputs

CATransformers outputs optimized combinations of model and hardware configurations that, when
deployed together, improve overall efficiency. Once the optimizer identifies carbon-efficient, pruned
model architectures, these models can optionally be fine-tuned to recover any accuracy loss. Pre-
liminary results show these pruned models require far fewer training steps than full pre-training.
Specifically, CarbonCLIP models are fine-tuned for just 2 epochs on MetaCLIP [XXT™24], using
only 40% of the training steps compared to prior works [RKH™ 21, [ XXT"24, WPZ"23].

4 Evaluation

4.1 Experimental Settings

Model: To demonstrate the versatility of CATransformers, we apply it to diverse transformer-
based architectures: encoder-only Bert-Base [DCLT19], decoder-only Llama3-8B [[GDJ™24], vision
transformer ViT-B/16 [DBK™21]], and multi-modal CLIP models (CLIP-ViT-B/16 and CLIP-ViT-
B/32)[RKHT'21]]. We use pre-trained weights from HuggingFace[WDS™ 19] for Bert, Llama, and
ViT, and adopt OpenCLIP’s [IWW ™ 21|] DataComp-1B [GIF" 23] models for CLIP. Building on CLIP
optimization results, we generate CarbonCLIP models with corresponding hardware designs.

Baselines: Prior work primarily targets performance or energy efficiency, rarely considering carbon-
aware hardware-model co-design. These approaches are typically evaluated on fixed hardware and
model architectures, making direct comparison difficult. To ensure a fair and meaningful evaluation,
we benchmark CarbonCLIP against two widely adopted baselines: (1) standard CLIP models (ViT-
B/16, ViT-B/32), and (2) TinyCLIP, a state-of-the-art variant optimized for latency. For each,
we apply CATransformers’s hardware search with fixed model architectures to derive comparable
accelerator designs. This allows us to isolate the benefits of carbon-aware co-optimization. Our results
show that carbon-optimized models can match or exceed the accuracy and latency of traditional
baselines—demonstrating the practical value of our approach.

Hardware Estimation and Validation: We estimate accelerator area, latency, and energy using
open-source tools (Appendix [B)), assuming 22nm process technology and 8-bit integer operations. To
validate latency estimates, we use SCALE-Sim [SZW T 18| |SIZT20] for CLIP’s QKV projections.
Our estimates have an average latency error of 13%, consistent with prior work [PRS™19,[WESTO],
and are validated on standard compute array sizes (16x16 to 64x64). We further validate energy
and latency predictions against real GPU hardware (V100, A100, H100) by modeling GPU-like
architectures. Our estimates closely match measured results, with average errors of 8% (energy)
and 9% (latency), and Spearman’s rank-order correlation r ranging from 0.5 to 1.0 and p < 0.05,
confirming toolchain accuracy. Details of the validation is in Appendix [M]

Carbon Emission Estimation: Operational carbon is estimated using California grid intensity over a
3-year lifespan (1 inference/sec, 6 hrs/day), reflecting typical mobile usage [App21} INSY24, Har25]].
Embodied carbon is calculated assuming fabrication in Taiwan. Appendix [K|explores the impact of
different deployment regions, energy sources, and optimization metrics.

Execution Setup: Bayesian optimization is performed on a single node (8xV100 GPUs, 80 CPUs)
over 100 trials, taking 5-20 hours depending on the model. Post-pruning training of CarbonCLIP
uses 224 GPUs on the MetaCLIP-2.5B dataset [XXT™24], with a batch size of 128, learning rate of
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Figure 4: ISO-Accuracy plot showing the latency—carbon trade-off across optimization strategies,
with accuracy matched within +1%.

5 x 10~4, and 2 distillation epochs. We quantify the Carbon footprint of running CATransformers in
Appendix [N|

4.2 Joint Model and Hardware Architecture Search Using Different Metrics

In this section, we use CATransformers to perform joint model-hardware architecture search, with
carbon footprint as a central design metric alongside traditional objectives like accuracy, latency, and
energy. We evaluate different optimization modes under a 20 TOPS compute budget, representative of
modern edge accelerators [HAI25! INvi25]. When latency is not an optimization target, a maximum
latency constraint of 50ms is enforced [vMVI22]] to ensure realistic specifications. Each experiment
is repeated three times, and we compute the Hypervolume (HV) indicator to assess consistency. HV
measures the portion of the objective space dominated by the Pareto front relative to a reference point.
Across runs, its standard deviation is below 0.03, with an average coefficient of variation under 3.5%,
indicating statistically consistent results. Appendix [F] provides a detailed breakdown of the statistics.

Takeaway 1: Carbon optimization yields the lowest footprint but at the cost of latency, energy
optimization strikes a better balance.

Figure ] shows the latency-carbon trade-off at iso-accuracy points (based on proxy accuracy before
fine-tuning). Full configurations across additional accuracy levels for each model are detailed in
Appendix [D] Comparing optimization modes, we find that carbon optimization significantly reduces
carbon footprint by an average of 30%, but with a 7.7 x increase in latency compared to latency-
optimized baselines. Energy-optimized configurations reduce carbon by 24% while limiting latency
overhead to 4 x. Joint optimization for Carbon and Latency achieves a 18% carbon reduction with
minimal latency increase, effectively balancing sustainability and performance.

Takeaway 2: Energy optimization indirectly reduces latency, but not as effective as direct latency
optimization.

Minimizing energy tends to reduce both power and computation time, often lowering latency. In
contrast, carbon-focused optimization emphasizes minimizing hardware area to reduce embodied
carbon, often resulting in slower, smaller designs. Because total energy consumption is proportional to
latency (i.e., energy = power x delay), latency cannot be extended arbitrarily when using smaller-area
hardware. Excessively long latencies not only fail to meet practical performance targets but also begin
to significantly increase operational carbon costs. Still, energy optimization does not always guarantee
low latency. For example, Bert and Llama3 configurations in Figure 4] show higher latency despite
energy-focused design. Direct latency optimization, seen in Latency-only and Carbon+Latency
modes, consistently delivers the lowest-latency results across all models. These trade-offs highlight
the need to carefully balance carbon constraints and real-world performance demands.

Takeaway 3: Latency-optimized designs favor large, high-throughput hardware; carbon-optimized
designs use compact, low-power accelerators.

Latency-focused designs often use up to 3 x larger area, enabled by more compute units and larger
memory hierarchies. These systems frequently select larger models that fully utilize hardware to
meet latency targets. In contrast, energy-optimized designs typically pair smaller models with larger
accelerators to minimize delay and energy per inference. Carbon-optimized designs prioritize smaller
hardware to reduce embodied carbon, at the cost of performance. For example, on BERT-Base
(Figure ), the carbon-optimized system uses a single-core accelerator with 512 Processing Elements
(PEs), 64KB local memory, and 2MB global memory. The latency-optimized design uses two cores,



Table 2: Hardware architecture search for fixed baselines CLIP model architectures.

Total Minimum Carbon Minimum Latency
Model Architecture Params  Carbon  Latency Hardware Architecture Carbon  Latency Hardware Architecture

M) (kgCO2e) (ms) Core Memory Config  (kgCO2e) (ms) Core Memory Config

# Cores Dimension  {Local, Global} # Cores Dimension  {Local, Global}

CLIP-B/16 149 0.54 18.5 1 (256,8) 64 KB, 2MB 0.69 5.4 2 (256,16) 256KB, 4MB
CLIP-L/14 427 1.43 68.7 2 (128,16) 128 KB, 2MB 1.76 66.4 4 (64,64) 256KB, 4MB
CLIP-H/14 986 1.92 71.0 1 (128,32) 128KB, 4MB 2.60 70.2 4 (256,4) 512KB, 4MB
TinyCLIP-8M/16 41 0.34 3.0 2 (256,4) 64KB, 2MB 0.56 1.3 1 (256,64) 256KB, SMB
TinyCLIP-39M/16 83 0.44 9.4 1 (256,8) 64KB, 2MB 0.59 22 4 (256,16) 128KB, 4MB
TinyCLIP-40M/32 84 0.37 8.6 1 (32,32) 64KB, 2MB 0.46 1.1 4 (128,32) 64KB, 2MB
TinyCLIP-61M/32 115 0.39 9.7 1 (128,8) 64KB, 2MB 0.49 1.4 4 (128,32) 64KB, 2MB

each with 4K PEs, 128KB local memory, and 4MB global memory—cutting latency by over 4 x but
increasing carbon footprint by 26%.

Takeaway 4: Model sensitivity to pruning varies by model architecture: CLIP and ViT are especially
sensitive to hidden dimension pruning.

Each model architecture responds differently to pruning. CLIP and ViT models are particularly
sensitive to reductions in the hidden dimension, leading CATransformers to typically follow this
pruning order for these models: FFN dimension — attention heads — layers — embedding dimen-
sion. This sensitivity arises because ViTs split images into relatively few patch tokens, requiring
each token to carry rich semantic and spatial information. The hidden dimension governs the ex-
pressiveness of these token embeddings, and pruning it severely limits ViT’s ability to model visual
content—especially since ViTs lack the hierarchical features of CNNs and rely on global attention.

CLIP models are especially sensitive due to their multi-modal nature, where precise alignment
between visual and textual embeddings is crucial. Pruning hidden or embedding dimensions can
significantly degrade performance (Appendix [A), as excessive pruning of the vision encoder disrupts
alignment with the text encoder, harming model accuracy. Additionally, the text encoder is often
pruned more aggressively than the vision encoder, which is essential for processing complex visual
inputs. In contrast, language models such as Bert and Llama3 tend to be more robust to pruning in
the hidden dimension. These observations underscore the challenges of pruning multi-modal models
like CLIP and motivate our focus on their optimization throughout the paper.

4.3 Hardware Optimization for Fixed CLIP Models

While the previous section highlighted CATransformers’ general utility, we now focus on CLIP—a
widely used multi-modal model combining text and vision encoders. CLIP poses additional challenges
due to its heterogeneous computation and the complex interplay between modality-specific pruning
and system performance. We first evaluate the carbon footprint of state-of-the-art CLIP variants. To
ensure fair comparison, we use CATransformers’ hardware search to optimize inference latency and
carbon footprint under a fixed model and a 20 TOPS compute budget. This yields a Pareto frontier
illustrating optimal latency—carbon trade-offs. Table [2] summarizes configurations with minimum
carbon and minimum latency for each model. As with joint optimization, carbon-focused hardware
design results in smaller accelerators with fewer compute and memory resources. While this reduces
area and emissions, it typically increases inference latency.

Takeaway 5: Hardware must be tailored to the model-parameter count, patch size, and modality-
specific traits affect optimal configurations.

Results from the fixed-model hardware search underscore the importance of hardware—model co-
design: optimal performance and carbon efficiency require aligning hardware with model architecture.
ViT patch size notably influences accelerator dimensions. For instance, TinyCLIP-61M/32—despite
having more parameters—outperforms TinyCLIP-39M/16 in both latency and carbon footprint when
paired with hardware better suited to its larger patch size. ViT-B/32 produces a sequence length of 50,
compared to 197 for ViT-B/16, enabling more efficient execution on smaller accelerators. Embedding
dimensions and patch sizes shape execution patterns, making some models inherently better matched
to specific hardware. Memory configuration also scales with model size: smaller models perform
well with 64KB local and 2MB global buffers, while larger models like CLIP-L/14 and CLIP-H/14
require at least 128KB local buffers and larger global memory.



Table 3: Hardware and model architecture properties of each variant of the CarbonCLIP family.
Hardware configurations are specified as: {TC, PE,, PE,,,L2,L2;,,, GLB}. PE denotes Processing
Element. Text and Vision encoders specified as: {Num Layers, FFN Dim, Hidden Dim, Num Heads}.

Name Carbon Latency Hardware Model Configuration Avg. Accuracy
(kgCO2e) (ms) Configuration Text Encoder Vision Encoder over 41 datasets
. . Params (M)
Configuration Configuration
CLIP-B/16 - DataComp 0.54 18.5 {1,256, 8,64,128,2} {12,2048,512,8} {12,3072,768, 12} 149 532
TinyCLIP-8M/16 0.34 3.0 {2,256,4,64,32,2}  {3,1024,256, 4} {10, 1024, 256, 4} 41 30.7
TinyCLIP-39M/16 0.44 9.4 {1,256, 8,64,128,2}  {6,2048,512, 8} {12,2048, 512, 8} 83 45.0
CarbonCLIP-XS 0.32 7.1 {1,256,4,64,32,2} {6, 1024, 284, 4} {6, 1536, 576, 6} 41 38.7
CarbonCLIP-S 0.36 12.0 {1,256, 4, 64, 64,2} {6, 1024, 512, 6} {8, 1920, 672, 6} 63 45.0
CarbonCLIP-M 0.39 19.7 {1,256,4,064,1282} {8,1536,512, 6} {9, 2304, 672, 6} 79 479
CarbonCLIP-L 0.42 13.7 {1,256,8,64,128,2} {6, 1280, 384, 5} {10, 2688, 768, 7} 83 48.7
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Figure 5: Pareto frontiers under varying compute constraints.

4.4 Accuracy Evaluation

We compare CarbonCLIP models to TinyCLIP and the CLIP-ViT-B/16 baseline (pretrained on
DataComp-1B), using each baseline’s most carbon-efficient configuration. Table [3|shows the Car-
bonCLIP family, selected from the Pareto frontiers in Appendix [E] For each CarbonCLIP model,
We perform post-pruning training, and evaluate their performance on 41 zero-shot tasks from the
CLIPBenchmark [LA22]]. The table summarizes model and hardware configurations for CarbonCLIP-
XL to CarbonCLIP-XS (largest to smallest models), along with their carbon footprint, latency, and
average accuracy. Full per-dataset results are in Appendix [H] We also extend the CarbonCLIP family
to the CLIP-B/32 architecture for comparison with TinyCLIP-B/32 baselines (Appendix [G).

CarbonCLIP models outperform baselines across a range of carbon budgets. Notably,
CarbonCLIP-XL achieves baseline-level accuracy with an 10% reduction in carbon footprint.
CarbonCLIP-XS achieves an 8% increase in accuracy with a 3% reduction in carbon footprint
compared to TinyCLIP-8M/16. CarbonCLIP-L, CarbonCLIP-M, and CarbonCLIP-S all achieve sig-
nificant reductions in carbon footprint compared to TinyCLIP-39M/16, with CarbonCLIP-L achieving
a 4% increase in accuracy and a 4.5% reduction in carbon footprint, CarbonCLIP-M achieving an
11% reduction in carbon footprint with a 3% decrease in accuracy, and CarbonCLIP-S achieving a
17% reduction in carbon footprint without any regression in accuracy.

In terms of hardware configuration, CarbonCLIP models select accelerators with cores of PE,
dimension 256 to align with the underlying operator dimensions of the CLIP ViT-B/16 architecture,
with sequence length of 197 for the vision encoder. Smaller models select a total of 1024 PE units
per core, whereas larger models select twice as many PEs to keep the latency of the task low. Due to
the reduced size of the CarbonCLIP models, a 64KB local memory and 2MB global memory are
sufficient to keep the core utilized.

4.5 Evaluating for Different Compute Constraints

We evaluate CarbonCLIP models under three peak compute constraints inspired by real-world edge
devices: 20 TOPS [HAI23| Nvi23], 4 TOPS [[Goo20], and 1 TOPS [WLS™ 24| Int23]. Figureshows
the resulting Pareto frontiers.

Takeaway 6: As hardware shrinks due to tighter compute constraints, optimizing for energy (opera-
tional carbon) increasingly minimizes both total carbon and latency.



Smaller hardware designs reduce embodied carbon, making operational energy the dominant factor
in the total carbon footprint. As a result, energy-optimized designs often achieve outcomes similar to
those optimized for total carbon under tight compute budgets. Appendix [lexplores the embodied vs.
operational carbon trade-offs in more detail. Note that different grid intensities and expected hardware
lifetime can also affect the ratio of embodied and operational carbon, affecting the optimization
results, and the quality of each metric immensely, we show this in Appendix [Kl However, smaller
accelerators have limited compute and memory, which increases inference delay—and thus total
energy use—despite lower power consumption. This leads to higher total carbon emissions in some
cases, underscoring the importance of hardware—model co-design to balance carbon efficiency and
performance. We further extended the study to evaluate the impact of latency constraints on model
and hardware configurations, as well as their carbon footprints in Appendix I}

S Impact Discussion and Limitations

This work demonstrates a practical path toward sustainable Al by jointly optimizing model and
hardware design for carbon reduction. Our framework is particularly effective for low-latency edge
inference (e.g., chatbots, AR/VR) and highlights the potential for cross-domain collaboration across
ML, hardware, and sustainability.

CATransformers currently targets Transformer models and domain-specific edge accelerators, with
limited GPU support and no evaluation on CNNs. Extending to other model families (e.g., CNNs,
Mamba) requires profiling the latency and energy of their unique operators and adapting pruning
strategies beyond attention heads. Expanding to GPUs and data center scenarios is feasible, but the
larger design space would demand significantly more search. Nonetheless, our GPU-based results
(Appendices [[] and [M)) suggest scalability to training workloads and datacenter-level accelerators,
where support for parallelization and distributed training could further improve carbon efficiency.

Beyond inference and training emissions, broader sustainability impacts, such as electronic waste,
water usage, and rare mineral consumption, remain underexplored. While our optimizations can
implicitly reduce chip area and resource use, standardized metrics and fine-grained data are currently
lacking, limiting multi-objective optimization over broader environmental impacts. Moreover, custom
accelerators raise concerns about hardware heterogeneity and e-waste, which may be mitigated by
reusing existing hardware or co-optimizing with commercial accelerators.

Proxy-based accuracy estimation, such as the methods employed in CATransformers, enables scalable
exploration but may deviate from real outcomes due to overfitting or underestimating pruning effects.
Developing more robust accuracy predictors is an important direction for improving reliability.

6 Conclusion

We introduced CATransformers, a framework for co-optimizing model architectures and domain-
specific accelerators to minimize carbon footprint. By jointly considering operational and embodied
carbon, CATransformers supports environmentally conscious design, particularly in edge computing.
We demonstrated its effectiveness across various Transformer-based models—including multi-modal
models—showcasing substantial potential in carbon reductions without sacrificing performance. This
work fills a key gap in sustainable Al deployment and provides a foundation for future research in
carbon-aware machine learning.
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Appendix

A Ablation Study: Pruning and Finetuning CLIP models

In this ablation study, we studied the effect of pruning each dimension and the effect of fine-tuning on
various datasets to find a good proxy for approximating the accuracy after training the pruned models
on larger datasets fir CLIP-based models. All models were evaluated against MS COCO. The results
are shown in Figure [6and our key observations are as follows:

We make some key observations in terms of the importance of each dimension to the overall accuracy
of the model. First, accuracy drops significantly after pruning to 50% of any dimension, even after
fine-tuning. Therefore, we confine the search space to a minimum of half of each dimension. Second,
the vision model has a more significant impact on accuracy compared to the text model. Finally,
pruning the embedding dimension has the most significant impact on accuracy among all pruned
parameters, followed by number of layers, then FFN dimensions and number of attention heads.

Fine-tuning on MS COCO: Even with just a single epoch, fine-tuning on MS COCO significantly
improves the accuracy of pruned models, making it a good and fast proxy for evaluating their overall
potential. Fine-tuning on Datacomp-Tiny: Training on a small subset of a pre-training dataset
(Datacomp-Tiny, a 400k subset of Datacomp-Medium unfiltered) also improves accuracy, albeit
with lower overall accuracy compared to MS COCO. Fine-tuning on Datacomp-Medium: Using a
general pre-training dataset (Datacomp-Medium unfiltered) reduces the variance in accuracy between
models of different sizes, showing that smaller models can achieve comparable accuracy when trained
with enough data. This incentivizes our post-pruning training with a large and high quality MetaCLIP
2.5B Dataset.

In general, larger models will attain higher accuracy compared to models with fewer parameters
when trained for the same number of steps. However, models with fewer parameters may still achieve
comparable accuracy as larger models given more training steps [KMHT20]]. Therefore, we fine-tune
each model with the same computation FLOPS, allowing smaller models to train for more FLOPS
and recover their accuracy from more extensive pruning.
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Figure 6: Pruning and fine-tuning results for each dimension of the Text and Vision encoders.

B Estimation Tool-chain Integration

In this section we present in detail the integration of the tools used in the hardware estimator as
illustrated in Figure [7]] We use Accelergy [WES19] to estimate the area and access energy of
each component, and Sunstone [ONFL23] to estimate the per-operator latency and energy. For
carbon estimations, we use ACT [GEH' 22| to estimate the embodied carbon of the hardware
architecture based on the area of the accelerator. Given the energy estimates from Sunstone, Electricity
Maps [Map25] is used to retrieve the carbon intensity of the electricity of a given grid location and
calculate the operational carbon of executing a single inference. We then scale the operational carbon
to the total lifetime of the hardware architecture.
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Figure 8: Correlation between the proxy accuracy, fine-tuned and evaluated on MS COCO and the
final model accuracy evaluated across 41 datasets for pruned CLIP models.

C Correlation Between Proxy and Final Model Accuracy

To efficiently approximate accuracy while preserving ranking consistency, we fine-tune each pruned
model to a common dataset used to evaluate each model type. As shown in Figure[8] fine-tuning
maintains a high Spearman’s rank correlation coefficient (0.98) with the final post-pruning training
accuracy, ensuring reliable accuracy ranking. We report the mean top-1 recall accuracy on MSCOCO
as the accuracy proxy for each pruned CLIP model. We incorporate this into the optimization loop to
dramatically reduce the cost of evaluating candidate model architectures.

D 1ISO Accuracy

In this sections we present full details on different design points found by each optimization metric
for a given accuracy point in Tables @} [5] [6] and[7} for CLIP-ViT-B16, BertBase, Llama3-8b, ViT-B16,
respectively. The key observations are discussed in Section[d.2} For each iso-accuracy comparison,
accuracy values are reported with a tolerance of +/- 1% across optimization strategies.

E Pareto Frontier of each Optimization

In this section, we present an example of the Pareto frontier for each optimization metric using the
CLIP ViT-B/16 model. Figure[0]shows the Pareto frontiers for latency-only, carbon-only, energy-only,
and latency+carbon optimization objectives. Each data point in the figure represents a specific model
and hardware architecture configuration, with accuracy shown on the y-axis, carbon footprint on the
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Table 4: The hardware and model architecture configuration found by each optimization metric
at each accuracy point for CLIP-ViT-B16. Hardware configurations are specified in the format of:
{T'C,pes,pey, L2, L2y, glb}. Text and Vision encoders are specified in the format of {Num Layers,

FFN Dim, Hidden Dim, Num Heads}

Accuracy Optimization Carbon  Latency Hardware Conl\f/l[gsstion

(+/- 1%) Metric (kgCO2e) (ms) Configuration Text Encoder Vision Encoder :
Configuration Configuration Params (M)

Carbon 0.46 12.6 {1,256,8, 64,64,2} {9, 1536, 512, 6} {12, 576,768, 8} 104
31% Energy 0.50 3.9 {2,256, 16, 128,32, 2} {7, 1536, 384, 8} {12, 576,768, 8} 101
Latency 0.55 4.7 {2,256, 16, 128,32,2} {10, 1792,384,7} {12,672,768, 11} 111
Carbon + Latency 0.48 8.8 {2,256, 8, 64, 64,2} {9, 1280, 512, 6} {11, 672,768,9} 105
Carbon 0.44 10.9 {1,256, 8, 64, 64 2} {9, 1536, 512, 6} {11,672,768,6} 95
19.5% Energy 0.48 35 {2,256, 16, 128,32, 2} {6, 1536, 512, 8} {12, 480,768, 7} 90
’ Latency 0.55 8.2 {4,256,4, 128, 64,2} {11, 1536,384,5} (11,576,768, 12} 99
Carbon + Latency 0.45 7.3 {2,256, 4, 64,128,2} {9,1024,512, 5} {11, 576,768, 8} 94
Carbon 0.43 22.1 {1,256,4, 64,64,2} {7,1536,6384 5} (11,576,768, 8} 84
13% Energy 0.49 73 {2,256, 8, 64, 64,2} {8,1792, 448, 5} {10, 576,768, 7} 92
Latency 0.54 15.9 {4,256, 2,128, 64,2} {12,1792,320,5} {11,576,768, 12} 96
Carbon + Latency 0.47 7.3 {1,256, 16, 128, 64, 2} {9,2048,384,4} {11, 3072, 768, 6} 98
Carbon 0.32 4.6 {1,256,8, 64,64,2} {6, 1024, 256, 4} {6, 1536, 384, 6} 27
25% Energy 0.33 1.8 {1,256, 16, 128, 64, 2} {6, 1024, 256, 6} {6, 1536, 384, 6} 28
’ Latency 0.46 1.3 {4,256, 16, 128, 128,2} {6, 1024, 384, 8} {9, 1536, 384, 4} 43
Carbon + Latency 0.31 5.1 {1,256,4, 64,64,2} {6, 1024, 256, 4} {6, 1536, 384, 6} 27

Table 5: Iso-Accuracy points for Bert-Base model. Original model configuration: number of layers:
12, embedding dimension: 768, intermediate dimension:3072, number of Attention Heads:12

Accuracy Optimization Carbon  Latency Hardware Model

(+/- 1%) Metric (kgCO2e) (ms) Configuration Configuration Params (M)

Carbon 0.26 12.7 {1,32,8,64,32,2} {10, 192, 48, 6} 1.7

63% Energy 26 29 {4,1,62,8,64,64,2} {6,384, 48,4} 1.7

Latency 0.41 0.9 {4, 256, 8, 256, 128, 4} {9,192,144,6} 5.5

Carbon + Latency 0.31 0.9 {4,4,128,8,128,64,2} {8,576,48,4} 1.9

Carbon 0.44 10.9 {1,128, 4, 64, 64,2} {7,576, 48, 12} 1.9

63% Energy 0.48 3.5 {1,128, 2,128, 128} {8, 1344, 48, 6} 2.5

Latency 0.55 8.2 {2,256, 16, 128, 128,4} {7, 1920, 48, 6} 2.7

Carbon + Latency 0.45 73 {2, 256, 16, 256, 128,2} {6, 3072, 96, 8} 6.4

Table 6: Iso-Accuracy points for Llama2-7b model. Original model configuration: number of layers:
32, intermediate dimension: 11008, embedding dimension: 4096, number of Attention Heads:32

Accuracy Optimization Carbon  Latency Hardware Model

(+/- 1%) Metric (kgCO2e) (ms) Configuration Configuration Params (M)

Carbon 0.26 12.7 {1, 64,8, 64,32,2} {2, 1376, 256, 32} 382

64% Energy 26 29 {1, 64,8, 64,128, 4} {2, 3440, 256, 32} 41.2

Latency 0.41 0.9 {4, 256, 8, 128, 128,4} {2, 1376, 256, 32} 38.2

Carbon + Latency 0.31 0.9 {4,128, 16,64, 128,2} {2, 1376, 256, 32} 38.2

Carbon 0.44 10.9 {1,64,8,64,64,2} {3, 1376, 256, 32} 41.8

66% Energy 0.48 35 {4,128, 16, 128, 64,2} {3, 1376, 256, 32} 41.8

Latency 0.55 8.2 {2,256, 16,512,64,8}  {2,4128, 256, 32} 424

Carbon + Latency 0.45 7.3 {1,256, 64,512,128,4} {3, 1376, 256, 32} 41.8

Table 7: Iso-Accuracy points for ViT-B-16 model. Original model configuration: number of layers:
12, intermediate dimension:3072, embedding dimension: 768, number of Attention Heads:12

Accuracy Optimization Carbon  Latency Hardware Model

(+/- 1%) Metric (kgCO2e) (ms) Configuration Configuration Params (M)

Carbon 0.26 12.7 {1,32,32,64,64,2} {12, 1920, 2496, 6} 45.8

399% Energy 26 2.9 {1,128,32,64,128,2} {11, 1344, 2496, 12} 31.7

Latency 0.41 0.9 {2,256, 32,256, 128, 4} {7,2112, 2688, 6} 31.7

Carbon + Latency 0.31 09 {2, 256, 16, 128, 128, 2} {8, 1728, 2496, 6} 29.0

Carbon 0.44 10.9 {2,128, 8, 128, 64,2} {11, 2112, 2688, 8} 49.2

40% Energy 0.48 3.5 {1,256, 16, 64, 64,2} {12, 1728, 2496, 12} 39.5

Latency 0.55 8.2 {2,256, 16, 64, 64, 8} {11, 1728, 2496, 8} 43.2

Carbon + Latency 0.45 7.3 {4,64,32,64,128,2} {12, 1728, 2688, 8} 48.0
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Figure 9: Pareto frontiers for different optimization modes under a 20 TOPS compute constraint.
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Table 8: Summary of Hypervolume indicator difference across runs of the same configuration
Standard Deviation Coefficient of Variation

Model Metric Hypervolume Mean () (%)
ViT-B/16 carbon 0.27 0.0006 0.2
latency 0.04 0.0001 0.3

energy 0.07 0.007 9.7

carbon + latency 0.26 0.009 3.5

BertBase carbon 0.50 0.001 0.2
latency 0.70 0.004 0.6

energy 0.65 0.003 0.6

carbon + latency 0.48 0.013 2.8

Llama3 carbon 0.45 0.033 7.4
latency 0.66 0.004 0.6

energy 0.35 0.003 1.1

carbon + latency 0.43 0.003 0.7

CLIP ViT-B/16 carbon 0.19 0.021 11.1
latency 0.18 0.016 9.2

energy 0.39 0.015 3.8

carbon + latency 0.13 0.004 32

x-axis, and latency encoded via a color map. To ensure consistency, each experiment is repeated
three times, and accuracy is estimated using the MS COCO dataset. When latency is not an explicit
optimization objective, a maximum latency constraint of 50 ms is enforced [VMVI22] to ensure
realistic deployment scenarios.

Consistent with the discussion in Section[4.2] examining the Pareto frontiers reveals that optimizing
solely for total carbon yields configurations with the lowest carbon footprint across all accuracy levels.
However, this comes at the cost of higher latency compared to the other optimization objectives.

F Consistency of Experimental Results

Each optimization is repeated three times for fair evaluation. To assess consistency, we compute the
Hypervolume (HV) indicator across runs with the same configuration. HV measures the portion of
the objective space dominated by the Pareto front, relative to a reference point. Across all model-
hardware optimizations, the standard deviation of HV remains below 0.03, with an average coefficient
of variation (std/mean) under 3.5%, indicating stable and reproducible results. Table [§| summarizes
these statistics for each model architecture and optimization objective.

G CLIP ViT B/32 Accuracy Evaluations

In this section, we present results that demonstrate the applicability of CATransformers to the CLIP
ViT-B/32 architecture and compare its performance against the TinyCLIP baselines. (Table[9) Our
findings show that CATransformers’s optimization can be effectively generalized to other model
architectures, yielding up to 5% and 8% reductions in carbon footprint while achieving higher
accuracy and comparable latency compared to the TinyCLIP baselines, respectively.
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Table 9: The hardware and model architecture properties of each variant of the CarbonCLIP-B/32
family. Hardware configurations are specified as: {T'C, PE,, PE,, L2, L2;,,, GLB}. Text and
Vision encoders are specified as: {Num Layers, FFN Dim, Hidden Dim, Num Heads}

Name Carbon Latency Hardware Model Configuration Avg. Accuracy
(kgCO2e) (ms) Configuration Text Encoder Vision Encoder over 41 datasets
. . Params (M)
Configuration Configuration
CLIP-B/32 - DataComp 0.42 15.1 {1,32,32,64,642} (12,2048,512,8} {12,3072,768, 12} 144 51.1
TinyCLIP-39M/32 0.37 3.0 {1,32,32,64,32,2}  {6,2048,512, 8} {12,2048, 512, 8} 84 452
TinyCLIP-61M/32 0.39 9.4 {1,128, 8,64, 64,2} {9,2048,512,8}  {12,2560, 640, 10} 115 47.2
CarbonCLIP-32-S 0.35 73 {1, 64, 16, 64, 64, 2} {6, 1536,384,5}  {10,3072, 672, 12} 89 46.4
CarbonCLIP-32-M 0.36 153 {1,64,8,64,64,2 } {8, 1280, 448, 7} {11, 2688, 768, 8} 99 47.6
CarbonCLIP-32-L 0.38 9.1 {1,128, 8, 64, 128, 2} {7,2048,512,6} {11,3072,768,10} 113 49.1
Table 10: Results across all 41 evaluation benchmarks from CLIP Benchmark
Dataset CarbonCLIP B/16 (ours) TinyCLIP B/16 DataComp B/16 CarbonCLIP B/32 (ours) TinyCLIP B/32 DataComp B/32
XS S M L XL  39M/16  8M/16 ViT-B-16 S M L 40M/32 61M/32 ViT-B-32
cars 0.74 082 084 085 0.87 0.52 0.08 0.89 0.82 083 0.84 0.77 0.8 0.87
country211 0.11 0.14 0.6 0.17 0.2 0.18 0.12 0.22 0.15 0.16 0.17 0.13 0.15 0.18
fer2013 0.17 021 03 036 034 0.52 0.33 0.39 025 023 0.38 0.47 0.49 033
fgve_aircraft 012 02 023 023 029 0.15 0.07 0.3 02 021 0.23 0.14 0.18 0.25
flickr30k 0.55 066 0.7 0.7 0.76 0.76 0.52 0.76 0.65 0.67 0.68 0.68 0.71 0.7
flickr8k 052 062 065 064 0.7 0.71 0.5 0.7 0.62 0.64 0.66 0.63 0.66 0.65
gtsrb 025 04 046 05 055 0.32 0.11 0.55 047 0.49 0.52 0.38 0.3 0.52
imagenet-a 0.11 0.19 026 032 0.39 0.33 0.15 0.48 022 022 0.24 0.17 0.21 0.3
imagenet-o 0.55 055 051 044 044 0.49 0.4 0.43 049 049 0.5 0.52 0.51 0.5
imagenet-r 0.55 066 073 077 0.82 0.7 0.3 0.84 072 0.74 0.75 0.7 0.73 0.78
imagenetlk 051 0.6 063 065 07 0.63 0.41 0.74 0.62 0.64 0.65 0.6 0.62 0.69
imagenet_sketch 035 045 05 052 057 0.4 0.1 0.6 049 051 0.52 0.47 0.5 0.57
imagenetv2 043 053 055 058 0.62 0.56 0.35 0.66 0.54 055 0.58 0.51 0.54 0.61
mnist 028 058 07 066 07 0.37 0.1 0.76 0.69 0.75 0.71 0.51 0.6 0.81
mscoco_captions 033 041 044 044 049 0.47 0.29 0.49 041 043 0.44 0.41 0.45 0.45
objectnet 037 046 051 054 06 0.43 0.19 0.64 047 05 0.51 0.41 0.44 0.55
renderedsst2 051 05 056 054 0.56 0.5 0.5 0.52 05 051 0.52 0.52 0.54 0.48
stl10 092 094 096 097 098 0.97 0.92 0.98 096 0.96 0.96 0.95 0.96 0.97
sun397 059 0.66 068 0.69 0.71 0.69 0.56 0.71 0.67 0.67 0.68 0.65 0.67 0.68
voc2007 07 073 075 077 0.79 0.77 0.62 0.82 0.77 0.77 0.77 0.77 0.78 0.81
voc2007_multilabel 075 079 081 081 0.83 0.82 0.74 0.81 079 0.8 0.8 0.76 0.79 0.79
vtab/caltech101 08 0.83 0.84 084 085 0.82 0.72 0.85 0.83 083 0.85 0.82 0.82 0.84
vtab/cifar10 073 083 089 09 093 0.91 0.73 0.96 091 092 0.92 091 0.92 0.96
vtab/cifar100 047 055 065 067 0.75 0.68 0.42 0.82 069 0.7 0.73 0.69 0.72 0.8
vtab/clevr_closest_object_distance  0.16 0.15 0.17 0.16 0.19 02 0.16 0.24 0.16 0.16 0.16 0.17 0.21 0.21
vtab/clevr_count_all 0.18 0.19 021 034 025 0.2 0.13 0.33 0.16 02 0.33 0.19 0.24 0.13
vtab/diabetic_retinopathy 0.04 009 016 004 02 0.03 0.02 0.11 0.05 0.07 0.05 0.1 0.24 0.42
vtab/dmlab 0.14 0.15 015 0.15 0.14 0.13 0.18 0.19 021 02 0.14 0.21 0.15 0.16
vtab/dsprites_label_orientation 0.02 002 002 0.02 0.02 0.02 0.03 0.02 0.02 0.04 0.03 0.02 0.02 0.03
vtab/dsprites_label_x_position 0.03 003 003 0.03 0.03 0.03 0.03 0.03 0.03  0.02 0.03 0.03 0.03 0.03
vtab/dsprites_label_y_position 0.03 0.03 003 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03
vtab/dtd 041 051 054 051 0.58 0.47 0.29 0.58 048 051 0.53 0.51 0.52 0.57
vtab/eurosat 039 048 054 059 0.58 0.53 0.23 0.59 0.5 0.5 0.56 0.48 0.45 0.57
vtab/flowers 0.55 0.66 0.64 066 0.71 0.7 0.58 0.76 0.63  0.66 0.68 0.62 0.64 0.73
vtab/kitti_closest_vehicle_distance  0.37 0.32 03 026 0.35 0.11 0.15 0.29 028 0.19 0.32 0.15 0.17 0.16
vtab/pcam 059 057 059 063 0.6 0.61 0.53 0.6 0.61 0.58 0.54 0.52 0.57 0.53
vtab/pets 0.76 085 0.87 0.89 091 0.81 0.46 0.93 0.87 0.88 0.89 0.85 0.88 0.9
vtab/resisc45 045 057 062 0.64 0.66 0.55 0.21 0.65 0.58 0.64 0.63 0.54 0.58 0.63
vtab/smallnorb_label_azimuth 0.05 0.06 0.06 0.05 0.05 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05
vtab/smallnorb_label_elevation 0.11 0.11 012 011 0.11 0.1 0.12 0.11 0.11 0.1 0.11 0.11 0.11 0.1
vtab/svhn 015 03 029 029 038 0.16 0.14 0.61 033 045 0.42 0.35 0.39 0.61

H CLIP Benchmark Full Result

In this section we provide a detailed breakdown on the accuracy of each dataset for CarbonCLIP and
the evaluated baselines in Table

I Carbon Footprint Breakdown

We provide a breakdown of the carbon footprint for each variant of the CarbonCLIP family model. As
shown in Figure[T0] as the model increases in size, the proportion of operational carbon in the overall
carbon footprint of the model increases from 20% to over 40%. The CarbonCLIP-XL model has 3 x
the number of parameters and almost 3 X the latency of CarbonCLIP-XS, but the selected hardware
architecture only has double the number of compute PEs. Therefore, the operational carbon increases
proportionally more than the increase in embodied carbon. This highlights need of co-optimizing the
model and hardware architecture to maintain an intricate balance between operational and embodied
carbon, keeping the overall carbon footprint of the system low. As such, the expected lifetime and
source of power are also important factors that need to be taken into account during the optimization
process.
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Figure 10: Operational and embodied carbon footprint breakdown for the CLIP-ViT-B/16 architecture.
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Figure 11: Latency and carbon footprint trade-offs for the CLIP-ViT-B/16 architecture across the
Pareto frontier.

J Case Study: Varying Latency Constraints

We evaluate the impact of latency constraints on model and hardware configurations, as well as
their carbon footprints. We categorize use cases into three categories based on latency requirements:
critical real-time (<10ms), interactive (<50ms), and non-critical (<100ms) [vMVJ22]. Figure|[TT]
shows the Pareto frontiers for each category.

Lower latency constraints typically result in less carbon-efficient designs. For example, a 10ms
latency constraint achieves only an 17% carbon reduction compared to latency-optimized models,
although with comparable latency values. However, increasing the constraint to 100ms does not
consistently improve efficiency, as many optimal designs already meet the S0ms threshold.

K Case Study: Varying Operational Regions

The region of the operation and manufacturing of the model affects the search results, and the quality
of the metric immensely. Figure[I2] shows that varying the operational carbon region, in high, mid,
low carbon-intensity regions, yields dramatically different results in terms of the model searched
and resulting configurations. Additionally, while our case studies (Section [4.3)) show that energy
optimization is effective when operational carbon dominates (e.g., smaller architectures, high-carbon-
intensity regions), in cleaner energy regions, total carbon optimization still yields lower emissions.
Optimizing against total carbon instead of energy can reduce emissions by 8% in low-carbon regions
(Canada) vs. 2% in high-carbon regions (Taiwan). The pareto frontier of each region is shown in

Figure[T3a)and Figure [I3b]
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Figure 12: Pareto Frontier of Carbon-only Optimization searches across High (Taiwan), Mid (Califor-
nia, USA), and Low (British Columbia, Canada) carbon intensity regions.
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Figure 13: Pareto Frontier of the Carbon vs Energy Optimization result in regions with different
carbon intensity.

L. Case Study: Model Architecture Search with GPUs

Once a hardware architecture is selected, CATransformers supports model architecture search on
fixed hardware to refine configurations and re-evaluate carbon costs before manufacturing.

Table E] shows an example of model architecture search on a fixed V100-like hardware architecture,
optimizing total carbon and latency.

M Energy and Latency Validation with GPUs
To maintain high confidence in our estimation toolchains, we validated our energy and latency

estimates using existing GPU hardware (V100, A100, and H100). Although GPUs differ from

Table 11: Model architecture search with fixed V100-like architecture. Text and Vision encoders are
specified in the format of {Num Layers, FFN Dim, Hidden Dim, Num Heads}

Proxy Accuracy (%) Carbon (kgCO2e) Latency (ms) Text Model Config Vision Model Config
2.8 11.13 37 6,1024,512,6 6,1536,672,6
9.8 11.41 58 6,2048,512,8 9,3072,768,6
14.4 11.45 64 6,2048,512,6 10,2688,768,6
25.3 11.57 76 6,1024,512,7 12,2688,768,6
28.7 11.58 76 6,1792,512,7 12,2688,768,6
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Figure 14: GPU estimated vs measure performance.

Table 12: Latency and Energy estimation error against Real GPU hardware
Hardware Energy Estimation Error Spearman’s r (Energy) Latency Estimation Error Spearman’s » (Latency)

V100 3.5% 0.97 7.4% 1.0
A100 8.4% 0.74 8.5% 0.85
H100 12.3% 0.7 11.1% 0.5

domain-specific accelerators, we modeled a GPU-like architecture with comparable tensor and vector
units, conducted a model search on the fixed architecture, and profiled actual hardware performance
for each searched data point.

The results demonstrate a strong correlation between our estimates and measured performance, with
Spearman’s rank-order correlation ranging from 0.5 to 1.0. When energy and latency values are
scaled to a common measurement range using constants, the estimates yield average errors of 8% for
energy and 9% for latency across GPU architectures. This validation confirms that our estimation
tools provide accurate and reliable results, even with simulated hardware. Tablel'l;il summarizes the
results, while Figure[T4] presents the estimated and measured performance for each evaluation GPU
architecture.
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N Carbon Footprint of the Framework

We quantify the carbon footprint of running CATransformers using CodeCarbon [CSL™24]. On
average, the optimization process takes 5 hours for BERT},s. and up to 20 hours for CLIP models. For
CLIP, the most resource-intensive case, 100 optimization trials emit approximately 57 kgCO,e, while
final model training emits 454 kgCO,e per model. This means the optimization process costs roughly
1/13th the carbon budget of training the final model. Despite the one-time cost of optimization,
CATransformer achieves overall efficiency gains through reduced training steps post-pruning, along
with inference gains that scale with the number of devices.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All claims made in the abstract and introduction are substantiated within the
paper. An overview of the framework and its design details is provided in Section [3] while
key insights, analysis, and empirical results related to carbon optimization are presented in
the evaluation sections, particularly in Section d.2] Training results for the CarbonCLIP
model and comparisons to prior work are discussed in Sections #.3|and #.4] Additional
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Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.
2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We included a Discussion and Limitations (See Section § [3).
Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: Paper does not include theoretical proofs.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides a detailed overview of all framework components in
Section 3] including search parameters and integration methodology. Additional information
on the estimation toolchain is provided in Appendix [B|to ensure full reproducibility. The
experimental setup, covering evaluation baselines, dataset and model sources, as well as
constants and assumptions used, is outlined in Section Furthermore, the source code is
included as supplementary material for reference.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
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Answer: [Yes]

Justification: The source code is included as part of the supplementary material and will be
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental setup details, including all evaluated models, datasets used, and
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* The answer NA means that the paper does not include experiments.
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7. Experiment statistical significance
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Answer: [Yes]
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results (Appendix [M). For the Bayesian Optimization results in Section[4.2] each experi-
ment is repeated three times to ensure consistency. We demonstrate the reproducibility of
the optimization outcomes by evaluating the Hypervolume (HV) indicator across runs of
the same configuration, and report the standard deviation and coefficient of variation for
each model and optimization objective in Appendix [F] Estimation error rates for latency
and energy are discussed in Sectiond.1] with additional details provided in Appendix
Accuracy deviations relevant to ISO-accuracy comparisons are clearly reported in Figure 4]
in Section 4.2
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* The factors of variability that the error bars are capturing should be clearly stated (for
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of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section [4.1] provides details for the compute platform, memory, and time
required for experiments.
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* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
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¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
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* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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11. Safeguards
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image generators, or scraped datasets)?

Answer: [NA]
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* We recognize that providing effective safeguards is challenging, and many papers do
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14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The paper cites all relevant prior work, including frameworks, codebases,

datasets, and pretrained models used in both the design and evaluation. Detailed references
are provided in Section 3] Section[4.1] and the Appendix.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets|has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Source code is included as part of the supplementary material (anonymized),
with detailed instructions on how to run and reproduce the experiments.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

» At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Core method development in this research does not involve LLMs as any
important, original, or non-standard components.
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* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
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