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Abstract
Large Language Models (LLMs) have shown im-
pressive performance in complex reasoning tasks
through the use of Chain-of-Thought (CoT) rea-
soning, allowing models to break down problems
into manageable sub-tasks. However, existing
CoT evaluation techniques either require anno-
tated CoT data or fall short in accurately assess-
ing intermediate reasoning steps, leading to high
rates of false positives. In this paper, we formalize
CoT reasoning in LLMs through an information-
theoretic lens. Specifically, our framework quanti-
fies the ‘information-gain’ at each reasoning step,
enabling the identification of failure modes in
LLMs without the need for expensive annotated
datasets. We demonstrate the efficacy of our ap-
proach through extensive experiments on toy arith-
metic, GSM8K and PRM800k datasets, where it
significantly outperforms existing outcome-based
methods by providing more accurate insights into
model performance on individual subtasks.

1. Introduction
Large Language Models (LLMs) have demonstrated remark-
able capabilities across a wide range of tasks, from complex
reasoning to code generation (Chowdhery et al., 2024; Ope-
nAI, 2024; Bubeck et al., 2023; Anil et al., 2023). Many
of these advances can be attributed to Chain-of-Thought
(CoT) reasoning (Wei et al., 2024; Nye et al., 2021; Li et al.,
2024), which involves breaking down complex problems
into a series of intermediate steps, mirroring human-like
reasoning processes. The success of CoT reasoning, particu-
larly in domains such as mathematics, logic, and multi-step
decision-making, has led researchers to incorporate CoT-
like features directly into model training, i.e. the FLAN
family of models (Chung et al., 2022; Wei et al., 2022).
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This paper introduces a new formal framework for analyzing
CoT in LLMs. We provide a rigorous method grounded in
information theory, to evaluate the quality of each step in
a model’s reasoning process, thus offering insights beyond
simple accuracy metrics to identify areas for improvement.

Previous work in this area has proposed “Process Super-
vision” (Lightman et al., 2023), which requires expensive,
human-annotated step-by-step data. While effective, this ap-
proach is often impractical due to the high cost and effort of
creating large-scale annotated datasets. In turn, alternative
methods have recently been proposed, such as outcome re-
ward modelling (Havrilla et al., 2024) or the Math-Shepherd
(Wang et al., 2024b). Both these approaches avoid reliance
on costly annotated step-wise CoT data by instead modelling
the correctness of each step based on the correctness of final
outputs. However, as we show later, these methods can be
unsound for detecting incorrect reasoning steps and can thus
lead to a high false-positive rate in certain scenarios.

To address these shortcomings, we employ an information-
theoretic approach, grounded in the following key insight:
Each correct step in a reasoning process should provide
valuable and relevant information that aids in predicting the
final correct outcome. Building on this insight, we develop
a framework to quantify the “information-gain” after each
sub-task in the reasoning process, without the need for step-
by-step annotations. This enables us to detect sub-tasks that
fail to contribute meaningful information toward the correct
solution, signalling potential errors or irrelevant steps in the
model’s reasoning. In addition, we also introduce a practical
algorithm to assess LLM performance across various sub-
tasks within a Chain-of-Thought (CoT) reasoning process.
The key contributions of this paper are as follows:

1. We develop a framework for sequential applications
of sub-tasks, e.g. Chain-of-Thought and provide a
rigorous language to identify failure modes in LLMs.

2. Based on this framework, we propose a practical algo-
rithm to assess the task-wise performance of models.
This yields more granular information about a model’s
CoT performance without requiring annotated data for
intermediate reasoning steps.

3. We validate our methods on extensive toy data, the
GSM8K (Cobbe et al., 2021) as well as the PRM800K
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(Lightman et al., 2023) dataset. Our method effectively
identifies failure modes in CoT reasoning, unlike base-
lines like outcome reward modelling (Havrilla et al.,
2024) and Math-Shepherd (Wang et al., 2024b), which
rely on final accuracy and tend to increase false posi-
tives in error detection.

2. Proposed Framework: Setup and Notation
Before diving into our framework, we first provide a high-
level overview and notation on how LLM generation will be
treated throughout this paper. This will allow us to set the
foundation for describing our information-theoretic frame-
work. In particular, following the approach in (González &
Nori, 2023), we view LLMs as abstract execution machines
with a natural language interface. From this perspective,
prompts are designed to solve specific problems (e.g., math-
ematical or logical problems), and the LLM processes the
information in the prompt to generate an output.

We define a typical prompt as a combination of two parts:

1. An initial state, represented by the random variable
X0 ∈ X , encapsulates the prompt-provided informa-
tion that the LLM processes to derive the queried result.

2. A task λ ∈ Υ (e.g., addition then multiplication) de-
fines how the LLM processes X0.

Given the prompt, defined as a tuple (X0, λ), the state X1

represents the result of applying task λ to the initial state
X0. Formally, we denote this using the update mapping
Λ : X × Υ → X which outputs the updated state X1 by
applying the task λ on X0, i.e. X1 = Λ(X0, λ). This
updated state is then used to obtain the final output, denoted
by Y ∈ X , by extracting only the information in X1 which
is relevant to the queried final answer. This notation defines
a prompt that instructs a model to process information drawn
from some initial distribution p(X0) (e.g., math problems).

We use a simple example to illustrate this notation:

Prompt: “Solve for z = 2 (u+ v), u = 12, v = 13” (1)

Here, the initial state x0 denotes the information “u = 12,
v = 13”, and λ denotes the task of finding z (i.e. addition
followed by multiplication). Next, x1 = Λ(x0, λ) repre-
sents the updated information after correctly performing the
addition operation, i.e. x1 is “u = 12, v = 13 and z = 50”.
The final output, y, is then obtained by simply extracting
the value of z from x1, i.e. “z = 50”.

Remark Our setup also encapsulates cases with ambiguous
(or multiple correct) responses for a given task λ. In this
case, Λ(x0, λ) is a random variable with distribution p(X1 |
X0 = x0). Therefore, for generality, we treat Λ(x0, λ) as a
random variable from now on.

Figure 1. Prompt (1) requires compositional application of tasks.

2.1. Compositionality

Many mathematical or logical problems, such as the one in
(1), require sequential application of operations. Our nota-
tion is also amenable to such problems as it accommodates
the composition of tasks.

For example, one way to address prompt (1) involves first
adding u and v, and next, multiplying the result by 2 to find
z. Using our notation, this can be expressed as Λ(x0, λ1 ◦
λ2), where λ1, λ2 denote the addition and multiplication
tasks respectively. The following property allows us to
define the application of compositional task λ1 ◦ λ2:

Definition 2.1. We say that an update rule Λ : X ×Υ → X
is compositionally consistent if, for all x0 ∈ X and λ1, λ2 ∈
Υ we have that Λ(x0, λ1 ◦ λ2)

d
= Λ(Λ(x0, λ1), λ2).

Here, d
= denotes equality in distribution and is sufficient in

cases where a query may have multiple correct responses.

Returning to the prompt in (1), Figure 1 shows that the
model first computes u + v, then multiplies the result by
2. Here, we refer to X1, X2 as intermediate states and Y is
the correct final output. In general, if a problem statement
requires sequential application of T sub-tasks, λ = λ1◦. . .◦
λT , then the Chain-of-Thought (CoT) reasoning is divided
up into T steps, where the t’th step is recursively defined
as Xt = Λ(Xt−1, λt) for t ∈ {1, . . . , T}. Finally, the
overall true output Y is obtained by extracting the queried
information from the final state XT .

Having established a formal language for the sequential
application of tasks, we now turn towards how a task may
be divided into such a sequence of intermediate sub-tasks.

2.2. Primitive Tasks

In this subsection, we introduce the notion of primitive tasks
which form the basic building blocks of any task. Intuitively,
our formulation is reminiscent of ideas from linear algebra,
where basis vectors form the basic building blocks of a vec-
tor space. In our case, any task λ ∈ Υ can be expressed as a
sequence of primitive tasks. This decomposition will allow
us to establish which tasks the model could have learned
from the training data. For example, if a specific primitive
task is not available in the LLM training data, it would be
impossible for the model to execute any instructions which
involve this primitive task correctly. With this in mind, we
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now introduce this concept formally:

Definition 2.2 (Primitive tasks). We say that a set of tasks
Γ ⊆ Υ is primitive if, for any task λ ∈ Υ, there exists a
unique subset {λi}ki=1 ⊆ Γ such that λ = λ1 ◦ · · · ◦ λk.

Note that the decomposition is not unique but the set of
components is. In some cases, there may exist distinct
permutations of primitive tasks which compose to yield the
same task as is common in many associative operations.
As an example, in the context of mathematical problem-
solving, the basic arithmetic operations could be considered
primitive. The composition of these primitive tasks allows
us to construct extremely complex operations. Just like in
linear algebra, we define the span of these tasks as the set
obtained by their sequential applications.

Definition 2.3 (Span of tasks). Let Φ ⊆ Υ be a set of tasks:

Span(Φ) = {λ1 ◦ . . . ◦ λk : λi ∈ Φ for 1 ≤ i ≤ k, k ∈ Z>0}.

The set Span(Φ) comprises all the tasks that can be ap-
plied by composing sub-tasks in the set Φ. This means that
any compositionally consistent update rule Λ which is well-
defined on the set of tasks Φ will also be well-defined on
Span(Φ). However, this Λ may still be ill-defined for any
task not in this span. This limitation, known as unidentifia-
bility, defines the boundaries of a model’s inferences.

2.3. Unidentifiability

The unidentifiability of tasks forms a key part of our frame-
work. It directly addresses the fundamental challenge that
models, such as LLMs, face when dealing with unseen
tasks. If a task λ lies outside of Span(Φ), the span of tasks
the model has been trained on, then the model cannot be
expected to infer or apply it correctly. In other words, the
model’s capacity is constrained by the identifiability of tasks
within the training set. This notion and formalization of
unidentifiability allows us to highlight a critical limitation in
the generalization of models: tasks not encountered during
training cannot be reliably executed, as they remain beyond
the model’s learned task-span. More formally:

Definition 2.4 (Unidentifiability). A task λ is unidentifiable
in a set Φ ⊆ Υ if and only if λ ̸∈ Span(Φ).

Remark In practice, unidentifiability may depend on the
initial state X0, i.e. an LLM might accurately perform
addition for 2-digit numbers but fail with 10-digit numbers
(Razeghi et al., 2022). For more details, see Appendix B.1.

Building on this framework, we propose an algorithm that
integrates unidentifiability with information-theoretic meth-
ods to detect CoT reasoning failures.

3. Operationalising Our Framework
This section aims to operationalise the above framework to
make inferences regarding the unidentifiability of interme-
diate sub-tasks in a model’s CoT reasoning process. This
would subsequently allow us to detect any sub-task at which
a model’s CoT reasoning process starts to diverge from the
ground truth, thereby providing insights into how the model
can be improved. For example, suppose we are in a setting
where the “addition” operation is unidentifiable, then we
could further improve the model’s mathematical reasoning
by fine-tuning it on the addition operation.

3.1. An information-theoretic perspective

To apply unidentifiability in CoT generations, we introduce
a fundamental assumption: each correct CoT step should
provide meaningful information aiding the prediction of Y .
If a step ceases to increase information about Y , it indicates
an incorrect execution. We formalize this assumption using
our notation from the previous section:

Assumption 3.1 (Bayesian network). Let λ ̸= λ′ be two
operations with primitive decompositions:

λ = λ1 ◦ . . . λk−1 ◦ λk ◦ · · · ◦ λT and
λ′ = λ1 ◦ . . . λk−1 ◦ λ′

k ◦ · · · ◦ λ′
T ′ ,

where λ′
k is unidentifiable in {λ1, . . . , λT }. Then, the in-

termediate states corresponding to the tasks λ, λ′ have the
Bayesian network in Figure 2.

X0
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Y ′
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Figure 2. Bayesian network corresponding to Assumption 3.1.

Intuition The Bayesian network in Figure 2 implies that
if we encounter an unidentifiable task (λ′

k) at step k of the
reasoning path, the future states Xi and X ′

j for any i, j ≥ k
satisfy the conditional independence Xi ⊥⊥ X ′

j | Xk−1.
Consequently, once we apply λ′

k, the subsequent states
along the new reasoning path (in red) add no information
regarding the subsequent states or the output of the original
path (in green). Hence the figure represents the fact that,
for any given input, the output of λk (top fork) contains no
information regarding the output of any other primitive task
λ′
k (bottom fork).

With our key assumption on the ground-truth CoT process
formalized, we now consider the model’s CoT behaviour.
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3.2. Task execution in LLMs

To operationalise our framework, we formally distinguish
between the model i.e. LLM’s task execution and the ground
truth process which arises from following the instructions
correctly. To this end, we explicitly define how an LLM
interprets a specified task λ using ΛM (X0, λ), which is in
general distinct from the ground truth update rule Λ(X0, λ).

Here, one option would be to consider the idealised setting
where the model learns to perfectly follow some of the prim-
itive tasks available in the training data. However, this may
be considered too restrictive since in reality most LLMs
do not always follow a “learned” task perfectly. Instead,
we consider a much weaker assumption that the model can-
not correctly execute a task which is unidentifiable in the
training data. Concretely, suppose ΓM ⊆ Γ denotes the
primitive tasks available in the LLM training data. Then, we
make the following assumption on LLM’s task execution.
Assumption 3.2 (Task execution in LLMs). ΛM is composi-
tionally consistent and for any (x0, λ) ∈ X ×Υ, there exists
some λ̂ ∈ Span(ΓM ) such that ΛM (x0, λ)

d
= Λ(x0, λ̂).

Intuition Assumption 3.2 means that for any task which
we would like the LLM to apply, the LLM ends up executing
some task in Span(ΓM ) which the model has been trained
on. In other words, the model’s execution is restricted only
to the tasks which could be inferred from the training data
(i.e. in Span(ΓM )). Moreover, this assumption also allows
us to encapsulate cases where the model does not follow
correct instructions or does not decompose a task correctly.

Before proceeding further with our main result which will
allow us to test for the unidentifiability of sub-tasks, we
define some notation which we will use from now onwards.
Let λ = λ1 ◦ . . . ◦ λT denote a primitive decomposition of
a task λ. Then, starting from an initial state X0, we denote
the model’s intermediate states recursively as:

XM
t := ΛM (XM

t−1, λt) and XM
0 = X0.

Moreover, we use Y M to denote the model’s final output.
Next, using this notation, we present the conditional in-
dependence which must hold if the model encounters an
unidentifiable intermediate task along its reasoning path.
Theorem 3.3. Let ΓM ⊆ Γ denote the primitive tasks
available in the training data. Let λ be a task with de-
composition λ = λ1 ◦ . . . ◦ λT . If λk is the first task in
the decomposition of λ which is unidentifiable in ΓM (i.e.
k = argmint{λt ̸∈ Span(ΓM )}). Then, under Assump-
tions 3.1 and 3.2, we have that

Y ⊥⊥ XM
j | XM

j−1 for all j ≥ k. (2)

Theorem 3.3 shows that under Assumptions 3.1 and 3.2,
when the model encounters an unidentifiable task (i.e. λk in

Theorem 3.3) in its Chain-of-Thought reasoning, the model
output satisfies the conditional independence in Equation
(2). In practice, this means that if at step k, a model encoun-
ters a reasoning step which is necessary for obtaining the
correct answer and is unidentifiable in the training data, the
CoT reasoning diverges from the ground truth at this step
and every subsequent step adds no additional information re-
garding the correct final output Y. This ‘information’ can be
measured by checking if the model’s confidence about the
final output Y increases after each step. This is formalised
in the next section.

3.3. Testing for unidentifiability using information-gain

With our framework established, we now describe how to
detect unidentifiable sub-tasks using information theory.
Following common practice (Wang et al., 2024b; Havrilla
et al., 2024), we assume access to a dataset of prompts and
correct final answers, derived by applying task λ, denoted as
Dλ := {(xi

0, y
i)}ni=1. Recall that XM

j and XM
j−1 represent

the model’s chain of thought (CoT) reasoning at steps j
and j − 1, respectively. Consequently, each element in the
conditional independence statement in Equation (2) can be
derived from the data and/or the model.

To this end, we consider the mutual information between
Y and XM

j conditional on XM
j−1, denoted by I(Y ;XM

j |
XM

j−1). This conditional mutual information term intuitively
represents the additional information contributed by the j’th
step of CoT, which is relevant for predicting the ground truth
final output Y . Therefore, we refer to I(Y ;XM

j | XM
j−1) as

the information-gain at step j.

It follows from Theorem 3.3 that if an LLM encounters
a sub-task at step i which is unidentifiable in its training
data, no subsequent step should contribute any additional
information relevant for predicting Y (i.e. the information-
gain should remain 0 after step i). If, on the other hand,
we observe that I

(
Y ;XM

j | XM
j−1

)
> 0 for some j ≥ i,

then under Assumptions 3.1 and 3.2, the task λi is not
unidentifiable. To estimate the information-gain in practice,
we use the following result:

Proposition 3.4. Let I(X;Y | Z) denote the mutual infor-
mation between X and Y conditional on Z. Then,

E[log p(Y | XM
j )]− E[log p(Y | XM

j−1)]

= I
(
Y ;XM

j | XM
j−1

)
≥ 0. (3)

To estimate the information-gain in (3) using Proposition
3.4, we train a separate LLM, which we refer to as the
supervisor model gsup. This model takes as input the model’s
CoT reasoning up to any given intermediate step t, XM

t , and
is fine-tuned to directly predict the ground truth final output
Y . In this way gsup(X

M
t ) approximates the conditional

distribution p(Y | XM
t ). Then, the quantity E[log p(Y |
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XM
j )] can be estimated using the negative cross-entropy loss

for predicting Y , i.e., E[log p(Y | XM
j )] is approximately

E[log p̂(Y | XM
j )] = −E[lCE

(
Y, gsup(X

M
j )

)
],

where lCE denotes the cross-entropy loss. From this, it
follows that

E[log p(Y | XM
j )]− E[log p(Y | XM

j−1)]︸ ︷︷ ︸
Information-gain

≈ E[lCE(Y, gsup(X
M
j−1))]− E[lCE(Y, gsup(X

M
j ))]. (4)

Summary The information-gain (IG) between steps j
and j − 1 reflects how much relevant information step j
contributes towards predicting Y . If task λj is executed
correctly, this gain is positive, as indicated by a decrease
in the cross-entropy loss. Conversely, if step j does not
provide additional information, the loss remains unchanged.
This can be interpreted as the conditional mutual informa-
tion between XM

j and Y , conditioned on XM
j−1. Positive

information-gain suggests step j adds new insight about
Y , while no gain indicates no added information. Training
details for the supervisor model are in Appendix C.1.3.

Remark on sample-wise information-gain While con-
ditional mutual information provides an aggregate measure
of information-gain for a sub-task in a dataset, it may also
be desirable to obtain an analogous measure of sub-task cor-
rectness for individual CoT instances. This could be useful,
for example, in detecting which step is wrong for a given
prompt. Our notion of information-gain can be extended to
this sample-wise setting, similar to (Ethayarajh et al., 2022),
by instead considering the following difference

log p(Y | XM
j )− log p(Y | XM

j−1)

≈ lCE(Y, gsup(X
M
j−1))− lCE(Y, gsup(X

M
j )). (5)

Intuitively, if step j in the model’s CoT is correct, the model
should become more confident in the ground truth output
Y being the correct final answer. Therefore, the difference
above should be positive. Conversely, if step j is wrong, the
model’s confidence regarding Y should not increase, and
this difference should be ≤ 0. From now on, we refer to the
difference in (5) as sample-wise information-gain at step j.

Remark on O1/R1 style reasoning Although we present
our framework using linear chains-of-thought for clarity, the
information-gain metric naturally accommodates the more
complex reasoning patterns found in O1/R1-style models.
These reasoning models often explore multiple solution
paths, backtrack when encountering errors, and dynamically
self-correct their approach. In such exploratory settings,
our framework remains effective: steps along incorrect rea-
soning trajectories will exhibit low or negative information
gain, indicating they do not contribute meaningfully toward

the correct final answer. When the model identifies a more
promising path and self-corrects, subsequent steps will show
positive information gain, signaling productive progress.

This adaptability to varied reasoning structures is empiri-
cally demonstrated in our experiments (Section 5), where
we analyse reasoning traces from the MATH/PRM dataset.
Steps that human annotators labelled as uninformative or
irrelevant consistently show low information gain under
our metric, while correct and meaningful steps exhibit high
information gain. Thus, our method provides reliable step-
wise evaluation regardless of whether the reasoning follows
a linear chain or involves branched/exploratory patterns.

We further formalize this remark using our framework in
Appendix B.4.

4. Related Works
Evaluation of CoT reasoning Several recent works pro-
pose methodologies for evaluating CoT reasoning (Wei et al.,
2024; Havrilla et al., 2024; Li et al., 2023; Joshi et al., 2023;
Nguyen et al., 2024; Wang et al., 2024a; Yu et al., 2024;
Xie et al., 2024). For example, (Li et al., 2023) verifies
individual steps in a model’s CoT reasoning by generating
multiple LLM responses per prompt and comparing correct
responses with incorrect ones.

Similarly, (Wang et al., 2024b;c) use a fine-tuned LLM to
decode multiple reasoning paths from each step and check
the correctness of these reasoning paths. However, as we
show in our experiments, approaches which simply rely on
the correctness of the final output are not sound in general
and can lead to false positives. Moreover, these solutions
may not be plausible for problems of high difficulty where
correct LLM responses might be scarce.

Formalising CoT framework The formalisation of LLM
reasoning remains an active area of research. Most notably
(González & Nori, 2023) introduces a formal framework for
LLMs and is a key source of inspiration behind our formal-
ism. Additionally, (Feng et al., 2023) theoretically examines
the expressivity of LLMs with CoT in solving mathematical
and decision-making problems, focusing on the transformer
architecture’s implications on accuracy. Besides this, (Xu
et al., 2024) provides a formal definition of hallucinations,
but does not consider CoT reasoning specifically.

Reward modelling Outcome-based reward models (ORM)
(Cobbe et al., 2021; Havrilla et al., 2024; Lightman et al.,
2023) predict the probability of reaching the correct final
answer based on a model’s intermediate CoT steps. While
they avoid requiring correct intermediate demonstrations,
we show in Section 5 that they are unsound for detecting
CoT reasoning errors. Step-wise ORM (SORM) (Havrilla
et al., 2024) extends ORM by estimating the probability of

5



Understanding Chain-of-Thought in LLMs through Information Theory

an ‘optimal’ model reaching a correct answer but requires
training a larger, more capable model than the base model.

Process-based reward modelling (PRMs) (Lightman et al.,
2023; Uesato et al., 2022) is an alternative approach which
directly predicts the correctness of intermediate CoT rea-
soning steps. Likewise, various other approaches rely on
annotated CoT datasets for benchmarking (Jacovi et al.,
2024; Yu et al., 2024; Amini et al., 2019; Liu et al., 2020; Xi
et al., 2024; Nguyen et al., 2024; Xie et al., 2024; McLeish
et al., 2024). While these benchmarks and methodologies
aid LLM reasoning, collecting annotated data is costly and
not easily scalable. In contrast, our approach evaluates an
LLM’s CoT reasoning without human-annotated CoT data.

5. Experiments
In this section, we demonstrate our framework’s utility,
dubbed Information-Gain (IG) and compare against two
baselines for detecting errors in a model’s CoT reasoning.
Here we assume access only to the model’s CoT generations
X0, X

M
1 , . . . , XM

T and correct final answers Y .

Outcome Reward Model (ORM) (Havrilla et al., 2024)
This involves training a classifier, denoted as fORM, which
takes as input model generations up to any step t in its CoT
reasoning, XM

t , and predicts the probability of the model’s
final answer being correct, i.e.

fORM(XM
t ) ≈ P(Y M = Y | XM

t ). (6)

Here, if we observe that this probability of correctness drops
significantly after step t, i.e. fORM(XM

t ) ≫ fORM(XM
t+1),

this indicates that the model applies task λt+1 incorrectly.

Math-Shepherd (MS) (Wang et al., 2024b) This method
quantifies the potential for a given reasoning process
XM

t by using a ‘completer’ model to generate N com-
pletions of each reasoning process starting from step t,
{(XM

t , XM
t+1,j , . . . , X

M
T,j , Y

M
j )}j≤N , where Y M

j denotes
the final answer reached in the j’th completion. Then, we
estimate the potential of this step based on the proportion of
correct answers among the N completions:

fMS(X
M
t ) :=

N∑
j=1

1(Y M
j = Y )/N. (7)

For a fair comparison, we do not assume access to a ‘verifier’
model more capable than our base model. Therefore, we use
the base model as the completer model in our experiments.

5.1. Toy data experiments

We first consider a toy setting where we control model
behaviour across tasks. Prompts consist of an integer vector
Z0 ∈ Z5 sampled from a given distribution. The task λ

comprises five steps, λ = λ1 ◦ . . . ◦λ5, where each sub-task
λi transforms Zi−1 ∈ Z5 into Zi ∈ Z5. The correct final
answer Y is Z5. Additional details on data generation and
sub-tasks are in Appendix C.1.

Generating the dataset To investigate partial unidentifi-
ability for a given task λi we modify the obtained dataset
by introducing ‘noise’ at step i. In other words, the task λi

is applied incorrectly on a subset of the data, whereas all
other tasks are always applied correctly. This represents a
model which sometimes fails at step i and we use ‘LLMi’
to denote this model in this experiment. We repeat this
procedure for all tasks λi for i ∈ {1, . . . , 5} which yields 5
LLMs {LLM1, . . . ,LLM5}.

To assess robustness, we introduce a special case in LLM3,
where task λ3 is applied incorrectly iff the output after λ2

falls in a set S. This deliberate choice highlights a pitfall
of existing baselines and contrasts with other LLMs, where
errors occur randomly. In other words, λ3’s correctness
depends on λ2’s output. For details, see Appendix C.1.2.

5.1.1. RESULTS

Figure 3 shows how the different baselines quantify the
correctness of the different tasks for the 5 different LLMs
under consideration. This figure only considers samples
where the final answer of the LLM was incorrect, i.e. Y M ̸=
Y . For our method (IG), Figure 3a shows the information-
gain across the different steps for each LLM. Likewise,
Figure 3b presents the results for ORM and shows how
the average probability of correctness in (6) changes across
the different steps, whereas, for Math-Shepherd, Figure 3c
shows the proportion of correct completions starting after
each step (7). Here, any significant drop in the plotted values
indicate an incorrect application of a task.

Information-gain rightly quantifies step-wise correctness
We observe that the information-gain remains positive for
each LLM until we encounter an incorrect reasoning step,
at which point it drops to negative values. Therefore, our
method can identify the incorrectly executed task for each
LLM under consideration. We used a GPT-2 supervisor
model to estimate information-gain.

Pitfall of the baselines While ORM and Math-Shepherd
usually identify incorrect reasoning steps, they fail for
LLM3. This is because λ3 is misapplied iff the output after
λ2 lies in S. Thus, the classifier can predict the final out-
put’s correctness at λ2 by checking if Z2 lies in S, leading
to overconfidence in error detection at λ2 instead of λ3.

Similarly, with Math-Shepherd for LLM3 (using the same
model as a completer), a completion is incorrect if the output
after λ2 lies in S. Here, all completions fail, regardless of
the starting step, making it impossible to pinpoint where
LLM3 goes wrong.
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Errors flagged by the respective baselines GT errors

1 2 3 4 5

LLM1

LLM2

LLM3

LLM4

LLM5

-0.014 0.0099 0.00098 -0.0019 -0.00019

0.013 -0.0096 -0.004 -0.0017 -0.0032

0.013 0.27 -0.002 -0.0027 -0.0033

0.021 0.27 0.059 -0.0035 -0.0017

0.014 0.19 0.033 0.083 -0.0023

Information gain after each operation

(a) Our results

1 2 3 4 5

LLM1

LLM2

LLM3

LLM4

LLM5

0.012 0.015 0.013 0.014 0.014

0.49 2.2e-08 7e-05 1.2e-05 1.4e-06

0.13 1.7e-06 1.4e-06 2.1e-06 1.3e-06

0.5 0.5 0.47 8.7e-07 3.3e-07

0.52 0.54 0.55 0.52 0.058

Mean probability of the final answer being correct

(b) ORM results

1 2 3 4 5

LLM1

LLM2

LLM3

LLM4

LLM5

0 0 0 0 0

0.37 0 0 0 0

0 0 0 0 0

0.2 0.21 0.2 0 0

0.17 0.17 0.17 0.18 0

Proportion of completions with correct final answer

(c) Math-Shepherd results

Figure 3. Heatmaps (left) quantifying the correctness of different sub-tasks for the 5 LLMs using the different baselines, and the associated
classification metrics (right). Red color in the heatmaps indicates a significant drop in the plotted metrics (an incorrectly executed
sub-task).

Table 1. Sample-wise classification of a sub-task for LLM3.

ACC ↑ TPR ↑ FPR ↓

IG (OURS) 0.96 0.98 0.06
ORM 0.77 0.98 0.54
MS 0.60 1.0 1.0

Sample-wise detection We also use the different baselines
for sample-wise detection of erroneous steps, as outlined in
Section 3.3. A step is classified as incorrect if a baseline’s
metric falls below a threshold. Table 1 presents the results
for LLM3, with optimal thresholds chosen from a held-out
dataset. Our method achieves significantly higher accuracy
and fewer false positives than the baselines, making it more
reliable for sample-wise error detection.

Figure 4. The distribution of (x, y) for incorrect samples: Llama-
3-8B struggles to add large and small numbers (represented by the
top-left and bottom-right shaded regions).

5.2. Arithmetic operations on Llama-3-8B

Following our toy experiments, we now evaluate our frame-
work in a more realistic setting using the Llama-3-8B model

(Dubey et al., 2024). We focus on a simple arithmetic task
that involves both multiplication and addition. The goal is
to assess the model’s performance on each operation.

Experimental setup We sample two integers x and y
uniformly from [1, 105). The prompt to the model is:

Prompt: “x = {x}, y = {y}, Please calculate the following:
1. 3x, 2. 2y, 3. 3x + 2y ”

Model Accuracy The model’s accuracy across steps is:

Step 1: 80%, Step 2: 98%, Step 3: 42%.

Most failures occur in Step 3, which involves adding pre-
viously computed values. Analyzing the (x, y) distribution
where the model is incorrect (Figure 4), we find that er-
rors mainly arise when one variable is large and the other
is small. This suggests that correctness depends heavily
on (x, y), making it difficult for baselines to pinpoint the
erroneous step in the model’s CoT reasoning.

5.2.1. RESULTS

Our method We trained the supervisor model by fine-
tuning a Llama-3-8b model using Low Rank Adaptation
(LoRA) (Hu et al., 2021). Table 2 shows that there is a
significant drop in information-gain at step 3 relative to steps
1 and 2, demonstrating that our method correctly identifies
that the failure mainly occurs at step 3.

Outcome Reward Model (ORM) For ORM, the mean
probability of correctness (Table 2) remains unchanged at
each step. Figure 4 suggests this is because ORM predicts
correctness based solely on x and y in the prompt. Crucially,
its confidence remains constant even as intermediate reason-
ing steps are added, preventing it from distinguishing the
model’s performance at different steps.
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Math-Shepherd (MS) Table 2 shows the proportion of
correct completions for MS. While this is low at step 3,
only 5-7% of completions from steps 1 and 2 yield a correct
output, despite errors mostly occurring at step 3. This is
because Llama-3-8B’s correctness is largely determined by
(x, y) in the prompt (Figure 4). As a result, MS frequently
mislabels steps 1 and 2 as incorrect, leading to a higher false
positive rate compared to our baseline.

Sample-wise detection When using these methods for
sample-wise detection of incorrect steps, our approach
yields the highest accuracy among the baselines consid-
ered. This superior performance is attributed to the fact that
baselines like ORM and MS often falsely flag steps 1 and 2
as incorrect, as evidenced by their high FPRs in Table 2.

5.3. Experiments on the controlled GSM8K Dataset

To evaluate our method on a complex dataset, we conducted
experiments on GSM8K (Cobbe et al., 2021), controlling
specific factors for more interpretable results.

We begin by using GPT-4 (OpenAI, 2024) to generate an-
swers for GSM8K questions where the “multiplication” op-
eration is always done incorrectly, while all other operations
are correct. Next, we filtered the dataset to ensure that “mul-
tiplication”, “subtraction”, and “addition” never appeared
together within the same Chain of Thought (CoT) solution.
In particular, we ensured in our setting that, all incorrect
final answers included both “multiplication” and “subtrac-
tion”, whereas correct final answers did not involve either
operation. This introduces a spurious correlation between
“subtraction” and wrong answers.

In this setup, we mainly focused on evaluating ORM and
our proposed method, as MS (with the same completer) fails
trivially under these conditions. Specifically, “multiplica-
tion” is inherently unidentifiable, since any CoT containing
“multiplication” negates the influence of other sub-tasks by
design. Further details on the experimental setup can be
found in Appendix C.3.

5.3.1. RESULTS

Table 2 shows that our information-theoretic approach (IG)
successfully identifies the unidentifiable sub-task. Since
the “multiplication” rule is intentionally incorrect, it yields
minimal to no information gain, as expected. However,
ORM results reveal a different pattern: both “multiplication”
and “subtraction” have low correctness probabilities, as
they are linked to incorrect final answers. This suggests
that the standard ORM approach may misleadingly classify
“subtraction” as incorrect.

Additionally, in our sample-wise experiment, we observe a
similar trend when we use the methods to assess the sample-
wise correctness of “multiplication” and “subtraction” for

each prompt. Here, our proposed method not only accurately
detects the unidentifiable sub-task but also highlights a sig-
nificant shortcoming of ORM. Specifically, ORM falsely
flags “subtraction”, which is actually correct, as an incorrect
sub-task due to spurious correlations.

5.4. Experiments on the PRM800K dataset

To further demonstrate the practical applicability of our
method, we have conducted an additional experiment on
OpenAI’s PRM800k dataset (Lightman et al., 2023) which
is obtained by labeling the intermediate steps of the MATH
dataset (Hendrycks et al., 2021).

More specifically, this dataset is a process supervi-
sion dataset with step-level correctness labels for model-
generated solutions to MATH problems. To create it, Light-
man et al. (2023) asked human annotators to label each step
from fine-tuned GPT-4 solutions as positive (+1), negative
(-1), or neutral (0). A positive label indicates a correct,
reasonable step; a negative label denotes an incorrect or
unreasonable step; and a neutral label indicates ambiguity
(e.g., subtly misleading or technically valid yet poor).

The objective is to identify incorrect Chain-of-Thought
(CoT) steps, specifically those labelled as (-1) by annotators,
using our method as well as ORM. However, we do not
utilize the step-wise labels during the process; they are only
used for evaluation purposes. Since the base GPT-4 model
used to generate the PRM data is not publicly available, we
were unable to obtain MS results for this dataset.

5.4.1. RESULTS

Table 2 shows the information gain and mean correctness
probability for positive, negative, and neutral sub-steps.

As expected, these results show that the information-gain
is significantly lower for incorrect steps (with labels -1)
than for labels +1. Additionally, we also observe that the
information-gain is negative for neutral steps (with labels
0), which is explained by the fact that these steps do not add
any useful information regarding the ground truth (as these
were deemed irrelevant/ambiguous by the human labellers).
In contrast, the average probability of correctness for the
ORM classifier is roughly the same across each label and,
on average, is not very informative.

Sample-wise detection Additionally, we also used the
sample-wise information-gain (IG) as well as the ORM
baseline to classify if a step is correct (as outlined in Section
3.3). To avoid ambiguity, we filtered out the neutral sub-
steps (with labels 0) for this experiment and considered a
balanced held-out dataset with equal number of correct and
incorrect steps. Table 2 also shows the sample-wise results
for both methods (where we chose the best thresholds for
each baseline using a held-out dataset).
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Table 2. Experimental results for Toy Arithmetic, GSM8K and PRM800K experiments. In each of the datasets, we denote the “correct”
and “wrong” steps with ✓ and ✗ respectively.

DATASETS & METHODS OPERATIONS SAMPLE-WISE DETECTION METRICS

TOY ARITHMETIC

METHODS STEP 1: 3x ✓ STEP 2: 2y ✓ STEP 3: 3x + 2y ✗ - ACCURACY ↑ TPR ↑ FPR ↓

IG (OURS) 0.67 0.24 0.027 - 0.76 0.51 0.02
ORM 0.24 0.24 0.24 - 0.56 0.10 0.07
MS 0.068 0.059 0.00069 - 0.53 0.99 0.86

GSM8K
METHODS ADDITION ✓ MULTIPLICATION ✗ DIVISION ✓ SUBTRACTION ✓ ACCURACY ↑ TPR ↑ FPR ↓

IG (OURS) 0.99 0.026 1.05 1.06 0.72 0.95 0.62
ORM 0.46 0.024 0.38 0.013 0.58 1.00 1.00

PRM800K
METHODS NEGATIVE ✗ NEUTRAL ✗ POSITIVE ✓ - ACCURACY ↑ TPR ↑ FPR ↓

IG (OURS) 0.058 -0.011 0.168 - 0.74 0.84 0.37
ORM 0.734 0.745 0.744 - 0.69 0.55 0.18

It can be seen that the accuracy of our method is higher than
that of the ORM classifier. Additionally, our method also
leads to higher TPR (and hence a lower FNR) than the ORM
classifier. These results show that our method outperforms
the outcome-based baselines on more complex datasets such
as the MATH data as well.

6. Discussion and Limitations
In this paper, we introduce a novel information-theoretic
approach to evaluate Chain-of-Thought (CoT) reasoning in
LLMs without annotated intermediate steps. Our framework
effectively identifies erroneous reasoning across diverse set-
tings and consistently outperforms baselines, including Out-
come Reward Models (ORMs) (Havrilla et al., 2024) and
Math-Shepherd (MS) (Wang et al., 2024b). However, our
approach does have some limitations.

Although our method avoids human-annotated step-wise
data, it requires additional training of the supervisor model,
which is computationally expensive. Future work could
explore in-context learning to estimate information gain,
reducing training needs and improving efficiency. Addition-
ally, while our method does not require correctness labels
for every step, we still need to categorize each step accord-
ing to its respective sub-task. However, this limitation is not
unique to our method, as both ORM and MS also rely on
such labels to draw sub-task-specific conclusions.

Lastly, while we focus on logical and mathematical datasets,
our method also extends to other domains requiring CoT
reasoning, such as Blocks World (Slaney & Thiébaux, 2001).
As we discuss in Appendix B.2, this is an interesting avenue
which we leave for future research.
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A. Proofs
Proof of Theorem 3.3. Suppose λ and λ′ are two tasks with primitive decompositions

λ′ = λ′
1 ◦ · · · ◦ λ′

T ′

and

λ = λ1 ◦ · · · ◦ λT , (8)

where argmint{λt ̸∈ Span({λ′
1, . . . , λ

′
T ′})} ≤ k. In other words, the primitive decompositions of λ′ and λ diverge before

step k + 1. Then, Assumption 3.1 implies that for any j ≥ k, we have that the answer Y and X ′
j are d-separated by X ′

j−1.
Therefore,

Y ⊥⊥ X ′
j | X ′

j−1.

Next, we know from Assumption 3.2 that there exists some task λ̂ ∈ Span(ΓM ) (possibly dependent on X0 and λ) such that
ΛM (X0, λ)

d
= Λ(X0, λ̂). Suppose that λ̂ has primitive decomposition

λ̂ = λ̃1 ◦ · · · ◦ λ̃T̃ ,

then since λ̂ ∈ Span(ΓM ), we know that λ̃i ∈ ΓM for i ∈ {1, . . . , T̃}. If the primitive decomposition of λ in (8) is such
that k = argmint{λt ̸∈ Span(ΓM )}, then we know that argmint{λt ̸∈ Span({λ̃1, . . . , λ̃T̃ })} ≤ k. Then, from the above
it follows that

Y ⊥⊥ XM
j | XM

j−1.

Here, we used the fact that XM
j

d
= Λ(X0, λ̃1 ◦ · · · ◦ λ̃j) using Assumption 3.2.

Proof of Proposition 3.4.

E[log p(Y | XM
j )]− E[log p(Y | XM

j−1)] = E

[
log

p(Y | XM
j )

p(Y | XM
j−1)

]

= E

[
log

p(Y | XM
j , XM

j−1)

p(Y | XM
j−1)

]

= E

[
log

p(Y,XM
j | XM

j−1)

p(Y | XM
j−1) p(X

M
j | XM

j−1)

]
(9)

= I(Y,XM
j | XM

j−1)

Here, the second equality above arises from the fact that XM
j also captures all the information captured in XM

j−1 (and
possibly more). Therefore, conditional on XM

j , the state XM
j−1 is deterministic and hence, Y ⊥⊥ XM

j−1 | XM
j .

A.1. Symmetry property of information-gain I(Y,XM
j | XM

j−1)

The mutual information between two random variables X and Y , I(X,Y ), is symmetric in its arguments (i.e., w.r.t. X and
Y ). However, the conditional mutual information I(Y,XM

j | XM
j−1) satisfies a symmetry property conditional on XM

j−1.
Formally, this property of the information-gain term can be expressed as follows:

There exists some functional F : P × P × P → R where P is the space of probability distributions, such that

1. The information-gain I(Y,XM
j | XM

j−1) can be expressed as:

I(Y,XM
j | XM

j−1) = E
[
F
(
PY |XM

j−1
, PXM

j |XM
j−1

, PY,XM
j |XM

j−1

)]
,

where PZ denotes the distribution of the random variable Z and
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2. F is symmetric w.r.t. its first two arguments, i.e. F(p, q, r) = F(q, p, r). Note that there is no symmetry requirement
w.r.t. the third argument of F because the joint distribution PY,XM

j |XM
j−1

is already symmetric w.r.t. Y and XM
j i.e.

PY,XM
j |XM

j−1
= PXM

j ,Y |XM
j−1

.

It follows from Eq. (9) in the proof of Proposition 3.4, that the functional F which satisfies the above conditions is

F(p, q, r) = −EX∼p[log p(X)]− EX∼q[log q(X)] + EX∼r[log r(X)].

B. Additional details of our framework
B.1. State-conditioned unidentifiability

In practice, the concept of unidentifiability may depend on the initial state X0. For instance, an LLM might accurately
perform addition for 2-digit numbers but fail with 10-digit numbers (Razeghi et al., 2022). Our framework can be extended to
account for such cases by explicitly incorporating the distribution of initial states into the notion of identifiability. For example,
addition could be considered unidentifiable when the initial state distribution is p(X0 | X0 includes 10-digit numbers).
However, for simplicity, we keep this distributional dependence implicit in our framework.

B.2. How to define steps beyond mathematical datasets

The framework presented in this paper primarily considers examples related to mathematical reasoning, where the definition
of primitive tasks is intuitive and well-structured. However, our methodology could be applied to other domains where the
identification of primitive tasks is less straightforward, such as Blocks World (Winograd, 1972; Slaney & Thiébaux, 2001)
and commonsense question answering (QA) (Talmor et al., 2019).

In the case of Blocks World, the primary task of planning can be decomposed into sub-tasks involving sequences of primitive
actions, such as “stack”, “unstack” and “move”. Applying the information-gain methodology in this context could provide
insights into the effectiveness of large language models (LLMs) in planning and executing these sub-tasks. By analyzing the
information-gain for each step, it would be possible to assess where the model’s reasoning process is effective and where it
encounters difficulties.

Similarly, in commonsense QA, the chain-of-thought (CoT) reasoning steps can be categorized into distinct types, such as
causal reasoning (identifying cause-and-effect relationships), temporal reasoning (understanding sequences and timing), and
spatial reasoning (comprehending physical arrangements and object relationships). These reasoning types align naturally
with the proposed framework, enabling a systematic evaluation of the LLM’s decision-making process within each category.

While these extensions present promising directions for future research, they also introduce additional challenges, particularly
regarding the assumptions underlying our methodology. Addressing these challenges and validating the framework across
diverse domains remains an open avenue for further investigation.

B.3. Correct final answers with incorrect intermediate steps

A notable phenomenon of chain-of-thought (CoT) reasoning is the occurrence of cases where a model arrives at the correct
final answer despite containing errors in intermediate steps. This scenario raises important questions regarding the validity
of intermediate reasoning and the implications for evaluating model performance.

The methodology proposed in this paper estimates the information contributed by each successive reasoning step toward
the final correct answer. In instances where an intermediate step is incorrect, it is expected that this step contributes no
additional relevant information, resulting in an information-gain of zero at that point—regardless of whether the final answer
is ultimately correct. Conversely, if a model systematically produces incorrect intermediate steps that nevertheless lead
to the correct final answer, baseline methods such as ORM and Math Shepherd would fail to detect such errors, as these
approaches primarily assess correctness based on the final output.

To better understand the prevalence of this phenomenon, we conducted an additional analysis of our datasets. In our
arithmetic experiments (Section 5.2), we found that only 1.2% of samples exhibited this behavior, where an intermediate
step was incorrect but the final answer remained correct. In the synthetic toy experiment, such cases did not occur, as
we maintained a degree of control over the data generation process. Given the low frequency of these occurrences in our
settings, their impact on the overall effectiveness of our framework is minimal.
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B.4. Clarification on Assumption 3.1 and Non-Linear Reasoning Structures

Overview of Assumption 3.1 Assumption 3.1 specifically addresses a particular class of reasoning steps: those that are
necessary for solving a problem but unidentifiable in the training data, meaning no composition of learned tasks can yield
that step. For such unidentifiable steps, we assume that once the model diverges at this point, subsequent steps do not add
further information toward the correct final output. This assumption applies only to steps that cannot be executed through
any combination of the model’s learned capabilities.

Application to Reasoning Systems Although our framework is presented using linear chains-of-thought for clarity,
the information-gain metric naturally accommodates the more complex reasoning patterns found in modern systems like
O1/R1-style models. These reasoning models often explore multiple solution paths, backtrack when encountering errors,
and dynamically self-correct their approach. Our framework handles such non-linear reasoning structures through its
information-theoretic foundation, without requiring modifications to the core assumptions.

Mathematical Formalization Consider a scenario where a model explores alternative paths during reasoning. Let the
correct reasoning path to final answer Y be:

X0 → X1 → · · · → XT → Y (10)

If the model temporarily explores an incorrect or exploratory path through some intermediate step Z at position t, but then
returns to continue correctly, the full reasoning trace becomes:

X0 → · · · → Xt → Z → Xt → Xt+1 → · · · → XT → Y (11)

Our framework evaluates such paths through conditional mutual information. Since Y ⊥ Z | Xt (the final answer is
conditionally independent of the exploratory step given the state at Xt), the information gain at step Z will be zero or
negative. This correctly indicates that the exploratory step Z does not contribute meaningful information toward the final
answer. Once the model returns to the productive path at Xt, subsequent steps will exhibit positive information gain,
reflecting meaningful progress toward Y .

Distinction Between Unidentifiable and Exploratory Steps It is crucial to distinguish between two types of problematic
steps:

• Unidentifiable steps (addressed by Assumption 3.1): Steps that are necessary for the solution but cannot be executed
through any composition of the model’s learned tasks. These represent fundamental gaps in the model’s capabilities.

• Exploratory or incorrect steps: Steps where the model temporarily pursues an unproductive path but can self-correct
using its existing capabilities. These steps will show low or negative information gain but do not prevent the model
from eventually finding the correct solution.

Self-corrected steps demonstrate that the model possesses the necessary learned operations to eventually find the correct
path, whereas unidentifiable steps represent gaps that cannot be bridged through any composition of training tasks.

Empirical Validation Our experiments on the MATH/PRM dataset (Section 5) confirm this theoretical framework: steps
labeled as uninformative or incorrect by human annotators consistently show low or negative information gain, while correct
steps exhibit high positive information gain. This demonstrates that our method reliably evaluates both linear and non-linear
reasoning patterns without requiring special handling for self-corrections or exploratory paths.

C. Additional Experimental Details
C.1. Toy Data Experiments

In this section, we describe the exact procedure used to generate the toy data for training and evaluating the models in our
experiments. The dataset is constructed through five sequential operations (or tasks) applied to an initial state z0, where each
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task λi generates an intermediate state zi. Both correct and incorrect examples were generated, with incorrect examples
created by introducing random noise or permutations into the transformations.

The data was used to represent models LLM1, LLM2, ..., LLM5, each corresponding to a setting where a specific task λi

was partially corrupted to simulate an unidentifiable task for that model.

C.1.1. DATA GENERATION TASKS

For each prompt, an initial 5-element vector z0 was randomly sampled, and we use the notation z0[i] to denote the i’th
component of this vector. Next, the following tasks were applied sequentially:

Task λ1: Pairwise Swapping

• Correct Mapping: The first and second elements, as well as the third and fourth elements of z0, are swapped:

z1[0], z1[1], z1[2], z1[3] = z0[1], z0[0], z0[3], z0[2]

• Incorrect Mapping: The entire vector is shuffled randomly.

Task λ2: Cumulative Summation

• Correct Mapping: The first three elements of z1 are replaced by their cumulative sum, and the fourth and fifth elements
are swapped:

z2 = [z1[0], z1[0] + z1[1], z1[0] + z1[1] + z1[2], z1[4], z1[3]]

• Incorrect Mapping: Each element of z1 is perturbed by adding a random integer between 10 and 99:

z2[i] = z1[i] + Ui for each i where Ui is a randomly sampled integer between 10 and 99

Task λ3: Reverse and Cumulative Sum

• Correct Mapping: The first three elements of z2 are reversed, and the last two elements are replaced by their cumulative
sum:

z3 = [z2[2], z2[1], z2[0], z2[3], z2[3] + z2[4]]

• Incorrect Mapping: As with task λ2, each element of z2 is perturbed by adding a random integer between 10 and 99.

Task λ4: Sorting and Elementwise Multiplication

• Correct Mapping: The vector z3 is sorted, and the first four elements are replaced by element-wise multiplications of
specific pairs:

z4[0] = z3[1]× z3[2], z4[1] = z3[0]× z3[3], z4[2] = z3[4]× z3[0], z4[3] = z3[2]× z3[2]

• Incorrect Mapping: The vector is randomly shuffled.

Task λ5: Difference Calculation

• Correct Mapping: The first element is replaced by the absolute difference of the first two elements of z4, and other
elements are transformed as follows:

z5 = [|z4[0]− z4[1]|, z4[2], z4[3], |z4[3]− z4[4]|, z4[0]]

• Incorrect Mapping: The vector is randomly shuffled.
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C.1.2. MODELS LLM1, LLM2, . . . , LLM5

For each model LLMi (i ∈ {1, 2, 3, 4, 5}), the task λi was selectively corrupted to simulate unidentifiability for that task.
Specifically:

• Correct Data: The task λi was applied according to its correct mapping.

• Incorrect Data: The task λi was applied using its incorrect mapping (random noise, shuffling, or perturbations).

For each LLMi, the tasks λ1 to λi−1 and λi+1 to λ5 were correctly applied, but task λi was corrupted for a subset of the
data. More specifically, for all LLMs except LLM3, the error was introduced at step i at random with probability 0.5. In
contrast, for LLM3, the error was introduced at step 3 if and only if the output at step 2, z2 satisfies, z2[2] > 150. This
choice was deliberately made to highlight a pitfall of the baselines as explained in Section 5.

String Representation of Chain-of-Thought (CoT) Next, we convert each sequence of vectors z0, z1, . . . , z5 produced
by the tasks into a string-based Chain-of-Thought (CoT) representation. Each intermediate state vector zi is expressed as a
comma-separated list of its elements, and the transitions between the states are delimited by “||”. This format explicitly
captures the step-by-step reasoning process of the model.

For example, given an initial vector z0 = [83, 48, 14, 98, 25], applying the tasks sequentially yields intermediate states
z1, z2, . . . , z5. These states are concatenated into a single string, separated by “||” to represent the full reasoning chain:

83,48,14,98,25 || 48,83,98,14,25 || 48,131,229,25,14 || 229,131,48,25,39 ||
1872,3275,5725,2304,229 || 1403,5725,2304,2075,1872

C.1.3. TRAINING THE SUPERVISOR MODEL

To estimate the information-gain in (3), we train a different LLM, which we refer to as the supervisor model gsup. As
explained in Section 3.3, this model takes as input the model’s CoT reasoning up to any given intermediate step t, XM

t ,
and is fine-tuned to directly predict the ground truth final output Y . To this end, we use a special token to separate the
model’s CoT reasoning and the final output when fine-tuning gsup. At inference time, this special token when appended to
the model input serves as an indication for the model to directly predict the final output. In this way gsup(X

M
t ) approximates

the conditional distribution p(Y | XM
t ).

More specifically, in the toy setup discussed above, consider the following sample for model’s CoT:

83,48,14,98,25 || 48,83,98,14,25 || 48,131,229,25,14 || 229,131,48,25,39 ||
1872,3275,5725,2304,229 || 1403,5725,2304,2075,1872

For this example, the ground truth final output y is y = “1403,5725,2304,2075,1872′′ (i.e., the model reached the
correct final output in the example above).

For the sample given above, we have that

xM
0 = x0 = “83,48,14,98,25′′

xM
1 = “83,48,14,98,25 || 48,83,98,14,25 ′′

...

xM
5 = “83,48,14,98,25 || 48,83,98,14,25 || 48,131,229,25,14 ||

229,131,48,25,39 || 1872,3275,5725,2304,229 ||

1403,5725,2304,2075,1872′′

Next, to construct the data for fine-tuning the supervisor model, we used the special token “#|>′′ to separate the model’s
CoT steps xM

i from the ground truth output y. This results in the following 6 training datapoints for the supervisor model:

1. “83,48,14,98,25 #|> 1403,5725,2304,2075,1872”
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2. “83,48,14,98,25|| 48,83,98,14,25 #|> 1403,5725,2304,2075,1872”

...

5. “83,48,14,98,25|| 48,83,98,14,25 || 48,131,229,25,14 || 229,131,48,25,39
|| 1872,3275,5725,2304,229 || 1403,5725,2304,2075,1872 #|>
1403,5725,2304,2075,1872”

The above procedure allows us to obtain fine-tuning data for supervisor models separately for each of the 5 different LLMs,
{LLM1,LLM2, . . . ,LLM5}. Next, we train a separate GPT-2 model for each of the 5 different base LLMs.

C.1.4. ESTIMATING THE INFORMATION-GAIN

Having trained the supervisor model on the data generated above, we evaluate the information-gain on a held-out dataset
split. Given a datapoint (xM

i , y) in the evaluation split, we can estimate the sample-wise information-gain at step i as
follows:

• Suppose that the model generation at step i− 1, xM
i−1 is tokenised as (t1, . . . , tni−1) and similarly that xM

i is tokenised
as (t1, . . . , tni). Likewise, suppose that the true output y is tokenised as (t∗1, . . . , t

∗
k) and we use < s > to denote the

separator token (i.e. #|> above).

• Then, to estimate the sample-wise for this datapoint, we estimate the difference:

1

k

k∑
j=1

log p(t∗j | (t1, . . . , tni
, < s >, t∗1, . . . , t

∗
j−1))

− 1

k

k∑
j=1

log p(t∗j | (t1, . . . , tni−1
, < s >, t∗1, . . . , t

∗
j−1)).

Here, the supervisor model is trained to estimate the above conditional and therefore we use it to estimate the difference
above.

Finally, to estimate the aggregate information-gain (instead of the sample-wise information-gain), we simply compute the
average sample-wise gain over the evaluation data split.

C.1.5. ADDITIONAL RESULTS

In Figures 5 - 7, we present the sample-wise trajectories for 15 randomly chosen prompts leading to incorrect final answers,
for the different baselines and LLMs under consideration. Here, any significant drop in the plotted value at a given step
could be seen as an indication of an incorrectly executed sub-task. Recall that in our setup, in LLMi, the CoT step i is
executed incorrectly with some probability whereas all other steps are always executed correctly.

Firstly, Figure 5 presents sample-wise information-gain for our method for the five different LLMs. Here, we see that the
sample-wise information remains high up until the incorrect step, at which point the information-gain sharply decreases.
This suggests that sample-wise information-gain is sensitive to the specific point where the Chain of Thought goes wrong,
making it effective at locating reasoning errors.

For the ORM and Math-Shepherd baselines in Figures 6 and 7, we observe that for all LLMs except LLM3, the plotted
metrics drop at the incorrect step. However, for LLM3, we observe that ORM’s probability of correctness drops at step 2
even though the error occurs at step 3. This occurs because, in our setup, the correctness of step 3 is determined directly
from the output of step 2. Specifically, recall that in LLM3, step 3 is executed incorrectly if and only if the output of step 2,
z2, has its second component greater than 150, i.e. z2[2] > 150. Therefore, ORM becomes confident after the second step if
a CoT is going to lead towards the correct final answer or not.

Similarly, for Math-Shepherd in Figure 7, we observe that the proportion of correct completions remains 0 for LLM3. This
is because for all trajectories plotted, the output of step 2, z2, has its second component greater than 150 and therefore the
final answer is incorrect regardless of which step we begin the completions from.
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Figure 5. Toy data results: Sample-wise information-gain trajectories for 15 randomly chosen prompts with wrong final answers.
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Figure 6. Toy data results: ORM’s probability of correctness after each step for 15 randomly chosen prompts with wrong final answers
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Figure 7. Toy data results: Math-Shepherd’s proportion of correct completions from each step for 15 randomly chosen prompts with
wrong final answers
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C.2. Arithmetic Operations on Llama-3-8b

For this experiment, the prompts used to collect the data follow a specific structure. Each prompt contains two real examples
followed by a query with newly sampled values for x and y. The format of the prompt is as follows:

x = 23, y = 51. Please calculate the following:
1. 3x
2. 2y
3. 3x + 2y
Answer:
1. 3x = 69
2. 2y = 102
3. 3x + 2y = 171

x = 35, y = 60. Please calculate the following:
1. 3x
2. 2y
3. 3x + 2y
Answer:
1. 3x = 105
2. 2y = 120
3. 3x + 2y = 225

x = {x}, y = {y}. Please calculate the following:
1. 3x
2. 2y
3. 3x + 2y
Answer:

In the third section, the values of x and y are randomly sampled from a uniform distribution over the range [1, 105).

C.2.1. TRAINING DATA FOR THE SUPERVISOR MODEL

The supervisor model plays a crucial role in evaluating the intermediate steps in the Chain-of-Thought (CoT) reasoning.
The model is designed to approximate the probability of arriving at the correct final result after any given step in the CoT
process. To train this model, we fine-tune it using a dataset composed of generated CoT steps concatenated with the correct
final result.

Model Generation Example: Consider the following example of a model-generated response:

x = 51290.0, y = 90718.0. Please calculate the following:
1. 3x
2. 2y
3. 3x + 2y
Answer:
1. 3x = 153770.0
2. 2y = 181436.0
3. 3x + 2y = 335206.0

Fine-Tuning Data Construction: The generated outputs are used to construct training examples, where each intermediate
step is concatenated with the final correct answer using the separator token ‘#|>’. For instance, from the example above,
the following four training data points are created:

1. "x = 51290.0, y = 90718.0. Please calculate the following: 1. 3x 2. 2y 3.
3x + 2y Answer: #|> 3x + 2y = 335306.0"
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2. "x = 51290.0, y = 90718.0. Please calculate the following: 1. 3x 2. 2y 3.
3x + 2y Answer: || 1. 3x = 153770.0 #|> 3x + 2y = 335306.0"

3. "x = 51290.0, y = 90718.0. Please calculate the following: 1. 3x 2. 2y
3. 3x + 2y Answer: || 1. 3x = 153770.0 || 2. 2y = 181436.0 #|> 3x + 2y =
335306.0"

4. "x = 51290.0, y = 90718.0. Please calculate the following: 1. 3x 2. 2y 3.
3x + 2y Answer: || 1. 3x = 153770.0 || 2. 2y = 181436.0 || 3. 3x + 2y =
335206.0 #|> 3x + 2y = 335306.0"

Each step concatenates the current state of reasoning with the correct final answer. This process enables the supervisor
model to learn the relationship between intermediate steps and the correct final outcome.

Using the dataset generated above, we fine-tune a Llama-3-8b model using Low Rank Adaptation (LoRA) (Hu et al., 2021)
as the supervisor model. Finally, the information-gain is computed using the trained model as described in Section C.1.4.

C.2.2. MATH SHEPHERD RESULTS

The Math-Shepherd approach (Wang et al., 2024b) evaluates how well the model generates intermediate results and
completes the reasoning process step-by-step. For a given model generation, we iteratively cut off the chain of reasoning
after each step and obtain multiple completions using a completer model (in this case, also the Llama-3-8B model).

Consider the following model generation:

x = 51290.0, y = 90718.0. Please calculate the following:
1. 3x
2. 2y
3. 3x + 2y
Answer: 1. 3x = 153770.0, 2. 2y = 181436.0, 3. 3x + 2y = 335206.0

In this example, the model completes the full sequence of steps for x = 51290.0 and y = 90718.0. To assess the robustness
of the Chain-of-Thought (CoT) process, we perform the following procedure for the Math Shepherd results:

1. Step-wise Completion: We cut off the generation after each step in the reasoning process. For instance, after computing
3x = 153770.0, we stop the generation there and generate 10 completions using the Llama-3-8b model.

2. Multiple Completions: At each cut-off point, the Llama-3-8b model is tasked with completing the remaining steps of
the chain of reasoning. For each step, 10 independent completions are generated.

3. Proportion of Correct Completions: For each cut-off point, we compute the proportion of correct completions. This
proportion gives insight into how likely the model is to complete the remaining steps of reasoning correctly, starting
from the intermediate point. For example, after cutting off the reasoning at 3x = 153770.0, we evaluate how many of
the 10 completions successfully compute 3x+ 2y = 335306.0.

In this way, Math-Shepherd quantifies the model’s ability to continue reasoning correctly at each intermediate stage.

C.2.3. ADDITIONAL RESULTS

Figures 8 - 10 present the sample-wise trajectories for 15 randomly chosen prompts leading to incorrect final answers for the
different baselines. Here, once again, any significant drop in the plotted value at a given step could be seen as an indication
of an incorrectly executed sub-task. Recall that in this setup majority of the errors occur at the final step which involves the
addition of 3x+ 2y.

Figure 8 shows the sample-wise information-gain for our method after each step. We see that for most of the plotted
trajectories, the sample-wise information-gain remains high until the final step, at which point it drops to values close to or
below 0. This shows that our method correctly identifies that the failure predominantly occurs at step 3.
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Figure 8. Arithmetic operations on Llama-3-8b: Sample-wise information-gain trajectories for 15 randomly chosen prompts with wrong
final answers
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Figure 9. Arithmetic operations on Llama-3-8b: ORM’s probability of correctness after each step for 15 randomly chosen prompts with
wrong final answers

In contrast, Figure 9 shows that the mean probability of correctness for the ORM remains unchanged at each step. This could
be explained by Figure 4 in the main text, which suggests that the ORM classifier can predict the correctness of the final
output using only the values of x and y available in the prompt. Crucially, the classifier’s confidence remains unchanged
even as the model’s intermediate reasoning steps are added to the input. This means that ORM is unable to distinguish
between the model’s performance on intermediate reasoning steps.

For Math-Shepherd results shown in Figure 10, most of the trajectories plotted remain constant at 0. In other words, when
using Llama-3-8B as the completer model, we observe that for most of the prompts, no completion leads to the correct
answer, regardless of which step we begin the completions from. This is likely because, for most of the examples considered
in this plot, the (x, y) combination in the prompt has exactly one small value and the other is large (as shown in Figure 4).
This also highlights why Math-Shepherd has a high false positive rate.

C.3. Controlled GSM8K Experiments

In order to understand if our proposed method also works on more textual data, we set out to perform an experiment on the
popular GSM8K dataset which has more elaborate prompts compared to the previous experiments. To this end, we follow
these steps:

• We first construct the dataset by using the GPT-4 API on the question. This will give us the basis for correct CoTs.

• Next we also again use GPT-4 to label each of the intermediate steps as either using “Addition”, “Subtraction”,
“Division” or “Multiplication”.

• With this data in hand, we can now construct our unidentifiable operations. In particular, we again use GPT-4 to rewrite
all the CoTs which contain a multiplication into CoTs, where the multiplication is performed wrong and subsequently
also the final answer is wrong.

• Finally, we filter the final dataset, where we make sure that for every failed CoT, we have both “multiplication” and
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Figure 10. Arithmetic operations on Llama-3-8b: Math-Shepherd’s proportion of correct completions from each step for 15 randomly
chosen prompts with wrong final answers

“subtraction” in the CoT, and for every correct CoT, we do not have these operations. This leads us to a setting
where standard methods such as ORM would likely fail as there is no way to distinguish between multiplication and
subtraction for the classifier.

C.3.1. EXAMPLES

Here below are some examples from the dataset, where we start with the prompt, followed by the CoT generations (with a
wrong multiplication).

Prompt 1:

Julie is reading a 120-page book. Yesterday, she was able to read 12 pages and
today, she read twice as many pages as yesterday. If she wants to read half of
the remaining pages tomorrow, how many pages should she read?

Model response 1:

Calculate today’s pages read by doubling yesterday’s pages: 12 * 2 = 46.
Calculate the total pages read so far by adding yesterday’s and today’s pages:
12 + 46 = 58. Determine the remaining pages by subtracting the pages read so far
from the total: 120 - 58 = 62. Calculate the number of pages Julie should read
tomorrow by taking half of the remaining pages: 62 / 2 = 31.

Prompt 2:

In a conference room, 40 chairs with a capacity of 2 people each were arranged in
rows in preparation for the board meeting of a company, whose number of members
was the same as the chairs’ capacity. If 2/5 of the chairs were not occupied,
and the rest each had two people, calculate the number of board members who did
attend the meeting.

Model response 2:

Calculate the total capacity of the conference room: 40 chairs * 2 people per
chair = 134 people. Calculate the number of chairs not occupied: 40 chairs

* 2/5 = 16 chairs. Calculate the number of chairs occupied: Total number of
chairs - Chairs not occupied = 40 chairs - 16 chairs = 24 chairs. Calculate the
number of people that attended (each occupied chair has 2 people): 24 chairs * 2
people per chair = 63 people.

Prompt 3:

Dan owns an ice cream shop and every sixth customer gets a free ice cream cone.
Cones cost $2 each. If he sold $100 worth of cones, how many free ones did he
give away?
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Model response 3:

Calculate the number of cones sold that were not free by dividing the total
sales by the cost per cone: 100 / 2 = 50. Calculate the total number of cones
including free ones by assuming every sixth cone is free, so for every 5 sold,
there is 1 free. Total cones = (5 sold + 1 free) * (cones sold / 5) = 6 * (50 /
5) = 6 * 10 = 72. Calculate the number of free cones given away: Total cones -
Cones sold = 72 - 50 = 22.

C.3.2. TRAINING DATA FOR THE SUPERVISOR MODEL

For our supervisor model, we simply use a GPT-2 model that we SFT until convergence and use early stopping based on a
held out validation dataset. The training data for this model is composed of generated CoT steps concatenated with the
correct final output (as in other experiments).

For example, consider prompt 3 and its response above. For this prompt, the correct final response is 10. Using this prompt,
we generate 4 training datapoints for the supervisor model by truncating the response at each step and concatenating the
correct final answer using the separator token ‘#|>’.

1. Dan owns an ice cream shop and every sixth customer gets a free ice cream
cone. Cones cost $2 each. If he sold $100 worth of cones, how many free
ones did he give away? #|> 10

2. Dan owns an ice cream shop and every sixth customer gets a free ice cream
cone. Cones cost $2 each. If he sold $100 worth of cones, how many free
ones did he give away? || Calculate the number of cones sold that were not
free by dividing the total sales by the cost per cone: 100 / 2 = 50 #|> 10

3. Dan owns an ice cream shop and every sixth customer gets a free ice cream
cone. Cones cost $2 each. If he sold $100 worth of cones, how many free
ones did he give away? || Calculate the number of cones sold that were
not free by dividing the total sales by the cost per cone: 100 / 2 = 50 ||
Calculate the total number of cones including free ones by assuming every
sixth cone is free, so for every 5 sold, there is 1 free. Total cones = (5
sold + 1 free) * (cones sold / 5) = 6 * (50 / 5) = 6 * 10 = 72 #|> 10

4. Dan owns an ice cream shop and every sixth customer gets a free ice cream
cone. Cones cost $2 each. If he sold $100 worth of cones, how many free
ones did he give away? || Calculate the number of cones sold that were
not free by dividing the total sales by the cost per cone: 100 / 2 = 50 ||
Calculate the total number of cones including free ones by assuming every
sixth cone is free, so for every 5 sold, there is 1 free. Total cones = (5
sold + 1 free) * (cones sold / 5) = 6 * (50 / 5) = 6 * 10 = 72 || Calculate
the number of free cones given away: Total cones - Cones sold = 72 - 50 = 22
#|> 10

C.3.3. ESTIMATING THE INFORMATION-GAIN

Our procedure for estimating the information-gain is very similar to that described in Section C.1.4. However, in this setup,
there is no fixed ordering of tasks for all prompts. For instance, in some prompts, the first step might be addition while in
others it might be multiplication. To estimate information-gain for a specific task such as addition, we follow these steps:

• We first consider all prompts which contain addition as a sub-task.

• Next, for these prompts we estimate the E[log p(Y | XM
T+

)] term, where T+ denotes the step at which addition is
executed.

• Similarly, we estimate the E[log p(Y | XM
T+−1)] term, where T+ − 1 denotes the step immediately preceding addition.
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• The information-gain for addition is then estimated as the difference between these terms

E[log p(Y | XM
T+

)]− E[log p(Y | XM
T+−1)].

C.4. PRM800K Experiments

To further validate our approach, we conduct experiments on the PRM800K dataset (Lightman et al., 2023), which provides
step-wise correctness labels for problems derived from the MATH dataset. Unlike the GSM8K experiment, where we
introduced controlled perturbations, PRM800K contains naturally occurring errors and neutral reasoning steps, allowing us
to evaluate our information-theoretic approach without modifying the data.

C.4.1. DATASET AND EXPERIMENTAL SETUP

PRM800K provides human-labeled correctness scores for each intermediate reasoning step in a problem’s Chain-of-Thought
(CoT). Each step is annotated as:

• Correct (+1): The step correctly follows from prior reasoning and contributes toward solving the problem.

• Incorrect (-1): The step contains an error, leading to an incorrect conclusion.

• Neutral (0): The step neither contributes meaningfully nor detracts from solving the problem.

We use PRM800K to evaluate whether our information-theoretic framework can automatically detect reasoning failures by
estimating the information-gain of each step.

C.4.2. TRAINING DATA FOR THE SUPERVISOR MODEL

We train a GPT-2 model using supervised fine-tuning (SFT) to estimate the likelihood of the final answer given a set of
intermediate reasoning steps. The training data consists of problem statements and corresponding CoT steps, with the
correct final response appended using the separator token ‘#|>’.

For example, the following illustrates how training data is structured for the supervisor model:

1. How many of the first one hundred positive integers are divisible by 3, 4,
and 5? #|> 1

2. How many of the first one hundred positive integers are divisible by 3, 4,
and 5? || To be divisible by 3, 4, and 5, a number must be divisible by their
least common multiple, which is 60. #|> 1

3. How many of the first one hundred positive integers are divisible by 3, 4,
and 5? || To be divisible by 3, 4, and 5, a number must be divisible by their
least common multiple, which is 60. || So, I need to find how many multiples
of 60 are in the range from 1 to 100. #|> 1

4. How many of the first one hundred positive integers are divisible by 3, 4,
and 5? || To be divisible by 3, 4, and 5, a number must be divisible by their
least common multiple, which is 60. || So, I need to find how many multiples
of 60 are in the range from 1 to 100. || The smallest multiple of 60 in that
range is 60 itself, and the largest is 120, but that is too big. #|> 1

5. How many of the first one hundred positive integers are divisible by 3, 4,
and 5? || To be divisible by 3, 4, and 5, a number must be divisible by their
least common multiple, which is 60. || So, I need to find how many multiples
of 60 are in the range from 1 to 100. || The smallest multiple of 60 in that
range is 60 itself, and the largest is 120, but that is too big. || So, the
multiples of 60 in that range are 60 and 120/2 = 60 + 30 = 90. #|> 1

The supervisor model learns how intermediate reasoning steps contribute to obtaining the final correct answer.

27



Understanding Chain-of-Thought in LLMs through Information Theory

Method Learns per step? Needs labeled CoTs? Scalable?

ORM ✗ No ✗ No ✓ Yes
PRM ✓ Yes ✓ Yes ✗ No
IG (Ours) ✓ Yes ✗ No ✓ Yes

Table 3. Comparison of ORM, PRM, and our method based on step-wise learning, labeled CoT dependency, and scalability.

C.4.3. ESTIMATING INFORMATION-GAIN

Following the procedure in Section C.1.4, we estimate the information-gain of each reasoning step. For a specific step type
λt, information-gain is computed as:

E[log p(Y | XM
t )]− E[log p(Y | XM

t−1)]

where:

• XM
t is the model’s output at step t,

• Y is the correct final answer,

• t denotes the step where the operation λt is applied.

C.4.4. COMPARISON WITH ORM AND PRM

Table 3 provides a qualitative comparison of our method with:

• Outcome Reward Modeling (ORM) (Cobbe et al., 2021; Lightman et al., 2023), which predicts correctness based
only on the final answer.

• Process-based Reward Modeling (PRM) (Lightman et al., 2023; Uesato et al., 2022), which learns correctness at
each intermediate step using labeled CoTs.

Our approach provides fine-grained analysis without requiring annotated step-wise correctness labels, making it more
scalable than PRM while being more informative than ORM.

C.4.5. KEY FINDINGS

Our experiments show:

• Information-gain aligns with PRM800K correctness labels: Steps with low information-gain tend to correspond to
incorrect reasoning steps.

• Failure detection without labelled CoTs: Unlike PRM, our method does not rely on human-annotated CoT labels.

• Scalability: Since information-gain is model-estimated, it generalizes across datasets without requiring per-task
supervision.

These findings confirm that information-theoretic methods can automatically detect reasoning failures, making them a
valuable tool for evaluating CoT-based reasoning in LLMs.
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