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ABSTRACT

Diffusion models provide a powerful way to incorporate complex prior information
for solving inverse problems. However, existing methods struggle to correctly
incorporate guidance from conflicting signals in the prior and measurement, and
often failed to maximizing the consistency to the measurement, especially in the
challenging setting of non-Gaussian or unknown noise. To address these issues,
we propose Measurement-Aligned Sampling (MAS), a novel framework for linear
inverse problem solving that flexibly balances prior and measurement information.
MAS unifies and extends existing approaches such as DDNM, TMPD, while
generalizing to handle both known Gaussian noise and unknown or non-Gaussian
noise types. Extensive experiments demonstrate that MAS consistently outperforms
state-of-the-art methods across a variety of tasks, while maintaining relatively low
computational cost.

1 INTRODUCTION

Inverse problems are prevalent in image restoration (IR) tasks, including super-resolution, inpainting,
deblurring, colorization, denoising, and JPEG restoration (Chung et al., 2022a}; [Kawar et al., | 2022aj;
Saharia et al.| [2022; Wang et al.} 2022 |Lugmayr et al., 2022; |[Mardani et al., |2023};|Song et al., 2023b;
Kawar et al.}|2022b)). Solving an inverse problem involves recovering an unknown original image
xo € R™ based on information from a prior distribution, 7(zg), and noisy measurements y € R™
generated through a forward model:

y=H(zo) + e (D

Here € € R™ represents measurement noise, xg € R¢ is drawn from data distribution 7 (z0),
H : R* — R™ is the measurement function, and y € R™ denotes the degraded measurement or
observed image. A useful motivating example is a high-resolution image x(, with a noisy degraded
image y and a known corruption process.

Pretrained diffusion and flow models offer a prior distribution 7 (z¢) that greatly aids in solving
inverse problems. Methods such as DPS (Chung et al., 2022a), [IGDM (Song et al., 2023b), and
TMPD (Boys et al., [2023) estimate conditional scores directly from the measurement model by
leveraging score decomposition to guide each diffusion sampling step. In contrast, approaches like
FPS (Dou & Song, [2024), DAPS (Zhang et al., 2024), MPGD (He et al.,|[2023)), and optimization-
based methods (Song et al., [2023a; |Zhu et al.| 2023} L1 et al., 2024} Wang et al., [2024) align
denoiser outputs directly with measurements, thereby avoiding backpropagation through the U-
Net. Although DAPS achieves state-of-the-art performance—outperforming methods that require
backpropagation—it still requires more than 100 gradient descent iterations per diffusion step, making
it far more computationally expensive compared to methods such as DDNM (Wang et al.| [2022) and
DDRM (Kawar et al.,[2022a)). This highlights the promise of developing approaches that avoid both
backpropagation through U-Net and excessive optimization steps, while still attaining state-of-the-art
performance.

Moreover, the above approaches lack the ability to effectively handle unknown or non-Gaussian noise.
In practical settings, noise frequently deviates from Gaussian assumptions—exhibiting characteristics
like salt-and-pepper, periodic, or Poisson distributions—or is completely unknown. Additionally, the
forward measurement operator may be uncertain or inaccurately specified. Effectively addressing
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Figure 1: Solving various inverse problems using unconditional diffusion models. Our model
demonstrates better robustness with unknown noise and strong Gaussian noise.

Table 1: Comparison of method applicability across different inverse problems.

Inverse Problem Noise strength DDNM DDRM IIGDM DAPS RED-Diff MAS (ours)
Linear + noise free - v v v v v v
Linear + Gaussian noise Known v v v v v v
Linear + non-Gaussian noise Unknown X X X X X v
JPEG / Quantization restoration Known X X v X X v
JPEG / Quantization restoration Unknown X X X X X v

inverse problems under these more general and realistic conditions remains an open and challenging
research area.

Our main contributions are summarized as follows:

* We propose Measurement-Aligned Sampling (MAS), a novel framework for solving linear
inverse problems. MAS provides both probabilistic and optimization perspectives and
generalizes approaches such as DDNM and TMPD for linear inverse problems. Furthermore,
our proposed ‘overshooting’ technique achieves superior restoration quality compared to
DDNM across various inverse problem scenarios.

* We develop new techniques that maximize consistency with the measurement, enabling
robust handling of both Gaussian noise and unknown noise sources. Moreover, our novel pa-
rameterization scheme allows us to effectively handle noisy inverse problems with unknown
or non-Gaussian noise structures and even non-differentiable measurements, such as JPEG
restoration, without requiring explicit knowledge of the forward operator or noise level. The
comparison of method applicability across different inverse problems is shown in Table[T}

* Our experiments show that MAS enables robust and efficient image restoration, consistently
outperforming baselines across Gaussian, non-Gaussian, and non-differentiable degradations
(see Fig.[T]and experiments in Sec.[5).

2 BACKGROUND

Given training dataset D = {x}} ¥ | from target distribution 7y (z¢), =§ € RY, the goal of generative
modeling is to draw new samples from mp. In the context of conditional generation, suppose that we
have data samples from a joint distribution (x},y) ~ m(x,y), where x¢, y are dependent, and y
could be class labels or text information, for example.

For conditional generative modeling, we seek to draw new samples from 7(zq | y) for a given
condition y. Conditioned flows (Zheng et al.,[2023) build a marginal probability path py, using a
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mixture of interpolating densities: py, (: | y) = [ pe(xe | ©o)w(20 | y)dar, where py(- | xo) is a
probability path interpolating between noise and a single data point x7. In general, the conditional
kernel p;(z; | zo) is given by a Gaussian distribution: p;(z; | z9) = N (x4; ayz0, 021), where N is
the Gaussian kernel, oy, o; are differentiable functions. Then we can sample from the conditional
distribution po|, (2o | y) by simulating a stochastic process p, (z; | y) from time t = T'to t = 0.
Although different sampling methods can be chosen, generally, the iteration follows the form:

Ti_ar ~ N(aymopyy + by, ). )

where mq);,, = E[xzg | x¢,y] is the idea conditional denoiser, a;, by and c; are parameters that depends
on samplers. For instance, zy_a; ~ N(ou—a¢Mojt,y, 0r—acd) is a valid DDIM sampler. In the
implementation of conditional diffusion models, a denoiser is trained to approximate myj;,,,. However,
when only an unconditional denoiser mq; = E[xo | 2] is available, training-free conditional
inference methods are employed.

Diffusion Posterior Sampling (DPS) and its variants. Given unconditional denoiser E[zq | x4,
training-free conditional inference methods enable the approximation of the ideal conditional denoiser
E[zo | 2¢,y] (Pokle et al.,[2023):

2
o
Elzo | 21, y] = Elzo | 2] + ;ivzt logp(y | x1). ©)

Since V., log p(y | ;) is generally intractable, various approaches have been developed to approxi-
mate it.

For linear inverse problems, where the forward model is given by: y = Hzg + €, € ~ N (0, JS]I).
Tweedie Moment Projected Diffusion (TMPD) (Boys et al.,[2023) assume p(xq | x¢) as a Gaussian:
p(xo | ©) = N(mgp, Coe), where mg¢(y) := Elzg | ] is the ideal unconditional denoiser,
Cop(w) == E[(xo — mo¢)(@o — mop)” | @¢] is the covariance of z¢ | ;. Then the posteroir mean
E[zo | 2+, y] admits an explicit closed-form solution:

Elzo | 2¢,y] = moj¢ + OO\tHT(HCO\tHT + 0121]1)71@ — Hmgyy) 4

The covariance Cp; could be calculated via gradient go through the denoiser: Cy|; = Z—tjvmw ().

Optimization based methods. Unlike DPS guarantees that sampling is strictly from the conditional
distribution, p(x¢ | y), optimization-based approaches (Zhu et al., 2023; |Li et al., 2024; |Wang et al.,
2024) place more emphasis on the alignment with the measurement and the prior, which takes the
following iteration:

g = angin [l — moy | + Ay~ o) Ga

Ti—At ~ N(at$3 + by, C?) . (5b)

where )\; is a manually designed hyperparameter and () is the nonlinear forward operator. The
iteration of optimization based methods could be seen as replacing my);,,, in Eq. (2) to z§ in Eq. @

3 METHODOLOGY

For optimization based methods, the data-consistency loss with respect to the measurement y is
treated uniformly across all directions of the measurement space. However, for inverse problems
it is often advantageous to introduce a weighting matrix that reflects the geometry of the forward
operator (Tarantola, |2005). To this end, we propose Measurement-Aligned Sampling (MAS), which
incorporates such a weighting into the optimization. As we demonstrate in Sec. 3] this alignment
leads to significant improvements in reconstruction quality.
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Algorithm 1 Measurement-Aligned Sampling (MAS) for inverse problems.

1: Input: measurement y, forward operator H (-), pretrained DM ¢4 (+), number of diffusion step N, diffusion
schedule a; and o, objective parameters 11, 12.

2: Imitialization: zny ~ N(0,T)

3: forn = Nto1ldo

4: &g« [Tn — oneg(Tn,n)]/an > Obtain predicted data E[zo | zx]
50 xh =Y ao+ H Wy > Calculating posterior mean E[z. | zn, y]
6: -1 ~N(an-170,0n-11) > Forward diffusion step
7: end for

8: Output xo

3.1 MEASUREMENT ALIGNED SAMPLING

In this work, we generalize the objective in Eq. (5a) as
wp = argmin[|zo — mope||* + [ly = Hao[[fy -+ ©6)

where W := 1y HH" + noI (with n; > 0,7, > 0) is the weighted matrix and serves as a metric that
balances measurement fidelity and prior regularization, where ||z||% = 27 Az.

When 7, = 0 and 72 > 0, corresponding to the classical Tikhonov (ridge) regularization, where 72
controls the trade-off between fitting the measurements y and staying close to the prior mg|;. When
n1 > 0 and 175 = 0, the data term becomes weighted by (H H T)~!, a Mahalanobis-type distance that
emphasizes alignment along directions where H is weak (small singular values), thereby regularizing
ill-posed components of the inverse problem. The balance between 11 and 12 plays a crucial role in
reconstruction quality, as we show in our experiments.

Finally, Eq. (6) admits a unique closed-form solution obtained by setting the gradient to zero:

xa = Y_l[mo‘t + HTW_ly]

where W = HH'" + ], Y =1+H"W'H, @
In practice, computing the inverse W ! and Y ~! in Eq. (7) naively can be computationally expensive.
Instead, one can employ singular value decomposition (SVD) for more efficient computation; see
Sec. for details.
Remark 1 (Connection with DDNM (Wang et al., 2022)). As 7y = 0and n; — 0, 2§, — Z2P™ .=
mope + H fy—H mgj¢). Thus, in this limiting case, MAS recovers DDNM.
Remark 2 (Connection with optimization methods). For the case where 71 = 0,72 > 0, Eq. (6)

reproduces optimization approaches, such as Resample (Song et al., [2023a)), DiffPIR (Zhu et al.,
2023), DCDP (Li et al., 2024), DMPlug (Wang et al.,[2024).

3.2 PROBABILISTIC INTERPRETATION

We can interpret zj; in Eq. (7) as E[z. | 24, y], where . ~ x¢ with perturbation variance o chosen
to be sufficiently small so that p(z¢ | z.) ~ N (z., 02I). This formulation introduces an additional
hyperprior, which—as demonstrated in our experiments—proves beneficial in addressing inverse
problems.

Given the measurement model p(y | 20) = N'(Ho, o21) and conditional p(zo | zc) = N (x, o2T),
the induced distribution over the measurement conditioned on x. takes the explicit form:

p(y | ze) =N (Hae, ool + 0?HH'). (8)

Notably, the likelihood p(y | ) shares the same mean as p(y | xq), but with a generalized variance
inflated by a term depending on H. Since both p(y | z.) and p(y | x) are Gaussian, the posterior
distribution admits a closed-form expression. In particular, the posterior mean E[zg | z¢, y] can be
computed via Bayesian linear regression, as stated in Prop.
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Figure 2: 2D illustration of the influence of parameters 77; and n2. Dots represent z(j, calculated via

Eq. . (a) Parameter 71 controls the trade-off between mg), and F5PNM: ag 1)y — oo, the posterior

mean z, approaches mq;; as 71 — 0, it converges to Z5°"™. (b) Adjusting 7, alters the posterior
trajectory differently from varying 7.

Proposition 3.1 (Bayesian Linear Regression). Suppose p(y | xc) = N(Hz., R), R = o_l +
U?HHT and p(x, | x¢) = N(m0|t, C’0|t). Then the posterior is Gaussian, with mean given by

—1
Elz. | 20,y = (c*o—|t1 n HTR*H) (Co_lmmt n HTR’ly). )

|t

As we set Co, = 7Ly == 02 /r] and ny = o} /r?, E[x. | 1, y] in Eq. (EI) is equivalent to x{; in
Eq. (7), which provides a probabilistic perspective for MAS.

Remark 3 (Connection to TMPD (Boys et al., 2023)). Setting 0. = 0 reduces the posterior mean in
Eq. (9) to that of TMPD in Eq. ().

Remark 4 (‘Overshooting’ trick). Theoretically, 7; > 0 since 11 == 02/r2, however, the posterior
mean in Eq. (7) allows negative 7);. As illustrated in Fig. 2] negative 7; produces an overshooting
effect, drawing z; even further toward alignment with the measurement y than prescribed by DDNM.
Interestingly, in our experiments this overshooting effect leads to improved reconstruction quality. A
more detailed discussion is provided in Sec.[B.2]

4 MAXIMIZING THE CONSISTENCY FOR NOISY INVERSE PROBLEMS

4.1 WHY PREVIOUS METHODS FAILED TO MAXIMIZE THE CONSISTENCY?

DDNM highlighted that calculating the posterior sampling Z5°™ = my, + H'(y — Hmgj;) can
inadvertently introduce additional noise into x;, if y is noisy. For instance, consider a simple
forward model: y = x¢ + €,, where both H and H T are identity matrix, i.e., H = H t =1, then
TP = ¢ = 14 + ¢,. Here €, is the additional noise introduced to Z5°"M, and will be further
introduced into x;_A¢. We argue that this issue is not unique to DDNM, but may also arise in TMPD
(Boys et al.| |2023), DAPS (Zhang et al.,[2024)), as well as in optimization-based methods (Zhu et al.,

2023} |Li et al., [2024).
For MAS and under this same example, y = xg + €, calculating x( (Eq. ) yields
Y — Mo Lo — Mo|¢ €,

——— =mg; + Y , 10
m+n+1 ole m+ne+1 m+mnp+l (10)

*
Ty = Mot +

where ¢, /(11 + 12 + 1) is the additional noise introduced to x§. A delicate balance arises from the
fact that increasing either 7); or 72 will not only reduce the influence of the (unknown) noise term ¢,
but also reduce the consistency with the measurement y in general. To address this issue, we propose
two approaches for addressing known Gaussian noise (Sec.[d.2)) and unknown noise Sec. .3

4.2 ADDRESSING GAUSSIAN NOISE WITH KNOWN VARIANCE

To handle Gaussian noise with known variance and H = I, we modify Eq. (I0) and Eq. (2) as:
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Figure 3: The sample process of solving inverse problems with unknown noise, where #§ ~ mo|¢ is
the denoising output. Here we set 17; = 0 and 12 = 0.5a;/c;.

Y —mo|t

mtmtl Te_nr ~ N(arZo + by, v.I). (1D
1+ 1m2

I'Ek) = molt —+ )\t
Here \; and ~; are two parameters that can control the total noise introduced to x;_ a;. In our work,
we adopt similar two principles as DDNM+ (Wang et al.l 2022) for handling Gaussian noise: (i)
the total noise introduced in x;_; should be N (0, c;I) to conform to the correct distribution of

xt—a¢ in Eq. (2); (i1) A¢ should be as close to 1 as possible to maximize the preservation of . As
~ N (0, ¢2I), principle (i) and principle (ii) are equivalent to:
€y (0, 07ID), principle (i) and principle ( q

at0y
@l . w1
t\tCVy 2
M+l = M= . 12
(7o) +oe=d & amtm+l) o woy - 02
a0y n+n2+1

Derivations for more general forms of H can be found in Sec. [B| Note that the revision does not
introduce additional parameters.

4.3 ADDRESSING UNKNOWN NOISE AND NON-DIFFERENTIABLE MEASUREMENTS

Addressing unknown noise or non-Gaussian noise. When the measurement noise o, is non-
Gaussian or unknown, it becomes difficult to ensure that the total noise in x;_; follows the desired
distribution N (0, ch[), To address this, we continue to sample x;_ ¢ using Eq. . Next, the noise
introduced to z;_ A is the sum of two components:

eng = (arheey)/(m + 12 + 1), e ~ N(0, /D). (13)

Here €, is related to the noise introduced by unknown noise €, while ¢, is the noise added by the
diffusion process. To minimize the effect of unknown noise ¢,g, it is desirable for n; + 7 + 1 to
be sufficiently large. However, smaller values of n; and 1y result in better consistency with the
measurement y, as illustrated in Fig. [2] To balance this trade-off, we propose using a small 7; + 72
during the early stages of sampling to fully exploit measurement information. As sampling progresses,
11 + 12 should be gradually increased to suppress the impact of €,,. The underlying intuition is that,
in the early sampling stage, x; is still highly noisy and a; = 0, so the influence of ¢, is negligible
even when 7); + 7 is small. As shown in Fig. 3] ={ is initially more aligned with the degraded
observation, but progressively shifts toward myg; as sampling evolves.

For a general degradation operator H, we recommend setting o = ka:/c:, where k is a constant
determined by the characteristics of the introduced noise. The rationale behind this design choice is
further detailed in Sec.

Addressing non-differentiable measurements. For solving inverse problems with non-differentiable
measurements such as JPEG restoration and quantization, the degraded images can be viewed as
"noisy images" with unknown noise, modeled by y = = + €,. In these scenarios, our proposed
strategy naturally extends by treating the unknown degradations as implicit noise.
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Figure 4: Ablation study of 7; and 73 on solving super-resolution and deblurring. We set NFE=20
for all tasks.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Dataset. We evaluate the effectiveness of our proposed approach on FFHQ 256 x 256 (Karras et al.,
2019) and ImageNet 256 x 256 (Deng et al.l|2009). Following DAPS (Zhang et al.| 2024), we test on
the same subset of 100 images for both datasets.

Pretrained models and baselines. We utilize the pre-trained checkpoint (Chung et al.|[2022a)) on the
FFHQ dataset and the pre-trained checkpoint (Dhariwal & Nichol, 2021)) on the Imagenet dataset.
We compare our methods with the following baselines: DCDP (Li et al.,|2024), FPS (Dou & Song,
2024), DiffPIR (Zhu et al., 2023), DDNM (Wang et al., [2022), DDRM (Kawar et al.,2022a), [IGDM
(Song et al} 2023b), RedDiff (Mardani et al.,[2023), DAPS (Zhang et al.| [2024).

Metrics. Following previous work (Chung et al.| [2022a; [Kawar et al., |2022a), we report Fréchet
Inception Distance (FID) (Heusel et al.,[2017), Learned Perceptual Image Patch Similarity (LPIPS)
(Zhang et al., [2018)), Peak Signal-to-Noise Ratio (PSNR), and Structural SIMilarity index (SSIM).

Tasks. (1) We evaluate performance on the following linear inverse problems: super-resolution
(bicubic filter), deblurring (uniform kernel of size 9), inpainting (with a box mask), inpainting (with a
70% random mask), and colorization. (2) We consider two unknown noise types: salt-and-pepper
noise (10% pixels set randomly to 1) and periodic noise (sinusoidal pattern with amplitude 0.2 and
frequency 5). (3) We address JPEG restoration with quality factors QF = 2 and QF = 5. (4). For
quantization, we consider the challenging case of 2-bit quantization.

5.2 ABLATION STUDY

Ablation Study on 7; and 75. We conduct ablation studies on parameters 7; and 72 using two
inverse problems: super-resolution (noise-free, ¢, = 0) and deblurring (noisy, €, ~ N (0, 0211)).
Results presented in Fig. f] demonstrate that for noise-free super-resolution, the highest PSNR and
lowest FID scores are achieved by setting 172 = 0 and a negative 7; = —0.45. This indicates that
appropriate "overshooting" enhances restoration quality. For the noisy deblurring task, negative 7,
yields an improvement of more than 0.5 in PSNR and a reduction of over 5 in FID, further confirming
the benefit of overshooting.

5.3 IMAGE RESTORATION

Inverse problems with Gaussian noise (known variance). Quantitative results for inverse problems
with Gaussian noise of known variance are shown in Table[2] MAS consistently demonstrates superior
performance across most tasks, notably achieving significantly higher PSNRs. The table summarizes
5 tasks, 4 restoration quality metrics, and 2 datasets, resulting in a total of 40 evaluations. MAS
demonstrates superior performance in 29 out of the 40 cases. Notably, MAS achieves improvements
of more than 1 dB in 5 out of 10 instances.

Inverse Problems with Non-Gaussian Noise (Unknown Strength). Quantitative evaluations for
linear inverse problems with unknown, non-Gaussian noise are presented in Table[3] MAS consistently
outperforms baseline methods, highlighting the effectiveness of our approach in handling unknown
noise conditions.
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Table 2: Quantitative evaluation of solving image restoration FFHQ (left) and ImageNet (right), with
Gaussian noise (known variance, o, = 0.05).

Task Method FFHQ ImageNet
PSNR1 SSIM! LPIPS| FID| PSNR{ SSIM{ LPIPS| FID |
DPS 2586 0.753 0269 8107  21.13 0489 0361  106.32
DDRM 2658  0.782 0282 7925  22.62 0521 0324  103.85
DDNM 2803 0.795 0197  64.62 2396  0.604 0475  98.62
DCDP 2866  0.807  0.178 5381 - - - -
SR 4x FPS-SMC 2842  0.813 0204 4925 2482 0703 0313  97.51
DiffPIR  26.64 - 0260 6577  23.18 - 0371 106.32
RED-Diff  28.63  0.748 0288  126.78 2543  0.639 0336  153.37
DAPS 2007 0818 0177 5144 2580  0.694  0.276  83.57
MAS 3056 0.865 0131 6138 27.20 0.751 0215  88.61
DPS 2251 0792 0209 6127 1894  0.722 0257 12652
DDRM 2226 0.801 0207 7862 1863  0.733 0254  116.37
DDNM 2447 0.837 0235 4659 2164 0748 0319  103.97
Inpaint (Box) DCDP 23890 0.760  0.163  45.23 - - - -
FPS-SMC 2486  0.823  0.146 4834 2216  0.726  0.208 11158
RED-Diff  24.68  0.767  0.175 8678 21.32  0.728  0.247 12355
DAPS 2407 0814 0133 4310 2143 0725 0214  109.85
MAS 2495 0879 0082 3767 2115 0817 0.168 9596
DPS 2546 0.823 0203 6920 2352  0.745 0297  87.53
DDNM 2091 0817 0121 4437 3116 0841 0191  63.84
DCDP 30.60 0842 0142 5251 z - - -
Inpaint (Random) FPS-SMC 2821  0.823 0261 6123 2452 0701 0316  79.12
RED-Diff 2073 0814 0200 10419 27.04 0753  0.226  92.24
DAPS 3112 0.844 0098 3217 2844 0775  0.135 5425
MAS 3310 0923 0073 3475 2905 0838 0113 30.19
DDNM 258  0.704 0210 6883  25.60  0.630 0261  83.63
Deblurring (Uniform) DDRM 2019 0835 0172 8712 2631 0711 0.267 11836
DAPS 2892 0.758 0204 7657 2543  0.616 0293  103.55
MAS 3058 0857 0174 103835 2625 0700  0.205  141.58
DDNM 2483 0.868 0244 8515 2257 0884 0271  87.48
DDRM 2327 0881 0250 10048 2112 0819 0346  103.39
Color RED-Diff 2421  0.785 0304 107.64 2218 0782  0.368 10440
DAPS 2392  0.825 0263 8809 2213  0.830 0323  89.30
MAS 2423 0919 0187 7233 22.66 0.886 0258 83.17

Table 3: Quantitative evaluation of solving linear inverse problems with non-Gaussian noise (unknown
strength).

Task Method Salt peper noise Periodic noise
PSNRT SSIMT LPIPS| FID| PSNRtT SSIMt LPIPS| FID|
DDNM 13.02 0.289 0.710 377.54 18.61 0.492 0.495 268.36
DDRM 16.06 0.506 0.629 351.69 19.74 0.545 0.463 218.38
SR 8x IIGDM 17.36 0.476 0.569 309.73 18.12 0.449 0.434 163.41

RED-Diff 14.21 0.357 0.668 342.09 19.47 0.596 0.416 224.07
MAS (ours)  20.05 0.605 0.390 129.80  20.10 0.591 0.395 137.57

DDNM 15.55 0.248 0.533 247.99 18.60 0.621 0.341 147.80
DDRM 20.27 0.599 0.350 142.01 18.74 0.589 0.423 199.14
Inpaint (Box) IIGDM 19.30 0.665 0.297 100.07 18.32 0.601 0.349 150.49

RED-Diff 15.75 0.287 0.523 255.85 19.13 0.638 0.338 159.99
MAS (ours)  22.78 0.723 0.244 90.15 19.13 0.581 0.407 138.56

Inverse problems with non-differentiable measurements. MAS is also capable of solving inverse
problems with non-differentiable measurements, such as JPEG restoration and quantization. Results
in Table ] and Fig. [5|show that MAS achieves state-of-the-art performance without relying on the
forward operator or knowledge of the degradation strength.

Computational time analysis. The computational efficiency of MAS is comparable to DDNM and
substantially higher than DAPS. For example, on the SR task using the FFHQ-256 dataset with 200
diffusion steps, the non-parallel single-image sampling time for both DDNM and MAS is only 8
seconds per image, whereas DAPS requires 67 seconds (test were conducted on the same NVIDIA
A6000 GPU).
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JPEG (QF=5)

[IGDM MAS Quantization [IGDM MAS

Figure 5: Results on JPEG (QF=5) and quantization restoration.

Table 4: Quantitative evaluation of solving JPEG restoration and Quantization. We set k£ = 1.0
for QF = 5 and k = 3.0 for QF = 2, and £ = 0.5 for quantization. Both IIGDM and MAS use
NFE = 20, which yields the best performance (among NFE = 20 and NFE = 100). Notably, our
method (MAS) does not require access to the forward operator or the strength of degration.

Method JPEG Restoration (QF = 5) JPEG Restoration (QF = 2) Quantization (number of bits = 2)
PSNRT SSIMT LPIPS| FID| PSNR1 SSIM?t LPIPS| FID| PSNR{ SSIM1 LPIPS| FID |
IIGDM 25.78 0.750 0.241 89.82 2292 0.653 0.314 112.27 29.98 0.823  0.185 124.57

MAS (ours) 26.30 0.787 0.281 101.24 23.72 0.772 0.335 11485 2897 0.837 0.196 69.61

6 RELATED WORK

Diffusion models have also been successfully applied to linear inverse problems, including,
compressed-sensing MRI (CS-MRI), and computed tomography (CT) (Kadkhodaie & Simoncellil
[2021; [Song et al} 2020b} [Chung et al.,[2022b; [Kawar et al.,[2022a} [Song et al.,2021)). They have also
been extended to non-linear inverse problems such as Fourier phase retrieval, nonlinear deblurring,
HDR, and JPEG restoration (Chung et al.} [2022a}; [Song et al.,[2023b}; [Chung et al., 2023} [Mardani
2023).

Methods to solve inverse problems include linear projection methods (Wang et al., Kawar|
et al}, [2022a; [Dou & Song| , Monte Carlo sampling (Wu et al.} 2023} |Phillips et al., [2024),
variational inference (Feng et al., 2023} Mardani et al. Janati et al.,[2024)), optimization-based
approaches (Song et al.,[2023a; Zhu et al.| 2023} [Li et al.| 2024; [Wang et al., 2024; [Alkhouri et al.
2024} [He et al., , and Diffusion Posterior Sampling (DPS) (Zhang et al., 2024; (Chung et al.
2022a; [Song et al., 2023c; [Yu et al, 2023} [Rout et al.| 2024; [Yang et al.,[2024; Bansal et al., 2023},

Boys et al.l 2023} Song et al., 2023b; |[Ho & Salimans| [2022). Besides, InverseBench (Zheng et al.,
2025) presents a benchmark for critical scientific applications, which present structural challenges

that differ significantly from natural image restoration tasks.

7 CONCLUSION

MAS improves upon existing methods by explicitly aligning the sampling process with measurement
data, offering a broader optimization perspective that generalizes approaches like DDNM and DAPS.
Beyond the noise-free case, MAS can be extended to: (1) known Gaussian noise, (2) unknown or
non-Gaussian noise through adaptive parameterization, and (3) non-differentiable degradations (e.g.,
JPEG) by decoupling the forward operator from sampling. Extensive experiments show that MAS
consistently outperforms state-of-the-art methods across a wide range of inverse problems. While
MAS can handle non-differentiable measurements like JPEG restoration, it does not support general
non-linear inverse problems, it’s also promising to ‘calibrate’ the noise introduced into x4, such that
maximizing the consistency to measurement.
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A  PROOFS

A.1 PROOF OF Prop.[3.1]

Proof. Let x = z.. The prior and likelihood are
p(l' | mt) :N(mO\ta CO\t)7 p(y | J’.) :N(H(E> R)a
with R = crz[m +02HHT. Denote m = mo|; and C' := Cyp.
The posterior is, up to normalization,
p(a | z,y) o exp(—(z —m)TC~ (& —m) - §(y — Hz)'R™'(y — Hx)).
Expanding the exponent and collecting terms in x gives
% {xchlx —22'C 'm+m ' C'm+a2"H' R 'He — 2 "H'R 'y + yTRfly]
=-1 {xT(C_l +H'R'H)x — 22" (C 'm+ HTR_ly)} + (terms independent of ).

This is the quadratic form of a Gaussian in x with precision
A=C'+H'RH,
and natural parameter

= C'm+H 'R 1.

Therefore the posterior is Gaussian N ( Hposts Epost) with
Spos = A= (CTHHTRTH) T gy = Spon = (CT'+HTRTUH) T (CT A HTR ).
Restoring the original notation gives equation [9] O

A.2  PROOF OF EFFIEIENT LINEAR SOLVES IN EQ. (38)

Lemma A.1. Let H € R™*% have (thin) singular—value decomposition H = UV T with orthogonal
UcR™™m V e R™ gnd . = diag(sy, ..., s.) € R™*? where r = rank(H) and s; > --- >
sp > 0. For any scalars 11 > 0 and ny > 0 define

W =mHH" + 1, Y =I1+H W H.
Then
d
-1
157 /(5T +72) ) 1

1=

m

wl=uU diag( ut, vy l=v diag( vl a4

)
n1S74+n2 i=1 ’
(When i > r we set s;=0.)
Proof. (i) Inverting . Using the SVD,
W =nUSSTUT + npUIUT = UmEET +npI)UT.

Because U is orthogonal W1 is obtained by inverting the diagonal middle matrix: (7;XXT +
nel)~! = dlag( - 82 g )Z 1- Substituting yields the first identity in equatlon
(ii) Inverting Y. Write

Y=I+H W 'H=VETUT[U diag(

ms; =)UTJUSVT 41,

and simplify with UTU = I:

Y = V{Zleag( 2+?7 )E + ]I} vT.

-
Because & dlag(néiJr +
hence trivial to invert, giving the second identity in equatlon . [

)2 is diagonal with 7" entry , the bracketed matrix is diagonal and

13
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A.3  PROOF OF EQ. (0)

Proposition A.2. Let H € R™*% n; > 0 and 1y > 0. Define

W = m HH" + 1, Y = 1+ H W™ 'H.
Foranyy € R™ and mg; € R? consider the strictly convex quadratic

2 -2 _
L(zo) = ||zo—mopl, + |lv— Hmon,l, [v]|Z—: = v WL,
Its unique minimiser is
iy = Y Y me + H W™y (15)

Proof. Expand L and take its gradient:

Vi L = 2(&g —mop) — 2H'W ™y — Hio).
Setting Vz, L = 0 gives the normal equation

(I+H W' H)zo = moi +H W™y, thatis, Y @ = mo, + H'W ™ 'y.

Because 7, > 0 implies W = 0, we have W~! = Oandhence Y =1+ H'W~'H = 0; thus Y is
invertible and equation T3] follows.

Finally, the Hessian of £ is 2Y" - 0, so £ is strictly convex and the stationary point equation [I3]is
indeed its unique global minimiser.

A.4 PROOF OF REMARKI[I]

Proof. Asne =0,

vy = (n1+HH) " (nymoy, + H'y) . (16)

To analyze the limit as 7; — 0, decompose the space into two orthogonal components:

* The range (or row space) of H, on which HTH acts as the identity.

» Its nullspace, on which HT H is zero.

Let
P=H'H, (17)

which is the orthogonal projection onto the row space of H. Then any vector v can be decomposed as
v=Pv+ (I - P)v. (18)

Notice that H Ty lies in the row space (i.e. P Hy = H'y) and that my|¢ can be decomposed as
mope = Pmope + (I — P)mgj. (19)

Since the eigenvalues of P are O and 1, the matrix n; [ + P has eigenvalues 7; (on the nullspace of
P) and 1 + 7, (on the row space). Hence, its inverse acts as:

 Multiplication by 1/7; on the nullspace,

* Multiplication by 1/(1 + 71) on the row space.

Thus, we have

1
(771 (I—- P)m0|t). (20)

_ 1
(mI+P)~" (H'y 4+ nm1mop) = —— (H'y +m Pmgy) + -

1+e€
Simplify this to obtain

1 m
H'y +
Ttm Y 14
Now, taking the limit as 7; — O:

ng‘t + (I — P)mo‘t. (21)

14
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1
1+m

— 1,

1
* Ty 0.

Therefore, the limit becomes

lim xf = H'y + (I — P)moy;. (22)
n1—0

Recalling that P = H T H, we rewrite this as
H'y + mo;, — H Hmop, = moyy + H' (y — Hmoy,). (23)
Thus, in the limit where n; — 0, we indeed have

al = mope + H' (y — Hmoye). (24)

This shows that, as the relative measurement noise ¢ becomes much smaller compared to the prior
uncertainty r;, the posterior expectation is the projection of Zf onto the subspace {z : Hz = y}. O

B ADDITIONAL METHOD DETAILS

B.1 ADDRESSING GAUSSIAN NOISE

Consider noisy image restoration problems in the form of y = Hx + €,, where ¢, is the added noise.
Then the measurement y can be decomposed to the sum of clean measurement y**" := Hx and
measurement noise ¢,. Calculating x( leads to:

zy =Y mg; + H' W™y (25)
=mg;e + (Y =Dmg + Y THTW 1y (26)

where Y ~' HTW ~!¢, is the extra noise introduced into z;; and will be further introduced into x;_ a;.

To address Gaussian noise with known variance, we modify Eq. (7) and Eq. (2) as:

zy = mop + S [(Y ' = Dmgy + H W™ y] (27)
zo_np ~ N(a &y (t,2,y) + by, 1) (28)
Then z7j is:
xy = moy + Se[(Y ' = Dimgy + H W™y (29)
(30)
=moi + S (Y = Dmgy + Y T HT Wy 45,y T HTIW e, (31)

.— Aclean
= (130

Then the iteration of the sampling process is:

Tt—At = atx?)(ta x, y) + btmt + €new €new ™~ N(Ov (I)t) (32)
= atiglea" + by + atayY_lHTW_ley +€new (33)

“=€intro
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Suppose ¥y = Vdiag{ i1, , Ma} VT &, = Vdiag{vs1," - ya}V7T. Then the introduced noise
€inro = a0, Y “LHTW e, is still a Gaussian distribution: e ~ N(0, VD VT), with D; =
dia’g{dtlv e 7dtd}:

a? 05 s2NZ 540
dii =\ [(m +1)s7 + 7)2]27 7 (34)

O7 S = 07

The choice of and ®; need to ensure the total noise injected to x;_ A+ conforms the iteration in Eq. .

€new T €intro ™~ N(O» C?H) (35)

To construct €pey, we define a new diagonal matrix I'y(= diag{y1, - Vta}):

2 2 212
athSiAn‘

2
C; — , S 7é Oa
i = [(m1+1) 52 +12)” (36)
Ct27 S; = Oa

Now we can yield €pey by sampling from A/ (0, VT, VT) to ensure that €jypo + €new ~ N (0, c21).
We need to make sure )\;; guarantees the noise level of the introduced noise does not exceed the
pre-defined noise level c;, we also hope ), as close as 1 as possible. Therefore,

> ai oy S;
L, ) €t = T+l s+
ce((m+1)s;+m2) at Oy Si

)\ti = atoys; G < (m+1) s24n2° (37)
1, S; = 0.

In practice, we found that setting o, slightly larger than the true o, is beneficial, possibly because
the denoiser is more sensitive to excessive noise.

B.2 EFFICIENT CALCULATION VIA SVD DECOMPOSITION

Let H = UX VT with singular values sy, ..., s,. Then

Wl = Udiag( L )UT, y-l= Vdiag( (38)

1 T
N1ST+n2 1+s2/(n1s2+n2) )V ’
see Sec. for the proof. Hence both W ~1v and Y~ reduce to inexpensive diagonal scalings in the
SVD basis, avoiding the calculation of any explicit matrix inversion or square-root. The algorithm of
MAS for inverse problem is provided in Algorithm|[T}

As 11 < 0, W could be non-invertible. However, W = Udiag(n15%,--- , 152,72, -+ ,n2)UT.
Hence W is invertible if ;52 + g # 0 for every i. Even when 75 = 0 and 77; < 0 make W singular,
the update W Ty uses the Moore-Penrose pseudo-inverse W, which is always well-defined. The
pseudo-inverse acts like an ordinary inverse on the range of H and leaves the null-space untouched,
so the sampler remains stable. Empirically, small negative values (—0.5 < 7; < 0) often give the
visual boost without instability, as demonstrated in the ablation studies in Sec. E]

B.3 ADDRESSING UNKNOWN NOISE AND NON-DIFFERENTIABLE MEASUREMENTS
As the measurement noise €, is non-Gaussian or unknown, it’s difficult to ensure the total noise

introduced in z;_ Ay is N(0, cf]l). In this case, we calculate x(; using Eq. and update x;_ A, using
Eq. (2). Then zf is:
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afy =moe + [(Y ' = Dmgy, + H W™ y] (39)
(40)
=mop + (Y ' —Dmop + Y THTW g 4y T HTW e, (41)

— icolezm

where Y "1 H TW*IEy is the extra noise introduced into 2§ and will be further introduced into x;_ ay:

%k
Ti—At = 0o + by + €new,

ar TG + by + atY_lHTW_ley +énew; 42
e

*= €intro

where €,cw the noise added by diffusion process, which should be specifically designed to ensure

. . . . . . . . 2
1Ay 1s sampled from correct distribution as in Eq. , i.e., the total NOise €y + €new ~ N (0, c21).
However, as ¢, is unknown noise, we have no information about the introduced noise €jnyo. To
solve this problem, we made the following principles: (i) despite that fact that we cannot guarantee
€intro + €new ~ N (0, c2T), we still hope €ingo + €new is as close to (0, ¢21) as possible; (i) small 7;
and 7o are helpful to maximize the alignment to measurement y. Notably,

€inro = @Y THTW e, (43)

s
=q;Vdiag | —————— | U" 44
Grane ((771 +1)s7 + 772) v @

11 and 7o are two variables that control the noise level of €. In the implementation, we still sample
€new from Gaussian distribution A/(0, cf]l). Then the problem becomes how to select 17, and 75 to
meet the above 2 principles. For common image restoration tasks like SR, Deblurring, inpainting,
Colorization, The maximum eigenvalue value sp,,x = max{s;} <= 1. Therefore, adjusting 7 is
more likely to reduce the strength of €jpro-

Fix a tiny baseline 7; € [—0.4,0) U (0,0.1), for example, we can choose 72(t) = ka/c;, where
k is a constant wihch depends on the measurement noise €. This meets Principle (i) by bounding
the extra noise, and Principle (ii) by keeping both 7, 772 small enough to preserve measurement
alignment.

C LIMITATIONS

While MAS can, in principle, be generalized to nonlinear inverse problems, explicitly formulating
the likelihood term p(y | ) becomes challenging. Developing effective sampling techniques under
this setting is a promising direction for future research.

D IMPACT STATEMENT

Our method can improve image restoration under challenging noise and degradation conditions, which
may benefit applications in medical imaging, scientific visualization, cultural heritage preservation,
and general photography. However, it is important to note that as with many generative and restoration
models, our method could be misused for malicious image manipulation.

E PYTORCH-LIKE CODE IMPLEMENTATION

Here we provide a basic PyTorch-Like implementation of the calculation of z(; in Eq. (7), shown in
Listing

17
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Listing 1 PyTorch-like implementation of the calculation of z in Eq. (7).

@torch.no_grad()

def mas (
H, x0_hat, vy,
eta_1=-0.2, eta_2=0.0

bs, _, H_img, W_img = x0_hat.shape
x0_hat = x0_hat.view(bs, -1)

y = y.view( bs, -1) # measurement dim m
ut_y = H.Ut (y) # (bs, m)

singulars = H.singulars() # (m,)

nz = singulars > 0 # boolean mask
scalel = 1.0 / (singulars[nz] ** 2 % eta_l + eta_2)

ut_yl[:, nz] = ut_yl[:, nz] * scalel # broadcasting OK
u_y = H.U(ut_y) # (bs, m)

rhs = x0_hat + H.Ht (u_y) # (bs, d)

vt_rhs = H.Vt (rhs) # (bs, d)

scale2 = 1.0/ (1.0 + singulars[nz]+*+*2 / (singulars[nz]**2 *
< eta_l + eta_2))

vt_rhs[:, nz] = vt_rhs[:, nz] * scale2

x0_pm = H.V(vt_rhs) # (bs, d)

x0_pm = x0_pm.view(bs, 3, H_img, W_img)
return x0_pm

F EXPERIMENTAL DETAILS

F.1 DETAILS OF THE DEGRADATION OPERATORS

Super-resolution. We use the downsampler with bicubic kernel as the forward operator.

Deblurring. For deblurring experiments, We use uniform blur kernel to to implement blurring
operation.

Inpaint (Random). Random Inpainting uses a generated random mask where each pixel has a 70%
chance of being masked, following the settings in (Song et al.,[2023a)).

Inpaint (box). We use a fixed square mask of size 128 x 128 pixels placed at the center of the image.

Colorization. We simulate grayscale degradation by applying a fixed linear transformation to each
pixel using the matrix [§, %, ], replacing each RGB pixel with its average intensity.

F.2 DETAILS OF THE BASELINE MODELS

Sampler. Most experiments on diffusion models leverage DDIM (Song et al., |2020a) sampling.
DDRM (Kawar et al.}2022a). np = 1.0, n = 0.85 with DDIM sampler, as advised in the original
paper.

TIIGDM (Song et al., |2023b)). n = 1.0, with DDIM sampler, as advised in the original paper.
Reddiff (Mardani et al.,[2023). A = 0.25, with DDIM sampler, as advised in the original paper.
DDNM (Wang et al., [2022). n = 0.85, with DDIM sampler, as advised in the original paper.
DAPS (Zhang et al.,[2024). 7 = 0.01, with EDM sampler, as advised in the original paper.
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Table 5: Sampling time (Sec) per image of MAS on deblurring and super-resolution with FFHQ 256,
evaluated using a single NVIDIA A6000 48G GPU. We set NFE=20 and batch size = 20 for all of the
methods.

Method MAS IIGDM DDNM DDRM RED-Diff

Deblurring  0.128 0.278 0.127 0.127 0.119
SR (8x) 0.131 0.282 0.131 0.131 0.125

G ADDITIONAL RESULTS

G.1 COMPUTATIONAL TIME

The computational time of MAS on solving inverse problems is shown in Table[5] Our model achieves
similar efficiency to DDNM and DDRM, demonstrating that MAS introduces minimal overhead
while maintaining competitive runtime performance.

SR (4X) SR (8x) SR (16x) SR (32X) SR (64X) SR (128x)

Pooling
filter

Bicubic
filter

Figure 6: Super-resolution restoration over various strength of degradation. We set ; = —0.4 and
19 = 0 for all tasks. For sampling process, we set n = 0.6.

G.2 ADDING GAUSSIAN NOISE

We present the results of solving 8x super-resolution under varying levels of Gaussian noise in Fig.[7]
The visualizations demonstrate that MAS maintains strong restoration performance, even under high
noise conditions.

G.3 ADDING NON-DIFFERENTIABLE DEGRAGATION

We present the results of solving 8 x super-resolution with non-differentiable degradations, including
JPEG compression and quantization, in Fig.[8]

19



Under review as a conference paper at ICLR 2026

Figure 7: MAS for solving super-resolution (8 x) with various strength of Gaussian noise.

H LICENSES

FFHQ Dataset. We use the Flickr-Faces-HQ (FFHQ) dataset released by NVIDIA under the Creative
Commons BY-NC-SA 4.0 license. The dataset is intended for non-commercial research purposes
only. More details are available at: https://github.com/NVlabs/ffhg-dataset.

ImageNet Dataset. The ImageNet dataset is used under the terms of its academic research license.
Access requires agreement to ImageNet’s data use policy, and redistribution is not permitted. More
information is available at: https://image—net.org/download.

20


https://github.com/NVlabs/ffhq-dataset
https://image-net.org/download

Under review as a conference paper at ICLR 2026

(b) SR (8%) + Quantization

Figure 8: Additional visualization of super-resolution with unknown noise.
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