MEASUREMENT-ALIGNED SAMPLING FOR INVERSE PROBLEMS

Anonymous authors

Paper under double-blind review

ABSTRACT

Diffusion models provide a powerful way to incorporate complex prior information for solving inverse problems. However, existing methods struggle to correctly incorporate guidance from conflicting signals in the prior and measurement, and often failed to maximizing the consistency to the measurement, especially in the challenging setting of non-Gaussian or unknown noise. To address these issues, we propose Measurement-Aligned Sampling (MAS), a novel framework for linear inverse problem solving that flexibly balances prior and measurement information. MAS unifies and extends existing approaches such as DDNM, TMPD, while generalizing to handle both known Gaussian noise and unknown or non-Gaussian noise types. Extensive experiments demonstrate that MAS consistently outperforms state-of-the-art methods across a variety of tasks, while maintaining relatively low computational cost.

1 Introduction

Inverse problems are prevalent in image restoration (IR) tasks, including super-resolution, inpainting, deblurring, colorization, denoising, and JPEG restoration (Chung et al., 2022a; Kawar et al., 2022a; Saharia et al., 2022; Wang et al., 2022; Lugmayr et al., 2022; Mardani et al., 2023; Song et al., 2023b; Kawar et al., 2022b). Solving an inverse problem involves recovering an unknown original image $x_0 \in \mathbb{R}^n$ based on information from a prior distribution, $\pi(x_0)$, and noisy measurements $y \in \mathbb{R}^m$ generated through a forward model:

$$y = \mathcal{H}(x_0) + \epsilon. \tag{1}$$

Here $\epsilon \in \mathbb{R}^m$ represents measurement noise, $x_0 \in \mathbb{R}^d$ is drawn from data distribution $\pi_0(x_0)$, $\mathcal{H}: \mathbb{R}^d \mapsto \mathbb{R}^m$ is the measurement function, and $y \in \mathbb{R}^m$ denotes the degraded measurement or observed image. A useful motivating example is a high-resolution image x_0 , with a noisy degraded image y and a known corruption process.

Pretrained diffusion and flow models offer a prior distribution $\pi_0(x_0)$ that greatly aids in solving inverse problems. Methods such as DPS (Chung et al., 2022a), Π GDM (Song et al., 2023b), and TMPD (Boys et al., 2023) estimate conditional scores directly from the measurement model by leveraging score decomposition to guide each diffusion sampling step. In contrast, approaches like FPS (Dou & Song, 2024), DAPS (Zhang et al., 2024), MPGD (He et al., 2023), and optimization-based methods (Song et al., 2023a; Zhu et al., 2023; Li et al., 2024; Wang et al., 2024) align denoiser outputs directly with measurements, thereby avoiding backpropagation through the U-Net. Although DAPS achieves state-of-the-art performance—outperforming methods that require backpropagation—it still requires more than 100 gradient descent iterations per diffusion step, making it far more computationally expensive compared to methods such as DDNM (Wang et al., 2022) and DDRM (Kawar et al., 2022a). This highlights the promise of developing approaches that avoid both backpropagation through U-Net and excessive optimization steps, while still attaining state-of-the-art performance.

Moreover, the above approaches lack the ability to effectively handle unknown or non-Gaussian noise. In practical settings, noise frequently deviates from Gaussian assumptions—exhibiting characteristics like salt-and-pepper, periodic, or Poisson distributions—or is completely unknown. Additionally, the forward measurement operator may be uncertain or inaccurately specified. Effectively addressing

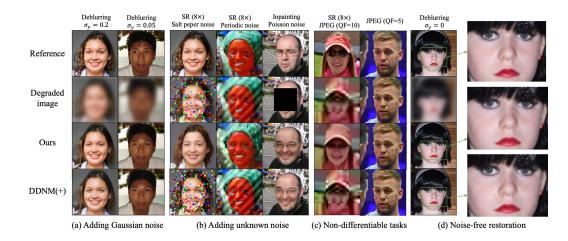


Figure 1: Solving various inverse problems using unconditional diffusion models. Our model demonstrates better robustness with unknown noise and strong Gaussian noise.

Table 1: Comparison of method applicability across different inverse problems.

Inverse Problem	Noise strength	DDNM	DDRM	ПСВМ	DAPS	RED-Diff	MAS (ours)
Linear + noise free Linear + Gaussian noise Linear + non-Gaussian noise	- Known Unknown	✓ ✓ X	✓ ✓ ×	✓ ✓ X	✓ ✓ X	✓ ✓ X	<i>J J</i>
JPEG / Quantization restoration JPEG / Quantization restoration	Known Unknown	X X	×	✓ ×	×	×	√ ✓

inverse problems under these more general and realistic conditions remains an open and challenging research area.

Our main contributions are summarized as follows:

- We propose Measurement-Aligned Sampling (MAS), a novel framework for solving linear inverse problems. MAS provides both probabilistic and optimization perspectives and generalizes approaches such as DDNM and TMPD for linear inverse problems. Furthermore, our proposed 'overshooting' technique achieves superior restoration quality compared to DDNM across various inverse problem scenarios.
- We develop new techniques that maximize consistency with the measurement, enabling robust handling of both Gaussian noise and unknown noise sources. Moreover, our novel parameterization scheme allows us to effectively handle noisy inverse problems with unknown or non-Gaussian noise structures and even non-differentiable measurements, such as JPEG restoration, without requiring explicit knowledge of the forward operator or noise level. The comparison of method applicability across different inverse problems is shown in Table 1.
- Our experiments show that MAS enables robust and efficient image restoration, consistently outperforming baselines across Gaussian, non-Gaussian, and non-differentiable degradations (see Fig. 1 and experiments in Sec. 5).

2 BACKGROUND

Given training dataset $\mathcal{D}=\{x_0^i\}_{i=1}^N$ from target distribution $\pi_0(x_0), x_0^i \in \mathbb{R}^d$, the goal of generative modeling is to draw new samples from π_0 . In the context of conditional generation, suppose that we have data samples from a joint distribution $(x_0^i, y) \sim \pi(x_0, y)$, where x_0 , y are dependent, and y could be class labels or text information, for example.

For conditional generative modeling, we seek to draw new samples from $\pi(x_0 \mid y)$ for a given condition y. Conditioned flows (Zheng et al., 2023) build a marginal probability path $p_{t|y}$ using a

mixture of interpolating densities: $p_{t|y}(x_t \mid y) = \int p_t(x_t \mid x_0)\pi(x_0 \mid y)dx_T$, where $p_t(\cdot \mid x_0)$ is a probability path interpolating between noise and a single data point x_T . In general, the conditional kernel $p_t(x_t \mid x_0)$ is given by a Gaussian distribution: $p_t(x_t \mid x_0) = \mathcal{N}(x_t; \alpha_t x_0, \sigma_t^2 \mathbb{I})$, where \mathcal{N} is the Gaussian kernel, α_t, σ_t are differentiable functions. Then we can sample from the conditional distribution $p_{0|y}(x_0 \mid y)$ by simulating a stochastic process $p_{t|y}(x_t \mid y)$ from time t = T to t = 0. Although different sampling methods can be chosen, generally, the iteration follows the form:

$$x_{t-\Delta t} \sim \mathcal{N}(a_t m_{0|t,y} + b_t x_t, c_t^2 \mathbb{I}). \tag{2}$$

where $m_{0|t,y} = \mathbb{E}[x_0 \mid x_t, y]$ is the idea conditional denoiser, a_t, b_t and c_t are parameters that depends on samplers. For instance, $x_{t-\Delta t} \sim \mathcal{N}(\alpha_{t-\Delta t} m_{0|t,y}, \sigma_{t-\Delta t} \mathbb{I})$ is a valid DDIM sampler. In the implementation of conditional diffusion models, a denoiser is trained to approximate $m_{0|t,y}$. However, when only an unconditional denoiser $m_{0|t} = \mathbb{E}[x_0 \mid x_t]$ is available, training-free conditional inference methods are employed.

Diffusion Posterior Sampling (DPS) and its variants. Given unconditional denoiser $\mathbb{E}[x_0 \mid x_t]$, training-free conditional inference methods enable the approximation of the ideal conditional denoiser $\mathbb{E}[x_0 \mid x_t, y]$ (Pokle et al., 2023):

$$\mathbb{E}[x_0 \mid x_t, y] = \mathbb{E}[x_0 \mid x_t] + \frac{\sigma_t^2}{\alpha_t} \nabla_{x_t} \log p(y \mid x_t). \tag{3}$$

Since $\nabla_{x_t} \log p(y \mid x_t)$ is generally intractable, various approaches have been developed to approximate it.

For linear inverse problems, where the forward model is given by: $y = Hx_0 + \epsilon$, $\epsilon \sim \mathcal{N}(0, \sigma_y^2 \mathbb{I})$. Tweedie Moment Projected Diffusion (TMPD) (Boys et al., 2023) assume $p(x_0 \mid x_t)$ as a Gaussian: $p(x_0 \mid x_t) \approx \mathcal{N}(m_{0\mid t}, C_{0\mid t})$, where $m_{0\mid t}(x_t) := \mathbb{E}[x_0 \mid x_t]$ is the ideal unconditional denoiser, $C_{0\mid t}(x_t) := \mathbb{E}[(x_0 - m_{0\mid t})(x_0 - m_{0\mid t})^T \mid x_t]$ is the covariance of $x_0 \mid x_t$. Then the posteroir mean $\mathbb{E}[x_0 \mid x_t, y]$ admits an explicit closed-form solution:

$$\mathbb{E}[x_0 \mid x_t, y] = m_{0|t} + C_{0|t}H^T (HC_{0|t}H^T + \sigma_y^2 \mathbb{I})^{-1} (y - Hm_{0|t})$$
(4)

The covariance $C_{0|t}$ could be calculated via gradient go through the denoiser: $C_{0|t} = \frac{\sigma_t^2}{\alpha_t} \nabla_{m_{0|t}}(x_t)$.

Optimization based methods. Unlike DPS guarantees that sampling is strictly from the conditional distribution, $p(x_0 \mid y)$, optimization-based approaches (Zhu et al., 2023; Li et al., 2024; Wang et al., 2024) place more emphasis on the alignment with the measurement and the prior, which takes the following iteration:

$$x_0^* = \arg\min_{x_0} \|x_0 - m_{0|t}\|^2 + \lambda_t \|y - \mathcal{H}(x_0)\|^2,$$
 (5a)

$$x_{t-\Delta t} \sim \mathcal{N}\left(a_t x_0^* + b_t x_t, c_t^2\right). \tag{5b}$$

where λ_t is a manually designed hyperparameter and $\mathcal{H}(\cdot)$ is the nonlinear forward operator. The iteration of optimization based methods could be seen as replacing $m_{0|t,y}$ in Eq. (2) to x_0^* in Eq. (5a).

3 METHODOLOGY

For optimization based methods, the data-consistency loss with respect to the measurement y is treated uniformly across all directions of the measurement space. However, for inverse problems it is often advantageous to introduce a weighting matrix that reflects the geometry of the forward operator (Tarantola, 2005). To this end, we propose Measurement-Aligned Sampling (MAS), which incorporates such a weighting into the optimization. As we demonstrate in Sec. 5, this alignment leads to significant improvements in reconstruction quality.

Algorithm 1 Measurement-Aligned Sampling (MAS) for inverse problems.

- 1: **Input:** measurement y, forward operator $H(\cdot)$, pretrained DM $\epsilon_{\theta}(\cdot)$, number of diffusion step N, diffusion schedule α_t and σ_t , objective parameters η_1 , η_2 .
- 2: Initialization: $x_N \sim \mathcal{N}(0, \mathbb{I})$
- 3: **for** n = N to 1 **do** 166
 - $\hat{x}_{0} \leftarrow [x_{n} \sigma_{n} \epsilon_{\theta}(x_{n}, n)] / \alpha_{n}$ $x'_{0} = Y^{-1} [\hat{x}_{0} + H^{\mathsf{T}} W^{-1} y]$ $x_{n-1} \sim \mathcal{N}(\alpha_{n-1} x'_{0}, \sigma_{n-1} \mathbb{I})$

 - 7: end for

163

164

165

167

168

170

171 172 173

174 175

176

177

178 179

181

182

183

185

186

187

188 189 190

191

192 193

194

195

196

197

199

200

201 202

203 204

205

206

207 208

209

210

211 212

213

214

215

8: Output x_0

MEASUREMENT ALIGNED SAMPLING

In this work, we generalize the objective in Eq. (5a) as

$$x_0^* = \arg\min_{x_0} \|x_0 - m_{0|t}\|^2 + \|y - Hx_0\|_{W^{-1}}^2.$$
(6)

 \triangleright Obtain predicted data $\mathbb{E}[x_0 \mid x_n]$

⊳ Forward diffusion step

 \triangleright Calculating posterior mean $\mathbb{E}[x_{\epsilon} \mid x_n, y]$

where $W := \eta_1 H H^\mathsf{T} + \eta_2 \mathbb{I}$ (with $\eta_1 \geq 0, \eta_2 \geq 0$) is the weighted matrix and serves as a metric that balances measurement fidelity and prior regularization, where $||z||_A^2 = z^T A z$.

When $\eta_1 = 0$ and $\eta_2 > 0$, corresponding to the classical Tikhonov (ridge) regularization, where η_2 controls the trade-off between fitting the measurements y and staying close to the prior $m_{0|t}$. When $\eta_1 > 0$ and $\eta_2 = 0$, the data term becomes weighted by $(HH^{\top})^{-1}$, a Mahalanobis-type distance that emphasizes alignment along directions where H is weak (small singular values), thereby regularizing ill-posed components of the inverse problem. The balance between η_1 and η_2 plays a crucial role in reconstruction quality, as we show in our experiments.

Finally, Eq. (6) admits a unique closed-form solution obtained by setting the gradient to zero:

$$x_0^* = Y^{-1}[m_{0|t} + H^{\mathsf{T}}W^{-1}y]$$
where $W := \eta_1 H H^{\mathsf{T}} + \eta_2 \mathbb{I}, \quad Y := \mathbb{I} + H^{\mathsf{T}}W^{-1}H,$ (7)

In practice, computing the inverse W^{-1} and Y^{-1} in Eq. (7) naively can be computationally expensive. Instead, one can employ singular value decomposition (SVD) for more efficient computation; see Sec. B.2 for details.

Remark 1 (Connection with DDNM (Wang et al., 2022)). As $\eta_2 = 0$ and $\eta_1 \to 0$, $x_0^* \to \tilde{x}_0^{\text{DDNM}} :=$ $m_{0|t} + H^{\dagger}(y - Hm_{0|t})$. Thus, in this limiting case, MAS recovers DDNM.

Remark 2 (Connection with optimization methods). For the case where $\eta_1 = 0, \eta_2 > 0$, Eq. (6) reproduces optimization approaches, such as Resample (Song et al., 2023a), DiffPIR (Zhu et al., 2023), DCDP (Li et al., 2024), DMPlug (Wang et al., 2024).

3.2 Probabilistic interpretation

We can interpret x_0^* in Eq. (7) as $\mathbb{E}[x_\epsilon \mid x_t, y]$, where $x_\epsilon \approx x_0$ with perturbation variance σ_ϵ^2 chosen to be sufficiently small so that $p(x_0 \mid x_\epsilon) \approx \mathcal{N}(x_\epsilon, \sigma_\epsilon^2 \mathbb{I})$. This formulation introduces an additional hyperprior, which—as demonstrated in our experiments—proves beneficial in addressing inverse problems.

Given the measurement model $p(y \mid x_0) = \mathcal{N}(Hx_0, \sigma_y^2\mathbb{I})$ and conditional $p(x_0 \mid x_\epsilon) = \mathcal{N}(x_\epsilon, \sigma_\epsilon^2\mathbb{I})$, the induced distribution over the measurement conditioned on x_{ϵ} takes the explicit form:

$$p(y \mid x_{\epsilon}) = \mathcal{N}(Hx_{\epsilon}, \, \sigma_{y}^{2} \mathbb{I} + \sigma_{\epsilon}^{2} HH^{\mathsf{T}}) \,. \tag{8}$$

Notably, the likelihood $p(y \mid x_{\epsilon})$ shares the same mean as $p(y \mid x_0)$, but with a generalized variance inflated by a term depending on H. Since both $p(y \mid x_{\epsilon})$ and $p(y \mid x_0)$ are Gaussian, the posterior distribution admits a closed-form expression. In particular, the posterior mean $\mathbb{E}[x_0 \mid x_t, y]$ can be computed via Bayesian linear regression, as stated in Prop. 3.1.

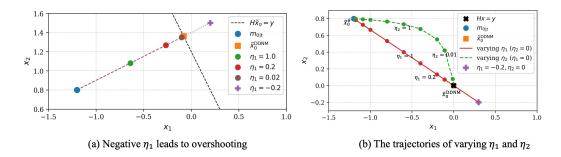


Figure 2: 2D illustration of the influence of parameters η_1 and η_2 . Dots represent x_0^* , calculated via Eq. (7). (a) Parameter η_1 controls the trade-off between $m_{0|t}$ and $\tilde{x}_0^{\text{DDNM}}$: as $\eta_1 \to \infty$, the posterior mean x_0^* approaches $m_{0|t}$; as $\eta_1 \to 0$, it converges to $\tilde{x}_0^{\text{DDNM}}$. (b) Adjusting η_2 alters the posterior trajectory differently from varying η_1 .

Proposition 3.1 (Bayesian Linear Regression). Suppose $p(y \mid x_{\epsilon}) = \mathcal{N}(Hx_{\epsilon}, R)$, $R := \sigma_y^2 \mathbb{I} + \sigma_{\epsilon}^2 H H^{\mathsf{T}}$ and $p(x_{\epsilon} \mid x_t) \approx \mathcal{N}(m_{0|t}, C_{0|t})$. Then the posterior is Gaussian, with mean given by

$$\mathbb{E}[x_{\epsilon} \mid x_{t}, y] = \left(C_{0|t}^{-1} + H^{\mathsf{T}} R^{-1} H\right)^{-1} \left(C_{0|t}^{-1} m_{0|t} + H^{\mathsf{T}} R^{-1} y\right). \tag{9}$$

As we set $C_{0|t}=r_t^2\mathbb{I}$, $\eta_1:=\sigma_\epsilon^2/r_t^2$ and $\eta_2:=\sigma_y^2/r_t^2$, $\mathbb{E}[x_\epsilon\mid x_t,y]$ in Eq. (9) is equivalent to x_0^* in Eq. (7), which provides a probabilistic perspective for MAS.

Remark 3 (Connection to TMPD (Boys et al., 2023)). Setting $\sigma_{\epsilon} = 0$ reduces the posterior mean in Eq. (9) to that of TMPD in Eq. (4).

Remark 4 ('Overshooting' trick). Theoretically, $\eta_1 \geq 0$ since $\eta_1 \coloneqq \sigma_\epsilon^2/r_t^2$, however, the posterior mean in Eq. (7) allows negative η_1 . As illustrated in Fig. 2, negative η_1 produces an overshooting effect, drawing x_0^* even further toward alignment with the measurement y than prescribed by DDNM. Interestingly, in our experiments this overshooting effect leads to improved reconstruction quality. A more detailed discussion is provided in Sec. B.2.

4 MAXIMIZING THE CONSISTENCY FOR NOISY INVERSE PROBLEMS

4.1 Why previous methods failed to maximize the consistency?

DDNM highlighted that calculating the posterior sampling $\tilde{x}_0^{\text{DDNM}} = m_{0|t} + H^\dagger(y - H m_{0|t})$ can inadvertently introduce additional noise into x_t , if y is noisy. For instance, consider a simple forward model: $y = x_0 + \epsilon_y$, where both H and H^\dagger are identity matrix, i.e., $H = H^\dagger = \mathbb{I}$, then $\tilde{x}_0^{\text{DDNM}} = y = x_0 + \epsilon_y$. Here ϵ_y is the additional noise introduced to $\tilde{x}_0^{\text{DDNM}}$, and will be further introduced into $x_{t-\Delta t}$. We argue that this issue is not unique to DDNM, but may also arise in TMPD (Boys et al., 2023), DAPS (Zhang et al., 2024), as well as in optimization-based methods (Zhu et al., 2023; Li et al., 2024).

For MAS and under this same example, $y = x_0 + \epsilon_y$, calculating x_0^* (Eq. (7)) yields

$$x_0^* = m_{0|t} + \frac{y - m_{0|t}}{\eta_1 + \eta_2 + 1} = m_{0|t} + \frac{x_0 - m_{0|t}}{\eta_1 + \eta_2 + 1} + \frac{\epsilon_y}{\eta_1 + \eta_2 + 1},\tag{10}$$

where $\epsilon_y/(\eta_1+\eta_2+1)$ is the additional noise introduced to x_0^* . A delicate balance arises from the fact that increasing either η_1 or η_2 will not only reduce the influence of the (unknown) noise term ϵ_y , but also reduce the consistency with the measurement y in general. To address this issue, we propose two approaches for addressing known Gaussian noise (Sec. 4.2) and unknown noise Sec. 4.3.

4.2 Addressing Gaussian noise with known variance

To handle Gaussian noise with known variance and $H = \mathbb{I}$, we modify Eq. (10) and Eq. (2) as:

Figure 3: The sample process of solving inverse problems with unknown noise, where $\hat{x}_0^{\theta} \approx m_{0|t}$ is the denoising output. Here we set $\eta_1 = 0$ and $\eta_2 = 0.5 a_t/c_t$.

$$x_0^* = m_{0|t} + \lambda_t \frac{y - m_{0|t}}{\eta_1 + \eta_2 + 1}, \quad x_{t-\Delta t} \sim \mathcal{N}(a_t \tilde{x}_0 + b_t x_t, \gamma_t \mathbb{I}). \tag{11}$$

Here λ_t and γ_t are two parameters that can control the total noise introduced to $x_{t-\Delta t}$. In our work, we adopt similar two principles as DDNM+ (Wang et al., 2022) for handling Gaussian noise: (i) the total noise introduced in $x_{t-\Delta t}$ should be $\mathcal{N}(0,c_t^2\mathbb{I})$ to conform to the correct distribution of $x_{t-\Delta t}$ in Eq. (2); (ii) λ_t should be as close to 1 as possible to maximize the preservation of x_0^* . As $\epsilon_y \sim \mathcal{N}(0,\sigma_y^2\mathbb{I})$, principle (i) and principle (ii) are equivalent to:

$$\left(\frac{a_t \lambda_t \sigma_y}{\eta_1 + \eta_2 + 1}\right)^2 + \gamma_t = c_t^2, \quad \lambda_t = \begin{cases} 1, & c_t \ge \frac{a_t \sigma_y}{\eta_1 + \eta_2 + 1} \\ \frac{c_t (\eta_1 + \eta_2 + 1)}{a_t \sigma_y}, & c_t < \frac{a_t \sigma_y}{\eta_1 + \eta_2 + 1} \end{cases}$$
(12)

Derivations for more general forms of H can be found in Sec. B. Note that the revision does not introduce additional parameters.

4.3 Addressing unknown noise and non-differentiable measurements

Addressing unknown noise or non-Gaussian noise. When the measurement noise σ_y is non-Gaussian or unknown, it becomes difficult to ensure that the total noise in $x_{t-\Delta t}$ follows the desired distribution $\mathcal{N}(0,c_t^2\mathbb{I})$, To address this, we continue to sample $x_{t-\Delta t}$ using Eq. (2). Next, the noise introduced to $x_{t-\Delta t}$ is the sum of two components:

$$\epsilon_{\text{ng}} = (a_t \lambda_t \epsilon_y) / (\eta_1 + \eta_2 + 1), \quad \epsilon_g \sim \mathcal{N}(0, c_t^2 \mathbb{I}).$$
 (13)

Here ϵ_{ng} is related to the noise introduced by unknown noise ϵ_y , while ϵ_g is the noise added by the diffusion process. To minimize the effect of unknown noise ϵ_{ng} , it is desirable for $\eta_1+\eta_2+1$ to be sufficiently large. However, smaller values of η_1 and η_2 result in better consistency with the measurement y, as illustrated in Fig. 2. To balance this trade-off, we propose using a small $\eta_1+\eta_2$ during the early stages of sampling to fully exploit measurement information. As sampling progresses, $\eta_1+\eta_2$ should be gradually increased to suppress the impact of ϵ_{ng} . The underlying intuition is that, in the early sampling stage, x_t is still highly noisy and $a_t\approx 0$, so the influence of ϵ_{ng} is negligible even when $\eta_1+\eta_2$ is small. As shown in Fig. 3, x_0^* is initially more aligned with the degraded observation, but progressively shifts toward $m_{0|t}$ as sampling evolves.

For a general degradation operator H, we recommend setting $\eta_2 = k a_t/c_t$, where k is a constant determined by the characteristics of the introduced noise. The rationale behind this design choice is further detailed in Sec. B.

Addressing non-differentiable measurements. For solving inverse problems with non-differentiable measurements such as JPEG restoration and quantization, the degraded images can be viewed as "noisy images" with unknown noise, modeled by $y=x+\epsilon_y$. In these scenarios, our proposed strategy naturally extends by treating the unknown degradations as implicit noise.

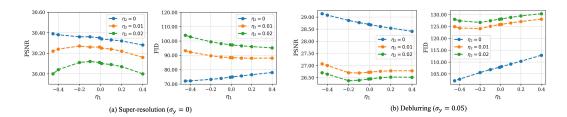


Figure 4: Ablation study of η_1 and η_2 on solving super-resolution and deblurring. We set NFE=20 for all tasks.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Dataset. We evaluate the effectiveness of our proposed approach on FFHQ 256×256 (Karras et al., 2019) and ImageNet 256×256 (Deng et al., 2009). Following DAPS (Zhang et al., 2024), we test on the same subset of 100 images for both datasets.

Pretrained models and baselines. We utilize the pre-trained checkpoint (Chung et al., 2022a) on the FFHQ dataset and the pre-trained checkpoint (Dhariwal & Nichol, 2021) on the Imagenet dataset. We compare our methods with the following baselines: DCDP (Li et al., 2024), FPS (Dou & Song, 2024), DiffPIR (Zhu et al., 2023), DDNM (Wang et al., 2022), DDRM (Kawar et al., 2022a), ΠGDM (Song et al., 2023b), RedDiff (Mardani et al., 2023), DAPS (Zhang et al., 2024).

Metrics. Following previous work (Chung et al., 2022a; Kawar et al., 2022a), we report Fréchet Inception Distance (FID) (Heusel et al., 2017), Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018), Peak Signal-to-Noise Ratio (PSNR), and Structural SIMilarity index (SSIM).

Tasks. (1) We evaluate performance on the following linear inverse problems: super-resolution (bicubic filter), deblurring (uniform kernel of size 9), inpainting (with a box mask), inpainting (with a 70% random mask), and colorization. (2) We consider two unknown noise types: salt-and-pepper noise (10% pixels set randomly to ± 1) and periodic noise (sinusoidal pattern with amplitude 0.2 and frequency 5). (3) We address JPEG restoration with quality factors QF = 2 and QF = 5. (4). For quantization, we consider the challenging case of 2-bit quantization.

5.2 ABLATION STUDY

Ablation Study on η_1 and η_2 . We conduct ablation studies on parameters η_1 and η_2 using two inverse problems: super-resolution (noise-free, $\epsilon_y=0$) and deblurring (noisy, $\epsilon_y\sim\mathcal{N}(0,\sigma_y^2\mathbb{I})$). Results presented in Fig. 4 demonstrate that for noise-free super-resolution, the highest PSNR and lowest FID scores are achieved by setting $\eta_2=0$ and a negative $\eta_1=-0.45$. This indicates that appropriate "overshooting" enhances restoration quality. For the noisy deblurring task, negative η_2 yields an improvement of more than 0.5 in PSNR and a reduction of over 5 in FID, further confirming the benefit of overshooting.

5.3 IMAGE RESTORATION

Inverse problems with Gaussian noise (known variance). Quantitative results for inverse problems with Gaussian noise of known variance are shown in Table 2. MAS consistently demonstrates superior performance across most tasks, notably achieving significantly higher PSNRs. The table summarizes 5 tasks, 4 restoration quality metrics, and 2 datasets, resulting in a total of 40 evaluations. MAS demonstrates superior performance in 29 out of the 40 cases. Notably, MAS achieves improvements of more than 1 dB in 5 out of 10 instances.

Inverse Problems with Non-Gaussian Noise (Unknown Strength). Quantitative evaluations for linear inverse problems with unknown, non-Gaussian noise are presented in Table 3. MAS consistently outperforms baseline methods, highlighting the effectiveness of our approach in handling unknown noise conditions.

Table 2: Quantitative evaluation of solving image restoration FFHQ (left) and ImageNet (right), with Gaussian noise (known variance, $\sigma_y = 0.05$).

Task	Method		FF	HQ	ImageNet				
lask	Method	PSNR ↑	SSIM ↑	LPIPS ↓	FID ↓	PSNR ↑	SSIM ↑	LPIPS ↓	FID ↓
	DPS	25.86	0.753	0.269	81.07	21.13	0.489	0.361	106.32
	DDRM	26.58	0.782	0.282	79.25	22.62	0.521	0.324	103.85
	DDNM	28.03	0.795	0.197	64.62	23.96	0.604	0.475	98.62
	DCDP	28.66	0.807	0.178	53.81	_	_	_	_
SR 4×	FPS-SMC	28.42	0.813	0.204	49.25	24.82	0.703	0.313	97.51
	DiffPIR	26.64	_	0.260	65.77	23.18	-	0.371	106.32
	RED-Diff	28.63	0.748	0.288	126.78	25.43	0.639	0.336	153.37
	DAPS	29.07	0.818	0.177	51.44	25.89	0.694	0.276	83.57
	MAS	30.56	0.865	0.131	61.38	27.20	0.751	0.215	88.61
	DPS	22.51	0.792	0.209	61.27	18.94	0.722	0.257	126.52
Innaint (Box)	DDRM	22.26	0.801	0.207	78.62	18.63	0.733	0.254	116.37
	DDNM	24.47	0.837	0.235	46.59	21.64	0.748	0.319	103.97
Inpaint (Box)	DCDP	23.89	0.760	0.163	45.23	_	-	_	_
	FPS-SMC	24.86	0.823	0.146	48.34	22.16	0.726	0.208	111.58
	RED-Diff	24.68	0.767	0.175	86.78	21.32	0.728	0.247	123.55
	DAPS	24.07	0.814	0.133	43.10	21.43	0.725	0.214	109.85
	MAS	24.95	0.879	0.082	37.67	21.15	0.489 0.361 0.521 0.324 0.604 0.475 - 0.703 0.694 0.276 0.751 0.215 0.722 0.257 0.733 0.254 0.748 0.319 - - 0.726 0.208 0.728 0.247 0.725 0.214 0.817 0.168 0.745 0.297 0.841 0.191 - - 0.701 0.316 0.753 0.226 0.775 0.135 0.838 0.113 0.630 0.261 0.711 0.267 0.616 0.293 0.700 0.295 0.884 0.271 0.819 0.346 0.782 0.368 0.830 0.323	95.96	
	DPS	25.46	0.823	0.203	69.20	23.52	0.745	0.297	87.53
	DDNM	29.91	0.817	0.121	44.37	31.16	0.841	0.191	63.84
	DCDP	30.69	0.842	0.142	52.51	_			_
Inpaint (Random)	FPS-SMC	28.21	0.823	0.261	61.23	24.52	SNR↑ SSIM↑ I 21.13	0.316	79.12
	RED-Diff	29.73	0.814	0.200	104.19	27.04			92.24
	DAPS	31.12	0.844	0.098	32.17	28.44	0.775	0.135	54.25
	MAS	33.10	0.923	0.073	34.75	29.05	0.838	0.113	30.19
	DDNM	26.58	0.704	0.210	68.83	25.69			83.63
Deblurring (Uniform)	DDRM	29.19	0.835	0.172	87.12	26.31			118.36
	DAPS	28.92	0.758	0.204	76.57	25.43			103.55
	MAS	30.58	0.857	0.174	103.88	26.25	0.700	0.295	141.58
	DDNM	24.83	0.868	0.244	85.15	22.57			87.48
	DDRM	23.27	0.881	0.250	100.48	21.12			103.39
Color	RED-Diff	24.21	0.785	0.304	107.64	22.18			104.40
	DAPS	23.92	0.825	0.263	88.09	22.13			89.30
	MAS	24.23	0.919	0.187	72.33	22.66	0.886	0.258	83.17

Table 3: Quantitative evaluation of solving linear inverse problems with non-Gaussian noise (unknown strength).

Task	Method		Salt pep	er noise		Periodic noise				
Task	Method	PSNR ↑	SSIM ↑	LPIPS ↓	FID ↓	PSNR ↑	SSIM ↑	LPIPS ↓	FID ↓	
	DDNM	13.02	0.289	0.710	377.54	18.61	0.492	0.495	268.36	
	DDRM	16.06	0.506	0.629	351.69	19.74	0.545	0.463	218.38	
SR 8×	ПСОМ	17.36	0.476	0.569	309.73	18.12	0.449	0.434	163.41	
	RED-Diff	14.21	0.357	0.668	342.09	19.47	0.596	0.416	224.07	
	MAS (ours)	20.05	0.605	0.390	129.80	20.10	0.591	0.395	137.57	
	DDNM	15.55	0.248	0.533	247.99	18.60	0.621	0.341	147.80	
	DDRM	20.27	0.599	0.350	142.01	18.74	0.589	0.423	199.14	
Inpaint (Box)	ПGDM	19.30	0.665	0.297	100.07	18.32	0.601	0.349	150.49	
	RED-Diff	15.75	0.287	0.523	255.85	19.13	0.638	0.338	159.99	
	MAS (ours)	22.78	0.723	0.244	90.15	19.13	0.581	0.407	138.56	

Inverse problems with non-differentiable measurements. MAS is also capable of solving inverse problems with non-differentiable measurements, such as JPEG restoration and quantization. Results in Table 4 and Fig. 5 show that MAS achieves state-of-the-art performance without relying on the forward operator or knowledge of the degradation strength.

Computational time analysis. The computational efficiency of MAS is comparable to DDNM and substantially higher than DAPS. For example, on the SR task using the FFHQ-256 dataset with 200 diffusion steps, the non-parallel single-image sampling time for both DDNM and MAS is only 8 seconds per image, whereas DAPS requires 67 seconds (test were conducted on the same NVIDIA A6000 GPU).

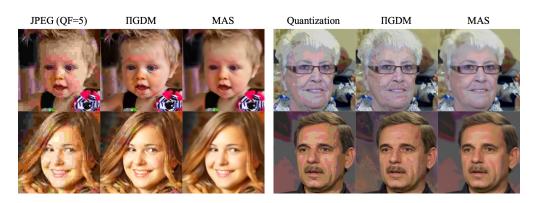


Figure 5: Results on JPEG (QF=5) and quantization restoration.

Table 4: Quantitative evaluation of solving JPEG restoration and Quantization. We set k=1.0 for QF = 5 and k=3.0 for QF = 2, and k=0.5 for quantization. Both IIGDM and MAS use NFE = 20, which yields the best performance (among NFE = 20 and NFE = 100). Notably, our method (MAS) does not require access to the forward operator or the strength of degration.

Method	JPEG Restoration (QF = 5)			JPEG Restoration (QF = 2)				Quantization (number of bits = 2)				
1,1011104	PSNR ↑	SSIM↑	LPIPS ↓	FID↓	PSNR ↑	SSIM ↑	LPIPS ↓	FID↓	PSNR ↑	SSIM↑	LPIPS ↓	FID ↓
ΠGDM MAS (ours)	25.78 26.30	0.750 0.787	0.241 0.281	89.82 101.24	22.92 23.72	0.653 0.772	0.0	112.27 114.85	29.98 28.97	0.823 0.837	0.185 0.196	124.57 69.61

6 RELATED WORK

Diffusion models have also been successfully applied to linear inverse problems, including, compressed-sensing MRI (CS-MRI), and computed tomography (CT) (Kadkhodaie & Simoncelli, 2021; Song et al., 2020b; Chung et al., 2022b; Kawar et al., 2022a; Song et al., 2021). They have also been extended to non-linear inverse problems such as Fourier phase retrieval, nonlinear deblurring, HDR, and JPEG restoration (Chung et al., 2022a; Song et al., 2023b; Chung et al., 2023; Mardani et al., 2023).

Methods to solve inverse problems include linear projection methods (Wang et al., 2022; Kawar et al., 2022a; Dou & Song, 2024), Monte Carlo sampling (Wu et al., 2023; Phillips et al., 2024), variational inference (Feng et al., 2023; Mardani et al., 2023; Janati et al., 2024), optimization-based approaches (Song et al., 2023a; Zhu et al., 2023; Li et al., 2024; Wang et al., 2024; Alkhouri et al., 2024; He et al., 2023), and Diffusion Posterior Sampling (DPS) (Zhang et al., 2024; Chung et al., 2022a; Song et al., 2023c; Yu et al., 2023; Rout et al., 2024; Yang et al., 2024; Bansal et al., 2023; Boys et al., 2023; Song et al., 2023b; Ho & Salimans, 2022). Besides, InverseBench (Zheng et al., 2025) presents a benchmark for critical scientific applications, which present structural challenges that differ significantly from natural image restoration tasks.

7 Conclusion

MAS improves upon existing methods by explicitly aligning the sampling process with measurement data, offering a broader optimization perspective that generalizes approaches like DDNM and DAPS. Beyond the noise-free case, MAS can be extended to: (1) known Gaussian noise, (2) unknown or non-Gaussian noise through adaptive parameterization, and (3) non-differentiable degradations (e.g., JPEG) by decoupling the forward operator from sampling. Extensive experiments show that MAS consistently outperforms state-of-the-art methods across a wide range of inverse problems. While MAS can handle non-differentiable measurements like JPEG restoration, it does not support general non-linear inverse problems, it's also promising to 'calibrate' the noise introduced into x_t , such that maximizing the consistency to measurement.

REPRODUCIBILITY STATEMENT

All code and instructions necessary to reproduce our experiments are anonymously available at https://anonymous.4open.science/r/MAS_linear-8C3C. We provide a PyTorch-like implementation of the calculation of x_0^* in Eq. (7), included in Sec. E.

ETHICS STATEMENT

This work does not present any foreseeable ethical issues.

References

- Ismail Alkhouri, Shijun Liang, Cheng-Han Huang, Jimmy Dai, Qing Qu, Saiprasad Ravishankar, and Rongrong Wang. Sitcom: Step-wise triple-consistent diffusion sampling for inverse problems. *arXiv preprint arXiv:2410.04479*, 2024.
- Arpit Bansal, Hong-Min Chu, Avi Schwarzschild, Soumyadip Sengupta, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Universal guidance for diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 843–852, 2023.
- Benjamin Boys, Mark Girolami, Jakiw Pidstrigach, Sebastian Reich, Alan Mosca, and Omer Deniz Akyildiz. Tweedie moment projected diffusions for inverse problems. *Transactions on Machine Learning Research*, 2023.
- Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L Klasky, and Jong Chul Ye. Diffusion posterior sampling for general noisy inverse problems. *arXiv preprint arXiv:2209.14687*, 2022a.
- Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, and Jong Chul Ye. Improving diffusion models for inverse problems using manifold constraints. *Advances in Neural Information Processing Systems*, 35:25683–25696, 2022b.
- Hyungjin Chung, Jeongsol Kim, Sehui Kim, and Jong Chul Ye. Parallel diffusion models of operator and image for blind inverse problems. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 6059–6069, 2023.
- Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*, pp. 248–255. Ieee, 2009.
- Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances in neural information processing systems*, 34:8780–8794, 2021.
- Zehao Dou and Yang Song. Diffusion posterior sampling for linear inverse problem solving: A filtering perspective. In *The Twelfth International Conference on Learning Representations*, 2024.
- Berthy T Feng, Jamie Smith, Michael Rubinstein, Huiwen Chang, Katherine L Bouman, and William T Freeman. Score-based diffusion models as principled priors for inverse imaging. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 10520–10531, 2023.
- Yutong He, Naoki Murata, Chieh-Hsin Lai, Yuhta Takida, Toshimitsu Uesaka, Dongjun Kim, Wei-Hsiang Liao, Yuki Mitsufuji, J Zico Kolter, Ruslan Salakhutdinov, et al. Manifold preserving guided diffusion. *arXiv preprint arXiv:2311.16424*, 2023.
- Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in neural information processing systems*, 30, 2017.
- Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint arXiv:2207.12598*, 2022.

- Yazid Janati, Badr Moufad, Alain Durmus, Eric Moulines, and Jimmy Olsson. Divide-and-conquer posterior sampling for denoising diffusion priors. *Advances in Neural Information Processing Systems*, 37:97408–97444, 2024.
 - Zahra Kadkhodaie and Eero Simoncelli. Stochastic solutions for linear inverse problems using the prior implicit in a denoiser. *Advances in Neural Information Processing Systems*, 34:13242–13254, 2021.
 - Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 4401–4410, 2019.
 - Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration models. *Advances in Neural Information Processing Systems*, 35:23593–23606, 2022a.
 - Bahjat Kawar, Jiaming Song, Stefano Ermon, and Michael Elad. Jpeg artifact correction using denoising diffusion restoration models. *arXiv preprint arXiv:2209.11888*, 2022b.
 - Xiang Li, Soo Min Kwon, Shijun Liang, Ismail R Alkhouri, Saiprasad Ravishankar, and Qing Qu. Decoupled data consistency with diffusion purification for image restoration. *arXiv preprint arXiv:2403.06054*, 2024.
 - Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool. Repaint: Inpainting using denoising diffusion probabilistic models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 11461–11471, 2022.
 - Morteza Mardani, Jiaming Song, Jan Kautz, and Arash Vahdat. A variational perspective on solving inverse problems with diffusion models. *arXiv* preprint arXiv:2305.04391, 2023.
 - Angus Phillips, Hai-Dang Dau, Michael John Hutchinson, Valentin De Bortoli, George Deligiannidis, and Arnaud Doucet. Particle denoising diffusion sampler. *arXiv preprint arXiv:2402.06320*, 2024.
 - Ashwini Pokle, Matthew J Muckley, Ricky TQ Chen, and Brian Karrer. Training-free linear image inversion via flows. *arXiv preprint arXiv:2310.04432*, 2023.
 - Litu Rout, Yujia Chen, Abhishek Kumar, Constantine Caramanis, Sanjay Shakkottai, and Wen-Sheng Chu. Beyond first-order tweedie: Solving inverse problems using latent diffusion. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 9472–9481, 2024.
 - Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad Norouzi. Image super-resolution via iterative refinement. *IEEE transactions on pattern analysis and machine intelligence*, 45(4):4713–4726, 2022.
 - Bowen Song, Soo Min Kwon, Zecheng Zhang, Xinyu Hu, Qing Qu, and Liyue Shen. Solving inverse problems with latent diffusion models via hard data consistency. *arXiv preprint arXiv:2307.08123*, 2023a.
 - Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv* preprint arXiv:2010.02502, 2020a.
 - Jiaming Song, Arash Vahdat, Morteza Mardani, and Jan Kautz. Pseudoinverse-guided diffusion models for inverse problems. In *International Conference on Learning Representations*, 2023b.
 - Jiaming Song, Qinsheng Zhang, Hongxu Yin, Morteza Mardani, Ming-Yu Liu, Jan Kautz, Yongxin Chen, and Arash Vahdat. Loss-guided diffusion models for plug-and-play controllable generation. In *International Conference on Machine Learning*, pp. 32483–32498. PMLR, 2023c.
 - Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. *arXiv* preprint *arXiv*:2011.13456, 2020b.
 - Yang Song, Liyue Shen, Lei Xing, and Stefano Ermon. Solving inverse problems in medical imaging with score-based generative models. *arXiv* preprint arXiv:2111.08005, 2021.

- Albert Tarantola. Inverse problem theory and methods for model parameter estimation. SIAM, 2005.
 - Hengkang Wang, Xu Zhang, Taihui Li, Yuxiang Wan, Tiancong Chen, and Ju Sun. Dmplug: A plug-in method for solving inverse problems with diffusion models. *Advances in Neural Information Processing Systems*, 37:117881–117916, 2024.
 - Yinhuai Wang, Jiwen Yu, and Jian Zhang. Zero-shot image restoration using denoising diffusion null-space model. *arXiv preprint arXiv:2212.00490*, 2022.
 - Luhuan Wu, Brian Trippe, Christian Naesseth, David Blei, and John P Cunningham. Practical and asymptotically exact conditional sampling in diffusion models. *Advances in Neural Information Processing Systems*, 36:31372–31403, 2023.
 - Lingxiao Yang, Shutong Ding, Yifan Cai, Jingyi Yu, Jingya Wang, and Ye Shi. Guidance with spherical gaussian constraint for conditional diffusion. *arXiv* preprint arXiv:2402.03201, 2024.
 - Jiwen Yu, Yinhuai Wang, Chen Zhao, Bernard Ghanem, and Jian Zhang. Freedom: Training-free energy-guided conditional diffusion model. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 23174–23184, 2023.
 - Bingliang Zhang, Wenda Chu, Julius Berner, Chenlin Meng, Anima Anandkumar, and Yang Song. Improving diffusion inverse problem solving with decoupled noise annealing. *arXiv* preprint *arXiv*:2407.01521, 2024.
 - Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 586–595, 2018.
 - Hongkai Zheng, Wenda Chu, Bingliang Zhang, Zihui Wu, Austin Wang, Berthy T Feng, Caifeng Zou, Yu Sun, Nikola Kovachki, Zachary E Ross, et al. Inversebench: Benchmarking plug-and-play diffusion priors for inverse problems in physical sciences. *arXiv preprint arXiv:2503.11043*, 2025.
 - Qinqing Zheng, Matt Le, Neta Shaul, Yaron Lipman, Aditya Grover, and Ricky TQ Chen. Guided flows for generative modeling and decision making. *arXiv preprint arXiv:2311.13443*, 2023.
 - Yuanzhi Zhu, Kai Zhang, Jingyun Liang, Jiezhang Cao, Bihan Wen, Radu Timofte, and Luc Van Gool. Denoising diffusion models for plug-and-play image restoration. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 1219–1229, 2023.

A PROOFS

A.1 PROOF OF PROP. 3.1.

Proof. Let $x \equiv x_{\epsilon}$. The prior and likelihood are

$$p(x \mid x_t) = \mathcal{N}(m_{0\mid t}, C_{0\mid t}), \qquad p(y \mid x) = \mathcal{N}(Hx, R),$$

with
$$R = \sigma_y^2 I_m + \sigma_\epsilon^2 H H^\top$$
. Denote $m := m_{0|t}$ and $C := C_{0|t}$.

The posterior is, up to normalization,

$$p(x \mid x_t, y) \propto \exp\left(-\frac{1}{2}(x-m)^{\top}C^{-1}(x-m) - \frac{1}{2}(y-Hx)^{\top}R^{-1}(y-Hx)\right).$$

Expanding the exponent and collecting terms in x gives

$$\begin{split} & - \tfrac{1}{2} \Big[x^\top C^{-1} x - 2 x^\top C^{-1} m + m^\top C^{-1} m + x^\top H^\top R^{-1} H x - 2 x^\top H^\top R^{-1} y + y^\top R^{-1} y \Big] \\ & = - \tfrac{1}{2} \Big[x^\top (C^{-1} + H^\top R^{-1} H) x - 2 x^\top (C^{-1} m + H^\top R^{-1} y) \Big] + \text{(terms independent of } x \text{)}. \end{split}$$

This is the quadratic form of a Gaussian in x with precision

$$\Lambda = C^{-1} + H^{\top} R^{-1} H,$$

and natural parameter

$$\eta \ = \ C^{-1}m + H^{\top}R^{-1}y.$$

Therefore the posterior is Gaussian $\mathcal{N}(\mu_{\text{post}}, \, \Sigma_{\text{post}})$ with

$$\Sigma_{\text{post}} = \Lambda^{-1} = (C^{-1} + H^{\top} R^{-1} H)^{-1}, \qquad \mu_{\text{post}} = \Sigma_{\text{post}} \eta = (C^{-1} + H^{\top} R^{-1} H)^{-1} (C^{-1} m + H^{\top} R^{-1} y).$$

Restoring the original notation gives equation 9.

A.2 PROOF OF EFFIEIENT LINEAR SOLVES IN Eq. (38)

Lemma A.1. Let $H \in \mathbb{R}^{m \times d}$ have (thin) singular-value decomposition $H = U \Sigma V^{\mathsf{T}}$ with orthogonal $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{d \times d}$ and $\Sigma = \operatorname{diag}(s_1, \ldots, s_r) \in \mathbb{R}^{m \times d}$, where $r = \operatorname{rank}(H)$ and $s_1 \geq \cdots \geq s_r > 0$. For any scalars $\eta_1 \geq 0$ and $\eta_2 > 0$ define

$$W := \eta_1 H H^\mathsf{T} + \eta_2 \mathbb{I}, \qquad Y := \mathbb{I} + H^\mathsf{T} W^{-1} H.$$

Then

$$W^{-1} = U \operatorname{diag}\left(\frac{1}{\eta_1 s_i^2 + \eta_2}\right)_{i=1}^m U^\mathsf{T}, \qquad Y^{-1} = V \operatorname{diag}\left(\frac{1}{1 + s_i^2 / (\eta_1 s_i^2 + \eta_2)}\right)_{i=1}^d V^\mathsf{T}. \tag{14}$$

(When i > r we set $s_i = 0$.)

Proof. (i) Inverting W. Using the SVD,

$$W = \eta_1 U \Sigma \Sigma^{\mathsf{T}} U^{\mathsf{T}} + \eta_2 U \mathbb{I} U^{\mathsf{T}} = U (\eta_1 \Sigma \Sigma^{\mathsf{T}} + \eta_2 \mathbb{I}) U^{\mathsf{T}}.$$

Because U is orthogonal, W^{-1} is obtained by inverting the diagonal middle matrix: $(\eta_1 \Sigma \Sigma^\mathsf{T} + \eta_2 \mathbb{I})^{-1} = \mathrm{diag}(\frac{1}{\eta_1 s_1^2 + \eta_2})_{i=1}^m$. Substituting yields the first identity in equation 14.

(ii) Inverting Y. Write

$$Y = \mathbb{I} + H^{\mathsf{T}} W^{-1} H = V \Sigma^{\mathsf{T}} U^{\mathsf{T}} \left[U \operatorname{diag} \left(\frac{1}{\eta_1 s_i^2 + \eta_2} \right) U^{\mathsf{T}} \right] U \Sigma V^{\mathsf{T}} + \mathbb{I},$$

and simplify with $U^{\mathsf{T}}U = \mathbb{I}$:

$$Y = V \Big[\Sigma^{\mathsf{T}} \operatorname{diag} \Big(\frac{1}{\eta_1 s_i^2 + \eta_2} \Big) \Sigma + \mathbb{I} \Big] V^{\mathsf{T}}.$$

Because $\Sigma^{\mathsf{T}} \operatorname{diag}(\frac{1}{\eta_1 s_i^2 + \eta_2}) \Sigma$ is diagonal with i^{th} entry $\frac{s_i^2}{\eta_1 s_i^2 + \eta_2}$, the bracketed matrix is diagonal and hence trivial to invert, giving the second identity in equation 14.

A.3 PROOF OF Eq. (6)

Proposition A.2. Let $H \in \mathbb{R}^{m \times d}$, $\eta_1 \geq 0$ and $\eta_2 > 0$. Define

$$W = \eta_1 H H^\mathsf{T} + \eta_2 \mathbb{I}, \qquad Y = \mathbb{I} + H^\mathsf{T} W^{-1} H.$$

For any $y \in \mathbb{R}^m$ and $m_{0|t} \in \mathbb{R}^d$ consider the strictly convex quadratic

$$\mathcal{L}(x_0) = \|x_0 - m_{0|t}\|_2^2 + \|y - H\tilde{x}_0\|_{W^{-1}}^2, \qquad \|v\|_{W^{-1}}^2 = v^{\mathsf{T}}W^{-1}v.$$

Its unique minimiser is

$$\tilde{x}_0^* = Y^{-1} [m_{0|t} + H^\mathsf{T} W^{-1} y]. \tag{15}$$

Proof. Expand \mathcal{L} and take its gradient:

$$\nabla_{\tilde{x}_0} \mathcal{L} = 2(\tilde{x}_0 - m_{0|t}) - 2H^{\mathsf{T}} W^{-1}(y - H\tilde{x}_0).$$

Setting $\nabla_{\tilde{x}_0} \mathcal{L} = 0$ gives the normal equation

$$\left(\mathbb{I} + H^{\mathsf{T}} W^{-1} H\right) \tilde{x}_0 \ = \ m_{0|t} + H^{\mathsf{T}} W^{-1} y, \qquad \text{that is, } Y \, \tilde{x}_0 = m_{0|t} + H^{\mathsf{T}} W^{-1} y.$$

Because $\eta_2 > 0$ implies $W \succ 0$, we have $W^{-1} \succ 0$ and hence $Y = \mathbb{I} + H^\mathsf{T} W^{-1} H \succ 0$; thus Y is invertible and equation 15 follows.

Finally, the Hessian of \mathcal{L} is $2Y \succ 0$, so \mathcal{L} is strictly convex and the stationary point equation 15 is indeed its unique global minimiser.

A.4 PROOF OF REMARK 1.

Proof. As $\eta_2 = 0$,

$$x_0^* = (\eta \mathbb{I} + H^{\dagger} H)^{-1} (\eta_1 m_{0|t} + H^{\dagger} y).$$
 (16)

To analyze the limit as $\eta_1 \to 0$, decompose the space into two orthogonal components:

- The range (or row space) of H, on which $H^{\dagger}H$ acts as the identity.
- Its nullspace, on which $H^{\dagger}H$ is zero.

Let

$$P = H^{\dagger}H,\tag{17}$$

which is the orthogonal projection onto the row space of ${\cal H}.$ Then any vector ${\it v}$ can be decomposed as

$$v = Pv + (I - P)v. (18)$$

Notice that $H^{\dagger}y$ lies in the row space (i.e. $PH^{\dagger}y=H^{\dagger}y$) and that $m_{0|t}$ can be decomposed as

$$m_{0|t} = Pm_{0|t} + (I - P)m_{0|t}. (19)$$

Since the eigenvalues of P are 0 and 1, the matrix $\eta_1 I + P$ has eigenvalues η_1 (on the nullspace of P) and $1 + \eta_1$ (on the row space). Hence, its inverse acts as:

- Multiplication by $1/\eta_1$ on the nullspace,
- Multiplication by $1/(1+\eta_1)$ on the row space.

Thus, we have

$$(\eta_1 I + P)^{-1} \left(H^{\dagger} y + \eta_1 m_{0|t} \right) = \frac{1}{1 + \epsilon} \left(H^{\dagger} y + \eta_1 P m_{0|t} \right) + \frac{1}{\eta_1} \left(\eta_1 (I - P) m_{0|t} \right). \tag{20}$$

Simplify this to obtain

$$\frac{1}{1+\eta_1}H^{\dagger}y + \frac{\eta_1}{1+\eta_1}Pm_{0|t} + (I-P)m_{0|t}.$$
 (21)

Now, taking the limit as $\eta_1 \to 0$:

•
$$\frac{1}{1+n_1} \to 1$$
,

•
$$\frac{\eta_1}{1+\eta_1} \to 0$$
.

Therefore, the limit becomes

$$\lim_{n_1 \to 0} x_0^* = H^{\dagger} y + (I - P) m_{0|t}. \tag{22}$$

Recalling that $P = H^{\dagger}H$, we rewrite this as

$$H^{\dagger}y + m_{0|t} - H^{\dagger}H \, m_{0|t} = m_{0|t} + H^{\dagger}(y - Hm_{0|t}). \tag{23}$$

Thus, in the limit where $\eta_1 \to 0$, we indeed have

$$x_0^* = m_{0|t} + H^{\dagger} (y - H m_{0|t}). \tag{24}$$

This shows that, as the relative measurement noise ϵ becomes much smaller compared to the prior uncertainty r_t , the posterior expectation is the projection of \hat{x}_0^{θ} onto the subspace $\{x: Hx = y\}$. \square

B ADDITIONAL METHOD DETAILS

B.1 Addressing Gaussian noise

Consider noisy image restoration problems in the form of $y = Hx + \epsilon_y$, where ϵ_y is the added noise. Then the measurement y can be decomposed to the sum of clean measurement $y^{\text{clean}} := Hx$ and measurement noise ϵ_y . Calculating x_0^* leads to:

$$x_0^* = Y^{-1}[m_{0|t} + H^\mathsf{T}W^{-1}y]$$
 (25)

$$= m_{0|t} + (Y^{-1} - \mathbb{I})m_{0|t} + Y^{-1}H^TW^{-1}y$$
(26)

where $Y^{-1}H^TW^{-1}\epsilon_y$ is the extra noise introduced into x_0^* and will be further introduced into $x_{t-\Delta t}$. To address Gaussian noise with known variance, we modify Eq. (7) and Eq. (2) as:

$$x_0^* = m_{0|t} + \sum_t [(Y^{-1} - \mathbb{I})m_{0|t} + H^\mathsf{T} W^{-1} y]$$
 (27)

$$x_{t-\Delta t} \sim \mathcal{N}(a_t \tilde{x}_0^{\text{pe}}(t, x, y) + b_t x_t, \Phi_t \mathbb{I})$$
 (28)

Then x_0^* is:

$$x_0^* = m_{0|t} + \sum_t [(Y^{-1} - \mathbb{I})m_{0|t} + H^\mathsf{T} W^{-1} y]$$
(29)

$$= \underbrace{m_{0|t} + \Sigma_{t}(Y^{-1} - \mathbb{I})m_{0|t} + Y^{-1}H^{T}W^{-1}y^{\text{clean}}}_{:= \widehat{x}_{0}^{\text{clean}}} + \Sigma_{t}Y^{-1}H^{T}W^{-1}\epsilon_{y}$$
(31)

Then the iteration of the sampling process is:

$$x_{t-\Delta t} = a_t x_0^*(t, x, y) + b_t x_t + \epsilon_{\text{new}}, \quad \epsilon_{\text{new}} \sim \mathcal{N}(0, \Phi_t)$$
(32)

$$= a_t \tilde{x}_0^{\text{clean}} + b_t x_t + \underbrace{a_t \sigma_y Y^{-1} H^\mathsf{T} W^{-1} \epsilon_y}_{:=\epsilon_{t+1}} + \epsilon_{\text{new}}$$
(33)

Suppose $\Sigma_t = V \operatorname{diag}\{\lambda_{t1}, \cdots, \lambda_{td}\}V^T \Phi_t = V \operatorname{diag}\{\gamma_{t1}, \cdots, \gamma_{td}\}V^T$. Then the introduced noise $\epsilon_{\text{intro}} = a_t \sigma_y Y^{-1} H^T W^{-1} \epsilon_y$ is still a Gaussian distribution: $\epsilon_{\text{intro}} \sim \mathcal{N}(0, V D_t V^T)$, with $D_t = \operatorname{diag}\{d_{t1}, \cdots, d_{td}\}$:

$$d_{ti} = \begin{cases} \frac{a_t^2 \, \sigma_y^2 \, s_i^2 \lambda_{ti}^2}{\left[(\eta_1 + 1) \, s_i^2 + \eta_2 \right]^2}, & s_i \neq 0, \\ 0, & s_i = 0, \end{cases}$$
(34)

The choice of and Φ_t need to ensure the total noise injected to $x_{t-\Delta t}$ conforms the iteration in Eq. (2).

$$\epsilon_{\text{new}} + \epsilon_{\text{intro}} \sim \mathcal{N}(0, c_t^2 \mathbb{I})$$
 (35)

To construct ϵ_{new} , we define a new diagonal matrix $\Gamma_t (= diag\{\gamma_{t1}, \cdots \gamma_{td}\})$:

$$\gamma_{ti} = \begin{cases} c_t^2 - \frac{a_t^2 \, \sigma_y^2 \, s_i^2 \lambda_{ti}^2}{\left[(\eta_1 + 1) \, s_i^2 + \eta_2 \right]^2}, & s_i \neq 0, \\ c_t^2, & s_i = 0, \end{cases}$$
(36)

Now we can yield ϵ_{new} by sampling from $\mathcal{N}(0, V\Gamma_t V^T)$ to ensure that $\epsilon_{\text{intro}} + \epsilon_{\text{new}} \sim \mathcal{N}(0, c_t^2 \mathbb{I})$. We need to make sure λ_{ti} guarantees the noise level of the introduced noise does not exceed the pre-defined noise level c_t , we also hope λ_{ti} as close as 1 as possible. Therefore,

$$\lambda_{ti} = \begin{cases} 1, & c_t \ge \frac{a_t \sigma_y s_i}{(\eta_1 + 1) s_i^2 + \eta_2}, \\ \frac{c_t((\eta + 1) s_i^2 + \eta_2)}{a_t \sigma_y s_i}, & c_t < \frac{a_t \sigma_y s_i}{(\eta_1 + 1) s_i^2 + \eta_2}, \\ 1, & s_i = 0. \end{cases}$$
(37)

In practice, we found that setting σ_y slightly larger than the true σ_y is beneficial, possibly because the denoiser is more sensitive to excessive noise.

B.2 EFFICIENT CALCULATION VIA SVD DECOMPOSITION

Let $H = U\Sigma V^{\mathsf{T}}$ with singular values s_1, \ldots, s_n . Then

$$W^{-1} = U \operatorname{diag}\left(\frac{1}{\eta_1 s_i^2 + \eta_2}\right) U^{\mathsf{T}}, \qquad Y^{-1} = V \operatorname{diag}\left(\frac{1}{1 + s_i^2 / (\eta_1 s_i^2 + \eta_2)}\right) V^{\mathsf{T}}, \tag{38}$$

see Sec. A for the proof. Hence both $W^{-1}v$ and $Y^{-1}u$ reduce to inexpensive diagonal scalings in the SVD basis, avoiding the calculation of any explicit matrix inversion or square-root. The algorithm of MAS for inverse problem is provided in Algorithm 1.

As $\eta_1<0$, W could be non-invertible. However, $W=U\mathrm{diag}(\eta_1s_1^2,\cdots,\eta_1s_r^2,\eta_2,\cdots,\eta_2)U^T$. Hence W is invertible if $\eta_1s_i^2+\eta_2\neq 0$ for every i. Even when $\eta_2=0$ and $\eta_1<0$ make W singular, the update $W^\dagger y$ uses the Moore-Penrose pseudo-inverse W^\dagger , which is always well-defined. The pseudo-inverse acts like an ordinary inverse on the range of H and leaves the null-space untouched, so the sampler remains stable. Empirically, small negative values $(-0.5<\eta_1<0)$ often give the visual boost without instability, as demonstrated in the ablation studies in Sec. 5

B.3 Addressing unknown noise and non-differentiable measurements

As the measurement noise ϵ_y is non-Gaussian or unknown, it's difficult to ensure the total noise introduced in $x_{t-\Delta t}$ is $\mathcal{N}(0, c_t^2 \mathbb{I})$. In this case, we calculate x_0^* using Eq. (7) and update $x_{t-\Delta t}$ using Eq. (2). Then x_0^* is:

$$x_0^* = m_{0|t} + [(Y^{-1} - \mathbb{I})m_{0|t} + H^\mathsf{T}W^{-1}y]$$
(39)

(40)

$$= \underbrace{m_{0|t} + (Y^{-1} - \mathbb{I})m_{0|t} + Y^{-1}H^TW^{-1}y^{\text{clean}}}_{:= \widehat{x}_{c}^{\text{clean}}} + Y^{-1}H^TW^{-1}\epsilon_y$$

$$(41)$$

where $Y^{-1}H^TW^{-1}\epsilon_y$ is the extra noise introduced into x_0^* and will be further introduced into $x_{t-\Delta t}$:

$$x_{t-\Delta t} = a_t x_0^* + b_t x_t + \epsilon_{\text{new}},$$

$$= a_t \tilde{x}_0^{\text{clean}} + b_t x_t + \underbrace{a_t Y^{-1} H^{\mathsf{T}} W^{-1} \epsilon_y}_{:= \epsilon_{\text{intro}}} + \epsilon_{\text{new}},$$

$$(42)$$

where ϵ_{new} the noise added by diffusion process, which should be specifically designed to ensure $x_{t-\Delta t}$ is sampled from correct distribution as in Eq. (2), i.e., the total noise $\epsilon_{\text{intro}} + \epsilon_{\text{new}} \sim \mathcal{N}(0, c_t^2 \mathbb{I})$. However, as ϵ_y is unknown noise, we have no information about the introduced noise ϵ_{intro} . To solve this problem, we made the following principles: (i) despite that fact that we cannot guarantee $\epsilon_{\text{intro}} + \epsilon_{\text{new}} \sim \mathcal{N}(0, c_t^2 \mathbb{I})$, we still hope $\epsilon_{\text{intro}} + \epsilon_{\text{new}}$ is as close to $\mathcal{N}(0, c_t^2 \mathbb{I})$ as possible; (ii) small η_1 and η_2 are helpful to maximize the alignment to measurement y. Notably,

$$\epsilon_{\text{intro}} = a_t Y^{-1} H^{\mathsf{T}} W^{-1} \epsilon_v \tag{43}$$

$$= a_t V \operatorname{diag}\left(\frac{s_i}{(\eta_1 + 1)s_i^2 + \eta_2}\right) U^T \epsilon_y \tag{44}$$

 η_1 and η_2 are two variables that control the noise level of ϵ_{intro} . In the implementation, we still sample ϵ_{new} from Gaussian distribution $\mathcal{N}(0,c_t^2\mathbb{I})$. Then the problem becomes how to select η_1 and η_2 to meet the above 2 principles. For common image restoration tasks like SR, Deblurring, inpainting, Colorization, The maximum eigenvalue value $s_{\text{max}} = \max\{s_i\} <= 1$. Therefore, adjusting η_2 is more likely to reduce the strength of ϵ_{intro} .

Fix a tiny baseline $\eta_1 \in [-0.4, 0) \cup (0, 0.1)$, for example, we can choose $\eta_2(t) = ka_t/c_t$, where k is a constant which depends on the measurement noise ϵ_y . This meets Principle (i) by bounding the extra noise, and Principle (ii) by keeping both η_1 , η_2 small enough to preserve measurement alignment.

C LIMITATIONS

While MAS can, in principle, be generalized to nonlinear inverse problems, explicitly formulating the likelihood term $p(y \mid x_{\epsilon})$ becomes challenging. Developing effective sampling techniques under this setting is a promising direction for future research.

D IMPACT STATEMENT

Our method can improve image restoration under challenging noise and degradation conditions, which may benefit applications in medical imaging, scientific visualization, cultural heritage preservation, and general photography. However, it is important to note that as with many generative and restoration models, our method could be misused for malicious image manipulation.

E PYTORCH-LIKE CODE IMPLEMENTATION

Here we provide a basic PyTorch-Like implementation of the calculation of x_0^* in Eq. (7), shown in Listing 1.

940 941 942

943944945946

947 948

949 950

951

952

953

954

955 956

957

958959960961

962 963

964 965

966

967

968

969 970

971

Listing 1 PyTorch-like implementation of the calculation of x_0^* in Eq. (7).

```
919
       @torch.no_grad()
920 1
      def mas(
921 3
           H, x0_hat, y,
922 4
           eta_1=-0.2, eta_2=0.0
923 5
      ):
924 6
           bs, _, H_img, W_img = x0_hat.shape
           x0_hat = x0_hat.view(bs, -1)
925
                    = y.view(bs, -1)
                                                          # measurement dim m
           V
926 9
                  = H.Ut(y)
                                                          # (bs, m)
           singulars = H.singulars()
                                                          # (m,)
927 10
                   = singulars > 0
           n z.
                                                         # boolean mask
928 11
929 12
                      = 1.0 / (singulars[nz] ** 2 * eta_1 + eta_2)
           scale1
           ut_y[:, nz] = ut_y[:, nz] * scale1
   13
                                                         # broadcasting OK
930 14
                = H.U(ut_y)
                                                          # (bs, m)
931 15
           rhs
                      = x0_hat + H.Ht(u_y)
                                                         # (bs, d)
932 16
           vt_rhs
                      = H.Vt(rhs)
                                                       # (bs, d)
933 17
                   = H.Vt(rns)
= 1.0 / (1.0 + singulars[nz]**2 / (singulars[nz]**2 *
   18
           scale2
934
           \rightarrow eta_1 + eta_2))
935 19
           vt_rhs[:, nz] = vt_rhs[:, nz] * scale2
           x0_pm = H.V(vt_rhs)
936 20
                                                        # (bs, d)
937 21
           x0_pm = x0_pm.view(bs, 3, H_img, W_img)
938 22
           return x0_pm
939
```

F EXPERIMENTAL DETAILS

F.1 DETAILS OF THE DEGRADATION OPERATORS

Super-resolution. We use the downsampler with bicubic kernel as the forward operator.

Deblurring. For deblurring experiments, We use uniform blur kernel to to implement blurring operation.

Inpaint (**Random**). Random Inpainting uses a generated random mask where each pixel has a 70% chance of being masked, following the settings in (Song et al., 2023a).

Inpaint (box). We use a fixed square mask of size 128×128 pixels placed at the center of the image.

Colorization. We simulate grayscale degradation by applying a fixed linear transformation to each pixel using the matrix $\left[\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right]$, replacing each RGB pixel with its average intensity.

F.2 Details of the baseline models

Sampler. Most experiments on diffusion models leverage DDIM (Song et al., 2020a) sampling.

DDRM (Kawar et al., 2022a). $\eta_B = 1.0, \eta = 0.85$ with DDIM sampler, as advised in the original paper.

 Π GDM (Song et al., 2023b). $\eta = 1.0$, with DDIM sampler, as advised in the original paper.

Reddiff (Mardani et al., 2023). $\lambda = 0.25$, with DDIM sampler, as advised in the original paper.

DDNM (Wang et al., 2022). $\eta = 0.85$, with DDIM sampler, as advised in the original paper.

DAPS (Zhang et al., 2024). $\tau = 0.01$, with EDM sampler, as advised in the original paper.

Table 5: Sampling time (Sec) per image of MAS on deblurring and super-resolution with FFHQ 256, evaluated using a single NVIDIA A6000 48G GPU. We set NFE=20 and batch size = 20 for all of the methods.

Method	MAS	ПGDМ	DDNM	DDRM	RED-Diff
Deblurring	0.128	0.278	0.127	0.127	0.119
SR (8×)	0.131	0.282	0.131	0.131	0.125

G ADDITIONAL RESULTS

G.1 COMPUTATIONAL TIME

The computational time of MAS on solving inverse problems is shown in Table 5. Our model achieves similar efficiency to DDNM and DDRM, demonstrating that MAS introduces minimal overhead while maintaining competitive runtime performance.

Figure 6: Super-resolution restoration over various strength of degradation. We set $\eta_1 = -0.4$ and $\eta_2 = 0$ for all tasks. For sampling process, we set $\eta = 0.6$.

G.2 Adding Gaussian noise

We present the results of solving $8 \times$ super-resolution under varying levels of Gaussian noise in Fig. 7. The visualizations demonstrate that MAS maintains strong restoration performance, even under high noise conditions.

G.3 Adding non-differentiable degragation

We present the results of solving $8 \times$ super-resolution with non-differentiable degradations, including JPEG compression and quantization, in Fig. 8.

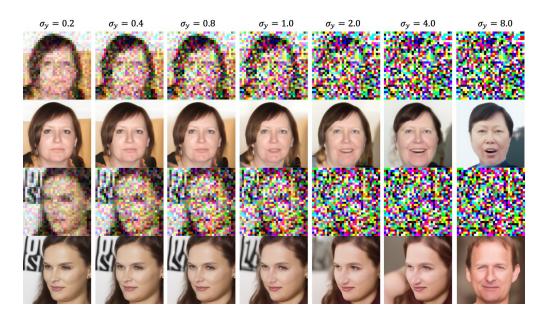


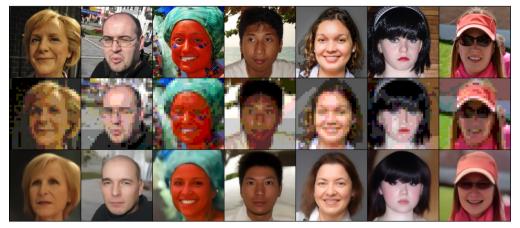
Figure 7: MAS for solving super-resolution $(8\times)$ with various strength of Gaussian noise.

H LICENSES

FFHQ Dataset. We use the Flickr-Faces-HQ (FFHQ) dataset released by NVIDIA under the Creative Commons BY-NC-SA 4.0 license. The dataset is intended for non-commercial research purposes only. More details are available at: https://github.com/NVlabs/ffhq-dataset.

ImageNet Dataset. The ImageNet dataset is used under the terms of its academic research license. Access requires agreement to ImageNet's data use policy, and redistribution is not permitted. More information is available at: https://image-net.org/download.

(a) $SR(8\times) + JPEG$



(b) SR $(8\times)$ + Quantization

Figure 8: Additional visualization of super-resolution with unknown noise.