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ABSTRACT

Diffusion models provide a powerful way to incorporate complex prior information
for solving inverse problems. However, existing methods struggle to correctly
incorporate guidance from conflicting signals in the prior and measurement, and
often failed to maximizing the consistency to the measurement, especially in the
challenging setting of non-Gaussian or unknown noise. To address these issues,
we propose Measurement-Aligned Sampling (MAS), a novel framework for linear
inverse problem solving that flexibly balances prior and measurement information.
MAS unifies and extends existing approaches such as DDNM, TMPD, while
generalizing to handle both known Gaussian noise and unknown or non-Gaussian
noise types. Extensive experiments demonstrate that MAS consistently outperforms
state-of-the-art methods across a variety of tasks, while maintaining relatively low
computational cost.

1 INTRODUCTION

Inverse problems are prevalent in image restoration (IR) tasks, including super-resolution, inpainting,
deblurring, colorization, denoising, and JPEG restoration (Chung et al., 2022a; Kawar et al., 2022a;
Saharia et al., 2022; Wang et al., 2022; Lugmayr et al., 2022; Mardani et al., 2023; Song et al., 2023b;
Kawar et al., 2022b). Solving an inverse problem involves recovering an unknown original image
x0 ∈ Rn based on information from a prior distribution, π(x0), and noisy measurements y ∈ Rm

generated through a forward model:

y = H(x0) + ϵ. (1)

Here ϵ ∈ Rm represents measurement noise, x0 ∈ Rd is drawn from data distribution π0(x0),
H : Rd 7→ Rm is the measurement function, and y ∈ Rm denotes the degraded measurement or
observed image. A useful motivating example is a high-resolution image x0, with a noisy degraded
image y and a known corruption process.

Pretrained diffusion and flow models offer a prior distribution π0(x0) that greatly aids in solving
inverse problems. Methods such as DPS (Chung et al., 2022a), ΠGDM (Song et al., 2023b), and
TMPD (Boys et al., 2023) estimate conditional scores directly from the measurement model by
leveraging score decomposition to guide each diffusion sampling step. In contrast, approaches like
FPS (Dou & Song, 2024), DAPS (Zhang et al., 2024), MPGD (He et al., 2023), and optimization-
based methods (Song et al., 2023a; Zhu et al., 2023; Li et al., 2024; Wang et al., 2024) align
denoiser outputs directly with measurements, thereby avoiding backpropagation through the U-
Net. Although DAPS achieves state-of-the-art performance—outperforming methods that require
backpropagation—it still requires more than 100 gradient descent iterations per diffusion step, making
it far more computationally expensive compared to methods such as DDNM (Wang et al., 2022) and
DDRM (Kawar et al., 2022a). This highlights the promise of developing approaches that avoid both
backpropagation through U-Net and excessive optimization steps, while still attaining state-of-the-art
performance.

Moreover, the above approaches lack the ability to effectively handle unknown or non-Gaussian noise.
In practical settings, noise frequently deviates from Gaussian assumptions—exhibiting characteristics
like salt-and-pepper, periodic, or Poisson distributions—or is completely unknown. Additionally, the
forward measurement operator may be uncertain or inaccurately specified. Effectively addressing
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Figure 1: Solving various inverse problems using unconditional diffusion models. Our model
demonstrates better robustness with unknown noise and strong Gaussian noise.

Table 1: Comparison of method applicability across different inverse problems.
Inverse Problem Noise strength DDNM DDRM ΠGDM DAPS RED-Diff MAS (ours)

Linear + noise free - ✓ ✓ ✓ ✓ ✓ ✓
Linear + Gaussian noise Known ✓ ✓ ✓ ✓ ✓ ✓

Linear + non-Gaussian noise Unknown ✗ ✗ ✗ ✗ ✗ ✓

JPEG / Quantization restoration Known ✗ ✗ ✓ ✗ ✗ ✓
JPEG / Quantization restoration Unknown ✗ ✗ ✗ ✗ ✗ ✓

inverse problems under these more general and realistic conditions remains an open and challenging
research area.

Our main contributions are summarized as follows:

• We propose Measurement-Aligned Sampling (MAS), a novel framework for solving linear
inverse problems. MAS provides both probabilistic and optimization perspectives and
generalizes approaches such as DDNM and TMPD for linear inverse problems. Furthermore,
our proposed ‘overshooting’ technique achieves superior restoration quality compared to
DDNM across various inverse problem scenarios.

• We develop new techniques that maximize consistency with the measurement, enabling
robust handling of both Gaussian noise and unknown noise sources. Moreover, our novel pa-
rameterization scheme allows us to effectively handle noisy inverse problems with unknown
or non-Gaussian noise structures and even non-differentiable measurements, such as JPEG
restoration, without requiring explicit knowledge of the forward operator or noise level. The
comparison of method applicability across different inverse problems is shown in Table 1.

• Our experiments show that MAS enables robust and efficient image restoration, consistently
outperforming baselines across Gaussian, non-Gaussian, and non-differentiable degradations
(see Fig. 1 and experiments in Sec. 5).

2 BACKGROUND

Given training dataset D = {xi
0}Ni=1 from target distribution π0(x0), xi

0 ∈ Rd, the goal of generative
modeling is to draw new samples from π0. In the context of conditional generation, suppose that we
have data samples from a joint distribution (xi

0, y) ∼ π(x0, y), where x0, y are dependent, and y
could be class labels or text information, for example.

For conditional generative modeling, we seek to draw new samples from π(x0 | y) for a given
condition y. Conditioned flows (Zheng et al., 2023) build a marginal probability path pt|y using a
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mixture of interpolating densities: pt|y(xt | y) =
∫
pt(xt | x0)π(x0 | y)dxT , where pt(· | x0) is a

probability path interpolating between noise and a single data point xT . In general, the conditional
kernel pt(xt | x0) is given by a Gaussian distribution: pt(xt | x0) = N (xt;αtx0, σ

2
t I), where N is

the Gaussian kernel, αt, σt are differentiable functions. Then we can sample from the conditional
distribution p0|y(x0 | y) by simulating a stochastic process pt|y(xt | y) from time t = T to t = 0.
Although different sampling methods can be chosen, generally, the iteration follows the form:

xt−∆t ∼ N (atm0|t,y + btxt, c
2
t I). (2)

where m0|t,y = E[x0 | xt, y] is the idea conditional denoiser, at, bt and ct are parameters that depends
on samplers. For instance, xt−∆t ∼ N (αt−∆tm0|t,y, σt−∆tI) is a valid DDIM sampler. In the
implementation of conditional diffusion models, a denoiser is trained to approximate m0|t,y . However,
when only an unconditional denoiser m0|t = E[x0 | xt] is available, training-free conditional
inference methods are employed.

Diffusion Posterior Sampling (DPS) and its variants. Given unconditional denoiser E[x0 | xt],
training-free conditional inference methods enable the approximation of the ideal conditional denoiser
E[x0 | xt, y] (Pokle et al., 2023):

E[x0 | xt, y] = E[x0 | xt] +
σ2
t

αt
∇xt

log p(y | xt). (3)

Since ∇xt
log p(y | xt) is generally intractable, various approaches have been developed to approxi-

mate it.

For linear inverse problems, where the forward model is given by: y = Hx0 + ϵ, ϵ ∼ N (0, σ2
yI).

Tweedie Moment Projected Diffusion (TMPD) (Boys et al., 2023) assume p(x0 | xt) as a Gaussian:
p(x0 | xt) ≈ N (m0|t, C0|t), where m0|t(xt) := E[x0 | xt] is the ideal unconditional denoiser,
C0|t(xt) := E[(x0 −m0|t)(x0 −m0|t)

T | xt] is the covariance of x0 | xt. Then the posteroir mean
E[x0 | xt, y] admits an explicit closed-form solution:

E[x0 | xt, y] = m0|t + C0|tH
T (HC0|tH

T + σ2
yI)−1(y −Hm0|t) (4)

The covariance C0|t could be calculated via gradient go through the denoiser: C0|t =
σ2
t

αt
∇m0|t(xt).

Optimization based methods. Unlike DPS guarantees that sampling is strictly from the conditional
distribution, p(x0 | y), optimization-based approaches (Zhu et al., 2023; Li et al., 2024; Wang et al.,
2024) place more emphasis on the alignment with the measurement and the prior, which takes the
following iteration:

x∗
0 = argmin

x0

∥∥x0 −m0|t
∥∥2 + λt

∥∥y −H(x0)
∥∥2, (5a)

xt−∆t ∼ N
(
atx

∗
0 + btxt, c

2
t

)
. (5b)

where λt is a manually designed hyperparameter and H(·) is the nonlinear forward operator. The
iteration of optimization based methods could be seen as replacing m0|t,y in Eq. (2) to x∗

0 in Eq. (5a).

3 METHODOLOGY

For optimization based methods, the data-consistency loss with respect to the measurement y is
treated uniformly across all directions of the measurement space. However, for inverse problems
it is often advantageous to introduce a weighting matrix that reflects the geometry of the forward
operator (Tarantola, 2005). To this end, we propose Measurement-Aligned Sampling (MAS), which
incorporates such a weighting into the optimization. As we demonstrate in Sec. 5, this alignment
leads to significant improvements in reconstruction quality.
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Algorithm 1 Measurement-Aligned Sampling (MAS) for inverse problems.
1: Input: measurement y, forward operator H(·), pretrained DM ϵθ(·), number of diffusion step N , diffusion

schedule αt and σt, objective parameters η1, η2.
2: Initialization: xN ∼ N (0, I)
3: for n = N to 1 do
4: x̂0 ← [xn − σnϵθ(xn, n)]/αn ▷ Obtain predicted data E[x0 | xn]
5: x′

0 = Y −1[x̂0 +HTW−1y] ▷ Calculating posterior mean E[xϵ | xn, y]
6: xn−1 ∼ N (αn−1x

′
0, σn−1I) ▷ Forward diffusion step

7: end for
8: Output x0

3.1 MEASUREMENT ALIGNED SAMPLING

In this work, we generalize the objective in Eq. (5a) as

x∗
0 = argmin

x0

∥x0 −m0|t∥2 + ∥y −Hx0∥2W−1 . (6)

where W := η1HHT + η2I (with η1 ≥ 0, η2 ≥ 0) is the weighted matrix and serves as a metric that
balances measurement fidelity and prior regularization, where ∥z∥2A = zTAz.

When η1 = 0 and η2 > 0, corresponding to the classical Tikhonov (ridge) regularization, where η2
controls the trade-off between fitting the measurements y and staying close to the prior m0|t. When
η1 > 0 and η2 = 0, the data term becomes weighted by (HH⊤)−1, a Mahalanobis-type distance that
emphasizes alignment along directions where H is weak (small singular values), thereby regularizing
ill-posed components of the inverse problem. The balance between η1 and η2 plays a crucial role in
reconstruction quality, as we show in our experiments.

Finally, Eq. (6) admits a unique closed-form solution obtained by setting the gradient to zero:

x∗
0 = Y −1[m0|t +HTW−1y]

where W := η1HHT + η2I, Y := I+HTW−1H,
(7)

In practice, computing the inverse W−1 and Y −1 in Eq. (7) naively can be computationally expensive.
Instead, one can employ singular value decomposition (SVD) for more efficient computation; see
Sec. B.2 for details.
Remark 1 (Connection with DDNM (Wang et al., 2022)). As η2 = 0 and η1 → 0, x∗

0 → x̃DDNM
0 :=

m0|t +H†(y −Hm0|t). Thus, in this limiting case, MAS recovers DDNM.
Remark 2 (Connection with optimization methods). For the case where η1 = 0, η2 > 0, Eq. (6)
reproduces optimization approaches, such as Resample (Song et al., 2023a), DiffPIR (Zhu et al.,
2023), DCDP (Li et al., 2024), DMPlug (Wang et al., 2024).

3.2 PROBABILISTIC INTERPRETATION

We can interpret x∗
0 in Eq. (7) as E[xϵ | xt, y], where xϵ ≈ x0 with perturbation variance σ2

ϵ chosen
to be sufficiently small so that p(x0 | xϵ) ≈ N (xϵ, σ

2
ϵ I). This formulation introduces an additional

hyperprior, which—as demonstrated in our experiments—proves beneficial in addressing inverse
problems.

Given the measurement model p(y | x0) = N (Hx0, σ
2
yI) and conditional p(x0 | xϵ) = N (xϵ, σ

2
ϵ I),

the induced distribution over the measurement conditioned on xϵ takes the explicit form:

p(y | xϵ) = N
(
Hxϵ, σ

2
yI+ σ2

ϵHHT
)
. (8)

Notably, the likelihood p(y | xϵ) shares the same mean as p(y | x0), but with a generalized variance
inflated by a term depending on H . Since both p(y | xϵ) and p(y | x0) are Gaussian, the posterior
distribution admits a closed-form expression. In particular, the posterior mean E[x0 | xt, y] can be
computed via Bayesian linear regression, as stated in Prop. 3.1.
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Figure 2: 2D illustration of the influence of parameters η1 and η2. Dots represent x∗
0, calculated via

Eq. (7). (a) Parameter η1 controls the trade-off between m0|t and x̃DDNM
0 : as η1 → ∞, the posterior

mean x∗
0 approaches m0|t; as η1 → 0, it converges to x̃DDNM

0 . (b) Adjusting η2 alters the posterior
trajectory differently from varying η1.

Proposition 3.1 (Bayesian Linear Regression). Suppose p(y | xϵ) = N (Hxϵ, R), R := σ2
yI +

σ2
ϵHHT and p(xϵ | xt) ≈ N

(
m0|t, C0|t

)
. Then the posterior is Gaussian, with mean given by

E[xϵ | xt, y] =
(
C−1

0|t +HTR−1H
)−1(

C−1
0|tm0|t +HTR−1y

)
. (9)

As we set C0|t = r2t I, η1 := σ2
ϵ /r

2
t and η2 := σ2

y/r
2
t , E[xϵ | xt, y] in Eq. (9) is equivalent to x∗

0 in
Eq. (7), which provides a probabilistic perspective for MAS.
Remark 3 (Connection to TMPD (Boys et al., 2023)). Setting σϵ = 0 reduces the posterior mean in
Eq. (9) to that of TMPD in Eq. (4).
Remark 4 (‘Overshooting’ trick). Theoretically, η1 ≥ 0 since η1 := σ2

ϵ /r
2
t , however, the posterior

mean in Eq. (7) allows negative η1. As illustrated in Fig. 2, negative η1 produces an overshooting
effect, drawing x∗

0 even further toward alignment with the measurement y than prescribed by DDNM.
Interestingly, in our experiments this overshooting effect leads to improved reconstruction quality. A
more detailed discussion is provided in Sec. B.2.

4 MAXIMIZING THE CONSISTENCY FOR NOISY INVERSE PROBLEMS

4.1 WHY PREVIOUS METHODS FAILED TO MAXIMIZE THE CONSISTENCY?

DDNM highlighted that calculating the posterior sampling x̃DDNM
0 = m0|t +H†(y −Hm0|t) can

inadvertently introduce additional noise into xt, if y is noisy. For instance, consider a simple
forward model: y = x0 + ϵy, where both H and H† are identity matrix, i.e., H = H† = I, then
x̃DDNM
0 = y = x0 + ϵy. Here ϵy is the additional noise introduced to x̃DDNM

0 , and will be further
introduced into xt−∆t. We argue that this issue is not unique to DDNM, but may also arise in TMPD
(Boys et al., 2023), DAPS (Zhang et al., 2024), as well as in optimization-based methods (Zhu et al.,
2023; Li et al., 2024).

For MAS and under this same example, y = x0 + ϵy , calculating x∗
0 (Eq. (7)) yields

x∗
0 = m0|t +

y −m0|t

η1 + η2 + 1
= m0|t +

x0 −m0|t

η1 + η2 + 1
+

ϵy
η1 + η2 + 1

, (10)

where ϵy/(η1 + η2 + 1) is the additional noise introduced to x∗
0. A delicate balance arises from the

fact that increasing either η1 or η2 will not only reduce the influence of the (unknown) noise term ϵy ,
but also reduce the consistency with the measurement y in general. To address this issue, we propose
two approaches for addressing known Gaussian noise (Sec. 4.2) and unknown noise Sec. 4.3.

4.2 ADDRESSING GAUSSIAN NOISE WITH KNOWN VARIANCE

To handle Gaussian noise with known variance and H = I, we modify Eq. (10) and Eq. (2) as:

5
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Figure 3: The sample process of solving inverse problems with unknown noise, where x̂θ
0 ≈ m0|t is

the denoising output. Here we set η1 = 0 and η2 = 0.5at/ct.

x∗
0 = m0|t + λt

y −m0|t

η1 + η2 + 1
, xt−∆t ∼ N (atx̃0 + btxt, γtI). (11)

Here λt and γt are two parameters that can control the total noise introduced to xt−∆t. In our work,
we adopt similar two principles as DDNM+ (Wang et al., 2022) for handling Gaussian noise: (i)
the total noise introduced in xt−∆t should be N (0, c2t I) to conform to the correct distribution of
xt−∆t in Eq. (2); (ii) λt should be as close to 1 as possible to maximize the preservation of x∗

0. As
ϵy ∼ N (0, σ2

yI), principle (i) and principle (ii) are equivalent to:

(
atλtσy

η1 + η2 + 1

)2

+ γt = c2t , λt =


1, ct ≥

atσy

η1 + η2 + 1
ct(η1 + η2 + 1)

atσy
, ct <

atσy

η1 + η2 + 1

. (12)

Derivations for more general forms of H can be found in Sec. B. Note that the revision does not
introduce additional parameters.

4.3 ADDRESSING UNKNOWN NOISE AND NON-DIFFERENTIABLE MEASUREMENTS

Addressing unknown noise or non-Gaussian noise. When the measurement noise σy is non-
Gaussian or unknown, it becomes difficult to ensure that the total noise in xt−∆t follows the desired
distribution N (0, c2t I), To address this, we continue to sample xt−∆t using Eq. (2). Next, the noise
introduced to xt−∆t is the sum of two components:

ϵng = (atλtϵy)/(η1 + η2 + 1), ϵg ∼ N (0, c2t I). (13)

Here ϵng is related to the noise introduced by unknown noise ϵy, while ϵg is the noise added by the
diffusion process. To minimize the effect of unknown noise ϵng, it is desirable for η1 + η2 + 1 to
be sufficiently large. However, smaller values of η1 and η2 result in better consistency with the
measurement y, as illustrated in Fig. 2. To balance this trade-off, we propose using a small η1 + η2
during the early stages of sampling to fully exploit measurement information. As sampling progresses,
η1 + η2 should be gradually increased to suppress the impact of ϵng. The underlying intuition is that,
in the early sampling stage, xt is still highly noisy and at ≈ 0, so the influence of ϵng is negligible
even when η1 + η2 is small. As shown in Fig. 3, x∗

0 is initially more aligned with the degraded
observation, but progressively shifts toward m0|t as sampling evolves.

For a general degradation operator H , we recommend setting η2 = kat/ct, where k is a constant
determined by the characteristics of the introduced noise. The rationale behind this design choice is
further detailed in Sec. B.

Addressing non-differentiable measurements. For solving inverse problems with non-differentiable
measurements such as JPEG restoration and quantization, the degraded images can be viewed as
"noisy images" with unknown noise, modeled by y = x + ϵy. In these scenarios, our proposed
strategy naturally extends by treating the unknown degradations as implicit noise.

6
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Figure 4: Ablation study of η1 and η2 on solving super-resolution and deblurring. We set NFE=20
for all tasks.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Dataset. We evaluate the effectiveness of our proposed approach on FFHQ 256× 256 (Karras et al.,
2019) and ImageNet 256× 256 (Deng et al., 2009). Following DAPS (Zhang et al., 2024), we test on
the same subset of 100 images for both datasets.

Pretrained models and baselines. We utilize the pre-trained checkpoint (Chung et al., 2022a) on the
FFHQ dataset and the pre-trained checkpoint (Dhariwal & Nichol, 2021) on the Imagenet dataset.
We compare our methods with the following baselines: DCDP (Li et al., 2024), FPS (Dou & Song,
2024), DiffPIR (Zhu et al., 2023), DDNM (Wang et al., 2022), DDRM (Kawar et al., 2022a), ΠGDM
(Song et al., 2023b), RedDiff (Mardani et al., 2023), DAPS (Zhang et al., 2024).

Metrics. Following previous work (Chung et al., 2022a; Kawar et al., 2022a), we report Fréchet
Inception Distance (FID) (Heusel et al., 2017), Learned Perceptual Image Patch Similarity (LPIPS)
(Zhang et al., 2018), Peak Signal-to-Noise Ratio (PSNR), and Structural SIMilarity index (SSIM).

Tasks. (1) We evaluate performance on the following linear inverse problems: super-resolution
(bicubic filter), deblurring (uniform kernel of size 9), inpainting (with a box mask), inpainting (with a
70% random mask), and colorization. (2) We consider two unknown noise types: salt-and-pepper
noise (10% pixels set randomly to ±1) and periodic noise (sinusoidal pattern with amplitude 0.2 and
frequency 5). (3) We address JPEG restoration with quality factors QF = 2 and QF = 5. (4). For
quantization, we consider the challenging case of 2-bit quantization.

5.2 ABLATION STUDY

Ablation Study on η1 and η2. We conduct ablation studies on parameters η1 and η2 using two
inverse problems: super-resolution (noise-free, ϵy = 0) and deblurring (noisy, ϵy ∼ N (0, σ2

yI)).
Results presented in Fig. 4 demonstrate that for noise-free super-resolution, the highest PSNR and
lowest FID scores are achieved by setting η2 = 0 and a negative η1 = −0.45. This indicates that
appropriate "overshooting" enhances restoration quality. For the noisy deblurring task, negative η2
yields an improvement of more than 0.5 in PSNR and a reduction of over 5 in FID, further confirming
the benefit of overshooting.

5.3 IMAGE RESTORATION

Inverse problems with Gaussian noise (known variance). Quantitative results for inverse problems
with Gaussian noise of known variance are shown in Table 2. MAS consistently demonstrates superior
performance across most tasks, notably achieving significantly higher PSNRs. The table summarizes
5 tasks, 4 restoration quality metrics, and 2 datasets, resulting in a total of 40 evaluations. MAS
demonstrates superior performance in 29 out of the 40 cases. Notably, MAS achieves improvements
of more than 1 dB in 5 out of 10 instances.

Inverse Problems with Non-Gaussian Noise (Unknown Strength). Quantitative evaluations for
linear inverse problems with unknown, non-Gaussian noise are presented in Table 3. MAS consistently
outperforms baseline methods, highlighting the effectiveness of our approach in handling unknown
noise conditions.

7
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Table 2: Quantitative evaluation of solving image restoration FFHQ (left) and ImageNet (right), with
Gaussian noise (known variance, σy = 0.05).

Task Method FFHQ ImageNet
PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓

SR 4×

DPS 25.86 0.753 0.269 81.07 21.13 0.489 0.361 106.32
DDRM 26.58 0.782 0.282 79.25 22.62 0.521 0.324 103.85
DDNM 28.03 0.795 0.197 64.62 23.96 0.604 0.475 98.62
DCDP 28.66 0.807 0.178 53.81 – – – –
FPS-SMC 28.42 0.813 0.204 49.25 24.82 0.703 0.313 97.51
DiffPIR 26.64 – 0.260 65.77 23.18 – 0.371 106.32
RED-Diff 28.63 0.748 0.288 126.78 25.43 0.639 0.336 153.37
DAPS 29.07 0.818 0.177 51.44 25.89 0.694 0.276 83.57
MAS 30.56 0.865 0.131 61.38 27.20 0.751 0.215 88.61

Inpaint (Box)

DPS 22.51 0.792 0.209 61.27 18.94 0.722 0.257 126.52
DDRM 22.26 0.801 0.207 78.62 18.63 0.733 0.254 116.37
DDNM 24.47 0.837 0.235 46.59 21.64 0.748 0.319 103.97
DCDP 23.89 0.760 0.163 45.23 – – – –
FPS-SMC 24.86 0.823 0.146 48.34 22.16 0.726 0.208 111.58
RED-Diff 24.68 0.767 0.175 86.78 21.32 0.728 0.247 123.55
DAPS 24.07 0.814 0.133 43.10 21.43 0.725 0.214 109.85
MAS 24.95 0.879 0.082 37.67 21.15 0.817 0.168 95.96

Inpaint (Random)

DPS 25.46 0.823 0.203 69.20 23.52 0.745 0.297 87.53
DDNM 29.91 0.817 0.121 44.37 31.16 0.841 0.191 63.84
DCDP 30.69 0.842 0.142 52.51 – – – –
FPS-SMC 28.21 0.823 0.261 61.23 24.52 0.701 0.316 79.12
RED-Diff 29.73 0.814 0.200 104.19 27.04 0.753 0.226 92.24
DAPS 31.12 0.844 0.098 32.17 28.44 0.775 0.135 54.25
MAS 33.10 0.923 0.073 34.75 29.05 0.838 0.113 30.19

Deblurring (Uniform)
DDNM 26.58 0.704 0.210 68.83 25.69 0.630 0.261 83.63
DDRM 29.19 0.835 0.172 87.12 26.31 0.711 0.267 118.36
DAPS 28.92 0.758 0.204 76.57 25.43 0.616 0.293 103.55
MAS 30.58 0.857 0.174 103.88 26.25 0.700 0.295 141.58

Color

DDNM 24.83 0.868 0.244 85.15 22.57 0.884 0.271 87.48
DDRM 23.27 0.881 0.250 100.48 21.12 0.819 0.346 103.39
RED-Diff 24.21 0.785 0.304 107.64 22.18 0.782 0.368 104.40
DAPS 23.92 0.825 0.263 88.09 22.13 0.830 0.323 89.30
MAS 24.23 0.919 0.187 72.33 22.66 0.886 0.258 83.17

Table 3: Quantitative evaluation of solving linear inverse problems with non-Gaussian noise (unknown
strength).

Task Method Salt peper noise Periodic noise
PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓

SR 8×

DDNM 13.02 0.289 0.710 377.54 18.61 0.492 0.495 268.36
DDRM 16.06 0.506 0.629 351.69 19.74 0.545 0.463 218.38
ΠGDM 17.36 0.476 0.569 309.73 18.12 0.449 0.434 163.41
RED-Diff 14.21 0.357 0.668 342.09 19.47 0.596 0.416 224.07
MAS (ours) 20.05 0.605 0.390 129.80 20.10 0.591 0.395 137.57

Inpaint (Box)

DDNM 15.55 0.248 0.533 247.99 18.60 0.621 0.341 147.80
DDRM 20.27 0.599 0.350 142.01 18.74 0.589 0.423 199.14
ΠGDM 19.30 0.665 0.297 100.07 18.32 0.601 0.349 150.49
RED-Diff 15.75 0.287 0.523 255.85 19.13 0.638 0.338 159.99
MAS (ours) 22.78 0.723 0.244 90.15 19.13 0.581 0.407 138.56

Inverse problems with non-differentiable measurements. MAS is also capable of solving inverse
problems with non-differentiable measurements, such as JPEG restoration and quantization. Results
in Table 4 and Fig. 5 show that MAS achieves state-of-the-art performance without relying on the
forward operator or knowledge of the degradation strength.

Computational time analysis. The computational efficiency of MAS is comparable to DDNM and
substantially higher than DAPS. For example, on the SR task using the FFHQ-256 dataset with 200
diffusion steps, the non-parallel single-image sampling time for both DDNM and MAS is only 8
seconds per image, whereas DAPS requires 67 seconds (test were conducted on the same NVIDIA
A6000 GPU).

8
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Figure 5: Results on JPEG (QF=5) and quantization restoration.

Table 4: Quantitative evaluation of solving JPEG restoration and Quantization. We set k = 1.0
for QF = 5 and k = 3.0 for QF = 2, and k = 0.5 for quantization. Both ΠGDM and MAS use
NFE = 20, which yields the best performance (among NFE = 20 and NFE = 100). Notably, our
method (MAS) does not require access to the forward operator or the strength of degration.

Method JPEG Restoration (QF = 5) JPEG Restoration (QF = 2) Quantization (number of bits = 2)
PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓

ΠGDM 25.78 0.750 0.241 89.82 22.92 0.653 0.314 112.27 29.98 0.823 0.185 124.57
MAS (ours) 26.30 0.787 0.281 101.24 23.72 0.772 0.335 114.85 28.97 0.837 0.196 69.61

6 RELATED WORK

Diffusion models have also been successfully applied to linear inverse problems, including,
compressed-sensing MRI (CS-MRI), and computed tomography (CT) (Kadkhodaie & Simoncelli,
2021; Song et al., 2020b; Chung et al., 2022b; Kawar et al., 2022a; Song et al., 2021). They have also
been extended to non-linear inverse problems such as Fourier phase retrieval, nonlinear deblurring,
HDR, and JPEG restoration (Chung et al., 2022a; Song et al., 2023b; Chung et al., 2023; Mardani
et al., 2023).

Methods to solve inverse problems include linear projection methods (Wang et al., 2022; Kawar
et al., 2022a; Dou & Song, 2024), Monte Carlo sampling (Wu et al., 2023; Phillips et al., 2024),
variational inference (Feng et al., 2023; Mardani et al., 2023; Janati et al., 2024), optimization-based
approaches (Song et al., 2023a; Zhu et al., 2023; Li et al., 2024; Wang et al., 2024; Alkhouri et al.,
2024; He et al., 2023), and Diffusion Posterior Sampling (DPS) (Zhang et al., 2024; Chung et al.,
2022a; Song et al., 2023c; Yu et al., 2023; Rout et al., 2024; Yang et al., 2024; Bansal et al., 2023;
Boys et al., 2023; Song et al., 2023b; Ho & Salimans, 2022). Besides, InverseBench (Zheng et al.,
2025) presents a benchmark for critical scientific applications, which present structural challenges
that differ significantly from natural image restoration tasks.

7 CONCLUSION

MAS improves upon existing methods by explicitly aligning the sampling process with measurement
data, offering a broader optimization perspective that generalizes approaches like DDNM and DAPS.
Beyond the noise-free case, MAS can be extended to: (1) known Gaussian noise, (2) unknown or
non-Gaussian noise through adaptive parameterization, and (3) non-differentiable degradations (e.g.,
JPEG) by decoupling the forward operator from sampling. Extensive experiments show that MAS
consistently outperforms state-of-the-art methods across a wide range of inverse problems. While
MAS can handle non-differentiable measurements like JPEG restoration, it does not support general
non-linear inverse problems, it’s also promising to ‘calibrate’ the noise introduced into xt, such that
maximizing the consistency to measurement.

9
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A PROOFS

A.1 PROOF OF PROP. 3.1.

Proof. Let x ≡ xϵ. The prior and likelihood are

p(x | xt) = N (m0|t, C0|t), p(y | x) = N (Hx, R),

with R = σ2
yIm + σ2

ϵHH⊤. Denote m := m0|t and C := C0|t.

The posterior is, up to normalization,

p(x | xt, y) ∝ exp
(
− 1

2 (x−m)⊤C−1(x−m)− 1
2 (y −Hx)⊤R−1(y −Hx)

)
.

Expanding the exponent and collecting terms in x gives

− 1
2

[
x⊤C−1x− 2x⊤C−1m+m⊤C−1m+ x⊤H⊤R−1Hx− 2x⊤H⊤R−1y + y⊤R−1y

]
= − 1

2

[
x⊤(C−1 +H⊤R−1H)x− 2x⊤(C−1m+H⊤R−1y)

]
+ (terms independent of x).

This is the quadratic form of a Gaussian in x with precision

Λ = C−1 +H⊤R−1H,

and natural parameter
η = C−1m+H⊤R−1y.

Therefore the posterior is Gaussian N (µpost, Σpost) with

Σpost = Λ−1 =
(
C−1+H⊤R−1H

)−1
, µpost = Σpost η =

(
C−1+H⊤R−1H

)−1(
C−1m+H⊤R−1y

)
.

Restoring the original notation gives equation 9.

A.2 PROOF OF EFFIEIENT LINEAR SOLVES IN EQ. (38)

Lemma A.1. Let H ∈ Rm×d have (thin) singular–value decomposition H = UΣV T with orthogonal
U ∈ Rm×m, V ∈ Rd×d and Σ = diag(s1, . . . , sr) ∈ Rm×d, where r = rank(H) and s1 ≥ · · · ≥
sr > 0. For any scalars η1 ≥ 0 and η2 > 0 define

W := η1HHT + η2I, Y := I+HTW−1H.

Then

W−1 = U diag
(

1
η1s2i+η2

)m

i=1
UT, Y −1 = V diag

(
1

1+s2i /(η1s2i+η2)

)d

i=1
V T. (14)

(When i > r we set si=0.)

Proof. (i) Inverting W . Using the SVD,

W = η1UΣΣTUT + η2UIUT = U
(
η1ΣΣ

T + η2I
)
UT.

Because U is orthogonal, W−1 is obtained by inverting the diagonal middle matrix: (η1ΣΣ
T +

η2I)−1 = diag
(

1
η1s2i+η2

)m
i=1

. Substituting yields the first identity in equation 14.

(ii) Inverting Y . Write

Y = I+HTW−1H = V ΣTUT
[
U diag

(
1

η1s2i+η2

)
UT

]
UΣV T + I,

and simplify with UTU = I:

Y = V
[
ΣTdiag

(
1

η1s2i+η2

)
Σ+ I

]
V T.

Because ΣTdiag
(

1
η1s2i+η2

)
Σ is diagonal with ith entry s2i

η1s2i+η2
, the bracketed matrix is diagonal and

hence trivial to invert, giving the second identity in equation 14.
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A.3 PROOF OF EQ. (6)

Proposition A.2. Let H ∈ Rm×d, η1 ≥ 0 and η2 > 0. Define

W = η1 HHT + η2 I, Y = I+HTW−1H.

For any y ∈ Rm and m0|t ∈ Rd consider the strictly convex quadratic

L(x0) =
∥∥x0 −m0|t

∥∥2
2
+

∥∥y −Hx̃0

∥∥2
W−1 , ∥v∥2W−1 = vTW−1v.

Its unique minimiser is
x̃∗
0 = Y −1

[
m0|t +HTW−1y

]
. (15)

Proof. Expand L and take its gradient:

∇x̃0
L = 2

(
x̃0 −m0|t

)
− 2HTW−1

(
y −Hx̃0

)
.

Setting ∇x̃0
L = 0 gives the normal equation(

I+HTW−1H
)
x̃0 = m0|t +HTW−1y, that is, Y x̃0 = m0|t +HTW−1y.

Because η2 > 0 implies W ≻ 0, we have W−1 ≻ 0 and hence Y = I+HTW−1H ≻ 0; thus Y is
invertible and equation 15 follows.

Finally, the Hessian of L is 2Y ≻ 0, so L is strictly convex and the stationary point equation 15 is
indeed its unique global minimiser.

A.4 PROOF OF REMARK 1.

Proof. As η2 = 0,

x∗
0 =

(
η I+H†H

)−1 (
η1 m0|t +H†y

)
. (16)

To analyze the limit as η1 → 0, decompose the space into two orthogonal components:

• The range (or row space) of H , on which H†H acts as the identity.

• Its nullspace, on which H†H is zero.

Let
P = H†H, (17)

which is the orthogonal projection onto the row space of H . Then any vector v can be decomposed as

v = Pv + (I − P )v. (18)

Notice that H†y lies in the row space (i.e. P H†y = H†y) and that m0|t can be decomposed as

m0|t = Pm0|t + (I − P )m0|t. (19)

Since the eigenvalues of P are 0 and 1, the matrix η1 I + P has eigenvalues η1 (on the nullspace of
P ) and 1 + η1 (on the row space). Hence, its inverse acts as:

• Multiplication by 1/η1 on the nullspace,

• Multiplication by 1/(1 + η1) on the row space.

Thus, we have

(η1 I + P )
−1 (

H†y + η1 m0|t
)
=

1

1 + ϵ

(
H†y + η1 Pm0|t

)
+

1

η1

(
η1 (I − P )m0|t

)
. (20)

Simplify this to obtain
1

1 + η1
H†y +

η1
1 + η1

Pm0|t + (I − P )m0|t. (21)

Now, taking the limit as η1 → 0:

14
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• 1
1+η1

→ 1,

• η1

1+η1
→ 0.

Therefore, the limit becomes

lim
η1→0

x∗
0 = H†y + (I − P )m0|t. (22)

Recalling that P = H†H , we rewrite this as

H†y +m0|t −H†Hm0|t = m0|t +H†(y −Hm0|t
)
. (23)

Thus, in the limit where η1 → 0, we indeed have

x∗
0 = m0|t +H†(y −Hm0|t

)
. (24)

This shows that, as the relative measurement noise ϵ becomes much smaller compared to the prior
uncertainty rt, the posterior expectation is the projection of x̂θ

0 onto the subspace {x : Hx = y}.

B ADDITIONAL METHOD DETAILS

B.1 ADDRESSING GAUSSIAN NOISE

Consider noisy image restoration problems in the form of y = Hx+ ϵy , where ϵy is the added noise.
Then the measurement y can be decomposed to the sum of clean measurement yclean := Hx and
measurement noise ϵy . Calculating x∗

0 leads to:

x∗
0 = Y −1[m0|t +HTW−1y] (25)

= m0|t + (Y −1 − I)m0|t + Y −1HTW−1y (26)

where Y −1HTW−1ϵy is the extra noise introduced into x∗
0 and will be further introduced into xt−∆t.

To address Gaussian noise with known variance, we modify Eq. (7) and Eq. (2) as:

x∗
0 = m0|t +Σt[(Y

−1 − I)m0|t +HTW−1y] (27)

xt−∆t ∼ N (atx̃
pe
0 (t, x, y) + btxt,ΦtI) (28)

Then x∗
0 is:

x∗
0 = m0|t +Σt[(Y

−1 − I)m0|t +HTW−1y] (29)

(30)

= m0|t +Σt(Y
−1 − I)m0|t + Y −1HTW−1yclean︸ ︷︷ ︸

:= x̃clean
0

+ΣtY
−1HTW−1ϵy (31)

Then the iteration of the sampling process is:

xt−∆t = atx
∗
0(t, x, y) + btxt + ϵnew, ϵnew ∼ N (0,Φt) (32)

= atx̃
clean
0 + btxt + atσyY

−1HTW−1ϵy︸ ︷︷ ︸
:=ϵintro

+ϵnew (33)
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Suppose Σt = V diag{λt1, · · · , λtd}V T Φt = V diag{γt1, · · · γtd}V T . Then the introduced noise
ϵintro = atσyY

−1HTW−1ϵy is still a Gaussian distribution: ϵintro ∼ N (0, V DtV
T ), with Dt =

diag{dt1, · · · , dtd}:

dti =


a2t σ

2
y s

2
iλ

2
ti[

(η1 + 1) s2i + η2
]2 , si ̸= 0,

0, si = 0,

(34)

The choice of and Φt need to ensure the total noise injected to xt−∆t conforms the iteration in Eq. (2).

ϵnew + ϵintro ∼ N (0, c2t I) (35)

To construct ϵnew, we define a new diagonal matrix Γt(= diag{γt1, · · · γtd}):

γti =

c2t −
a2t σ

2
y s

2
iλ

2
ti[

(η1 + 1) s2i + η2
]2 , si ̸= 0,

c2t , si = 0,

(36)

Now we can yield ϵnew by sampling from N (0, V ΓtV
T ) to ensure that ϵintro + ϵnew ∼ N (0, c2t I).

We need to make sure λti guarantees the noise level of the introduced noise does not exceed the
pre-defined noise level ct, we also hope λti as close as 1 as possible. Therefore,

λti =


1, ct ≥ at σy si

(η1+1) s2i+η2
,

ct((η+1)s2i+η2)
atσysi

, ct <
at σy si

(η1+1) s2i+η2
,

1, si = 0.

(37)

In practice, we found that setting σy slightly larger than the true σy is beneficial, possibly because
the denoiser is more sensitive to excessive noise.

B.2 EFFICIENT CALCULATION VIA SVD DECOMPOSITION

Let H = UΣV T with singular values s1, . . . , sn. Then

W−1 = U diag
(

1
η1s2i+η2

)
UT, Y −1 = V diag

(
1

1+s2i /(η1s2i+η2)

)
V T, (38)

see Sec. A for the proof. Hence both W−1v and Y −1u reduce to inexpensive diagonal scalings in the
SVD basis, avoiding the calculation of any explicit matrix inversion or square-root. The algorithm of
MAS for inverse problem is provided in Algorithm 1.

As η1 < 0, W could be non-invertible. However, W = Udiag(η1s21, · · · , η1s2r, η2, · · · , η2)UT .
Hence W is invertible if η1s2i + η2 ̸= 0 for every i. Even when η2 = 0 and η1 < 0 make W singular,
the update W †y uses the Moore-Penrose pseudo-inverse W †, which is always well-defined. The
pseudo-inverse acts like an ordinary inverse on the range of H and leaves the null-space untouched,
so the sampler remains stable. Empirically, small negative values (−0.5 < η1 < 0) often give the
visual boost without instability, as demonstrated in the ablation studies in Sec. 5

B.3 ADDRESSING UNKNOWN NOISE AND NON-DIFFERENTIABLE MEASUREMENTS

As the measurement noise ϵy is non-Gaussian or unknown, it’s difficult to ensure the total noise
introduced in xt−∆t is N (0, c2t I). In this case, we calculate x∗

0 using Eq. (7) and update xt−∆t using
Eq. (2). Then x∗

0 is:
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x∗
0 = m0|t + [(Y −1 − I)m0|t +HTW−1y] (39)

(40)

= m0|t + (Y −1 − I)m0|t + Y −1HTW−1yclean︸ ︷︷ ︸
:= x̃clean

0

+Y −1HTW−1ϵy (41)

where Y −1HTW−1ϵy is the extra noise introduced into x∗
0 and will be further introduced into xt−∆t:

xt−∆t = atx
∗
0 + btxt + ϵnew,

= atx̃
clean
0 + btxt + atY

−1HTW−1ϵy︸ ︷︷ ︸
:= ϵintro

+ϵnew, (42)

where ϵnew the noise added by diffusion process, which should be specifically designed to ensure
xt−∆t is sampled from correct distribution as in Eq. (2), i.e., the total noise ϵintro + ϵnew ∼ N (0, c2t I).
However, as ϵy is unknown noise, we have no information about the introduced noise ϵintro. To
solve this problem, we made the following principles: (i) despite that fact that we cannot guarantee
ϵintro + ϵnew ∼ N (0, c2t I), we still hope ϵintro + ϵnew is as close to N (0, c2t I) as possible; (ii) small η1
and η2 are helpful to maximize the alignment to measurement y. Notably,

ϵintro = atY
−1HTW−1ϵy (43)

= atV diag

(
si

(η1 + 1)s2i + η2

)
UT ϵy (44)

η1 and η2 are two variables that control the noise level of ϵintro. In the implementation, we still sample
ϵnew from Gaussian distribution N (0, c2t I). Then the problem becomes how to select η1 and η2 to
meet the above 2 principles. For common image restoration tasks like SR, Deblurring, inpainting,
Colorization, The maximum eigenvalue value smax = max{si} <= 1. Therefore, adjusting η2 is
more likely to reduce the strength of ϵintro.

Fix a tiny baseline η1 ∈ [−0.4, 0) ∪ (0, 0.1), for example, we can choose η2(t) = kat/ct, where
k is a constant wihch depends on the measurement noise ϵy. This meets Principle (i) by bounding
the extra noise, and Principle (ii) by keeping both η1, η2 small enough to preserve measurement
alignment.

C LIMITATIONS

While MAS can, in principle, be generalized to nonlinear inverse problems, explicitly formulating
the likelihood term p(y | xϵ) becomes challenging. Developing effective sampling techniques under
this setting is a promising direction for future research.

D IMPACT STATEMENT

Our method can improve image restoration under challenging noise and degradation conditions, which
may benefit applications in medical imaging, scientific visualization, cultural heritage preservation,
and general photography. However, it is important to note that as with many generative and restoration
models, our method could be misused for malicious image manipulation.

E PYTORCH-LIKE CODE IMPLEMENTATION

Here we provide a basic PyTorch-Like implementation of the calculation of x∗
0 in Eq. (7), shown in

Listing 1.
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Listing 1 PyTorch-like implementation of the calculation of x∗
0 in Eq. (7).

1 @torch.no_grad()
2 def mas(
3 H, x0_hat, y,
4 eta_1=-0.2, eta_2=0.0
5 ):
6 bs, _, H_img, W_img = x0_hat.shape
7 x0_hat = x0_hat.view(bs, -1)
8 y = y.view( bs, -1) # measurement dim m
9 ut_y = H.Ut(y) # (bs, m)

10 singulars = H.singulars() # (m,)
11 nz = singulars > 0 # boolean mask
12 scale1 = 1.0 / (singulars[nz] ** 2 * eta_1 + eta_2)
13 ut_y[:, nz] = ut_y[:, nz] * scale1 # broadcasting OK
14 u_y = H.U(ut_y) # (bs, m)
15 rhs = x0_hat + H.Ht(u_y) # (bs, d)
16

17 vt_rhs = H.Vt(rhs) # (bs, d)
18 scale2 = 1.0 / (1.0 + singulars[nz]**2 / (singulars[nz]**2 *

eta_1 + eta_2))↪→
19 vt_rhs[:, nz] = vt_rhs[:, nz] * scale2
20 x0_pm = H.V(vt_rhs) # (bs, d)
21 x0_pm = x0_pm.view(bs, 3, H_img, W_img)
22 return x0_pm

F EXPERIMENTAL DETAILS

F.1 DETAILS OF THE DEGRADATION OPERATORS

Super-resolution. We use the downsampler with bicubic kernel as the forward operator.

Deblurring. For deblurring experiments, We use uniform blur kernel to to implement blurring
operation.

Inpaint (Random). Random Inpainting uses a generated random mask where each pixel has a 70%
chance of being masked, following the settings in (Song et al., 2023a).

Inpaint (box). We use a fixed square mask of size 128× 128 pixels placed at the center of the image.

Colorization. We simulate grayscale degradation by applying a fixed linear transformation to each
pixel using the matrix [ 13 ,

1
3 ,

1
3 ], replacing each RGB pixel with its average intensity.

F.2 DETAILS OF THE BASELINE MODELS

Sampler. Most experiments on diffusion models leverage DDIM (Song et al., 2020a) sampling.

DDRM (Kawar et al., 2022a). ηB = 1.0, η = 0.85 with DDIM sampler, as advised in the original
paper.

ΠGDM (Song et al., 2023b). η = 1.0, with DDIM sampler, as advised in the original paper.

Reddiff (Mardani et al., 2023). λ = 0.25, with DDIM sampler, as advised in the original paper.

DDNM (Wang et al., 2022). η = 0.85, with DDIM sampler, as advised in the original paper.

DAPS (Zhang et al., 2024). τ = 0.01, with EDM sampler, as advised in the original paper.
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Table 5: Sampling time (Sec) per image of MAS on deblurring and super-resolution with FFHQ 256,
evaluated using a single NVIDIA A6000 48G GPU. We set NFE=20 and batch size = 20 for all of the
methods.

Method MAS ΠGDM DDNM DDRM RED-Diff

Deblurring 0.128 0.278 0.127 0.127 0.119
SR (8×) 0.131 0.282 0.131 0.131 0.125

G ADDITIONAL RESULTS

G.1 COMPUTATIONAL TIME

The computational time of MAS on solving inverse problems is shown in Table 5. Our model achieves
similar efficiency to DDNM and DDRM, demonstrating that MAS introduces minimal overhead
while maintaining competitive runtime performance.

Figure 6: Super-resolution restoration over various strength of degradation. We set η1 = −0.4 and
η2 = 0 for all tasks. For sampling process, we set η = 0.6.

G.2 ADDING GAUSSIAN NOISE

We present the results of solving 8× super-resolution under varying levels of Gaussian noise in Fig. 7.
The visualizations demonstrate that MAS maintains strong restoration performance, even under high
noise conditions.

G.3 ADDING NON-DIFFERENTIABLE DEGRAGATION

We present the results of solving 8× super-resolution with non-differentiable degradations, including
JPEG compression and quantization, in Fig. 8.
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Figure 7: MAS for solving super-resolution (8×) with various strength of Gaussian noise.

H LICENSES

FFHQ Dataset. We use the Flickr-Faces-HQ (FFHQ) dataset released by NVIDIA under the Creative
Commons BY-NC-SA 4.0 license. The dataset is intended for non-commercial research purposes
only. More details are available at: https://github.com/NVlabs/ffhq-dataset.

ImageNet Dataset. The ImageNet dataset is used under the terms of its academic research license.
Access requires agreement to ImageNet’s data use policy, and redistribution is not permitted. More
information is available at: https://image-net.org/download.
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Figure 8: Additional visualization of super-resolution with unknown noise.
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