000 RETRIBOORU: LEAKAGE-FREE RETRIEVAL OF CON-DITIONS FROM REFERENCE IMAGES FOR SUBJECT-DRIVEN GENERATION

Anonymous authors

001

002 003

004

006

008 009 010

011

012 013 014

015

016

017 018 019

021

023

025 026

027

028

029

031

032

034

038

039

040

041

042

043

044

Paper under double-blind review

Figure 1: Training the proposed concept composition task on our RetriBooru dataset. Different concepts to retrieve are specified in texts and passed to the retrieval encoder, which learns only from characteristic information to compose the output, guiding generation with text prompts in the U-Net.

ABSTRACT

Diffusion-based methods have demonstrated remarkable capabilities in generating a diverse array of high-quality images, sparking interests for styled avatars, virtual try-on, and more. Previous methods use the same reference image as the target. An overlooked aspect is the leakage of the target's spatial information, style, etc. from the reference, harming the generated diversity and causing shortcuts. However, this approach continues as widely available datasets usually consist of single images not grouped by identities, and it is expensive to recollect large-scale same-identity data. Moreover, existing metrics adopt decoupled evaluation on text alignment and identity preservation, which fail at distinguishing between balanced outputs and those that over-fit to one aspect. In this paper, we propose a multi-level, sameidentity dataset RetriBooru, which groups anime characters by both face and cloth identities. RetriBooru enables adopting reference images of the same character and outfits as the target, while keeping flexible gestures and actions. We benchmark previous methods on our dataset, and demonstrate the effectiveness of training with a reference image different from target (but same identity). We introduce a new concept composition task, where the conditioning encoder learns to retrieve different concepts from several reference images, and modify a baseline network RetriNet for the new task. Finally, we introduce a novel class of metrics named Similarity Weighted Diversity (SWD), to measure the overlooked diversity and better evaluate the alignment between similarity and diversity.

045 046 047

048

1 INTRODUCTION

Recent advancements in latent diffusion models (Rombach et al., 2022) have ushered in new capabilities in image generation, including face generation, virtual try-on, anime creation, etc. Previously, the focus was on optimization-based methods which involved tuning entire networks (Ruiz et al., 2023), tuning low-rank matrices (Hu et al., 2021), or incorporating text embeddings (Gal et al., 2022). 052 Yet, they suffer from slow inference and their hyper-parameters do not generalize to all intended subjects. The latest research has shifted towards injecting specific subject information directly into

054 the generation process, enhancing the relevance and accuracy of the output. Current methods can 055 be categorized into two main approaches. The first approach, exemplified by IP-Adapter (Ye et al., 2023), integrates additional networks that do not specifically learn to comprehend reference images. 057 The second approach, e.g. InstantID (Wang et al., 2024b), adopts specialized inputs such as facial 058 key-points, which while effective for maintaining facial identity, lacks versatility in other contexts like changing outfits. However, we observe a potential defect of the predominant training pipeline, which adopts the same image for both reference conditioning and target. This setup can inadvertently 060 leak target information to the conditioning encoder during training, which could lead to shortcut 061 learning, e.g., spatial information (Xue et al., 2023; Zhong et al., 2023). While this pipeline may 062 aid in convergence and stabilize generation, it raises concerns about whether the model is learning 063 the intended concepts or merely exploiting the leaked information. In this paper, we propose a shift 064 from learning a passive condition encoder to a retrieval encoder, enabled by new annotations. This 065 new task encourages the encoder to understand and actively retrieve subject concepts in the intended 066 manner, without depending on non-characteristic target information. 067

Avoiding target leakage. To learn to retrieve the specified information and reduce leakage from the 068 target, a good conditional image could be chosen to maximize the shared characteristic information 069 we would like to learn, and minimize the unwanted information. For example, vision-language models are used to be challenged by distinguishing between Chihuahua and Muffins (Fan et al., 2024), 071 partially due to their similar spatial structures (near-round shapes in brown with black dots), which 072 are heavily exploited during pre-training. If the non-characteristic information was well permuted, e.g. 073 hiding Chihuahua partially, closing Chihuahua eyes, cutting muffins, resulting in a diverse and less 074 learnable spatial inductive bias, we could force the models to learn from characteristic information as 075 intended, such as furs on Chihuahua faces and cake crumbs on muffins, as well as their dog paws and paper cups, respectively. Applying the same ideology to subject-driven generation, what if we can 076 access to conditional images with different spatial information, activities etc. from the target, while 077 maintaining the identity? In this sense, the conditional encoder is forced to learn from the definitive concepts and features of the identity. However, such identity-preserving annotations are scarce. For 079 human appearance, current identity-focused datasets are either limited to faces, or feature inconsistent 080 clothing options. Meanwhile, virtual try-on datasets provide detailed clothing labels but suffer from a 081 lack of diversity in body poses and background settings (Sec. 2). It remains a significant challenge to 082 keep track of whole-body human identities with unlimited motions and poses, accounting for both 083 facial and clothing identities, where the later one can lead the classification at whole-body scale too. 084

Costs and generalization. Another practical consideration is the trade-off between computational 085 costs and the generalization ability. For instance, InstantID (Wang et al., 2024b) requires 48 NVIDIA 086 H800 GPUs, with a batch size of only two, to train adapter structures for face generation with 087 key-point features on their large, private dataset. Extending this to more general semantic features 088 could significantly increase computational demands. Researchers, when validating prototype methods 089 and primary results, demand a smaller and easier dataset, in order to obtain valuable feedback on the 090 way to convergence. However, an easier benchmark would still require a decent ability to generalize, 091 so that the observations and conclusions drawn can also apply to larger scale datasets and other 092 domains. Taking both into consideration, anime figures data offers a valuable testing ground due to its easier details and good mimicry of human figures. It has less compressed latent space after VAE, 093 which is less prone to degeneration at smaller resolutions compared to human faces and body parts. This allows for quicker iterations and faster algorithm development in anime styles, while fitting into tighter speed and memory constraints. On the other hand, anime figures are animated humans, whose 096 samples share a large similarity in body structures, facial expressions, activities, etc. with human samples, facilitating human-related research. What is more, anime itself also serves as the medium of 098 plenty artistic creations in books, movies and games, which have proven popular and successful for both commercial and recreational applications, sparking generative methods to create anime subjects. 100

Therefore, we propose RetriBooru, a multitask, multiconcept anime dataset based on Danbooru, one of the largest anime website with higher-quality anime images and precise tags. More importantly, We propose a labeling pipeline by leveraging existing tags and VQA models to construct same-outfit clusters for anime characters (Sec. 3). This combination of data and annotation would be very costly to obtain otherwise. With annotated clothing identities, RetriBooru not only enables training with a different reference image of the same identity as target, but also empowers more advanced tasks such as composing faces and clothes so changing one's outfits. In order to retrieve and inject desired information into the generation, we modify ControlNet (Zhang et al., 2023) to build a retrieval

108 encoder, namely RetriNet (Fig. 4). Simultaneous work follow a similar design, achieving good results 109 in other generation tasks with other geometric or layout control (Sec. 2). We take this one step further 110 and let both appearance and geometric information be retrieved and injected.

111 Evaluating prompt-reference fusion. In evaluating the generation quality, common CLIP scores for 112 image and text similarity also tend to encourage copying and pasting the reference subject and follow 113 prompts elsewhere. This is not the ideal integration of reference images and text prompts. Even worse, 114 in rare cases, if half of the generated images have high identity preservation but low text alignment, 115 and vice versa for the other half, we obtain no useful pictures with high information from reference 116 images and good prompt fidelity, or otherwise poorly combined, but still have decent CLIP-I and 117 CLIP-T averages. We tackle this problem in Sec. 4, where we propose a class of metrics named 118 Similarity Weighted Diversity to evaluate how well the prompts and reference images are combined. When used with different pairs of metrics, new metrics can measure the quality of simultaneous 119 reference and prompt similarity, which we refer as similarity-diversity balance. 120

121 We summarize **our contributions** as follows: **a**) We propose an anime dataset RetriBooru and the 122 generalizable construction pipeline, which enables tracking and clustering of annotated outfits of the 123 same character, and facilitates experimenting methods on referenced generation. b) Given the clothing 124 annotation, we propose a new training pipeline for subject-driven generation by using a reference 125 image different from the target but with the same identity, and verify its effectiveness by previous methods. c) We propose a new concept composition task, which learns to retrieve specific aspect 126 information or various concepts from different reference images, and provide baseline results with 127 our baseline architecture RetriNet. d) We propose a new class of metrics (SWD) to better evaluate 128 referenced generation methods, explain its theoretical meaning, and demonstrate its effectiveness 129 in evaluation. We conduct major experiments on RetriBooru using various methods and settings, 130 drawing intriguing conclusions that also generalize to other domains with a larger scale. 131

132

133

2 **RELATED WORK**

134 135

Reference architectures. Initial approaches to inject information into the generation process apply 136 to the attention blocks in the denoising U-Net. For example, in Prompt-to-Prompt (Hertz et al., 2022) 137 and in Tune-A-Video (Wu et al., 2023), one can control the subject to ride a car instead of a bike 138 while preserving the rest of the results. However, like in CustomDiffusion (Kumari et al., 2023), these 139 methods are usually limited to more general concepts without as much geometric identity information 140 as faces or clothes. IP-adapter (Ye et al., 2023) and FastComposer (Xiao et al., 2023), both aiming 141 at subject face generation, do utilize image encoders, but with a shared feature vector for all blocks 142 of the U-Net (as opposed to different vectors for different blocks in our RetriNet). MasaCtrl (Cao 143 et al., 2023) adopts a parallel encoder with modified self-attention blocks so that the reference image 144 is edited according to the new prompt. DreamTuner (Hua et al., 2023) tries to enhance referenced 145 generation with an additional fine-tuning. StableVITON (Kim et al., 2023) adds body-related masks and segmentation for the virtual try-on application. 146

Virtual try-on. Starting from reproducing single objects (Chen et al., 2023; Li et al., 2023a), tasks 147 of combining multiple objects or people have emerged (Liu et al., 2022; Xiao et al., 2023; Kumari 148 et al., 2023; Ma et al., 2023), including virtual try-on, where given images of a person and an outfit, a 149 generated image of the person wearing the clothes seamlessly is expected. It is more difficult than 150 other composition tasks since there are more interactions between the body and clothes (Zhu et al., 151 2023; Li et al., 2023b; Institute for Intelligent Computing, 2023; Kim et al., 2023). A unique technical 152 characteristic of virtual try-on is the fixed pose in the reference image as layout control, and only 153 the appearance needs to be modified. For diffusion models, generating local appearances based on a 154 given layout is much easier compared to generating geometry and appearance at the same time.

155 **Evaluation metrics.** Recent evaluation metrics are quite similar among the literature (Ruiz et al., 156 2023; Chen et al., 2023; Ruiz et al., 2023; Li et al., 2023a; Kumari et al., 2023; Ma et al., 2023), using 157 CLIP (Radford et al., 2021) or DINO (Caron et al., 2021) features to measure similarity. CLIP-I 158 is used to measure the similarity between the reference image and the generated image. CLIP-T is 159 used to measure the similarity between the prompt and the generated image. Besides human user preference tests, (Achlioptas et al., 2023) aims to improve similarity scores. Nevertheless, those 160 metrics offer simple trade-off between one another and fail to evaluate many more subtle aspects for 161 referenced generation. In Sec. 4, we propose a new class of metrics to ameliorate this situation.

Figure 2: Details of RetriBooru dataset. Left: annotations of an individual sample. Right: distributions of lengths of the "similar" lists, top-15 characters with most appearances, and top-30 cloth tags.

3 RETRIBOORU DATASET

174

175 176

177

178

179

181

182

183

185

As discussed in Sec. 1, a concepts-labeled dataset is required to train a referenced generation model for retrieving given concepts interpretably. The motivation is to minimize the use of leaked information of the target, when training on the same image as both the reference and the target, which can form potential training shortcuts and cause overfitting. Existing datasets are single-tasked, lacking in size and types of identity, and may be harder to iterate on than anime figures (faces, for example). With the further annotated RetriBooru dataset, one can not only utilize cloth tags to constrain customization, apply masks and face boxes to refine details, but also leverage reference image(s) to serve as conditioning and train a more generalizable, robust condition encoder.

Table 1: Comparisons with datasets used in other literature.

Dataset	Size	Category	Multi-images	Concept	Data source
DreamBooth (Ruiz et al., 2023)	≤ 180	Objects	\checkmark		Web
BLIP-Diffusion (Li et al., 2023a)	129M	Objects			Mixture of datasets
FastComposer (Xiao et al., 2023)	70K	Human Faces		\checkmark	FFHQ-wild (Karras et al., 2019)
CustomConcept101 (Kumari et al., 2023)	642	Objects and Faces	\checkmark	\checkmark	Web
RetriBooru (Ours)	116K	Anime Figures	\checkmark	\checkmark	Danbooru (Branwen et al., 2020)

It is very costly to collect multiple identities with multiple clothing images, and approaches that rely 192 merely on CLIP features do not have enough sensitivity to reliably classify clothing identities. To 193 ameliorate this, we leverage current large models to obtain clothing labels for our dataset with filtering 194 heuristics. We construct our RetriBooru dataset from the Danbooru 2019 Figures dataset (Branwen 195 et al., 2020), which cropped 855880 images of single anime figures from Danbooru by anime character 196 detection model (Li & Shahjahan, 2018). We perform filtering by cloth tags, visual annotations using 197 existing robust segmenter and detector, and clothing clustering using a visual-question answering (VQA) model. We use Instruct-BLIP (Liu et al., 2023) with Vicuna-7B as the VQA model, ask it 199 descriptive questions for short answers, e.g., "list top two colors of the clothing", and cluster images 200 of the same character wearing the same outfits using a strict heuristic that matches the output answers. 201 Please see Supp. A.1 for processing details. In the end, RetriBooru retains 116729 training samples, 202 where each training sample could serve as either the target image or a reference image for another target. Each of the reference image has the same character, outfits, and is drawn by the same artist 203 as the target image. We show details of the dataset in Fig. 2. On the left is a sample image and its 204 annotations, including basic information, mask and face bounding box, prompts and cloth tags, and a 205 list of IDs which can access to other samples of the same identities. On the right are the distributions 206 of the number of same-identity samples for each sample, top-15 characters present, and top-30 most 207 frequent cloth tags. Each sample has at least one reference image in the "similar" entry, and there 208 are 4232 samples which have ≥ 15 reference images. We also compare with proposed datasets in 209 previous work in Tab. 1. Note that the larger the datasets are, the less functionalities they enable 210 due to annotation costs, and vice versa. In comparison, RetriBooru hits the best balance between 211 size and capabilities, where there are multi-images of an identity (similar images to the target), as 212 well as concept-aware labeling (two concepts per sample, face and cloths). CustomConcept101 213 (Kumari et al., 2023) is the most similar dataset to ours serving the same functionalities, but only contains image clusters of 101 realistic objects, in total 642 images. Using automated pipeline and 214 strict answer matching to group multiple images by identities, RetriBooru is able to collect accurate 215 annotations, and enable learning to compose separated concepts which will be further discussed.

Figure 3: Qualitative results of **IP-Adapter** trained on RetriBooru. We choose two image-prompt pairs and compare with different scales. Each row has the same scale and each column has the same seed. Our **-b** pipeline provides better balanced results given a fixed scale, and keeps fusing image and text conditioning at various scales, outputting good generation even when **-a** scale is off.

228 3.1 BENCHMARKING EXISTING MODELS

224

225

226

227

229 Training. We adopt FastComposer (Xiao et al., 2023), ControlNet (Zhang et al., 2023), IP-Adapter 230 (Ye et al., 2023), and Kandinsky (Razzhigaev et al., 2023) to finetune on our dataset (initialized with 231 SD v1.5 weights), as they are the latest open source methods that process conditional images with 232 distinct designs: FastComposer injects identifiers to help place objects (in conditional images) into 233 one image; ControlNet learns pixel-wise control and exploits spatial structures on purpose, passing 234 conditioning to the U-Net via zero convolutions; IP-Adapter passes reference images to a frozen 235 encoder and additionally learn to adapt the features, adding the same outputs to all layers in U-Net; Kandinsky adopts a prior network (taking prompts and reference) and U-Net (target and reference) 236 that can be pre-trained separately. Due to the limited computing power, we finetune with resolution 237 256 and FP16 for all methods without rigorous hyper-parameter searching, using 8 NVIDIA V100 238 GPUs. Note that we do not pursue the peak performance but conduct sufficient training for our 239 analysis, and we do not leverage extra training tricks such as additional loss updates on face parts. 240 To verify our motivation and assumptions, we develop two training settings: -a denotes existing 241 training pipeline, which applies two different transforms the same image as target and reference 242 (conditional) image, and **-b** adopts a same-identity but different image from target as the reference 243 image, everything else unchanged. It would be more fair and informative to compare two settings 244 within the same method to better evaluate the impact of target information leakage.

245 Evaluation. Our evaluation set consists of 40 in-domain anime characters and 10 out-domain 246 characters present in recent anime series, as well as 5 prompts from in-domain characters. For each 247 character-prompt pair, we generate images with 384 resolution with 5 random seeds and 4 samples per 248 seeds. In total, we have 5000 generated images for evaluation for each model. We use CLIP scores 249 between generated images and reference image, generated images and text prompt to evaluate identity 250 preservation and text alignment, denoted as CLIP-I and CLIP-T. We also multiply two quantities element-wisely to roughly evaluate the balance. See Supp. A.3 for detailed training and evaluation 251 settings, including fixed parameter choices for the models. 252

Results analysis.We report CLIP scores in Tab. 2 with a scatter plot to compare model balances
 between image and text conditioning. As -b results suggest, using a different image as the reference
 image in general improves image-text balance across diverse methods, motivating a better fusion
 by reducing the target information leakage. Among the finetuned models, Kandinsky-0.1-b
 achieves the best identity preservation, FastComposer-0.5-b achieves the best text alignment,
 and IP-Adapter-0.5-b achieves the best balance. ControlNet models tend to fit to text and

259	Table 2: Comparison of models by CLIP-I and CLIP-T scores. Left: average scores across validation
260	prompts. Right: A scatter plot that discloses the balance between text and image prompt alignment.
261	Overall $IP-Adapt or = 0$ 5-b achieves the best balance

Model	CLIP-I↑	CLIP-T↑	CLIP-I-CLIP-T		FastComposer-0.5-b
FastComposer-0.5-a	0.6406	0.2616	0.1677	0.26	ControlNet-b
FastComposer-0.5-b	0.6416	0.2637	0.1693		
ControlNet-a	0.7476	0.1787	0.1339	0.24	XIP-Adapter-0.5
ControlNet-b	0.6384	0.2594	0.1658	5	Kandinsky-0.2-a
Kandinsky-0.2-a	0.6652	0.2259	0.1503	. 6 0.22	
Kandinsky-0.2-b	0.7272	0.2093	0.1523	0	Kandinsky-0.2-t
Kandinsky-0.1-a	0.7400	0.2028	0.1502	0.20	Kandinsky-0 1-a
Kandinsky-0.1-b	0.8019	0.1941	0.1557		Kandinsky-0.1-b
IP-Adapter-0.5-a	0.7692	0.2064	0.1586	0.18	
IP-Adapter-0.5-b	0.7283	0.2382	0.1731	0.18	ScontrolNet

270 produce a worse identity preservation under **-b**. This is due to its zero convolutions' pixel-to-pixel 271 control, which essentially cannot support **-b** setting. It makes learning pixel-wise mapping from a 272 different reference to the target more challenging than overfitting to the texts in search of convergence. 273 This also indicates why later methods (Ye et al., 2023; Li et al., 2023a), including our RetriNet, adopt 274 cross attentions to connect conditional encoder to the U-Net for flexible control. To qualitatively demonstrate the benefits of our -b setting, we choose two image-prompt pairs to visualize inference 275 results of IP-Adapter for scale = [0.25, 0.5, 0.75] in Fig. 3. We observe that: a) When given a fixed 276 scale, our -b combines reference image and prompt better than original -a. b) Given various scales, 277 -b continues to produce better balanced generation, showing robustness against over-fitting, saving 278 time for searching inference parameters to generate balanced outputs. c) When -a collapses with off 279 scales (0.75), -b can still generate plausible, better results. These further validate the effectiveness of 280 our proposed new training scheme. 281

Overall, RetriBooru is superior with increased sample size, extra identity annotations, multi-concepts functionality (Tab. 1), and more performance friendly. With identity annotations, we can not only enable a better training pipeline using different reference images, but also enable future tasks which learns to retrieve different concepts accurately from different reference images.

205 286 287

307

308

323

4 SIMILARITY WEIGHTED DIVERSITY

288 Although our new training pipeline enabled by annotating clothes has been justified, there lies a 289 discrepancy between qualitative results and metric scores. The goal of subject-driven generation is to generate images flexibly while maintaining subject identity (object or personal) and combining 290 text prompts well. As discussed in Sec. 2, existing metrics measure image and text similarities 291 separately. However, observe that the better qualitative results of **-b** setting are only roughly reflected 292 in Tab. 2, and decoupled averages of the metrics are not good measures of qualities of subject driven 293 images. Oftentimes, some generated images tend to resemble reference images while others follow 294 texts, especially when generation parameters are not well-optimized, yielding inflated averaged 295 scores. We provide a class of metrics to combine similarity and diversity metrics, which require both 296 extracting the desired information from reference images and combining reference information with 297 texts. Hence, it is better suited for referenced generation. Our metrics also benefit from continued 298 improvements in the precision of similarity and diversity measurements. For instance, CLIP-I is not 299 yet an optimal measurement identity preservation because preserving other irrelevant style, layout and semantic information also contributes to CLIP-I. In practice, these irrelevant information usually 300 interfere with text prompts, resulting in artifacts. 301

A reference image generation model can be written as a function $f: r, \theta_r \to g$, where *r* represents reference image(s), θ is the collection of all generation parameters for the run (the prompt, scheduler, guidance scale etc.), and g is the generated image. We denote div and sim (diversity, similarity) measurement functions as div : $r, g \to \mathbb{R}$, sim : $r, g \to \mathbb{R}$. Under this notation, for a pair of measurement functions div and sim, we define:

$$SWD(div, sim)(f) = \frac{1}{|(r, \theta_r)|} \sum_{r, g = f(r, \theta_r)} div(r, g) \cdot sim(r, g)$$
(1)

where each tuple (r, θ_r) represents a test generation with the reference images r and parameters θ_r . $|(r, \theta_r)|$ is the total number of such runs. We illustrate with two concrete examples.

311 Measuring explicit diversity. As briefly mentioned, in (Wang et al., 2024b), authors noticed 312 that some approaches can inadvertently impact text control. A notable example is the inability to 313 seamlessly integrate the facial area with the background style. This limitation highlights a trade-off 314 between face fidelity and text control. This trade-off of face fidelity and text fidelity could be masked 315 by simply considering CLIP-I and CLIP-T separately. A worse trade-off of having high CLIP-I, low 316 CLIP-T for half of the images and low CLIP-I, high CLIP-T for the other half results in medium 317 CLIP-I and CLIP-T scores, but generates very low amount of ideal images where identity is preserved, text control is followed, and image-text is well fused. Since text control explicitly dictates diversity 318 from input reference images, we take CLIP-I to be sim, CLIP-T to be div and can consider this as a 319 better measurement for explicit (prompt-driven) diversity. In this case, SWD(CLIP-T, CLIP-I) works 320 as a filter for images that are both consistent to the reference images and follows the text prompts. 321 Because of Cauchy-Schwartz inequality: 322

$$\sum_{r,g=f(r,\theta_r)} \operatorname{div}(r,g) \cdot \sin(r,g))^2 \le \sum_{r,g=f(r,\theta_r)} \operatorname{div}(r,g)^2 \cdot \sum_{r,g=f(r,\theta_r)} \sin(r,g)^2$$
(2)

Figure 4: An illustration of concept composition task on RetriBooru using RetriNet. We pass reference concepts into the retrieval encoder to encode precisely only the relevant information. We pass noisy target image and prompt made with Danbooru tags to a copy of denoising U-Net. Note that we process reference images, texts, and time with corresponding frozen encoders, and we have frozen encoder and middle blocks of SD. We designate the embeddings derived from target images and prompts as Query (Q), while the embeddings from reference images and text serve as Key and Values (KV). Following the cross attention layers are zero-convolution layers.

The metric encourages simultaneous achievement of reference consistency and prompt consistency,
 i.e. better distribution of CLIP-T with respect to CLIP-I.

345 Measuring implicit diversity. When generating faces, different head poses and expressions are 346 implicit to the distribution. When generating anime characters, the characters could be in different 347 poses and expression too. These are implicit data distribution diversities. Then SWD (as we will 348 define for anime images) captures the fact that generated images should preserve the identities but 349 still not be rigid and have a fixed pose. We can measure this by asking a VQA system (InstructBLIP (Liu et al., 2023) Vicuna-7B) descriptive questions about explicit attributes and compare answers, 350 and we denote this metric as the VQA score. For instance, we can ask the VQA model about head 351 orientation, facial expressions, body gestures, activities and so on. To compare two generated images, 352 we embed the answers into vectors and compute the cosine similarity. See more details in Supp. A.2. 353

We will use SWD(VQA, CLIP-I), SWD(VQA, CLIP-T), and SWD(CLIP-I, CLIP-T) to evaluate
Retribooru tasks in Tab. 3. We have also seen one simultaneous independent work using face distance
as sim and LPIPS as div in (Wang et al., 2024a) (Trusted Div. in Sec. 4.1).

357 358

359

5 CONCEPT COMPOSITION TASK

360 We extend our **-b** setting in Sec. 3.1, using multiple reference images from the "similar" entry of the target. In the following sections, we refer to directly using various reference images as 361 the "reconstruction" task, given its unchanged training goal despite various reference. We further 362 propose a concept composition task, where different reference images carry different concepts for the condition encoder to retrieve and compose. As shown in Fig. 1, we use annotated bounding boxes 364 and masks to separate desired concepts from the reference images, and pass to the condition encoder 365 along with the corresponding texts. Note that we randomly choose N reference images and obtain 366 either "face" or "clothes" concepts independently, instead of building N reference images by dividing 367 each of N/2 images into two concepts. In rare cases, we replace the "clothes" reference with its 368 whole image, denoted as "figure" reference, if the face bounding box occupies the majority of the 369 image. See Supp. A.4 for implementation details. Likewise, for reconstruction task, we directly pick 370 N reference images and pass them to the condition encoder with texts "figure". Concept composition 371 is a more difficult task than reconstruction, as it needs to not only recognize the concepts in the 372 reference, but also learn to compose them properly.

Expectation for *N*. Ideally, We want *N* to be as large as it can be supported by sufficient annotations. When the reference image is the same as the target, the conditional encoder cannot constrain what information is passed and learned, forming shortcuts based on inductive bias such as geometric structures, shapes and gestures, leading to overfitting. Hence, information from inductive bias is leaked to the model for convergence, while the characteristics of an identity is insufficiently learned. However, when the reference image maintains only the identity but has other attributes differently (a) Prompt 1

(b) Prompt 2

Figure 5: Qualitative results on the RetriBooru dataset. We use RetriNet for reconstruction, concept composition, and a multitask setting.

such as orientations, poses, activities, it naturally breaks shortcuts based on the inductive bias, limits the model to learn identity from only characteristic features, and thus learns from the correct and trustworthy information. With the number of annotated reference images increasing, it better approximates the data distribution with more discrete, diverse samples of the same identity, and applies more constraints to calibrate on retrieving the correct information. In the best but unrealistic case, "similar" represents the identity's space.

399 5.1 RETRINET

390

391

392

400 Observed in Tab. 2, ControlNet-b (Zhang et al., 2023) overfits to text prompt to avoid the hard task of 401 learning image conditioning. However, we can adopt cross attention layers to connect control module 402 to the U-Net and thus enabling flexible control. This approach can also support training on our new 403 task. We propose a modified architecture RetriNet, which retrieves concepts from references via a 404 retrieval encoder and inject them into the denoising U-Net via cross attention layers, without relying 405 on geometric controls. To the best of our knowledge, we are the first to show this structure works 406 without the need for geometric information or layout guidance, such as key-points and semantic masks. Fig. 4 demonstrates our architecture design and the pipeline for training concept composition 407 task on RetriBooru. This approach unifies geometric retrieval instead of pre-processing for different 408 key-points and masks for each different task. When geometric or layout information are given (as 409 some of the simultaneous and independent virtual try-on and video generation methods we surveyed 410 have done), the abilities demonstrated are the encoding of reference appearances. We push the 411 abilities even further, showing that RetriNet can simultaneously generate and reconstruct geometry 412 and appearance. We also show that RetriNet can retrieve and compose geometry and appearance. See 413 Supp. A.4 for more details. Note that unlike concurrent work such as IP-Adapter (Ye et al., 2023) 414 that adds a common cross attention output to U-Net layers, RetriNet computes cross attentions and 415 adds to U-Net decoder for each layer individually, as Fig. 4 marks the corresponding layer numbers.

Training objective. Let M_{tgt} be the mask of the valid area of the target image (excluding padding). Let M_{face} be face masks for each target. Denote the original reconstruction loss as $\mathcal{L}(\epsilon, \epsilon_{\theta}(\cdot))$, our loss between the target and reconstruction then becomes

$$\mathcal{L}' = \mathcal{L}(\epsilon \mathbf{M}_{\text{tgt}}, \epsilon_{\theta}(\cdot) \mathbf{M}_{\text{tgt}}) + \lambda \mathcal{L}(\epsilon \mathbf{M}_{\text{face}}, \epsilon_{\theta}(\cdot) \mathbf{M}_{\text{face}}).$$
(3)

5.2 EXPERIMENTS

420 421

422 Setup. We conduct both concept composition and reconstruction tasks on RetriBooru with Re-423 triNet, providing baseline results for future research. We also combine reconstruction and concept 424 composition as one retrieval task, denoted as multitask. We follow the standard denoising training. 425 SD encoder, decoder, and retrieval encoder blocks are initialized with corresponding blocks in SD 426 v1.5 weights. We train on 8× NVIDIA V100 GPUs, with resolution 384, FP32, batch size 1 but 427 accumulate every 8 batches. Training 9000 steps roughly requires 72 GPU hours. We perform one 428 longer 45000-step training for each task, with trainable retrieval block and U-Net decoder, and a p = 0.5 drop-rate to drop text prompt to the U-Net. By default, we use N = 4 reference images. We 429 also conduct various ablation studies for 9000 steps and run inference outputs at resolution 384, with 430 the same evaluation set and procedure specified in Sec. 3.1, except that we prepare reference images 431 the same way as training our tasks. See Supp. A.4 for other fixed choices of hyper-parameters.

443

Figure 6: Attention maps of early to deeper layers in the retrieval block.

444 Quantitative analysis and ablations. We record quantitative results in Tab. 3, and visualize 445 balances between diversity (text) and similarity (image) in the scatter plots on the right. "R-, C-, M-" 446 represents reconstruction, concept composition, and multitask, followed by number of training steps. 447 "P-" denotes a prompt droprate different from the default 0.5. "LockD, LockB" refer to freezing the 448 U-Net decoder and freezing both the U-Net decoder and retrieval encoder. We summarize that: a) Training w/o locking the frozen image encoders adopted in (Ye et al., 2023; Li et al., 2023a) results 449 in better generalization. Observe that freezing either network module harms the performance for 450 reconstruction and concept composition, with "-LockB" having more impact. This is due to the extra 451 objective of the retrieval encoder to recognize the information to retrieve from the conditioning, and 452 it can not adopt a frozen image encoder and decoder without such training. b) A lower drop rate helps 453 guide the model learning by more presence of text prompts for the more difficult concept composition, 454 where retrieving conditioning from reference images is more challenging than reconstruction task. 455 This explains why C9kP025 achieves best similarity-weighted diversity (SWD) scores among concept 456 composition models. Given different tasks of different difficulties, models are more sensitive to the 457 prompt drop-rate. We argue that C9kP025 tends to fit to text prompts during training in pursuit of 458 faster convergence. While imbalanced convergence is not encouraged, this finding suggests future 459 work on constraining the existing objectives. c) As the top scatter plot suggests, longer training benefits CLIP-I and CLIP-T balance, despite that longer training tends to trade CLIP-T for improved 460 CLIP-I. d) -45k do not necessarily outperform -9k models. This indicates that the training on 461 RetriBooru can converge fast at earlier phase. Combining with **c**, we hypothesize that later training 462 mainly aims at better fusing the image reference and the text prompt. 463

Qualitative analysis and visualizations. We provide qualitative results from -45k models of three tasks on RetriBooru dataset and record generated images in Fig. 5, selecting three characters for each of the two prompts. "Multitask (recon)" denotes running image generation in the same fashion as reconstruction task, and vice versa. We observe that R45k has achieved best image quality and best diversity-similarity balance among three models: light-reflecting hair, less artifacts, diverse details, etc. This also aligns with our SWD scores, where R45k achieves best VQA_CLIP-T and CLIP-I_CLIP-T among the three. M45k in general has the second best image quality, but sometimes

Table 3: Baseline results on RetriBooru. Left: Average scores across validation prompts, and we mark the highest for each task. Right: A scatter plot that discloses the balance between diversity (text) and similarity (image). Longer training achieves better CLIP-I CLIP-T balance.

							CLIP-I and CLIP-T Score Balance
Modal	VQA↑	CLIP-I↑	CLIP-T↑	VQA_	VQA_	CLIP-I₋	C9k.25
Model				CLIP-I↑	CLIP-T↑	CLIP-T	0.230 M9K% K9K C45k C9k R9k.25 XR45k
R9kLockD	0.4276	0.7022	0.2120	0.2985	0.0909	0.1487	0.225 XM45 k
R9kLockB	0.4383	0.6856	0.2077	0.2992	0.0912	0.1422	C9k.75
R9kP025	0.4234	0.7139	0.2306	0.2998	0.0988	0.1636	0.215 C9kLD
R9kP075	0.4012	0.7384	0.2037	0.2943	0.0823	0.1500	
R9k	0.4372	0.7008	0.2331	0.3044	0.1027	0.1628	0.205 R9k.75
R45k	0.4161	0.7328	0.2311	0.3029	0.0970	0.1687	0.69 0.70 0.71 0.72 0.73 0.74 CLIP-I
C9kLockD	0.4276	0.7002	0.2138	0.2979	0.0917	0.1495	CLIP-I and VQA Score Balance
C9kLockB	0.4297	0.6979	0.2113	0.2984	0.0910	0.1473	0.435 M9K XR9k
C9kP025	0.4390	0.6941	0.2377	0.3031	0.1050	0.1645	
C9kP075	0.4280	0.7007	0.2230	0.2980	0.0963	0.1557	0.425 C45k ▼R9k.25
C9k	0.4348	0.6976	0.2318	0.3016	0.1017	0.1612	\$0.420 ★ R45
C45k	0.4251	0.7111	0.2315	0.3004	0.0994	0.1640	0.413 ×M45k
M9k	0.4377	0.6963	0.2334	0.3031	0.1029	0.1621	0.405
M45k	0.4142	0.7221	0.2259	0.2973	0.0945	0.1625	0.400 R9k.75
							CLIP-I

Figure 7: Qualitative comparisons between RetriNet and SOTA methods on human faces.

499 retain the background and accessory details of the reference images, affecting diversity. C45k displays 500 the most flexible and diverse generation, and follows well the text prompt. However, since concept composition is more challenging, we can observe a few more artifacts such as round head and limb 501 issues. These observations are also reflected by these models' SWD scores. This further validates 502 the effectiveness of evaluating diversity-similarity balance using the proposed VQA score and SWD 503 metrics. Additionally, we visualize attention maps at different layers of the retrieval encoder from the 504 C45k model in Fig. 6. Given a simple background, the retrieval encoder is able to locate the identity 505 at an early stage. With deeper layers, the identifying texts are able to highlight the corresponding 506 semantics on the reference images, and the attention regions are further refined with timesteps. At 507 t = 0 for Input Block 7, "clothes" and "face" can be properly highlighted as intended. Note that the 508 "face" region can sometimes also be highlighted by "clothes". It is due to the additional loss update 509 on the face bounding box we adopt per Eqn. 3, as well as the cropping for "face" reference images 510 for our training.

511 Generalizing to other domain. Our observations and conclusions from both experiment sections 512 also generalize to other domain. Specifically, adopting different reference image(s) with the same 513 identity as target (**-b** setting), unfreezing conditional encoder and U-Net decoder for the new pipeline, 514 and applying a text droprate contribute to a better subject-driven generation model. We follow these 515 conclusions to pre-train RetriNet on existing human face datasets (Rothe et al., 2015; Liu et al., 2018; An et al., 2021), and provide qualitative comparisons with public models of FastComposer 516 and IP-Adapter for faces in Fig. 7. Baseline generation results from vanilla SD are also included. 517 Our training pipeline keeps a better identity-diversity balance and combines prompts and reference 518 images better, while other methods maintain a worse trade-off. The ability to generalize to more 519 complex data also depends on the computation resources, where higher resolution accommodates 520 more details. Our largest possible training resolution is 384, limited by V100. Note that we do not 521 search for the optimal parameters for human face training as it is not our focus; this experiment only 522 serves to validate that our proposed dataset and training settings can provide valuable observations 523 and generalize to other data domains. 524

526 6 CONCLUSION

In this paper, we propose a new dataset RetriBooru, which enables new training pipelines and tasks 527 with extra identity annotations. We successfully show that using same-identity pairs (reference and 528 target image have the same identity but are not the same image) results in more robust generalizations, 529 and also enable training for composing different concepts from different reference images, using 530 a newly designed model. Moreover, we propose a new group of metrics to weight similarity 531 (image identity) and diversity (text prompt), which aligns well with visualizations and provide better 532 evaluation. Our dataset facilitate research with constrained computes and provide enough samples to 533 yield meaningful analysis that can generalize. Our study sheds light on improving current training 534 procedure and objectives.

535

498

- 536
- 538
- 520

540 REFERENCES 541

542 543 544	Panos Achlioptas, Alexandros Benetatos, Iordanis Fostiropoulos, and Dimitris Skourtis. Stellar: Systematic evaluation of human-centric personalized text-to-image methods. <i>Computing Research</i> <i>Repository (CoRR)</i> , abs/2312.06116, 2023.
545 546 547	Xiang An, Xuhan Zhu, Yuan Gao, Yang Xiao, Yongle Zhao, Ziyong Feng, Lan Wu, Bin Qin, Ming Zhang, Debing Zhang, et al. Partial fc: Training 10 million identities on a single machine. In <i>Proceedings of the IEEE/CVF International Conference on Computer Vision</i> , pp. 1445–1449, 2021.
548 549 550	Anonymous, Danbooru community, and Gwern Branwen. Danbooru2021: A large-scale crowd- sourced and tagged anime illustration dataset. https://gwern.net/danbooru2021, 2022.
551 552	Gwern Branwen, Anonymous, and Danbooru Community. Danbooru2019: A large-scale anime character illustration dataset. https://gwern.net/crop, 2020.
553 554 555	Mingdeng Cao, Xintao Wang, Zhongang Qi, Ying Shan, Xiaohu Qie, and Yinqiang Zheng. Masactrl: Tuning-free mutual self-attention control for consistent image synthesis and editing. <i>arXiv preprint</i> <i>arXiv:2304.08465</i> , 2023.
556 557 558 559	Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerging properties in self-supervised vision transformers. In <i>Proceedings of the IEEE/CVF international conference on computer vision</i> , pp. 9650–9660, 2021.
560 561 562	Wenhu Chen, Hexiang Hu, Yandong Li, Nataniel Rui, Xuhui Jia, Ming-Wei Chang, and William W Cohen. Subject-driven text-to-image generation via apprenticeship learning. <i>arXiv preprint arXiv:2304.00186</i> , 2023.
563 564 565	Kaiwen Cui, Yingchen Yu, Fangneng Zhan, Shengcai Liao, Shijian Lu, and Eric P Xing. Kd-dlgan: Data limited image generation via knowledge distillation. In <i>Proceedings of the IEEE/CVF</i> <i>Conference on Computer Vision and Pattern Recognition</i> , pp. 3872–3882, 2023.
567 568 569	Tao Dai, Jianrui Cai, Yongbing Zhang, Shu-Tao Xia, and Lei Zhang. Second-order attention network for single image super-resolution. In <i>Proceedings of the IEEE/CVF conference on computer vision and pattern recognition</i> , pp. 11065–11074, 2019.
570 571 572	Julián Del Gobbo and Rosana Matuk Herrera. Unconstrained text detection in manga: A new dataset and baseline. In <i>Computer Vision–ECCV 2020 Workshops: Glasgow, UK, August 23–28, 2020,</i> <i>Proceedings, Part III 16</i> , pp. 629–646. Springer, 2020.
573 574 575 576 577	Yue Fan, Jing Gu, Kaiwen Zhou, Qianqi Yan, Shan Jiang, Ching-Chen Kuo, Yang Zhao, Xinze Guan, and Xin Wang. Muffin or chihuahua? challenging multimodal large language models with multipanel vqa. In <i>Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</i> , pp. 6845–6863, 2024.
578 579 580	Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H Bermano, Gal Chechik, and Daniel Cohen-Or. An image is worth one word: Personalizing text-to-image generation using textual inversion. <i>arXiv preprint arXiv:2208.01618</i> , 2022.
581 582	Yonghao He, Dezhong Xu, Lifang Wu, Meng Jian, Shiming Xiang, and Chunhong Pan. Lffd: A light and fast face detector for edge devices. <i>arXiv preprint arXiv:1904.10633</i> , 2019.
583 584 585	Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Prompt- to-prompt image editing with cross attention control. <i>arXiv preprint arXiv:2208.01626</i> , 2022.
586 587 588	Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. <i>arXiv preprint arXiv:2106.09685</i> , 2021.
589 590 591	Miao Hua, Jiawei Liu, Fei Ding, Wei Liu, Jie Wu, and Qian He. Dreamtuner: Single image is enough for subject-driven generation. <i>arXiv preprint arXiv:2312.13691</i> , 2023.
592 593	Alibaba Group Institute for Intelligent Computing. Outfit anyone: Ultra-high quality virtual try-on for any clothing and any person. https://humanaigc.github.io/outfit-anyone, 2023.

608

613

623

637

- Glenn Jocher, Ayush Chaurasia, Alex Stoken, Jirka Borovec, Yonghye Kwon, Kalen Michael, Jiacong Fang, Zeng Yifu, Colin Wong, Diego Montes, et al. ultralytics/yolov5: v7. 0-yolov5 sota realtime instance segmentation. *Zenodo*, 2022.
- Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
 adversarial networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 4401–4410, 2019.
- Jeongho Kim, Gyojung Gu, Minho Park, Sunghyun Park, and Jaegul Choo. Stableviton: Learning semantic correspondence with latent diffusion model for virtual try-on. *arXiv preprint arXiv:2312.01725*, 2023.
- Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli Shechtman, and Jun-Yan Zhu. Multi-concept customization of text-to-image diffusion. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 1931–1941, 2023.
- Dongxu Li, Junnan Li, and Steven CH Hoi. Blip-diffusion: Pre-trained subject representation for controllable text-to-image generation and editing. *arXiv preprint arXiv:2305.14720*, 2023a.
- Jerry Li and Tazik Shahjahan. Aniseg: A faster-rcnn model for anime character segmentation. https://github.com/jerryli27/AniSeg, 2018.
- Kiu Li, Michael Kampffmeyer, Xin Dong, Zhenyu Xie, Feida Zhu, Haoye Dong, Xiaodan Liang,
 et al. Warpdiffusion: Efficient diffusion model for high-fidelity virtual try-on. *arXiv preprint arXiv:2312.03667*, 2023b.
- Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *arXiv* preprint arXiv:2304.08485, 2023.
- Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and Joshua B Tenenbaum. Compositional visual
 generation with composable diffusion models. In *European Conference on Computer Vision*, pp.
 423–439. Springer, 2022.
- Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Large-scale celebfaces attributes (celeba) dataset. *Retrieved August*, 15(2018):11, 2018.
- Jian Ma, Junhao Liang, Chen Chen, and Haonan Lu. Subject-diffusion: Open domain personalized text-to-image generation without test-time fine-tuning. *arXiv preprint arXiv:2307.11410*, 2023.
- Puneet Mangla, Nupur Kumari, Mayank Singh, Vineeth N Balasubramanian, and Balaji Krishna murthy. Data instance prior for transfer learning in gans. 2020.
- Martinus Grady Naftali, Jason Sebastian Sulistyawan, and Kelvin Julian. Aniwho: A quick and accurate way to classify anime character faces in images. *arXiv preprint arXiv:2208.11012*, 2022.
- Atsuhiro Noguchi and Tatsuya Harada. Image generation from small datasets via batch statistics
 adaptation. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 2750–2758, 2019.
- Tong Qiao, Yuyan Ma, Ning Zheng, Hanzhou Wu, Yanli Chen, Ming Xu, and Xiangyang Luo. A
 novel model watermarking for protecting generative adversarial network. *Computers & Security*, 127:103102, 2023.
- Kuebin Qin, Hang Dai, Xiaobin Hu, Deng-Ping Fan, Ling Shao, and Luc Van Gool. Highly accurate dichotomous image segmentation. In *European Conference on Computer Vision*, pp. 38–56. Springer, 2022.
- Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 models from natural language supervision. In *International conference on machine learning*, pp. 8748–8763. PMLR, 2021.

648

649 Ilya Ryabov, Angelina Kuts, Alexander Panchenko, Andrey Kuznetsov, and Denis Dimitrov. 650 Kandinsky: an improved text-to-image synthesis with image prior and latent diffusion. arXiv 651 preprint arXiv:2310.03502, 2023. 652 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-653 resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-654 ence on computer vision and pattern recognition, pp. 10684–10695, 2022. 655 656 Rasmus Rothe, Radu Timofte, and Luc Van Gool. Dex: Deep expectation of apparent age from 657 a single image. In IEEE International Conference on Computer Vision Workshops (ICCVW), December 2015. 658 659 Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman. 660 Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In Proceed-661 ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22500–22510, 662 2023. 663 Qinghe Wang, Xu Jia, Xiaomin Li, Taiqing Li, Liqian Ma, Yunzhi Zhuge, and Huchuan Lu. Sta-664 bleidentity: Inserting anybody into anywhere at first sight. arXiv preprint arXiv:2401.15975, 665 2024a. 666 667 Qixun Wang, Xu Bai, Haofan Wang, Zekui Qin, and Anthony Chen. Instantid: Zero-shot identity-668 preserving generation in seconds. arXiv preprint arXiv:2401.07519, 2024b. 669 Jay Zhangjie Wu, Yixiao Ge, Xintao Wang, Stan Weixian Lei, Yuchao Gu, Yufei Shi, Wynne Hsu, 670 Ying Shan, Xiaohu Qie, and Mike Zheng Shou. Tune-a-video: One-shot tuning of image diffusion 671 models for text-to-video generation. In Proceedings of the IEEE/CVF International Conference on 672 Computer Vision, pp. 7623–7633, 2023. 673 674 Guangxuan Xiao, Tianwei Yin, William T Freeman, Frédo Durand, and Song Han. Fastcom-675 poser: Tuning-free multi-subject image generation with localized attention. arXiv preprint arXiv:2305.10431, 2023. 676 677 Yihao Xue, Siddharth Joshi, Eric Gan, Pin-Yu Chen, and Baharan Mirzasoleiman. Which features 678 are learnt by contrastive learning? on the role of simplicity bias in class collapse and feature 679 suppression. In International Conference on Machine Learning, pp. 38938–38970. PMLR, 2023. 680 Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt 681 adapter for text-to-image diffusion models. arXiv preprint arXiv:2308.06721, 2023. 682 683 Fan Yi, Jiaxiang Wu, Minyi Zhao, and Shuigeng Zhou. Anime character identification and tag 684 prediction by multimodality modeling: Dataset and model. In 2023 International Joint Conference 685 on Neural Networks (IJCNN), pp. 1–8. IEEE, 2023. 686 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image 687 diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 688 pp. 3836-3847, 2023. 689 690 Yuanyi Zhong, Haoran Tang, Jun-Kun Chen, and Yu-Xiong Wang. Contrastive learning relies more 691 on spatial inductive bias than supervised learning: An empirical study. In Proceedings of the 692 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 16327–16336, October 2023. 693 Luyang Zhu, Dawei Yang, Tyler Zhu, Fitsum Reda, William Chan, Chitwan Saharia, Mohammad 694 Norouzi, and Ira Kemelmacher-Shlizerman. Tryondiffusion: A tale of two unets. In Proceedings 695 of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4606–4615, 2023. 696 697 699 700

Anton Razzhigaev, Arseniy Shakhmatov, Anastasia Maltseva, Vladimir Arkhipkin, Igor Pavlov,