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Abstract—This article introduces Gaussian approximation-
based smoothing algorithms for nonlinear stochastic state space
models using the polynomial chaos expansion (PCE). Initially, we
present a smoothing algorithm, where the nonlinear functions
of the state space model are approximated using a PCE that
is formed using a set of collocation points generated from the
filtering distribution. Subsequently, an iterative variant of the
proposed smoothing algorithm is also presented. It iteratively
forms a PCE approximation to the nonlinear functions by
using collocation points generated from the current posterior
approximation. The performance of the algorithms is evaluated
on pendulum and aircraft tracking problems.

Index Terms—Gaussian approximation-based smoother, poly-
nomial chaos expansion, point collocation, iterative smoother.

I. INTRODUCTION

In this paper, we introduce an approximate polynomial
chaos expansion (PCE) based smoothing algorithm for non-
linear state space models. The smoothing solutions for the
nonlinear state space models find applications in various real-
life scenarios such as target tracking, navigation, guidance
systems, audio, and biomedical signal processing [1]-[5]. We
consider dynamic systems that can be expressed as stochastic
state space models of the following form [1], [2]:

= f(Tp—1) + Mh—1, (D
Y = h(zr) + Vi, 2

where x;, € R, and y, € R™v are the state of the system and
the sensor measurement, respectively. Above, f(x) : R"» —
R™ and h(x) : R™ — R™ are known nonlinear functions.
The process noise, n,—1 and the measurement noise, vy, are
assumed uncorrelated white Gaussian with mean zero, and co-
variances (J;—1 and Ry, respectively. The initial state xg ~
N (fom, Pom), Nk—1, and v are mutually independent of each
other.

Smoothing involves estimating the past state history of a
dynamic system by utilizing all the available measurements,
leading to enhanced estimation performance over filtering. The
Bayesian smoother computes the marginal posterior distribu-
tion of the state, x; given measurements up to time step
T, y1.7, that is, p(xg | y1.7),k € {1,...,T} in two steps:
(i) forward pass, and (ii) backward pass. The forward pass
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Fig. 1 Illustration of the basic idea behind the proposed chaos
expansion-based smoother and its iterative variant. Initially, we
approximate the stochastic state space model using the polynomial
chaos expansion through a weighted sum of orthogonal polynomial
basis functions. Subsequently, a smoothing algorithm and its iterative
variants are developed based on the approximated state space model.

consists of filtering to recursively compute p(zx | y1.x) [1],

[2]
p(@k | yie) X DYk | 2k) p(zk | Y1:e—1),

p(xk | yip—1) = /P(ﬂﬁk | 2p—1) (-1 | Y1:r—1) dap—1.

In the backward pass, p(zy | yi.r) is being computed
recursively backwards, starting from k = T via

p(k | yur) = p(@k | yir)
y / {p (@kr1 | r) p (Trt1 | yr7)
p(Thtr | yir)
For linear Gaussian systems, the distributions remain Gaus-
sian, and a closed-form solution of them can be computed
exactly using the Rauch-Tung-Striebel (RTS) smoother [2],
[6], [7]. However, for nonlinear systems, the distributions lose
their Gaussian property, and closed-form solutions are not
available. To address this, various methods exist to obtain
approximate solutions. Often in literature, these distributions
are approximated as Gaussian [2], [8]-[11] by using moment
matching, which is also the approach that we use here. Other
methods also exist in the literature, including the sequential
Monte Carlo and related methods [12].
Several Gaussian approximation-based smoothers for non-
linear systems exist in the literature (see, e.g., [2]). The clas-
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sical one is the extended RTS smoother (ERTSS), which uses
the local linearization based on the Taylor series expansion
[2], [7], [13]. Various other Gaussian approximation-based
smoothers have been developed, including the cubature RTS
[14], unscented RTS [11], Gauss—Hermite RTS [15], and the
Fourier—Hermite RTS [16], among others. To further enhance
estimation accuracy, iterative variants have been developed [2],
[17].

Numerous estimation algorithms have also been developed
based on the polynomial chaos expansion (PCE) [18], [19].
Examples include the polynomial chaos extended Kalman fil-
ter (PCEKF) [20], polynomial chaos ensemble KF (PCEnKF)
[21], and polynomial chaos KF [22], [23]. In this paper,
we extend the methods developed in [23] to derive novel
smoothing algorithms. The developed algorithms utilize the
PCE to approximate the state space model through a weighted
sum of orthogonal polynomial basis functions, a concept ini-
tially introduced in [18]. Subsequently, the integrals associated
with the algorithm are approximately evaluated by fitting
the polynomial to the nonlinear functions by using a set of
collocation points (CPs). A bit similar approach has been
adopted in the Fourier—Hermite series-based algorithms [16],
[24], but based on spectral expansions.

The main contributions of this article are (1) to introduce
a Gaussian approximation-based smoothing algorithm using a
polynomial chaos expansion and (2) an iterative variant of it
utilizing an iterated posterior distribution approximation. We
also numerically illustrate the performance of the proposed
methods. The proposed approach is illustrated in Fig. 1.

II. POLYNOMIAL CHAOS EXPANSION

In this paper, the polynomial chaos expansion is employed
to approximate the nonlinear transition functions, f(x), where
x ~ N(&, P). Utilizing the affine transformation [23] x =
Z + Sz, we transform the random variable z in to a standard
Gaussian random variable z, that is, z ~ N(0, ), where P =
SST. The d-th order chaos expansion of the function can be
expressed as [19], [23]

Ny Ny 11
fE+8z)~ao+ Y aiHi(zi) + ) Y aiiy

i1=1 11=112=1

ng i1 12
H2<2i1,2i2)+ E E E ai1i2i3H3(Zi17'zizazi3)+"'
i1=1ig—=1ig=1

Ny 11 Gd—1

+ Z Z Z Qiyig-igHa(Ziy, Zigs - -+ 2i4),
i1=lip=1  ig=1
€)]
where a;,....s are the unknown PCE coefficients, the random
. T .
variable z = [z1 2 Zng| » oM o= (”de) is the

total number of coefficients, and Hy(-) is the d-th degree
multidimensional Hermite polynomial [19],

Hg(z1,22,- ,2n,)
1 ona 1
= —1 d — T — - = T .
(D exp(32 ) s s, P27 )

The Hermite polynomials are orthogonal under the inner
product

(. g) = / f(2) 9Nz | 0, T)dz = E[fg),

that is F[H,H,| = 0 if p # ¢, and here, the expectation
is being computed with respect to the standard Gaussian
distribution. After rearranging and simplifying, we can express
Eq. (3) in a more concise way as

f(@+Sz) ~ag+ AH(z), “4)
where ag € R"=, and the matrices A and H(z) are

Anzx(m—l) = [Cll ag anlnl] 5
H(Z)(mfl)xl = [Hl(zl) Hd(ZnTa 7an)]—r-

Utilizing the aforementioned approximation, the stochastic
state space models in Eqgs. (1)-(2) can be expressed as

g ~ ao -1+ A1 H (zk—1) + M1, )
Yk ~ box + BpH (21) + v, (6)

where by € R™ and B € R™*™~! are the coefficient
matrices, ag, A and H(z) are as defined above.

Remark I: For a standard Gaussian random variable z, the
matrix H(z) exhibits the following properties: E[H(z)] = 0
and E[H(2)H(2)"] = I.

A. Determining the unknown coefficient
Here, we discuss the evaluation of the unknown coefficient

matrices of the approximation. Eq. (4) can be rewritten as

fE+52)=[ao A {H%ZJ — AH(2). (7)

To determine the matrix A’, consisting of the coefficients ag
and A, we utilize a method based on collocation points (CPs)
& € R for i = 1,...,m [22], [23]. Evaluating both sides
of Eq. (7) on these CPs, the equation becomes

x=HA"T, 8)
where the matrices y € R™*"= and H € R™*"™ are
ST(@E+ S&) H'T (&)
fH(@+ 5&) H'T (&)
X= : H = : ©)
FT(@+ 5&n) H'(&m)

Solving the linear equation in Eq. (8), we get the coefficient
matrix

AT =H 1y, (10)
If the matrix, H is not invertible, we can use a (regularized)
pseudo-inverse to solve the equation. Similarly, we can evalu-
ate the coefficient matrix, B’ = [bo B] for the measurement
model in Eq. (6). Here, the collocation points are selected as in
[22], [23]. A pseudo-code for PCE is provided in Algorithm 1.



Algorithm 1 PCE using collocation points

1: function A’ = PCE(f(+), %, P, ¢, H).

2. Compute the square root S of P = SST.

33 fori=1,...,mdo

4 Form the translated and scaled collocation point
¥ =&+ 5§

5: Evaluate the function at the point x; = f(1;).

6: end for

7:  Form the matrix, x = [XlT Xa XIL]T.

8 Compute the coefficient matrix A’ = (H™1y)T.

9: end function

ITI. POLYNOMIAL CHAOS RTS SMOOTHER
In this section, we develop the RTS smoother for the state
space model in Egs. (5)-(6) utilizing the polynomial chaos
expansion. As discussed in Sec. I, it is performed in two steps:
(1) forward pass and (ii) backward pass.

A. Forward pass

The forward pass consists of the filtering algorithm. Assum-
ing that both p(xg | 2x—1) and p(zk_1 | y1.x—1) are Gaussian
distributions, the joint distribution of x;_; and =y, given y;.5—1
can be expressed as

P(Tr—1, Lk \ Ylk—1)

= P(xk | $k71)P($k71 | y1:k71)
~N(zk | ag k-1 + Ap—1H (25-1), Qr—1)

. 11
N(@r-1 | Zr—1jk—1, Po—1jk—1) (b
x _ ~
%/\/’< { ; 1} X—1, Pk—1>,
k
where moment matching gives
5 Tp_1k—1
X4 =
bt [@O,k—l ] 1)
P Py k-1 Sp—1k—1TA]_,
k=l AkquSkT,l‘k,l A1 A+ Qr-1]’

and I = [I 0]. It is worth mentioning again here that the
random variable z;_1 follows a standard Gaussian distribution.
Following [2, lemma A.3], the marginal distribution of zy
is
p(r | yre—1) @ N(@p | Trjp—1, Prjp—1)s

where

Tpk—1 = Qo k-1,

Pyjj—1 = Ap—1 A1 + Qr1.

We can then approximate the joint distribution of z; and yj
given y1.;—1 as Gaussian as follows:

P(Trs Yk | Y1:—1) = Wk | o) p(@k | Y1:06-1)
~ N (yk | box + BeH (z1), Re) N (x| Trjp—1, Prjr—1)

~ N[ [ZR] || B Pk Ap_1B]
Yk bor | |BrAl_, BBl +Ry| )

By [2, lemma A.3], the conditional distribution of zy, is

Pk | Yrs y1:k—1) = P | Y1) R N (@k | Tiojer Prjie)s
where

Sk = Bpjp—1 + A1 By (BeBy + Ri) ™ (yk — bo,k)

Pk = Pejp—1 — A1 Bl (Bu Byl + Ri) "' BrA]_ .

B. Backward pass

After computing p(xy | y1.x), & € {1,...,T}, the back-
ward pass is performed to evaluate p(xy | yi.7) recursively
backwards starting from k = 7. Similarly to Eq. (11), the
joint distribution of the states xj and x4 given y;., can be
approximated as

p(ﬂﬁk, Tr4+1 | yl:k) :p($k+1 | mk)p(ifk | yl:k-)
~ N (wpqa | aon + AnH (21), Qi) N (wk | Trjks Prjk)

~ N[ | 2 A Py Syl AL
Th+1 ag,k ’ AkITS];rlk AkAZ—FQk )

Due to the Markov property of the states, we have

P(fk | Trt1, yl:T) = p(iﬂk \ Tk+1, yl:k) ’*‘JJ\/'(»Tk | ‘)E';é, 771/6)7

where
Ky = SppI AL Pl (13)
X, = &rg + Ko(whpr — Epapn), (14)
Pp = P — Ko P i K (15)

Assuming that the smoothing distribution p(xgy1 | y1.7) is
Gaussian distribution, the joint distribution of z; and zxi;
conditioned on y;.7 can be expressed as follows:

p(Ik+1, Tk | yl;T) = p(ﬂfk \ Tk+1, y1:T)P(Ik-+1 | yl;T)
~ N (x| X, PN @k | 21y Pevyr)

- Thk41 17 "
~N<{mk} Xk>Pk>a
where
/f-// — i‘z+l|T
P B+ K (@ — Begag)
s s T
Pl = P’”fl‘T PkJrllTKS T -
K Py Puk + Ko(Pyyp — Pepan) K

The marginal distribution of x; can then be expressed as
p(xk | yrr) = N (2 | Ty PRir),
where

jZ\T = Tk + KS@ZH\T - £k+1|k)a
Plf\T = Pklk + KS(PI:+1|T - Pk+1|k)KsT~

The resulting PCRTS smoother is given in Algorithm 2.



Algorithm 2 PCRTS smoother

Algorithm 3 Iterative PCRTS smoother

1: function [2} 7, Py
22 fork=1,...,7 do
3: [a0 k-1 Ap-1] =

PCE(f(-), Tx—1jk—1, Pr—1jk—1, &, H).

= PCRTS(@O‘O, PO\Oa 57 H)

4 Tpk—1 = G0 k-1
50 Pypo1 = Ap1 AL + Qi1
6: [bo k Bk] = PCE(h(:), Txjk—1, Prjp—1, & H).
7 Bk = Tgpk—1 + Ak 131;r
X (BeBy + Ri) " (yr — bo,k)-
8: Pk\k = Pk|k—1 — Aklek (BkB,I + Rk)_lBkA;_l.
9: end for

10: xT‘T = xT\T and P, T|T = PT\T~

11: fork=T-1,...,1do

12: Compute the square root Sk‘ k Of P

13: = Suk [I O] A Pk_+1\k

14: xk\T _xk|k+K (‘rk+1‘T_xk+1|k)

150 Plp = Py + Ko(Bp 7 — Pryip) K

16: end for
17: end function

C. Iterative PCRTS smoother

We can also develop an iterative extension of PCRTSS
by using a similar approach as in the posterior lineariza-
tion smoother [17], which we refer to as iterative PCRTSS
(IPCRTSS). The basic idea behind IPCRTSS is to perform

PCE with respect to the smoothing distribution,
p(ar | yur) = N(xk | 27, Pir)-

This can be done by evaluating the translated and scaled
collocation points as

na

where 7°) and S*() are the mean and square root of the
covariance of the current posterior smoothing distribution
approximation = ~ N (2(), P*()) at iteration j. Eq. (8) now

=04 5 0g, i=1,..m,

becomes
X(j) — H(j)A’T7 (16)
where
H'T([SD)1(250) 4 §5G)¢; — 30)))
H'T (18U =1 (550() s(@) ¢, — 7(9)
qo _ | ETEI@E0 15 0g-a0) |

H’T([S(j)]—l(j;s(j)’_f_ S§sWg,, — z0)))

and £U) and SU) are the current filtering mean and square
root of the covariance. The matrix B’ can be computed
analogously. The smoother now becomes an iterative method,
which is provided in Algorithm 3.

IV. SIMULATION RESULTS

To evaluate the performance of the developed smoothers,
we conducted experiments on (i) pendulum and (ii) aircraft

- function [2;(3”, P;] = IPCRTS (25, Py, €, H.
2:  Initialization: Compute :ckﬁlT) and Psl(Tl) for k =
{1,...,T} using Algorithm 2.

3: forj:l,...,N—ldo

4: for k=1,...,T do _

s: Compute HY) at #4151, Pr—1g—1. :i:z(f)llT, and
P (JI)‘T using Eq. (17).

6: [ao,k 1 A 1l
PCE(f("), &y P s & HD).

7: Compute Ty ,—1 and Pyj;_; using steps 4 and 5 of
Algorithm 2. ‘

8: Evaluate HO) at &4y, Prjp_1, xk(‘JT) and P,jf;)

9. [bo.r Bi] = PCE(h(,), ), Py, €, HO),

10: Evaluate 2y, and Py, following steps 7 and 8 of
Algorithm 2.

11: end for

12: Compute zk(‘jTJr ) and Pkl(%+ ) using steps 10-16 of

Algorithm 2.
13:  end for

14: end function

tracking problems. For both problems, we implemented third-
order truncated PCE-based estimators (PCKF, PCRTSS, and
IPCRTSS) and four-point Gauss-Hermite (GH)-based estima-
tors (GHF, GHRTSS, and IGHRTSS). The GH-based esti-
mators were chosen for comparison primarily because both
methods select the evaluation points as the roots of a Hermite
polynomial. In particular, the PCE-based estimators choose a
subset of points from the product rule.

A. Pendulum tracking problem
In this example, we consider a pendulum tracking problem
with the following state space model [2, pp. 117-118]
Tik—1t+ X2 k11
ZTok—1 — g sin(xy g—1)t

Yk = sin(xy ) + vk,

Ty = + Mi—1,

where x1 ;_; is the pendulum angle (in rad), xgj_1 is the
pendulum angle rate (in rad/s) at time k£ — 1, and ¢ is the
sampling time. The process noise 7,_1 ~ N(0, Q) and
measurement noise v, ~ A (0, 0.1), where

ey
Q=q |3 2|,
Lot

and g, is the process noise intensity. The following parameters
are used for the simulation: g = 9.81 m/s?, t = 0.01 s, and
g. = 0.01 rad?/s3. The estimation process spans five seconds.
The initial truth of the state is set as 29 = [1.5 O]T. Here,
we have chosen an initial estimate of the state and covariance
as §30|0 = 091 and P0|0 = I5y9, respectively.
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Fig. 2 The pendulum angle truth trajectory and its estimated result
with the proposed iterated polynomial chaos RTS smoother for a
single run.

TABLE I Average RMSE values for the pendulum angle (x1) and
angle rate (z2) obtained from various estimators over 100 MC runs.

Estimators | x1 (rad) | xo (rad/s)
GHF 0.0992 0.2086
GHRTSS 0.0378 0.0999
IGHRTSS 0.0365 0.0945
PCKF 0.1009 0.2062
PCRTSS 0.0381 0.1008
IPCRTSS 0.0377 0.0987

The state is estimated by the third-order chaos expansion-
based smoothers (PCKF, PCRTSS, and IPCRTSS) and four-
point GH-based estimators (GHF, GHRTSS, and IGHRTSS).
Five number of iterations (/N) are used for the iterative
smoothers. The required number of points for the GH-based
estimators is 42 = 16, whereas the PCE-based estimators need
(2?3'3) = 10 points. Fig. 2 shows the true pendulum angle
along with the estimated result of the IPCRTS smoother for
a single run. The performance of the estimators is compared
in terms of the root mean squared error (RMSE) obtained
from 100 Monte Carlo (MC) runs and plotted in Fig. 3. From
Fig. 3, it can be seen that the PCE-based estimators attain
a similar RMSE to the GH-based estimators but with less
computational burden, as they use fewer points. The GHRTSS
and proposed PCRTSS demonstrate better estimation accuracy
compared to GHF and PCKF, whereas iterative smoothers
provide almost similar (slightly better) estimation accuracy
than the respective smoothers. To better visualize the iterative
smoothers’ performances, we provide the average RMSE value
in Table I. From Table I, we see that the utilization of iterative
smoothers further enhances estimation accuracy.

B. Aircraft tracking problem

Here, we consider an air-traffic control scenario [10], where
an aircraft performs a maneuver in a two-dimensional space
with an unknown time-varying turn rate. The dynamics of
the maneuvering aircraft in the discrete-time domain can be

0.25 T T T T T T
——GHF - - -PCKF
GHRTSS ----- PCRTSS
02 ——IGHRTSS ----- IPCRTSS| |
<)
o
T_ o5
x
ks
(L}J) 0.1
>
o
0.05 [,
0 0.5 1 1.5 2 25 3 3.5 4 45 5
Time (s)
(a) RMSE of the Pendulum angle
0.25 T T T T T T T T T T
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3
g
N
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o
L
n
=
o o1

0 0.5 1 1.5 2 25 3 35 4 45 5
Time (s)

(b) RMSE of the pendulum angle rate

Fig. 3 The RMSE values for the pendulum angle and its rate,
obtained from 100 MC runs, are calculated by various estimators
in the pendulum tracking problem.

expressed as

sin wt 1—cos wt
1 et 0 - e 0
0 coswt 0 —sinwt 0
Tp = O lfcgswt 1 s1r;wt O Th_1 +77k71;

0 sinwt 0 cos wt 0

0 0 0 0 1
where the state of %he aircraft, T =
[T16 16 Tok Dok Wk . (T1,ks T2,k) and
(1, ©2,5) represent the position and velocity of the

aircraft in the = and y directions, respectively; ¢ is the
sampling time. The process noise nx_1 ~ N(0, Q) with
Q = diag(q1 5, q18, gat), where

3 t?
;o
t b
L t

with the process noise intensities parameters g; and ¢o. A radar
at the origin of the xy-plane measures the range and bearing
of the target, and the measurement equation can be expressed
as

B=
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Fig. 4 The truth target trajectory and estimated trajectory of the
proposed iterated PCRTS smoother for a single representative run.

where the measurement noise v, ~ N(0,R) with
R = diag(o?, 03). The following parameters are used
in the simulation: t = 1's, ¢; = 0.1 m2/s3, go = 1.75 x 10~*
$3, 01 = 10 m, 09 = V10 x 103 rad. Estimation is
performed for 100 seconds. The truth of the target is taken as
2o = [1000m 300m/s 1000m Om/s —3°/s] . We ini-
tialized the estimators with the initial posterior state estimate
Zoo = [1200m 305m/s 1100m 4m/s —3°/s]
and  the initial  error  covariance, Py =
diag(100m?, 10m?/s2, 100m?, 10m?/s?, 0.1rad?/s?).

We implemented third-order truncated PCE-based estima-
tors (PCKF, PCRTS, and IPCRTS with N = 5) and four-
point GH-based estimators (GHF, GHRTS, and IGHRTS with
N = 5) to track the aircraft trajectory. In this example,
the number of points required for the GH and PCE-based
estimators are 45 = 1024 and (5’§3) = 56, respectively. Fig.
4 depicts the radar located at the origin, the target’s true
trajectory, and the estimated trajectory obtained by iterative
PCRTS smoother in a single run. It can be seen from the figure
that the proposed IPCRTSS successfully tracks the trajectory
of the target.

The performance of the estimators is compared in terms
of the position and velocity RMSE. We compute the position
RMSE at k-th time step from the A MC runs as follows:

1]%

i Z(xli,k — &4 )2+ (@, — 35 ,)%
=1

Pos;, =

where 1:11 . Tepresents the truth position state at the k-th time-
step of the ¢-th MC run, and a%zl  1s its estimate. Similar to
the position RMSE, the velocity RMSE can also be computed.
The position and velocity RMSE of the different estimators
obtained from 100 MC runs are plotted in Fig. 5. The
figure shows that the chaos-based estimators achieve a similar
accuracy (slightly higher RMSE) as the GH-based estimators
at a lower computational cost. The proposed PCRTS smoothers
attain lower RMSEs than the PCKF, as expected. The RMSEs
are further reduced by using iterative smoother.

1T T T T T
it T ——GHF - - -PCKF

| \" 1 1 GHRTSS - - -PCRTSS
4 It ' ——IGHRTSS - - -IPCRTSS| ]
535 L 1 1
(11| 1
o 30 1
=

0 20 40 60 80 100
Time (s)

(a) Position RMSE

——GHF - --PCKF

1]

i GHRTSS - - -PCRTSS | |
1 ——IGHRTSS - - -IPCRTSS
"

n
=3

Velocity RMSE (m/s)

0 20 40 60 80 100
Time (s)

(b) Velocity RMSE

Fig. 5 The position and velocity RMSE of the various estimators for
the aircraft tracking problem, obtained from 100 MC runs.

V. CONCLUSION

In this article, we have developed two novel smoothing
algorithms, a Gaussian approximation-based polynomial-chaos
RTS (PCRTS) smoother and its iterative variant, the IPCRTS
smoother. These algorithms use the polynomial chaos expan-
sion to approximate the nonlinear functions in the state space
model. The associated integrals of the algorithm are approx-
imately evaluated by fitting the polynomial to the nonlinear
functions using a set of collocation points. The performance
of the methods was illustrated in the simulated pendulum and
aircraft tracking experiments.
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