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Abstract—This article introduces Gaussian approximation-
based smoothing algorithms for nonlinear stochastic state space
models using the polynomial chaos expansion (PCE). Initially, we
present a smoothing algorithm, where the nonlinear functions
of the state space model are approximated using a PCE that
is formed using a set of collocation points generated from the
filtering distribution. Subsequently, an iterative variant of the
proposed smoothing algorithm is also presented. It iteratively
forms a PCE approximation to the nonlinear functions by
using collocation points generated from the current posterior
approximation. The performance of the algorithms is evaluated
on pendulum and aircraft tracking problems.

Index Terms—Gaussian approximation-based smoother, poly-
nomial chaos expansion, point collocation, iterative smoother.

I. INTRODUCTION

In this paper, we introduce an approximate polynomial
chaos expansion (PCE) based smoothing algorithm for non-
linear state space models. The smoothing solutions for the
nonlinear state space models find applications in various real-
life scenarios such as target tracking, navigation, guidance
systems, audio, and biomedical signal processing [1]–[5]. We
consider dynamic systems that can be expressed as stochastic
state space models of the following form [1], [2]:

xk = f(xk−1) + ηk−1, (1)
yk = h(xk) + νk, (2)

where xk ∈ Rnx , and yk ∈ Rny are the state of the system and
the sensor measurement, respectively. Above, f(x) : Rnx →
Rnx and h(x) : Rnx → Rny are known nonlinear functions.
The process noise, ηk−1 and the measurement noise, νk are
assumed uncorrelated white Gaussian with mean zero, and co-
variances Qk−1 and Rk, respectively. The initial state x0 ∼
N (x̂0|0, P0|0), ηk−1, and νk are mutually independent of each
other.

Smoothing involves estimating the past state history of a
dynamic system by utilizing all the available measurements,
leading to enhanced estimation performance over filtering. The
Bayesian smoother computes the marginal posterior distribu-
tion of the state, xk given measurements up to time step
T , y1:T , that is, p(xk | y1:T ), k ∈ {1, . . . , T} in two steps:
(i) forward pass, and (ii) backward pass. The forward pass
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Fig. 1 Schematic diagram of an event triggered mechanism in NCS

Fig. 1 Illustration of the basic idea behind the proposed chaos
expansion-based smoother and its iterative variant. Initially, we
approximate the stochastic state space model using the polynomial
chaos expansion through a weighted sum of orthogonal polynomial
basis functions. Subsequently, a smoothing algorithm and its iterative
variants are developed based on the approximated state space model.

consists of filtering to recursively compute p(xk | y1:k) [1],
[2]

p(xk | y1:k) ∝ p(yk | xk) p(xk | y1:k−1),

p(xk | y1:k−1) =

∫
p(xk | xk−1) p(xk−1 | y1:k−1) dxk−1.

In the backward pass, p(xk | y1:T ) is being computed
recursively backwards, starting from k = T via

p(xk | y1:T ) = p (xk | y1:k)

×
∫ [

p (xk+1 | xk) p (xk+1 | y1:T )
p (xk+1 | y1:k)

]
dxk+1.

For linear Gaussian systems, the distributions remain Gaus-
sian, and a closed-form solution of them can be computed
exactly using the Rauch–Tung–Striebel (RTS) smoother [2],
[6], [7]. However, for nonlinear systems, the distributions lose
their Gaussian property, and closed-form solutions are not
available. To address this, various methods exist to obtain
approximate solutions. Often in literature, these distributions
are approximated as Gaussian [2], [8]–[11] by using moment
matching, which is also the approach that we use here. Other
methods also exist in the literature, including the sequential
Monte Carlo and related methods [12].

Several Gaussian approximation-based smoothers for non-
linear systems exist in the literature (see, e.g., [2]). The clas-



sical one is the extended RTS smoother (ERTSS), which uses
the local linearization based on the Taylor series expansion
[2], [7], [13]. Various other Gaussian approximation-based
smoothers have been developed, including the cubature RTS
[14], unscented RTS [11], Gauss–Hermite RTS [15], and the
Fourier–Hermite RTS [16], among others. To further enhance
estimation accuracy, iterative variants have been developed [2],
[17].

Numerous estimation algorithms have also been developed
based on the polynomial chaos expansion (PCE) [18], [19].
Examples include the polynomial chaos extended Kalman fil-
ter (PCEKF) [20], polynomial chaos ensemble KF (PCEnKF)
[21], and polynomial chaos KF [22], [23]. In this paper,
we extend the methods developed in [23] to derive novel
smoothing algorithms. The developed algorithms utilize the
PCE to approximate the state space model through a weighted
sum of orthogonal polynomial basis functions, a concept ini-
tially introduced in [18]. Subsequently, the integrals associated
with the algorithm are approximately evaluated by fitting
the polynomial to the nonlinear functions by using a set of
collocation points (CPs). A bit similar approach has been
adopted in the Fourier–Hermite series-based algorithms [16],
[24], but based on spectral expansions.

The main contributions of this article are (1) to introduce
a Gaussian approximation-based smoothing algorithm using a
polynomial chaos expansion and (2) an iterative variant of it
utilizing an iterated posterior distribution approximation. We
also numerically illustrate the performance of the proposed
methods. The proposed approach is illustrated in Fig. 1.

II. POLYNOMIAL CHAOS EXPANSION

In this paper, the polynomial chaos expansion is employed
to approximate the nonlinear transition functions, f(x), where
x ∼ N (x̂, P ). Utilizing the affine transformation [23] x =
x̂+ Sz, we transform the random variable x in to a standard
Gaussian random variable z, that is, z ∼ N (0, I), where P =
SS⊤. The d-th order chaos expansion of the function can be
expressed as [19], [23]

f(x̂+ Sz) ≈ a0 +

nx∑
i1=1

ai1H1(zi1) +

nx∑
i1=1

i1∑
i2=1

ai1i2

H2(zi1 , zi2) +

nx∑
i1=1

i1∑
i2=1

i2∑
i3=1

ai1i2i3H3(zi1 , zi2 , zi3) + · · ·

+

nx∑
i1=1

i1∑
i2=1

· · ·
id−1∑
id=1

ai1i2···idHd(zi1 , zi2 , . . . , zid),

(3)

where ai1···′s are the unknown PCE coefficients, the random
variable z =

[
z1 z2 · · · znx

]⊤
, m =

(
nx+d

d

)
is the

total number of coefficients, and Hd(·) is the d-th degree
multidimensional Hermite polynomial [19],

Hd(z1, z2, · · · , znx
)

= (−1)d exp(
1

2
z⊤z)

∂nx

∂z1∂z2 · · · ∂znx

exp(−1

2
z⊤z).

The Hermite polynomials are orthogonal under the inner
product

⟨f, g⟩ =
∫
f(z) g(z)N (z | 0, I) dz = E[fg],

that is E[HpHq] = 0 if p ̸= q, and here, the expectation
is being computed with respect to the standard Gaussian
distribution. After rearranging and simplifying, we can express
Eq. (3) in a more concise way as

f(x̂+ Sz) ≈ a0 +AH(z), (4)

where a0 ∈ Rnx , and the matrices A and H(z) are

Anx×(m−1) =
[
a1 a2 · · · anx···nx

]
,

H(z)(m−1)×1 =
[
H1(z1) · · · Hd(znx

, · · · , znx
)
]⊤
.

Utilizing the aforementioned approximation, the stochastic
state space models in Eqs. (1)-(2) can be expressed as

xk ≈ a0,k−1 +Ak−1H(zk−1) + ηk−1, (5)
yk ≈ b0,k +BkH(zk) + νk, (6)

where b0 ∈ Rny and B ∈ Rny×m−1 are the coefficient
matrices, a0, A and H(z) are as defined above.

Remark 1: For a standard Gaussian random variable z, the
matrix H(z) exhibits the following properties: E[H(z)] = 0
and E[H(z)H(z)⊤] = I .

A. Determining the unknown coefficient

Here, we discuss the evaluation of the unknown coefficient
matrices of the approximation. Eq. (4) can be rewritten as

f(x̂+ Sz) =
[
a0 A

] [ 1
H(z)

]
= A′H ′(z). (7)

To determine the matrix A′, consisting of the coefficients a0
and A, we utilize a method based on collocation points (CPs)
ξi ∈ Rnx for i = 1, . . . ,m [22], [23]. Evaluating both sides
of Eq. (7) on these CPs, the equation becomes

χ = HA′⊤, (8)

where the matrices χ ∈ Rm×nx and H ∈ Rm×m are

χ =


f⊤(x̂+ Sξ1)
f⊤(x̂+ Sξ2)

...
f⊤(x̂+ Sξm)

 ,H =


H ′⊤(ξ1)
H ′⊤(ξ2)

...
H ′⊤(ξm)

 . (9)

Solving the linear equation in Eq. (8), we get the coefficient
matrix

A′⊤ = H−1χ. (10)

If the matrix, H is not invertible, we can use a (regularized)
pseudo-inverse to solve the equation. Similarly, we can evalu-
ate the coefficient matrix, B′ =

[
b0 B

]
for the measurement

model in Eq. (6). Here, the collocation points are selected as in
[22], [23]. A pseudo-code for PCE is provided in Algorithm 1.



Algorithm 1 PCE using collocation points

1: function A′ = PCE(f(·), x̂, P, ξ,H).
2: Compute the square root S of P = SS⊤.
3: for i = 1, . . . ,m do
4: Form the translated and scaled collocation point

ψi = x̂+ Sξi.
5: Evaluate the function at the point χi = f(ψi).
6: end for
7: Form the matrix, χ =

[
χ⊤
1 χ⊤

2 · · · χ⊤
m

]⊤
.

8: Compute the coefficient matrix A′ = (H−1χ)⊤.
9: end function

III. POLYNOMIAL CHAOS RTS SMOOTHER

In this section, we develop the RTS smoother for the state
space model in Eqs. (5)-(6) utilizing the polynomial chaos
expansion. As discussed in Sec. I, it is performed in two steps:
(i) forward pass and (ii) backward pass.

A. Forward pass

The forward pass consists of the filtering algorithm. Assum-
ing that both p(xk | xk−1) and p(xk−1 | y1:k−1) are Gaussian
distributions, the joint distribution of xk−1 and xk given y1:k−1

can be expressed as

p(xk−1, xk | y1:k−1)

= p(xk | xk−1) p(xk−1 | y1:k−1)

≈ N (xk | a0,k−1 +Ak−1H(zk−1), Qk−1)

N (xk−1 | x̂k−1|k−1, Pk−1|k−1)

≈ N
([

xk−1

xk

] ∣∣∣∣X̂k−1, Pk−1

)
,

(11)

where moment matching gives

X̂k−1 =

[
x̂k−1|k−1

a0,k−1

]
,

Pk−1 =

[
Pk−1|k−1 Sk−1|k−1ĪA

⊤
k−1

Ak−1Ī
⊤S⊤

k−1|k−1 Ak−1A
⊤
k−1 +Qk−1

]
,

(12)

and Ī =
[
I 0

]
. It is worth mentioning again here that the

random variable zk−1 follows a standard Gaussian distribution.
Following [2, lemma A.3], the marginal distribution of xk

is
p(xk | y1:k−1) ≈ N (xk | x̂k|k−1, Pk|k−1),

where

x̂k|k−1 = a0,k−1,

Pk|k−1 = Ak−1A
⊤
k−1 +Qk−1.

We can then approximate the joint distribution of xk and yk
given y1:k−1 as Gaussian as follows:

p(xk, yk | y1:k−1) = p(yk | xk) p(xk | y1:k−1)

≈ N (yk | b0,k +BkH(zk), Rk)N (xk | x̂k|k−1, Pk|k−1)

≈ N
([

xk
yk

] ∣∣∣∣ [x̂k|k−1

b0,k

]
,

[
Pk|k−1 Ak−1B

⊤
k

BkA
⊤
k−1 BkB

⊤
k +Rk

])
.

By [2, lemma A.3], the conditional distribution of xk is

p(xk | yk, y1:k−1) = p(xk | y1:k) ≈ N (xk | x̂k|k, Pk|k),

where

x̂k|k = x̂k|k−1 +Ak−1B
⊤
k (BkB

⊤
k +Rk)

−1(yk − b0,k),

Pk|k = Pk|k−1 −Ak−1B
⊤
k (BkB

⊤
k +Rk)

−1BkA
⊤
k−1.

B. Backward pass

After computing p(xk | y1:k), k ∈ {1, . . . , T}, the back-
ward pass is performed to evaluate p(xk | y1:T ) recursively
backwards starting from k = T . Similarly to Eq. (11), the
joint distribution of the states xk and xk+1 given y1:k can be
approximated as

p(xk, xk+1 | y1:k) = p(xk+1 | xk) p(xk | y1:k)
≈ N (xk+1 | a0,k +AkH(zk), Qk)N (xk | x̂k|k, Pk|k)

≈ N
([

xk
xk+1

] ∣∣∣∣ [x̂k|ka0,k

]
,

[
Pk|k Sk|k ĪA⊤

k

Ak Ī
⊤S⊤

k|k AkA
⊤
k +Qk

])
.

Due to the Markov property of the states, we have

p(xk | xk+1, y1:T ) = p(xk | xk+1, y1:k) ≈ N (xk | X̂ ′
k, P ′

k),

where

Ks = Sk|k ĪA
⊤
k P

−1
k+1|k, (13)

X̂ ′
k = x̂k|k +Ks(xk+1 − x̂k+1|k), (14)

P ′
k = Pk|k −KsPk+1|kK

⊤
s . (15)

Assuming that the smoothing distribution p(xk+1 | y1:T ) is
Gaussian distribution, the joint distribution of xk and xk+1

conditioned on y1:T can be expressed as follows:

p(xk+1, xk | y1:T ) = p(xk | xk+1, y1:T ) p(xk+1 | y1:T )
≈ N (xk | X̂ ′

k, P ′
k)N (xk+1 | x̂sk+1|T , P

s
k+1|T )

≈ N
([

xk+1

xk

] ∣∣∣∣X̂ ′′
k , P ′′

k

)
,

where

X̂ ′′
k =

[
x̂sk+1|T

x̂k|k +Ks(x̂
s
k+1|T − x̂k+1|k)

]
,

P ′′
k =

[
P s
k+1|T P s

k+1|TK
⊤
s

KsP
s
k+1|T Pk|k +Ks(P

s
k+1|T − Pk+1|k)K⊤

s

]
.

The marginal distribution of xk can then be expressed as

p(xk | y1:T ) ≈ N (xk | x̂sk|T , P s
k|T ),

where

x̂sk|T = x̂k|k +Ks(x̂
s
k+1|T − x̂k+1|k),

P s
k|T = Pk|k +Ks(P

s
k+1|T − Pk+1|k)K

⊤
s .

The resulting PCRTS smoother is given in Algorithm 2.



Algorithm 2 PCRTS smoother

1: function [x̂sk|T , P
s
k|T ] = PCRTS(x̂0|0, P0|0, ξ, H).

2: for k = 1, . . . , T do
3:

[
a0,k−1 Ak−1

]
=

PCE(f(·), x̂k−1|k−1, Pk−1|k−1, ξ, H).
4: x̂k|k−1 = a0,k−1.
5: Pk|k−1 = Ak−1A

⊤
k−1 +Qk−1.

6:
[
b0,k Bk

]
= PCE(h(·), x̂k|k−1, Pk|k−1, ξ, H).

7: x̂k|k = x̂k|k−1 +Ak−1B
⊤
k

×(BkB
⊤
k +Rk)

−1(yk − b0,k).
8: Pk|k = Pk|k−1 −Ak−1B

⊤
k (BkB

⊤
k +Rk)

−1BkA
⊤
k−1.

9: end for
10: x̂sT |T = x̂T |T and P s

T |T = PT |T .
11: for k = T − 1, . . . , 1 do
12: Compute the square root Sk|k of Pk|k.
13: Ks = Sk|k

[
I 0

]
A⊤

k P
−1
k+1|k.

14: x̂sk|T = x̂k|k +Ks(x̂
s
k+1|T − x̂k+1|k).

15: P s
k|T = Pk|k +Ks(P

s
k+1|T − Pk+1|k)K⊤

s .
16: end for
17: end function

C. Iterative PCRTS smoother

We can also develop an iterative extension of PCRTSS
by using a similar approach as in the posterior lineariza-
tion smoother [17], which we refer to as iterative PCRTSS
(IPCRTSS). The basic idea behind IPCRTSS is to perform
PCE with respect to the smoothing distribution,

p(xk | y1:T ) ≈ N (xk | x̂sk|T , P s
k|T ).

This can be done by evaluating the translated and scaled
collocation points as

ψ
(j)
i = x̂s(j) + Ss(j)ξi, i = 1, . . . ,m,

where x̂s(j) and Ss(j) are the mean and square root of the
covariance of the current posterior smoothing distribution
approximation x ∼ N (x̂s(j), P s(j)) at iteration j. Eq. (8) now
becomes

χ(j) = H(j)A′⊤, (16)

where

H(j) =


H ′⊤([S(j)]−1(x̂s(j) + Ss(j)ξi − x̂(j)))
H ′⊤([S(j)]−1(x̂s(j) + Ss(j)ξ2 − x̂(j)))

...
H ′⊤([S(j)]−1(x̂s(j) + Ss(j)ξm − x̂(j)))

 , (17)

and x̂(j) and S(j) are the current filtering mean and square
root of the covariance. The matrix B′ can be computed
analogously. The smoother now becomes an iterative method,
which is provided in Algorithm 3.

IV. SIMULATION RESULTS

To evaluate the performance of the developed smoothers,
we conducted experiments on (i) pendulum and (ii) aircraft

Algorithm 3 Iterative PCRTS smoother

1: function [x̂
s(N)
k|T , P

s(N)
k|T ] = IPCRTS(x̂s(1)0|0 , P

s(1)
0|0 , ξ, H).

2: Initialization: Compute x̂s(1)k|T and P s(1)
k|T for k =

{1, . . . , T} using Algorithm 2.
3: for j = 1, . . . , N − 1 do
4: for k = 1, . . . , T do
5: Compute H(j) at x̂k−1|k−1, Pk−1|k−1, x̂s(j)k−1|T , and

P
s(j)
k−1|T using Eq. (17).

6:
[
a0,k−1 Ak−1

]
=

PCE(f(·), x̂s(j)k−1|T , P
s(j)
k−1|T , ξ, H

(j)).
7: Compute x̂k|k−1 and Pk|k−1 using steps 4 and 5 of

Algorithm 2.
8: Evaluate H(j) at x̂k|k−1, Pk|k−1, x̂s(j)k|T , and P s(j)

k|T .

9:
[
b0,k Bk

]
= PCE(h(·), x̂s(j)k|T , P

s(j)
k|T , ξ, H

(j)).
10: Evaluate x̂k|k and Pk|k following steps 7 and 8 of

Algorithm 2.
11: end for
12: Compute x̂s(j+1)

k|T and P s(j+1)
k|T using steps 10-16 of

Algorithm 2.
13: end for
14: end function

tracking problems. For both problems, we implemented third-
order truncated PCE-based estimators (PCKF, PCRTSS, and
IPCRTSS) and four-point Gauss-Hermite (GH)-based estima-
tors (GHF, GHRTSS, and IGHRTSS). The GH-based esti-
mators were chosen for comparison primarily because both
methods select the evaluation points as the roots of a Hermite
polynomial. In particular, the PCE-based estimators choose a
subset of points from the product rule.

A. Pendulum tracking problem

In this example, we consider a pendulum tracking problem
with the following state space model [2, pp. 117–118]

xk =

[
x1,k−1 + x2,k−1 t

x2,k−1 − g sin(x1,k−1) t

]
+ ηk−1,

yk = sin(x1,k) + νk,

where x1,k−1 is the pendulum angle (in rad), x2,k−1 is the
pendulum angle rate (in rad/s) at time k − 1, and t is the
sampling time. The process noise ηk−1 ∼ N (0, Q) and
measurement noise νk ∼ N (0, 0.1), where

Q = qc

[
t3

3
t2

2
t2

2 t

]
,

and qc is the process noise intensity. The following parameters
are used for the simulation: g = 9.81 m/s2, t = 0.01 s, and
qc = 0.01 rad2/s3. The estimation process spans five seconds.
The initial truth of the state is set as x0 =

[
1.5 0

]⊤
. Here,

we have chosen an initial estimate of the state and covariance
as x̂0|0 = 02×1 and P0|0 = I2×2, respectively.
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Fig. 2 The pendulum angle truth trajectory and its estimated result
with the proposed iterated polynomial chaos RTS smoother for a
single run.

TABLE I Average RMSE values for the pendulum angle (x1) and
angle rate (x2) obtained from various estimators over 100 MC runs.

Estimators x1 (rad) x2 (rad/s)
GHF 0.0992 0.2086

GHRTSS 0.0378 0.0999
IGHRTSS 0.0365 0.0945

PCKF 0.1009 0.2062
PCRTSS 0.0381 0.1008
IPCRTSS 0.0377 0.0987

The state is estimated by the third-order chaos expansion-
based smoothers (PCKF, PCRTSS, and IPCRTSS) and four-
point GH-based estimators (GHF, GHRTSS, and IGHRTSS).
Five number of iterations (N ) are used for the iterative
smoothers. The required number of points for the GH-based
estimators is 42 = 16, whereas the PCE-based estimators need(
2+3
3

)
= 10 points. Fig. 2 shows the true pendulum angle

along with the estimated result of the IPCRTS smoother for
a single run. The performance of the estimators is compared
in terms of the root mean squared error (RMSE) obtained
from 100 Monte Carlo (MC) runs and plotted in Fig. 3. From
Fig. 3, it can be seen that the PCE-based estimators attain
a similar RMSE to the GH-based estimators but with less
computational burden, as they use fewer points. The GHRTSS
and proposed PCRTSS demonstrate better estimation accuracy
compared to GHF and PCKF, whereas iterative smoothers
provide almost similar (slightly better) estimation accuracy
than the respective smoothers. To better visualize the iterative
smoothers’ performances, we provide the average RMSE value
in Table I. From Table I, we see that the utilization of iterative
smoothers further enhances estimation accuracy.

B. Aircraft tracking problem

Here, we consider an air-traffic control scenario [10], where
an aircraft performs a maneuver in a two-dimensional space
with an unknown time-varying turn rate. The dynamics of
the maneuvering aircraft in the discrete-time domain can be
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Fig. 3 The RMSE values for the pendulum angle and its rate,
obtained from 100 MC runs, are calculated by various estimators
in the pendulum tracking problem.

expressed as

xk =


1 sinωt

ω 0 − 1−cosωt
ω 0

0 cosωt 0 − sinωt 0
0 1−cosωt

ω 1 sinωt
ω 0

0 sinωt 0 cosωt 0
0 0 0 0 1

xk−1 + ηk−1,

where the state of the aircraft, xk =[
x1,k ẋ1,k x2,k ẋ2,k ωk

]⊤
, (x1,k, x2,k) and

(ẋ1,k, ẋ2,k) represent the position and velocity of the
aircraft in the x and y directions, respectively; t is the
sampling time. The process noise ηk−1 ∼ N (0, Q) with
Q = diag(q1β, q1β, q2t), where

β =

[
t3

3
t2

2
t2

2 t

]
,

with the process noise intensities parameters q1 and q2. A radar
at the origin of the xy-plane measures the range and bearing
of the target, and the measurement equation can be expressed
as

yk =

√x21,k + x22,k

tan−1
(

x2,k

x1,k

)+ νk,
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Fig. 4 The truth target trajectory and estimated trajectory of the
proposed iterated PCRTS smoother for a single representative run.

where the measurement noise νk ∼ N (0, R) with
R = diag(σ2

1 , σ
2
2). The following parameters are used

in the simulation: t = 1 s, q1 = 0.1 m2/s3, q2 = 1.75× 10−4

s−3, σ1 = 10 m, σ2 =
√
10 × 10−3 rad. Estimation is

performed for 100 seconds. The truth of the target is taken as
x0 =

[
1000m 300m/s 1000m 0m/s −3◦ /s

]⊤
. We ini-

tialized the estimators with the initial posterior state estimate
x̂0|0 =

[
1200m 305m/s 1100m 4m/s −3◦ /s

]⊤
,

and the initial error covariance, P0|0 =
diag(100m2, 10m2/s2, 100m2, 10m2/s2, 0.1 rad2/s2).

We implemented third-order truncated PCE-based estima-
tors (PCKF, PCRTS, and IPCRTS with N = 5) and four-
point GH-based estimators (GHF, GHRTS, and IGHRTS with
N = 5) to track the aircraft trajectory. In this example,
the number of points required for the GH and PCE-based
estimators are 45 = 1024 and

(
5+3
3

)
= 56, respectively. Fig.

4 depicts the radar located at the origin, the target’s true
trajectory, and the estimated trajectory obtained by iterative
PCRTS smoother in a single run. It can be seen from the figure
that the proposed IPCRTSS successfully tracks the trajectory
of the target.

The performance of the estimators is compared in terms
of the position and velocity RMSE. We compute the position
RMSE at k-th time step from the M MC runs as follows:

Posk =

√√√√ 1

M

M∑
i=1

(xi1,k − x̂i1,k)
2 + (xi2,k − x̂i2,k)

2,

where xi1,k represents the truth position state at the k-th time-
step of the i-th MC run, and x̂i1,k is its estimate. Similar to
the position RMSE, the velocity RMSE can also be computed.
The position and velocity RMSE of the different estimators
obtained from 100 MC runs are plotted in Fig. 5. The
figure shows that the chaos-based estimators achieve a similar
accuracy (slightly higher RMSE) as the GH-based estimators
at a lower computational cost. The proposed PCRTS smoothers
attain lower RMSEs than the PCKF, as expected. The RMSEs
are further reduced by using iterative smoother.
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Fig. 5 The position and velocity RMSE of the various estimators for
the aircraft tracking problem, obtained from 100 MC runs.

V. CONCLUSION

In this article, we have developed two novel smoothing
algorithms, a Gaussian approximation-based polynomial-chaos
RTS (PCRTS) smoother and its iterative variant, the IPCRTS
smoother. These algorithms use the polynomial chaos expan-
sion to approximate the nonlinear functions in the state space
model. The associated integrals of the algorithm are approx-
imately evaluated by fitting the polynomial to the nonlinear
functions using a set of collocation points. The performance
of the methods was illustrated in the simulated pendulum and
aircraft tracking experiments.
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[16] J. Sarmavuori and S. Särkkä, “Fourier–Hermite Rauch–Tung–Striebel
smoother,” in 2012 Proceedings of the 20th European Signal Processing
Conference (EUSIPCO), 2012, pp. 2109–2113.
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