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Abstract

In this work, we present a naïve initialization001
scheme for word vectors based on a dense, in-002
dependent co-occurrence model and provide003
preliminary results that suggests it is competi-004
tive, and warrants further investigation. Specif-005
ically, we demonstrate through information-006
theoretic minimum description length (MDL)007
probing that our model, EigenNoise, can ap-008
proach the performance of empirically trained009
GloVe despite the lack of any pre-training010
data (in the case of EigenNoise). We present011
these preliminary results with interest to set012
the stage for further investigations into how013
this competitive initialization works without014
pre-training data, as well as to invite the015
exploration of more intelligent initialization016
schemes informed by the theory of harmonic017
linguistic structure. Our application of this the-018
ory likewise contributes a novel (and effective)019
interpretation of recent discoveries which have020
elucidated the underlying distributional infor-021
mation that linguistic representations capture022
from data and contrast distributions.023

1 Introduction024

Within the last decade, representation learning in025

NLP has experienced many major shifts, from026

context-independent word vectors (Mikolov et al.,027

2013a,b; Pennington et al., 2014), to context-028

dependent word representations (Howard and029

Ruder, 2018; Peters et al., 2018), to pre-trained lan-030

guage models (Devlin et al., 2019; Radford et al.,031

2018, 2019). These trends have been accompa-032

nied by large architectural developments from the033

dominance of RNNs (Hochreiter and Schmidhuber,034

1997), to the appearance of attention (Bahdanau035

et al., 2015) and the proliferation of the Trans-036

former architecture (Vaswani et al., 2017).037

Despite gains on empirical benchmarks, recent038

works suggest surprising findings: word order may039

not matter as much in pre-training as previously040

thought (Sinha et al., 2021), random sentence en-041

codings are surprisingly powerful (Wieting and 042

Kiela, 2018), one can replace self-attention opera- 043

tions in BERT (Devlin et al., 2019) with unparame- 044

terized Fourier transformations and still retain 92% 045

of the original accuracy on GLUE (Lee-Thorp et al., 046

2021), and many modifications to the Transformer 047

architecture do not significantly impact model per- 048

formance (Narang et al., 2021). While there’s no 049

denying increases in empirical performance, these 050

confounding results indicate a lack of understand- 051

ing of these models and the processing needed to 052

perform NLP tasks. 053

In this work, we take a step back and consider 054

the (slightly older, yet still popular) paradigm of 055

context independent word vector algorithms like 056

GloVe and word2vec. Specifically, we reflect on 057

the relationships between prediction-based, neural 058

methods and co-occurrence matrix factorization, 059

proposing a naive model of co-occurrence which 060

assumes all words co-occur at least once. Such 061

a naive assumption yields a co-occurrence matrix 062

that can be directly computed and used as a repre- 063

sentation for words based on their rank-frequency, 064

and we provide preliminary results that indicate 065

that such an approach is surprisingly competitive 066

to an empirically trained model. 067

2 Background 068

2.1 Word Vectors as Matrix Factorization 069

There is a deep connection between word rep- 070

resentation algorithms and factorization of co- 071

occurrence matrices. This is transparent in GloVe 072

(Pennington et al., 2014) by definition, as the log- 073

co-occurrence counts are factored in an online fash- 074

ion by minimizing Eq. 1, with word vectors u, v, 075

bias parameters a, b, and f , a weighting function: 076∑
i,j

f(Xij)
(
~ui~v

T
j + ai + bj − logXij

)2
(1) 077

Similarly, word2vec’s skipgram with negative sam- 078

pling (SGNS) (Mikolov et al., 2013a) has been 079

1



shown to implicitly factor a co-occurrence dis-080

tribution’s shifted pointwise mutual information081

(PMI) matrix (Levy and Goldberg, 2014), namely:082

~ui~v
T
j ≈ log

XijM
xiyjk

, where k is the number of083

negative samples, M is the total number of co-084

occurrences, and xi and yi are the marginal number085

of co-occurrences for the ith row and jth column.086

Critically, word2vec’s negative samples lead its087

vectors to factor a matrix that provides relative in-088

formation about how independently words co-occur089

(Levy et al., 2015; Salle and Villavicencio, 2019).090

Some suggest that contrast helps improve qual-091

ity, especially for rare words and syntax (Salle092

and Villavicencio, 2019; Shazeer et al., 2016).093

Word2vec supposedly differs from GloVe’s strict094

absorption of positive co-occurrences. However,095

we now know that GloVe’s bias vectors seemingly096

each model X’s marginal distributions indepen-097

dently (Kenyon-Dean et al., 2020). Specifically,098

GloVe’s bias terms appear to optimize as ai ≈099

log xi and bj ≈ log yj . So while some researchers100

have noted that GloVe is under-defined by only101

training on positive observations (Shazeer et al.,102

2016), we now know that GloVe’s bias terms es-103

sentially learn the missing contrastive information104

during optimization (Kenyon-Dean et al., 2020).105

This means GloVe is roughly equivalent to SGNS-106

word2vec. Specifically, while SGNS-word2vec is107

granted its contrastive information via marginal108

sampling, GloVe naïvely utilizes bias parameters,109

which optimize towards the same marginal contrast110

distributions, independently. This connection has111

taken time to emerge from the literature, and from112

it now we ask a research question that is core to113

this work: how effective is a representation learned114

from contrastive information, alone?115

2.2 Evaluating Representations via Probes116

Significant work has gone into understanding the117

information captured in language representations118

(Clark et al., 2019; Conneau et al., 2018; Hewitt119

and Liang, 2019; Tenney et al., 2019; Vig and Be-120

linkov, 2019; Voita et al., 2019). Early work cen-121

tered on intrinsic and extrinsic properties (Schn-122

abel et al., 2015), the differences between dense123

and count-based vectors (Baroni et al., 2014; Levy124

et al., 2015), and the information contained in a125

single sentence vector (Conneau et al., 2018). Tran-126

sitioning towards large pre-trained language mod-127

els has shifted focus towards characterizing what128

these models are learning to understand the linguis-129

tic phenomena captured within learned representa- 130

tions (Hewitt and Liang, 2019) and self-attention 131

maps (Clark et al., 2019; Tenney et al., 2019; Vig 132

and Belinkov, 2019; Voita et al., 2019). 133

One method of understanding relies on probing 134

a representation by measuring classifier accuracy 135

enabled with a representation (Hewitt and Liang, 136

2019; Zhang and Bowman, 2018). However, many 137

approaches fail to sufficiently differentiate the prop- 138

erties of learned representations (Voita and Titov, 139

2020). This is especially apparent with the high per- 140

formance of random baselines (Wieting and Kiela, 141

2018; Zhang and Bowman, 2018) and the ability of 142

probes to accurately encode random labels (Hewitt 143

and Liang, 2019). 144

3 Effective Word Vectors, Sans Data 145

3.1 Contrast and Co-occurrence 146

Since LMs can seemingly learn from shuffled 147

data and retain a surprising amount of predictive 148

power (Sinha et al., 2021), it appears that a great 149

deal of information exists in contrastive informa- 150

tion on its own. In the context of co-occurrencesX , 151

learning from shuffled data is equivalent to learning 152

from independent (co-occurrence) statistics, e.g., 153

via the cross product of X’s marginals. While 154

we seek to determine the extent to which indepen- 155

dent statistics are behind the predictive power of 156

deep learning algorithms for benchmark NLP ap- 157

plications, we note that PMI must be constant-zero 158

on independently-occurring joint distributions (by 159

PMI’s definition). Hence, we cannot simply study 160

independent models of data through the lens of 161

standard GloVe or SGNS-word2vec, leading us to 162

exclude bias terms from GloVe. When paired with 163

a model, X̂ , of independent co-occurrences, this is 164

roughly equivalent to learning an SGNS-word2vec 165

model via strictly contrastive learning information. 166

Removing GloVe’s bias terms also simplifies its 167

analysis. This is further aided by relieving GloVe 168

of its weighting function: 169∑
i,j

(
~ui~v

T
j − logXij

)2
(2) 170

and has the effect of de-biasing optimization by 171

row, i.e., un-balancing the learning rates that 172

GloVe had modulated for lower-frequency words 173

in its formulation. This simple form allows 174

us to straightforwardly approach the word em- 175

beddings’ common objective’s underlying matrix- 176

factorization problem, whose analytic solution re- 177
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quires minij{X̂ij} > 0. In other words, provided178

all word pairs are modeled to co-occur at least179

once, the loss can easily be solved in closed forms180

by well-known matrix factorizations, e.g., by an181

eigen-decomposition. While the positivity of X̂182

can be ensured without assuming independence,183

another immediate benefit of studying contrastive184

(independent) co-occurrence models is the guar-185

antee that they provide for X̂’s positivity. Specif-186

ically, since xi, yj > 0 for all i and j in any co-187

occurrence data, a reasonable constraint on model-188

ing independent co-occurrences requires positivity189

across all joint frequencies: minij{X̂ij} > 0. This190

is evident in marginal-cross-products, for which191

minij{X̂ij} = 1 due to hapax-legomena ubiquity.192

3.2 Harmonic Statistical Structure193

To avoid the use of any data while representing a194

target task’s vocabulary,W , a model of what pre-195

training learns is needed—here, a distributional196

model of co-occurrence. For documents, marginal197

distributions of co-occurrences (unigram distribu-198

tions) can generally be observed to exhibit har-199

monic structure, i.e., can generally be modeled via200

Zipf’s law (Zipf, 1935, 1949): x̂i = N/ri. Without201

loss of generality, the ri, or, ranks, intuitively indi-202

cate the number of other words which occur at least203

as often. In this presentation, we likewise scale by204

N = |W| to ensure the vocabulary’s smallest uni-205

gram ‘frequency’ is 1. This should raise a question206

of alignment—how to index the target vocabulary’s207

harmonic structure— which we resolve by count-208

ing and ranking the target task’s training tokens.209

Necessarily, this makes our representation reliant210

on some empirical information, namely an ordering211

of the target task’s training data by its vocabulary’s212

ranks (ri).213

Now, assuming harmonic unigram frequen-214

cies for our model implies the rows of X̂i,j215

should marginalize according to x̂. To model co-216

occurrences, we self-sample from x̂ for 2mx̂i other217

words to model the sliding window of ±m words218

around each token of the modeled document. Since219

co-occurrences also exhibit hapax legomena, we220

set minij{X̂ij} = 1, which forces a closed form:221

X̂ij =
2mN

rirjHN
, (3)222

where HN is the N th harmonic number.223

3.3 Eigen-Decomposing Distributional Noise 224

While there are many matrix factorization meth- 225

ods that could be applied, a straightforward ap- 226

proach applies the eigen-decomposition of X̂ . As 227

it turns out, the symmetry of X̂ (and any empirical 228

co-occurrence matrix) ensures the existence of a 229

diagonal matrix, Λ, of unique eigenvalues and an 230

invertible eigen-space matrix, Q, that moreover is 231

orthogonal, i.e., with Q−1 = QT . This leads to 232

an eigen-decomposition of the form: X̂ = QΛQT . 233

This means that the columns ofQ are unit vectors— 234

just like a one hot encoding/standard basis set. Like 235

with other matrix factorizations, a dimensionality 236

reduction to d < N dimensions and approximation 237

of X̂ can be derived by the removal of the small- 238

est N − d eigenvalues, Λd. We retain half of the 239

approximating structure and call it EigenNoise. 240

4 Experimentation 241

To evaluate the performance of our proposed ini- 242

tialization scheme, we compare our model against 243

a randomly initialized (parameters simply drawn 244

from a standard normal distribution) baseline as 245

well as empirical GloVe word vectors trained on 246

the Gigaword corpus (Pennington et al., 2014). 247

We evaluate performance on tasks selected from 248

two downstream benchmarks: CoNLL2003 (Tjong 249

Kim Sang and De Meulder, 2003) and TweetEval 250

(Barbieri et al., 2020). From CoNLL-2003, we con- 251

sider Parts-of-Speech (POS) tagging and Named 252

Entity Recognition (NER) as small-scale, token- 253

based classification tasks to quantify a baseline 254

ability to represent these linguistic constructs in 255

a representation space. TweetEval is a sequence 256

classification benchmark designed to test a model’s 257

ability to represent and classify tweets (Barbieri 258

et al., 2020).We select 5 of the 7 sub-tasks to ex- 259

plore regularity in social labels: irony (I), hate 260

speech (H), offensive language (O), emotion (E), 261

and stance (S). 262

5 Results & Discussion 263

5.1 CoNLL 264

Table 1 (Left) presents the results of probing 265

on CoNLL-2003. Consistently, backpropagating 266

through representations reduces the codelength. 267

This isn’t surprising; the embedding layer contains 268

the most parameters. However, what is surprising 269

is that EigenNoise starts at high codelengths (indi- 270

cating poor regularity with respect to the labels), 271
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Gigaword
m PoS NER
0 88.1 ± 0.0 88.3 ± 0.1 92.4 ± 0.0 92.2 ± 0.1
2 89.1 ± 0.0 91.5 ± 0.0 95.7 ± 0.1 95.8 ± 0.1
5 87.2 ± 0.4 91.1 ± 0.1 95.4 ± 0.1 95.6 ± 0.1
10 85.0 ± 0.2 90.5 ± 0.1 94.9 ± 0.2 95.3 ± 0.1

EigenNoise
m PoS NER
0 74.2 ± 0.0 86.5 ± 1.3 83.8 ± 1.2 90.3 ± 0.1
2 64.3 ± 10.4 89.5 ± 0.4 87.3 ± 0.1 93.5 ± 0.1
5 71.2 ± 0.1 89.6 ± 0.2 86.9 ± 0.1 93.9 ± 0.1
10 69.0 ± 0.1 89.6 ± 0.3 86.6 ± 0.1 93.7 ± 0.4

Random
m PoS NER
0 77.1 ± 0.7 81.2 ± 1.3 85.2 ± 2.8 86.8 ± 1.9
2 69.8 ± 3.1 76.7 ± 1.1 84.8 ± 0.6 90.2 ± 1.4
5 63.1 ± 2.3 84.7 ± 1.6 83.2 ± 1.0 91.4 ± 0.2
10 60.0 ± 0.4 85.6 ± 0.6 83.9 ± 0.2 91.6 ± 0.3

Task Gigaword
I 60.7 ± 0.6 61.5 ± 0.8
H 51.3 ± 0.2 51.2 ± 1.2
O 76.7 ± 0.6 80.2 ± 0.7
E 61.2 ± 0.4 66.9 ± 0.8
S 65.7 ± 5.5 64.5 ± 6.3

Task EigenNoise
I 51.8 ± 2.2 58.4 ± 1.5
H 47.5 ± 0.2 52.5 ± 2.5
O 72.9 ± 0.0 76.4 ± 1.9
E 39.7 ± 0.8 67.6 ± 1.0
S 66.8 ± 5.7 64.4 ± 4.0

Task Random
I 49.1 ± 2.1 52.6 ± 2.2
H 51.2 ± 1.1 50.5 ± 0.3
O 72.9 ± 0.0 72.3 ± 0.2
E 39.5 ± 0.1 41.3 ± 0.7
S 65.7 ± 4.1 65.6 ± 4.0

Table 1: (Left) Test set accuracy on CoNLL2003 tasks. Accuracy is averaged across random seeds ± the standard
deviation, with left and right accuracy for frozen and un-frozen embeddings respectively. m indicates the window
size. (Right) Test set accuracy on TweetEval tasks. Accuracy is averaged across random seeds ± the standard
deviation, with left and right accuracy for frozen and un-frozen embeddings respectively.

but, when allowed to update, is able to approach the272

codelengths of empirical GloVe. This suggests that,273

while EigenNoise isn’t quite ideal immediately, if274

allowed to adapt to the task at hand, it can do so275

with relatively little data. When factoring in the276

naivety of EigenNoise, the fact that it can approach277

the empirical GloVe model that has a far larger278

vocabulary (400K words versus 20K ranks) and279

is trained on infinitely more data, these result are280

more compelling. Other interesting observations281

include that the theory-based vectors do worse com-282

pared to the standard normal random vectors when283

both are held static. However, when both are al-284

lowed to update their representations, the random285

vectors barely reduce the codelength whereas the286

theory-based vectors more than halve theirs. At the287

very least, this indicates the theory-based rank vec-288

tors are an interesting weight initialization point.289

5.2 TweetEval290

Table 1 (Right) displays the results of probing on291

TweetEval. Here, we observe that the random vec-292

tors are clearly the worst overall, but that all these293

representations perform similarly for these types of294

tasks, with the empirical GloVe model performing295

best out-of-the-box. This seems fairly reasonable,296

given the way each model was constructed. One297

may also observe that the empirical and theory 298

vectors result in similar codelengths for the hate 299

speech detection and offensive language identifi- 300

cation tasks when the theory vectors are allowed 301

to update. This seems to indicate that the theory- 302

based vectors do not contain the regular signal 303

needed to detect these social phenomena initially 304

but that the empirical GloVe vectors do. Seemingly, 305

empirically-based GloVe vectors contain a higher 306

degree of information about hate speech and offen- 307

sive language out-of-the-box when compared to an 308

EigenNoise set that’s free from such biases, yet the 309

latter can adapt through tuning. 310

6 Conclusion & Future Work 311

In this work, we introduce an incredibly naive ini- 312

tialization scheme for independent word vectors 313

such as GloVe and word2vec. We provide prelimi- 314

nary experimentation that demonstrates the efficacy 315

of such a scheme in a low-compute setting through 316

an information-theoretic approach with MDL prob- 317

ing. We believe that these preliminary results are 318

interesting and beg further investigation, especially 319

as an initialization scheme for independent word 320

vectors even if they are to be empirically tuned. 321
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A Experimental Details for Probing 504

The probes used in this work are simple multi- 505

layer perceptrons with a single hidden layer, hid- 506

den dimension of 512, and no dropout, defined as: 507

ŷi ∼ softmax(W2ReLU(W1hi)). For sequence 508

classification tasks, the entire sequence is embed- 509

ded and then averaged. For token classification 510

tasks, a window size m ∈ {0, 2, 5, 10} is selected 511

and the 2w + 1 token window is embedded and 512

flattened. Each experiment is repeated 3 times on 513

random seeds ∈ {0, 1234, 322111}with data block 514

splits chosen to align with previous work: 0.1, 0.2, 515

0.4, 0.8, 1.6, 3.2, 6.25, 12.5, 25, 50, 100 % of the 516

data. 517

A.1 Representations 518

We compare three representations: GloVe trained 519

on the GigaWords corpus (Pennington et al., 2014), 520

our EigenNoise model, and a baseline where param- 521

eters are sampled from a standard normal distribu- 522

tion. EigenNoise uses a vocab size ofN = 20, 000, 523

just large enough to fit the training vocab of each 524

data set to demonstrate the efficacy of this approach 525

in a “low-compute” setting. For all representations, 526

a dimensionality of 50 is used and both freezing 527

and un-freezing the embedding layer is explored. 528

A.2 Optimization 529

All probes are trained with the Adam optimizer 530

(Kingma and Ba, 2015) with an initial learning rate 531

0.001. Adhering to previous works (Hewitt and 532

Liang, 2019; Voita and Titov, 2020), we anneal the 533

learning rate by a factor of 0.5 once the epoch does 534

not lead to a new minimum loss on the development 535

set; training stops after 4 such epochs. 536
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GigaWord
m PoS NER
0 85.5 ± 9.5 85.4 ± 0.3 47.2 ± 0.1 47.9 ± 0.4
2 99.2 ± 0.4 79.7 ± 0.5 32.7 ± 0.4 29.4 ± 0.1
5 121.4 ± 0.7 91.6 ± 0.4 38.5 ± 0.3 33.5 ± 0.6
10 142.4 ± 1.2 104.4 ± 0.3 44.8 ± 0.6 38.6 ± 0.3

EigenNoise
m PoS NER
0 221.9 ± 4.5 110.8 ± 0.1 121.7 ± 1.5 66.4 ± 0.2
2 205.1 ± 1.7 90.9 ± 0.3 89.7 ± 0.6 40.5 ± 1.0
5 218.6 ± 0.5 92.4 ± 0.2 91.3 ± 0.2 41.8 ± 0.6
10 239.0 ± 0.6 96.9 ± 0.5 97.1 ± 0.2 44.7 ± 1.1

Random
m PoS NER
0 157.8 ± 3.8 137.7 ± 2.9 95.1 ± 1.8 83.7 ± 0.7
2 197.7 ± 12.4 129.3 ± 1.4 103.5 ± 3.3 62.4 ± 1.0
5 252.5 ± 4.8 138.2 ± 1.8 116.7 ± 2.2 65.4 ± 2.1
10 281.9 ± 10.9 147.1 ± 1.7 125.3 ± 1.8 69.7 ± 1.6

Task Gigaword
I 1.9 ± 0.0 1.9 ± 0.0
H 5.3 ± 0.1 5.0 ± 0.1
O 6.7 ± 0.0 6.5 ± 0.1
E 3.3 ± 0.0 3.1 ± 0.0
S 0.5 ± 0.1 0.5 ± 0.1

Task EigenNoise
I 1.9 ± 0.0 1.9 ± 0.0
H 5.9 ± 0.0 5.0 ± 0.0
O 7.5 ± 0.0 6.8 ± 0.1
E 4.1 ± 0.0 3.5 ± 0.0
S 0.5 ± 0.1 0.5 ± 0.1

Task Random
I 2.0 ± 0.0 1.9 ± 0.0
H 6.0 ± 0.0 5.7 ± 0.1
O 7.5 ± 0.0 7.5 ± 0.0
E 4.1 ± 0.0 4.1 ± 0.0
S 0.5 ± 0.1 0.5 ± 0.1

Table 2: (Left) Codelength performance on CoNLL2003 tasks, measured in kilobytes. Codelengths are averaged
across random seeds± the standard deviation, with left and right codelengths for frozen and un-frozen embeddings
respectively. m indicates the window size. (Right) Codelength performance on TweetEval tasks. Codelengths are
measured in kilobits. Codelengths are averaged across random seeds ± the standard deviation, with left and right
codelengths for frozen and un-frozen embeddings respectively.

A.3 Hardware537

Experiments were completed using a single538

NVIDIA Titan V 12GB on our internal cluster.539

The combination of representations, heterogeneous540

dataset, and early stopping criteria result in variable541

length runs, however, the longest single probe run542

took no more than 2 hours to complete.543

B Dimensionality Reduction544

To precisely compute the eigen-decomposition di-545

mensionality reduction, define Id ∈ RN×d to be546

the first d columns of the N -dimensional identity547

matrix (I) and let Λd ∈ Rd×N denote the first d548

rows of the diagonal eigenvalue matrix. The X̂-549

reconstruction equation is then:550

X̂ ≈ QId(QΛd)
T = UdV

T
d (4)551

where Ud = QId and Vd = QΛd are needed to552

retain the effect of zeroing out Λ’s N − d smallest553

diagonal elements. This reduces the Q-variation554

into two low-dimensional (d) representations that555

approximately reconstruct X̂ . For our purposes, we556

retain Ud and refer to the solution as EigenNoise.557

We note that varying choices could be made to558

handle Λ—it could be multiplied without loss of559

generality into the U -side, instead of the V -side. 560

But perhaps more interestingly, Λ’s values could be 561

rooted—perhaps over C—for a symmetric set, i.e., 562

with Ud = Vd and Ud, Vd ∈ CN×d. We speculate 563

that informative variation over C may exist, but 564

leave the exploration of this to future work. 565

C Information-Theoretic Evaluation 566

Here, we adopt an alternate, information-theoretic 567

probing methodology for evaluation that combines 568

the measure of ease of mapping from representa- 569

tion to label space as well as the complexity of 570

the model needed to do so. This method, called 571

Minimum Description Length (MDL) (Voita and 572

Titov, 2020), is concisely described as measuring 573

the regularity of a representation with respect to 574

a set of labels. Specifically, we adopt the online 575

codelength metric (measured in kilobits), where a 576

smaller codelength is indicative of a more regular 577

representation. We adopt this metric as it is more 578

informative than accuracy and is more stable with 579

respect to random initializations and hyperparame- 580

ter selection. 581
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C.1 MDL Probing582

As discussed in the related works, comparing the583

performance of pre-trained representations can be584

more subtle than simply training a classifier (i.e.,585

a probe) and comparing the attained performance,586

sometimes giving un-intuitive results such as ran-587

dom baselines performing comparably well to pre-588

trained ones. To combat this issue, we adopt the589

information-theoretic approach of Minimum De-590

scription Length (MDL) probing (Voita and Titov,591

2020), which serves as a measure of the regular-592

ity of a representation with respect to a label set.593

This allows us to quantify how much difficulty a594

classifier has in achieving a particular level of per-595

formance.596

In MDL probing, let

D = {(x1, y1), (x2, y2), ..., (xn, yn)}

be a dataset where x1:n = (x1, x2, ..., xn)597

are representations from a model and y1:n =598

(y1, y2, ..., yn) are the labels of a desired property.599

Instead of measuring how well a probe can perform600

this mapping, MDL tasks a probe with learning to601

efficiently transmit the data using the representa-602

tion. Using the online codelength metric, assume603

that two agents (Alice and Bob) agree upon a form604

of a model pθ(y|x) with learnable weights θ, a605

random weight initialization scheme, and an opti-606

mization procedure.607

Break points 1 = t0 < t1 < ... < tS = n608

are selected to form data blocks to be transmit-609

ted. Alice begins by transmitting y1:t1 using a610

uniform code, from which both Alice and Bob611

train a model pθ1(y|x) using the first data block612

{(xi, yi)}t1i=1. Alice uses that model to trans-613

mit the next data block yt1+1:t2 , which is used614

to train a better model pθ2(y|x) to transmit the615

next block. This continues until all data has616

been transmitted, resulting in an online codelength617

computed via Lonline(y1:n|x1:n) = t1 log2K −618 ∑S−1
i=1 log2 pθi(yti+1:ti+1 |xti+1:ti+1). As in (Voita619

and Titov, 2020), probes that learn mappings via620

fewer data points will have shorter codelengths.621
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