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Abstract
Deep learning architectures have achieved state-of-the-art
(SOTA) performance on computer vision tasks such as object
detection and image segmentation. This may be attributed to
the use of over-parameterized, monolithic deep learning ar-
chitectures executed on large datasets. Although such large
architectures lead to increased accuracy, this is usually ac-
companied by a larger increase in computation and memory
requirements during inference. While this is a non-issue in
traditional machine learning (ML) pipelines, the recent con-
fluence of machine learning and fields like the Internet of
Things (IoT) has rendered such large architectures infeasi-
ble for execution in low-resource settings. For some datasets,
large monolithic pipelines may be overkill for simpler in-
puts. To address this problem, previous efforts have pro-
posed decision cascades where inputs are passed through
models of increasing complexity until desired performance is
achieved. However, we argue that cascaded prediction leads
to sub-optimal throughput and increased computational cost
due to wasteful intermediate computations. To address this,
we propose PaSeR (Parsimonious Segmentation with Rein-
forcement Learning) a non-cascading, cost-aware learning
pipeline as an efficient alternative to cascaded decision archi-
tectures. Through experimental evaluation on both real-world
and standard datasets, we demonstrate that PaSeR achieves
better accuracy while minimizing computational cost rela-
tive to cascaded models. Further, we introduce a new metric
IoU/GigaFlop to evaluate the balance between cost and per-
formance. On the real-world task of battery material phase
segmentation, PaSeR yields a minimum performance im-
provement of 174% on the IoU/GigaFlop metric with re-
spect to baselines. We also demonstrate PaSeR’s adaptability
to complementary models trained on a noisy MNIST dataset,
where it achieved a minimum performance improvement on
IoU/GigaFlop of 13.4% over SOTA models. Code will be
released at github.com/scailab/paser.

1 Introduction
Recent advances in deep learning (DL) and the internet-
of-things (IoT) have led to the burgeoning application of
DL in manufacturing pipelines (Hussain et al. 2020; Meng
et al. 2020; Mohammadi et al. 2018; Tang et al. 2017).
In many such applications, ML / DL models are often de-
ployed on devices with low memory and computational ca-
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Figure 1: Performance w.r.t IoU/GigaFlop metric (higher is
better) of SOTA models and our proposed PaSeR model on
the battery material phase segmentation task.

pabilities (edge) in conjunction with DL models that are de-
ployed in less constrained environments (fog, cloud). These
edge-fog-cloud (EFC) systems are commonly used in areas
such as smart manufacturing (Chen et al. 2018a) and health-
care (Mutlag et al. 2021) where precision machines such as
electrocardiograms collect and preprocess high density data
while integrating with a local computer as well as cloud
based resources to accurately and efficiently provide critical
information. Although the fog and cloud environments en-
able the deployment of larger DL models, querying them is
costly (due to communication network and model latency).
Hence, such real-world contexts require a high-throughput
pipeline to balance task accuracy and computational cost.

A popular solution to deal with this problem is the I Don’t
Know (IDK) Cascade (Wang et al. 2017) in which models of
increasing complexity (starting with the least cost model)
are sequentially queried until a model yields a prediction
exceeding a preset confidence threshold. Multi-exit models
(Kouris et al. 2022) follow a similar cascading architecture
but require a potentially costly neural architecture search
during training. We argue that such pipelines, although well-
motivated, lead to high computational costs due to excess
computations incurred as a function of the sequential cas-
cading constraint. In this paper, we argue that reinforcement
learning (RL) can be employed as an effective substitute to
circumvent the cascading restriction. We employ RL to di-
rectly select which of a set of models to query with a partic-
ular input such that the learned policy maximizes task per-
formance while minimizing computational cost. To this end,
we propose the PaSeR framework and demonstrate its per-
formance on the challenging task of battery material phase
segmentation.

Application Background. Lithium-ion batteries are ex-



tensively used in many industrial applications, (e.g., smart-
phones, laptops, and electric vehicles) due to their effi-
cient energy storage capability. The electrode coatings of
these batteries consist of composite active materials (e.g.,
Lithium, Nickel, Manganese) and a polymeric binder (Car-
bon). The microstructure of these composite electrode coat-
ings consists of the spatial distribution of active and binder
materials. The physical parameters of a microstructure, (e.g.,
homogeneity of coating thickness, porosity) influence bat-
tery performance. Resolving the locations of the active
and binder materials and their phase transitions (i.e., the
task of battery material phase segmentation) can help de-
duce these physical parameters, thereby providing an un-
derstanding of phenomena like battery degradation. Exist-
ing techniques to address this problem use expensive high-
resolution X-ray computed tomography images (Lu et al.
2020). Low-resolution (low-res) microtomography images
have also been used, but they cannot readily distinguish
between spatial distributions of the composite active ma-
terials. Recently, DL segmentation models like MatPhase
by (Tabassum et al. 2022) have been developed to identify
(pixel-wise) these composite materials and their phase tran-
sitions from low-res images, however, these approaches are
computationally expensive to execute.

In this context, we propose PaSeR as a low-cost but effec-
tive and robust solution to address the task of battery ma-
terial segmentation from low-res microtomography images.
Our contributions are as follows: (C1) We develop a novel
computationally parsimonious DL framework (employing
reinforcement learning with cost-aware rewards) to balance
cost with task performance. (C2) Through qualitative and
quantitative experiments, we demonstrate that PaSeR yields
competitive performance with SOTA models on the battery
material phase segmentation task while also being the most
computationally efficient. (C3) We demonstrate the effec-
tiveness of the learned RL policy in unseen (noisy) con-
texts as well as with task models having complementary
strengths. (C4) Finally, we introduce a novel metric called
IoU per GigaFlop (IoU/GigaFlop) which measures the seg-
mentation performance obtained per GigaFlop of computa-
tion expended, an effective metric for evaluating such low-
cost learning pipelines (see Fig. 1).

2 Related Work
We review two areas of research related to our work, low-
cost ML and image segmentation models.

Low-Cost & Tiny ML. There have been many past ef-
forts to develop low-cost DL pipelines for use in low mem-
ory, low storage, high-throughput IoT contexts. Knowledge
distillation (KD) and employing decision cascades are two
popular approaches in this context. While the primary goal
of KD (Hinton, Vinyals, and Dean 2015; Gou et al. 2021;
Phuong and Lampert 2019) is to learn smaller models to
mimic larger models, this goal isn’t fully aligned with the
scope of the current work, which is to learn optimal deci-
sion pipelines to create a low cost, high performance ML
by incorporating multi-models. However, the other research
thread of employing decision cascades is directly relevant to
our work. Decision Cascades, originally introduced in (Cai,

Saberian, and Vasconcelos 2015; Angelova et al. 2015) were
recently re-popularized by the work of IDK Cascades (Wang
et al. 2017). The IDK cascade framework imposes a sequen-
tial model architecture, where each model is queried in order
of increasing complexity until prediction confidence exceeds
a threshold. Yet another paradigm of Tiny-ML (Rajapakse,
Karunanayake, and Ahmed 2023; Ren, Anicic, and Runk-
ler 2022) also aims to develop ML models but with the goal
of deploying them on extremely low-cost hardware devices.
Our goal is aligned with but complementary to this as our
proposed decision pipeline can be employed with such low-
cost models along with higher-cost models (on the cloud) to
maximize performance and minimize computational cost.

Image Segmentation. The field of image segmentation
has also seen many successes in multiple domains (Chen
et al. 2017; Li et al. 2018; Chen et al. 2019) with popular ar-
chitectures like the U-Net (Ronneberger, Fischer, and Brox
2015) and the recent Segment Anything (Kirillov et al. 2023)
foundation model. Our PaSeR framework is flexible enough
to incorporate any of these SOTA segmentation models as
we have developed a decision pipeline that can leverage mul-
tiple models to maximize performance on a target task while
minimizing computational cost. Finally, efforts in intelligent
data sampling (Uzkent, Yeh, and Ermon 2020; Uzkent and
Ermon 2020) which may possess a motivation in terms of
employing RL for maximal task performance at minimal
cost, differ in the actual application of the RL pipeline and
learning task.

3 Problem Formulation
In this work, our goal is to develop a learnable decision
pipeline that is computationally parsimonious (i.e., min-
imizes wasteful computations) and also yields competi-
tive performance (compared to SOTA models) on the tar-
get task. To develop such a decision pipeline, we leverage
reinforcement learning (RL). Specifically, we propose the
PaSeR framework (see Fig. 2 for architecture details) com-
posed of an RL policy model fRL, a small/efficient task
model f0, and m large task models {f1, . . . , fm}. In this
paper, we demonstrate the performance of PaSeR in the con-
text of image segmentation. Algorithm 1 outlines the train-
ing procedure of PaSeR in the context of our target task (i.e.,
image segmentation), but we note that PaSeR is task inde-
pendent and can be applied to other learning contexts with
a few appropriate modifications. Code will be released at
github.com/scailab/paser.

Segmentation Model Pretraining. At the outset of our
training procedure, we split the training data into three equal
subsets: DPT ,DRL,DFT . Each subset is comprised of im-
age instances and pixel labels (x,y) where x ∈ RC×H×W

and y ∈ R1×H×W . Using the pretraining subset DPT , we
train the m large segmentation models f1, . . . , fm first by
splitting each image x into P equal size patches (in our
case P = 16) with the help of a patchification function
P(·) where x(p) denotes the pth patch. These patches are
passed as inputs to each model while optimizing cross en-
tropy loss L(ẑ(p),y(p)) between the prediction logits ẑ(p)

and ground truth y(p). Once models f1, . . . , fm, are pre-



Figure 2: Overview of PaSeR . The small UNet (f0) yields the segmentation (ŷf0 ) and corresponding entropy map ef0 condi-
tioned on the whole input image (x). Then, x is divided into ‘P’ equal sized patches. The RL policy directs each patch x(p) of
x to one of f0, f1, f2 to maximize reward. Based on the RL actions, models f1 and f2 yield predictions for the corresponding
image patch. All the predicted patches are then aggregated to yield the final segmentation.

trained, the smallest model, f0 is pre-trained using DPT on
the full image (i.e., no patchification). In addition to using
the cross entropy loss L(ẑ,y) we also use a knowledge dis-
tillation (KD) loss (Hinton, Vinyals, and Dean 2015; Kim
et al. 2021) between the outputs of the largest model fm and
the small model f0. We define the KD loss function in Eq. 1.

LKD =
1

|DPT |

|DPT |∑
j=1

(
ẑ
(p)
f0,j

− ẑ
(p)
fm,j

)2

(1)

The term ŷ
(p)
f0,j

indicates the segmentation predictions for

patch p of instance j yielded by model f0. ŷ
(p)
fm,j is the

corresponding prediction yielded by model fm. This loss
encourages outputs of f0 to be closer to the largest model
fm, thereby transferring information from the representa-
tions learned by fm to f0 improving its performance without
increasing its size.

RL Training. We incorporate reinforcement learning as
the decision paradigm to develop a compute-efficient seg-
mentation pipeline. Specifically, our RL policy is condi-
tioned upon states s, constituted by the image segmen-
tation ŷf0 and entropy maps ef0 of the smallest model
f0 to output an action which specifies a set of patch
and model pairs for each image to be passed upstream
to more sophisticated models in the pipeline. States are
of the form (ŷf0 , ef0) and actions are defined as a ∈
{0, . . . ,m}P . We define the patch-model selection policy
as πRL(a | s) = p(a | fRL(ŷf0 , ef0 ; θfRL

)). Here the pol-
icy network fRL parameterizes the action distribution p,
which in our case is a categorical distribution with proba-
bilities s ∈ {sf0 , . . . , sfm}P : sfi > 0,

∑m
i=0 sfi = 1. The

entropy ef0 is calculated using Monte Carlo dropout (Gal
and Ghahramani 2016), but note that other methods for un-
certainty quantification can also be supported by PaSeR .

Using probabilities s, we sample from a categorical distri-
bution to obtain an action a ∈ {0, . . . ,m}P . For example, if
ak = 2 for some index k of a, this indicates that fRL has cho-
sen the kth patch to be directed to model f2 for segmenta-
tion. Using the sampled action, we pass each patch to its re-
spective model and compute a reward. The reward function
is detailed in Eq. 2 and is based on the difference in predic-
tion performance A between the large and small model pre-
dictions, ŷfap

, ŷf0 , as well as a computational cost penalty
term C. The action a defines the models run on each patch.

R(a = {a1, . . . , aP }) =
P∑

p=0

(1− λ)A(ŷ
(p)
fap

, ŷ
(p)
f0

)− λC(fap)

(2)
For our experiments in segmentation we use
the difference in mean intersection over union
(IoU) as our measure of prediction performance:
A(ŷ

(p)
fi

, ŷ
(p)
f0

) = IoU(ŷ
(p)
fi

)− IoU(ŷ
(p)
f0

). Note that in
Eq. 2, the cost parameter λ parameterizes a convex com-
bination of accuracy and computational cost to provide a
simple way to control the influence of each component on
the RL policy reward. We design a cost function C in Eq.
3 with range (0, 1) as the ratio of the number of learnable
parameters in a model to the total number of parameters in
all models {f0, . . . , fm}.

C(fi) =
numParams(fi)∑m
j=1 numParams(fj)

(3)

Using the reward value R, we compute the policy gradient
(Sutton et al. 1999) ∇θfRL

J = E[∇θfRL
log πRL(a | s)∗R]

and update the parameters θRL of the RL policy.
Fine-Tuning. The final step of PaSeR is fine-tuning. Here,

we jointly update the large models and RL model. The joint
training helps the large segmentation models improve their
performance on the inputs being directed to them by the RL
policy while also further personalizing the RL policy to dis-



Algorithm 1: PaSeR Algorithm
Data: DPT ,DRL,DFT Parameters: θfRL , θf0 , . . . , θfm Hyp: λ, η, β
Models: RL policy fRL, small/efficient model f0 and m large task models {f1, . . . , fm}

1 for fi ∈ {f1, . . . , fm} # Pretrain each large task model
2 do
3 for x(p),y(p) ∈P(DPT ) # For each data point in pre-training dataset
4 do
5 ŷ

(p)
fi

, ẑ
(p)
fi
← fi(x

(p)) # Get task predictions and logits from model fi

6 l← L(ẑ(p)fi
,y(p)) # Compute loss (cross entropy)

7 θfi ← θfi − η∇θfi
l # Update model parameters

8 end
9 end

10 for x,y ∈ DPT # Pretrain small/efficient model with KD loss
11 do
12 ŷf0 , ẑf0 ← f0(x) # Get small model (f0) prediction
13 ŷfm , ẑfm ← fm(x) # Get largest model prediction
14 l← L(ẑf0 ,y) + βLKD(ẑf0 , ẑfm) # Compute loss with KD
15 θf0 ← θf0 − η∇θf0

l # Update model parameters

16 end
17 for x,y ∈ DRL # Train RL policy model
18 do
19 ŷf0 , ef0 ← f0(x) # Get small model prediction and entropy
20 s← fRL(ŷf0 , ef0) # Get probabilities of actions from RL model
21 a ∼ πRL(A | s) # Sample action from RL policy distribution
22 for ap ∈ a # For each model and patch in action
23 do
24 ŷ

(p)
ap ← fap(x

(p)) # Get model prediction

25 R += (1− λ)A(ŷ
(p)
fap

, ŷ
(p)
f0

)− λC(fap) # Compute accuracy+cost-based reward

26 end
27 ∇θRLJ = E[∇θRL log πRL(A|s) ∗R] # Compute policy gradient
28 θfRL ← θfRL − η∇θfRL

J(πRL) # Update RL model

29 end
30 for x,y ∈ DFT # Finetune models
31 do

Repeat Lines: 5-7 for each large model
Repeat Lines: 19-28 for RL model

32 end

cern the strengths and weaknesses of each constituent seg-
mentation model for each input patch.

4 Experimental Setup
We train three UNet segmentation models f0, f1, f2 with
16571, 1080595, and 17275459 parameters respectively on
DPT for 200 epochs, followed by training our RL model
fRL with 14736 parameters on DRL for 200 epochs. Fi-
nally, we fine-tune all models on DFT for 200 epochs.
PaSeR trains with a batch size of 32 using the Adam opti-
mizer (Kingma and Ba 2014) with η = 0.0001. In our bat-
tery segmentation experiment we set β = 0.01 using grid
search and λ = 0.5 which corresponds to an even balance
between performance and cost. For the noisy MNIST dataset
we set λ = 0, see section 5.4 for details.

4.1 Baselines
We compare PaSeR to six baselines with complementary
strengths to illustrate how we improve upon each of these

baselines in either IoU performance and/or IoU per Gi-
gaFlop efficiency. (1) IDK Cascade (Wang et al. 2017):
We implement the IDK-Cascade model with a cost aware
cascade using the same segmentation models in PaSeR . For
the IDK loss and cost function we use cross entropy loss
and our previously defined cost function (Eq. 3), while tun-
ing this baseline with an exhaustive grid search. (2) PaSeR-
RandPol. : We setup PaSeR with a random policy for ac-
tions drawn uniformly from a categorical distribution. We
call this method PaSeR-RandPol. (3) MatPhase (Tabassum
et al. 2022): We also compare PaSeR to a state of the art
(SOTA) model specialized for the task of battery material
phase segmentation. The MatPhase model is an ensemble
method which combines UNet segmentation models with
pixel level IDK classification and a convolutional neural
network. (4) DeepLabV3+ (Chen et al. 2018b): To put
PaSeR in context with modern DL models, we compare it
to DeepLabV3+, a SOTA segmentation model which uses
atrous convolutions alongside an encoder-decoder. (5) Seg-
Former (Xie et al. 2021): We also compare our method to



SegFormer, a recent SOTA segmentation model which com-
bines transformers with small multi-layer perceptron de-
coders. (6) EfficientViT (Cai et al. 2022): We also compare
to the lightweight EfficientViT, which uses linear attention.

4.2 Evaluation Metrics
(1) Intersection-Over-Union (IoU): We employ IoU (aka.
Jaccard index), a popular and effective metric used to evalu-
ate performance on image segmentation tasks. (2) Flops (F):
We profile the number of floating point operations per in-
stance for PaSeR and baselines in inference mode when run
on the full test set. This gives us the raw computational cost
of each model. (3) IoU Per GigaFlop

(
IoU

GigaFlop

)
: While

Flops measures compute required per model, we introduce a
new metric called IoU per GigaFlop which is defined by the
ratio IoU

GigaFlop . This metric enables a unified understanding of
performance effectiveness and computational cost.

4.3 Dataset Description
Battery Material Phase Segmentation. Our battery ma-
terial phase segmentation dataset consists of 1,330 images
(1270 training images, 20 validation, and 40 test images)
obtained from low-res microtomography (inputs), each of
size (224, 256) along with pixel level labels of 3 classes
(obtained from high-res computational tomography): pore,
carbon, and nickel. We split these images into 16 equal size
patches of size (56, 64) each.
Noisy MNIST. The standard MNIST dataset (Deng 2012)
consists of 70,000 grayscale images (50,000 training, 10,000
validation and 10,000 test images). We create three different
versions of this dataset for foreground/background segmen-
tation with three noise types respectively: Gaussian blur with
radius 1, Gaussian blur with radius 2 and a box blur with a
fixed convolutional filter. See Fig. 3 for examples of each
noise type.

5 Results & Discussion
In line with our goal of designing a computationally parsi-
monious framework, we investigate PaSeR performance in
the context of the following research questions.
R1. How does the task performance and computational effi-
ciency of PaSeR compare with the IDK-Cascade paradigm?
R2. How well does PaSeR balance IoU and efficiency rela-
tive to SOTA segmentation models?
R3. How adaptable and robust is the PaSeR decision policy
to noisy data?
R4. How adaptable and robust is the PaSeR decision policy
to task models with complementary strengths?
R5. What are the effects of the various components of
PaSeR , (λ, MC-Sampling) on achieving an effective balance
between computational cost and task performance?

5.1 R1: Task Performance and Computational
Efficiency vs. IDK-Cascade

To evaluate model task performance, we compare our
PaSeR model to the cost-aware IDK cascading decision
baseline, and a variant of PaSeR (i.e., PaSeR-RandPol. ) with

the same segmentation models as PaSeR except with a ran-
dom policy instead of a learned RL policy. The perfor-
mance results are depicted in Table 1. Looking at the bat-
tery dataset, we see that PaSeR outperforms the IDK Cas-
cade model by 6.28% in terms of the IoU metric. PaSeR also
achieves the highest IoU/GigaFlop, outperforming IDK-
Cascade by 196%.

Note that the IDK-Cascade model currently under-
performs PaSeR on the Battery dataset. Hence, for a fair
comparison with our method, we tune the IDK Cascade
model to match the IoU performance of PaSeR and de-
note this model as IDK-Cascade (IoU Match) . We achieve
this by adjusting the entropy thresholds used in each stage
of the cascade until we obtain a least-upper-bound perfor-
mance (i.e., within a tolerance of 10−3 of IoU) compared
to PaSeR on the same test set. In Table 2, comparing the
flops of both models (for the same IoU performance), we see
that the PaSeR model requires 90% fewer flops compared to
IDK-Cascade (IoU Match) to achieve similar performance.
This is further corroborated by the IoU/GigaFlop metric in
Table 2 wherein we see that PaSeR achieves a 923% im-
provement on this metric thereby indicating that PaSeR is
able to yield good performance at much lower computational
cost compared to the IDK cascading modeling paradigm.

Finally, on the MNIST dataset PaSeR outperforms IDK-
Cascade (IoU Match) by 6.1% and 88.4%% on IoU and
IoU/GigaFlop metrics respectively. Here IDK-Cascade (IoU
Match) underperforms on the IoU metric vs PaSeR because
the entropy based threshold of IDK-Cascade (IoU Match) is
not nuanced enough to determine the correct model assign-
ment for a given input. In fact, the accuracy of model assign-
ment by the IDK-Cascade (IoU Match) is only 80% while
PaSeR has a model assignment accuracy of 92.7%.

5.2 R2: Performance Comparison with SOTA
Segmentation Models

The problem of battery material phase segmentation has
been investigated by a few previous efforts (see Sec. 2).
The most recent and best model of this group of efforts is
MatPhase. We characterize the performance of PaSeR with
respect to this SOTA battery material phase segmentation
model as well as the recent monolithic SOTA segmentation
models DeepLabV3+, SegFormer and EfficientViT. The dis-
tributed nature of PaSeR vs monolithic architectures such as
SegFormer allows PaSeR to be deployed in an EFC system
where monolithic SOTA models would not satisfy computa-
tional edge constraints.

In Table 1 we see that although MatPhase (Tabassum
et al. 2022) outperforms PaSeR in terms of segmentation
performance, it does so employing significantly more com-
putation. Specifically, MatPhase employs 1297% more com-
putation than PaSeR to obtain a 9.7% performance im-
provement. Further, we notice that PaSeR achieves a min-
imum improvement of 174% over all baselines on the
IoU/GigaFlop metric. This is a significant result showing the
usefulness of PaSeR relative to SOTA models like MatPhase
in computationally constrained environments.

When comparing to DeepLabV3+, SegFormer and Effi-
cientViT on the Battery dataset, we see that PaSeR is within



Table 1: Battery material phase segmentation and Noisy MNIST results comparison between PaSeR and SOTA models.

Model Battery Noisy MNIST
IoU Flops IoU/GigaFlop IoU Flops IoU/GigaFlop

Matphase (Tabassum et al. 2022) 0.8144 2.11× 1012 0.39× 10−3 –– –– ––
DeepLabV3+ (Chen et al. 2018b) 0.7817 1.55× 1012 0.51× 10−3 0.8459 2.07× 1013 4.08× 10−5

SegFormer (Xie et al. 2021) 0.7692 5.84× 1011 1.32× 10−3 0.8448 7.56× 1012 1.12× 10−4

EfficientViT (Cai et al. 2022) 0.7765 4.34× 1011 1.79× 10−3 0.8344 3.72× 1014 2.24× 10−6

IDK-Cascade (Wang et al. 2017) 0.6987 4.20× 1011 1.66× 10−3 0.7750 1.15× 1013 6.73× 10−5

PaSeR-RandPol. 0.7234 5.33× 1011 1.36× 10−3 0.6376 7.05× 1012 9.05× 10−5

PaSeR (ours) 0.7426 1.51× 1011 4.91 × 10−3 0.8231 6.51× 1012 1.27 × 10−4

Table 2: Battery material phase segmentation and Noisy MNIST IoU Match Results for PaSeR and IDK-Cascade .

Model Battery Noisy MNIST
IoU Flops IoU/GigaFlop IoU Flops IoU/GigaFlop

IDK-Cascade (IoU Match) 0.7444 1.54× 1012 0.48× 10−3 0.7755 1.15× 1013 6.74× 10−5

PaSeR (ours) 0.7426 1.51× 1011 4.91 × 10−3 0.8231 6.51× 1012 1.27 × 10−4

Figure 3: Examples of types of noise added to MNIST data.

4% of the IoU that those models achieve. Despite their
slightly better performance on IoU, PaSeR is much more ef-
ficient on the IoU/GigaFlop metric by 863%, 272% and
174% for DeepLabV3+, SegFormer and EfficientViT re-
spectively. On the Noisy MNIST dataset, we see the same
pattern again. For the DeepLabV3+ model, PaSeR has an
211% higher IoU/GigaFlop while also outperforming the
SegFormer model by 13.4% on IoU/GigaFlop. The Effi-
cientViT model performs poorly on this dataset because it
is designed for high resolution images and downscales the
image by a factor of 8 when outputting segmentation maps.
To compensate for this downscaling, we upscale our 32x32
MNIST images to 256x256 for this model.

Cityscapes. To demonstrate PaSeR on a modern segmen-
tation task while also integrating pretrained models, we train
PaSeR on the Cityscapes dataset (Cordts et al. 2016) us-
ing three task models: our small UNet, SegFormer-B0, and
SegFormer-B5 with λ = 0.10 achieving a test set IoU of
0.8163 which is comparable with SOTA model performance.

5.3 R3: Adaptability to Unseen Contexts (Battery
Data)

Data and products in real-world (IoT-based) manufactur-
ing pipelines are often plagued by process noise leading
to instances from unseen input data distributions. It is in
such contexts that the true effectiveness of pipelines such
as PaSeR come to the fore in terms of being able to adapt in
unseen data contexts.

To investigate the adaptability of our RL policy based

Figure 4: Model assignment confusion matrices for PaSeR ,
IDK-Cascade and PaSeR-RandPol.

Table 3: PaSeR vs PaSeR-RandPol. on noisy datasets. Note
that PaSeR-RandPol. fails to adapt in the case of noisy data.

Model IoU (Noisy) Degradation

PaSeR-RandPol. 0.5864 -18.94%
PaSeR 0.7322 -1.4%

PaSeR and demonstrate its effectiveness relative to the ran-
dom policy in PaSeR-RandPol. , we create a variant of our
battery segmentation dataset injected with salt and pepper
noise. This is done to simulate data quality degradation of
the input to the segmentation pipeline, due to equipment /
process noise. Further, we create pre-trained variants of all
segmentation models {f1, . . . , fm} (except f0 i.e., the small
U-Net) on a combination of clean and noisy data. Finally,
we just replace (without fine-tuning f0, fRL) the models
{f1, . . . , fm} in the fully-trained PaSeR model, with vari-
ants trained on noisy as well as clean data.

We then investigate performance of PaSeR and PaSeR-
RandPol. (both augmented with same set of segmentation
models) on a noisy held-out set of data. Note that by leaving
f0 and RL policy fRL unaware of the noisy data, we have
created a scenario which is unseen w.r.t the RL policy (and
model f0 on whose predictions and entropy the RL policy
decisions are conditioned).



Table 1 showcases IoU segmentation results (on the bat-
tery dataset) of PaSeR and PaSeR-RandPol. in the clean data
context while Table 3 showcases corresponding IoU results
in a noisy context. From these results, we notice that both
models experience degradation under the unseen noisy con-
text. However, the degradation in IoU performance experi-
enced by PaSeR is minimal (1.4%), owing to the RL policy
being able to adapt, unlike in PaSeR-RandPol. which shows
significant performance degradation (18.94%). We find that
PaSeR sends 5.7% more patches to the larger models (that
have been exposed to the noisy data) than in the clean data
case, thereby showcasing strong evidence of adaptability in
unseen contexts. This advantage of adaptability in noisy,
unseen scenarios with minimal degradation is also a sig-
nificant advantage of PaSeR and its cost-aware RL model.

5.4 R4. Adaptability to Complementary Models
(Noisy MNIST)

We demonstrate robustness of PaSeR to utilize models with
complementary strengths, on the Noisy MNIST dataset. We
train each segmentation model (f0, f1, f2) on the task of
foreground/background segmentation on each noisy dataset
respectively, training f0 on the Gaussian blur with radius 1,
f1 on Gaussian blur radius 2 and f3 on box blur data. Exam-
ples of the three noise types are shown in Fig. 3. Each seg-
mentation model learns how to denoise its own noise type
and thereby has a unique strength relative to other models.

After training the segmentation models, we train PaSeR ’s
RL policy with λ = 0 such that it learns the optimal policy
without regard for computational cost. We have the dataset
containing equal proportions of each noise type, so the opti-
mal policy will send one-third of the images to each segmen-
tation model. Then we fine-tune the pre-trained RL model
assuming it has learned an optimal policy. We do this by
linearly increasing λ while measuring the total variation dis-
tance (TVD) from the optimal policy which was previously
learned. Once this TVD hits a pre-specified threshold, we
stop fine-tuning.

To understand the robustness of the PaSeR RL policy, we
examine the model assignment confusion matrices in Fig.
4. Here, PaSeR (with a TVD threshold of 10%) has nearly
perfect assignment of images to the f0 and f1 task mod-
els, while only sending 7.2% of images which should have
gone to the f2 model to the f1 model. This occurs because
of the 10% TVD threshold, which gives PaSeR the flexibil-
ity to send a small percentage of images to the f1 model
instead of f2. Comparing this to the model assignment of
IDK-Cascade , we see that it sends 10% of f1 model images
to f2, while also incorrectly sending 7.2% of f2 model im-
ages to f1. This is why IDK-Cascade cannot match the per-
formance of PaSeR . The IDK-Cascade with entropy as the
gating mechanism is not adaptable enough to accurately as-
sign images to the best model. Finally, note that the PaSeR-
RandPol. assigns images at random to each task model and
thereby has the poorest performance across all metrics.

5.5 R5: Sensitivity to Hyperparameters
We now investigate how λ (cost parameter) and entropy map
estimation affect PaSeR performance.

Figure 5: (a) Distribution of entropy estimates with 5 and
20 Monte Carlo Dropout (MCD) samples. (b) PaSeR IoU vs
Mean Cost as λ changes on battery material phase segmen-
tation dataset.

Performance vs Cost Trade-off. In Fig. 5(b), we show
PaSeR ’s performance/cost trade-off curve as λ decreases for
the battery segmentation task. The mean cost is calculated
using Eq. 3. This cost function is based on the number of
parameters in each task model with f2 having a significantly
higher cost than f1. As expected, as λ increases, mean cost
falls and performance decreases. The sharp drop in cost be-
tween λ = 0.0. and λ = 0.3 occurs because of the high dif-
ference in the cost of using the large task model f2 vs using
the smaller models. As λ increases in this range, PaSeR uses
f2 less, leading to a quick drop in mean cost.
Effect of Number of MCDropout Samples.
PaSeR computes entropy maps using Monte Carlo (MC)
dropout sampling which requires taking multiple samples
of each prediction. To test the sensitivity of estimation of
entropy to the number of MC samples taken, we show a box
plot of the entropy distributions in Fig. 5(a). Comparing 5
MC dropout samples to 20 MC dropout samples shows no
significant difference between the distributions of entropies.
A t-test between these distributions gives a p-value of
0.6986, allowing us to safely assume these distributions
are the same and use 5 MC samples in PaSeR for entropy
estimation. We account for these 5 MCD samples in all our
previous flops calculations.

6 Conclusion
In this work, we have developed a computationally parsimo-
nious and more effective alternative to the IDK cascading
decision pipeline and demonstrated that our proposed model
PaSeR outperforms SOTA models on the task of battery ma-
terial phase segmentation. We also propose a new metric
IoU per GigaFlop which is useful for characterizing effec-
tiveness of models to yield good predictions at low com-
putational cost. Through various qualitative and quantitative
results, we demonstrate that PaSeR yields a minimum per-
formance improvement of 174% on the IoU/GigaFlop met-
ric with respect to compared baselines. We also demonstrate
PaSeR ’s adaptability to complementary models trained on
the noisy MNIST dataset, where it outperforms all baselines
on IoU/GigaFlop by a miniumum 13.4%. In the future, we
shall extend PaSeR to incorporate other sophisticated cost
metrics and test it in the context of multi-model pipelines
comprised of data-driven and scientific simulation models.
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