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ABSTRACT

Large language models (LLMs) are increasingly employed as judges for scalable
evaluation of AI systems, where an LLM is prompted to assess the outputs of an-
other model. This approach is particularly valuable for tasks with non-verifiable
answers, but its reliability ultimately depends on alignment with human judg-
ments. Because human annotations are expensive and time-consuming, especially
in domains that demand expert knowledge such as clinical text generation, it is es-
sential to reduce annotation effort while maintaining accurate estimates of judge
reliability. In this work, we study the problem of estimating the intraclass correla-
tion coefficient (ICC) between LLM judges and humans under limited annotation
budgets. We derive Chernoff bounds on the estimation error, providing theoreti-
cal guarantees on sample requirements and reducing sample size requirements by
an average of 18% compared to the baseline. Building on this, we propose and
evaluate 6 sampling strategies designed to identify the most informative examples
for annotation. Experiments on 4 diverse real-world datasets demonstrate that our
methods yield narrower confidence intervals and achieve relative improvements
of 5.5%–31% in ICC precision over random sampling baselines.

1 INTRODUCTION

Large language models (LLMs) are increasingly used for text generation tasks, but their rapid adop-
tion has outpaced our ability to evaluate them at scale (Thirunavukarasu et al., 2023; Meyer et al.,
2023; Yuan et al., 2021; Celikyilmaz et al., 2021). Human evaluation remains the gold standard
but is slow and expensive, particularly in domains like healthcare. To address these limitations, the
LLM-as-a-judge framework, in which one LLM evaluates the outputs of another model, has emerged
as a promising alternative (Gu et al., 2025). Recent work has explored this direction through human-
labeled benchmarks (Dubois et al., 2024) and reference-free evaluation methods (Tan et al., 2025).
However, the effectiveness of an LLM judge ultimately depends on alignment with human judg-
ments.

Human-annotated scores are typically treated as the gold standard when evaluating a target LLM.
However, human evaluation pipelines are slow and expensive, particularly in domains requiring
expert annotations such as healthcare (Liang et al., 2022; Kiela et al., 2021; Arndt et al., 2017). This
creates a bottleneck for scalable evaluation: the cost of human labels directly limits the feasibility of
benchmarking and alignment studies. To quantify judge reliability, we follow prior work (Bedi et al.,
2025; Li et al., 2024a; Croxford et al., 2025) and adopt the intra-class correlation coefficient (ICC)
as a measure of agreement between LLM judges and humans. This leads to two central questions:
(i) How many human annotations are needed to accurately estimate ICC? (ii) How can we choose
the most informative samples to minimize annotation cost?

To address the first question, we derive a concentration inequality for ICC estimation using the
classical Chernoff bound (Chernoff, 1952) on an asymptotic normal approximation of the ICC dis-
tribution. This yields a lower bound on the number of annotations required to guarantee with high
probability that the empirical ICC is within ε of the population ICC.

For the second question, we empirically study how annotation efficiency can be improved through
principled sample selection. We frame subset selection for human annotation as a core-set selection
problem, assuming access to a fully LLM-annotated dataset. Building on ideas from statistical
sampling (Cochran, 1977), clustering (Lloyd, 1982), and active learning (Settles & Craven, 2008),
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(i.e. LLM Judge)

Expensive 
Verifier

 
(i.e. Human)

Motivation: Can I predict the correlation between 
G and H without accessing all values of H?

Q: How many expensive annotations do we need?

A: Chernoff bounded sample size requirement

Q: Which samples should we select for 
expensive annotation?

A: 31% increased precision with full H using 
cluster-based selection

Scores:
G1…GT

Scores:
H1…HT

Figure 1: Overview of the LLM judge evaluation framework and our approach. Given text
samples T to evaluate, we obtain inexpensive scores G from an LLM judge and expensive scores H
from human annotators. Our work addresses two key questions: (i) How many human annotations
are needed to reliably estimate agreement between G and H? We derive a Chernoff bound-based
sample size requirement (3.2). (ii) Which samples should be selected for human annotation? We
propose and evaluate 6 sampling strategies, with cluster-based selection achieving up to 31% relative
improvement in ICC estimation precision compared to random sampling under limited annotation
budgets (5).

we compare several sampling strategies against random selection and evaluate their impact on ICC
estimation under limited annotation budgets.

Given the pressing need to evaluate LLM judges under limited annotation budgets, we propose a
theoretical framework for ICC estimation and principled sampling strategies. Our contributions:

1. We derive a Chernoff bound–based concentration inequality for ICC estimation, provid-
ing theoretical guarantees on the number of annotations required for reliable LLM judge
evaluation.

2. We conduct a systematic empirical study of sampling strategies for annotation efficiency
across 4 diverse real-world datasets spanning 15 axes of assessment.

3. We show that principled selection consistently outperforms random sampling under tight
budgets (≤ 5% of data), with relative gains ranging from 5.5% to 31% in ICC estimation
precision.

2 RELATED WORK

Prior work can be grouped into three areas: (i) the use of LLMs-as-judges for scalable evaluation,
(ii) statistical and sampling methods for reliability and label efficiency, and (iii) evaluation metrics
for measuring agreement between human and model judgments.

LLM Evaluation Methods. LLMs are increasingly used as automatic evaluators of other AI sys-
tems, offering a scalable alternative to costly human assessment. Early studies compared LLM
judgments with human annotations on tasks such as summarization, dialogue, and reasoning (Gilardi
et al., 2023; Zheng et al., 2023). More recent frameworks, such as AlpacaEval 2.0 and Arena-Hard,
extend this line of work by integrating human and LLM judgments or introducing more challenging
comparative tasks (Li et al., 2023; 2024b). Other recent frameworks, like the G-Eval framework (Liu
et al., 2023) or the DHP benchmark (Wang et al., 2024), evaluate the quality of generated texts with a
form-filling paradigm and generate evaluation scores on a Likert scale Joshi et al. (2015). Additional
research has been conducted on using active learning techniques for evaluation, where informative
and diverse examples are selectively labeled to guide prompt optimization in LLM-as-Judge sys-
tems (Zhen et al., 2025). Benchmarks such as JUDGE-BENCH (Bavaresco et al., 2024), provide
an overview of LLM-judge reliability and consistency with human judgments. Different metrics
have been proposed to assess the reliability of judge LLMs against human labels, drawing on classic
statistics literature, including the intraclass correlation coefficient (ICC), Cohen’s kappa, and Cron-
bach’s alpha (Shrout & Fleiss, 1979; Cohen, 1960; Cronbach, 1951). These approaches highlight the
importance of quantifying judge reliability through measures of accuracy, agreement, or correlation
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with human preferences. Among them, the ICC has become a standard for evaluating continuous or
ordinal judgments (Bedi et al., 2025; Croxford et al., 2025; Li et al., 2024a). We adopt ICC as the
primary metric for both our theoretical and experimental analyses.

Statistical foundations. Building on this need for reliability, the statistical foundation for ICC es-
timation and sample size planning is well-grounded (Fisher, 1925; Shrout & Fleiss, 1979; Bonett,
2002; Zou, 2012; Giraudeau & Mary, 2001). The bulk of previous work has focused on statistical er-
ror in estimation of sample ICC, providing bound on confidence interval half-width. Common prac-
tice in a variety of statistical inference and estimation applications leverages concentration inequal-
ity frameworks for theoretical guarantees (Zhang & Chen, 2020; Wainwright, 2019; Koltchinskii &
Lounici, 2017). More recent work has utilized concentration inequality frameworks to provide es-
timation bounds for Pearson’s correlation coefficient (also termed sample or inter-class correlation
coefficient) (Salnikov, 2024). Similarly, we port concentration inequality tools for sample com-
plexity bounds in ICC. As in literature in confidence interval bounding, we use Fisher’s asymptotic
normal approximation of the density for ICC.

Sample Selection Strategies. Reducing reliance on human labels has long been studied in active
learning and sample-efficient evaluation, where the challenge is to identify the most informative
examples (Settles, 2009; Wei et al., 2022). One common approach is Query-By-Committee (QBC),
which selects samples that maximize disagreement, thereby prioritizing uncertain examples (Seung
et al., 1992). Extensions such as stratified QBC combine disagreement-based selection with stratified
sampling principles from classical statistics (Cochran, 1977), ensuring both informativeness and bal-
anced subgroup coverage. Representativeness is often pursued through clustering-based approaches
such as k-means (Lloyd, 1982; Dong et al., 2025), which partition the data before sampling. Sim-
ilarly, stratified sampling ensures proportional representation across predefined subgroups, reduc-
ing variance and improving estimate reliability. Variance-maximization based sampling approaches
are based in experimental design theory (Fedorov, 1972), which motivates selection strategies that
maximize the variability of the chosen item set, improving the informativeness of smaller subsets.
Density-based approaches from statistics and active learning (Silverman, 1986; Nguyen & Smeul-
ders, 2004) balance typical high-density examples with low-density outliers, promoting subsets that
capture both central trends and rare but important cases.

Taken together, our work connects these threads by (i) providing theoretical guarantees for ICC
estimation under limited annotation budgets and (ii) by designing principled sampling strategies
tailored to LLM-judge evaluation.

3 THEORETICAL FOUNDATIONS

3.1 BACKGROUND ON INTRA-CLASS CORRELATION COEFFICIENT

Intra-class Correlation Coefficient (ICC) was originally proposed by Fisher (1925) as an extension
to interclass correlation coefficient (Pearson’s correlation coefficient (PCC)), and measures the ex-
tent to which the total variance in observed data is due to differences between groups, rather than
within groups. In this perspective, the ICC is understood within the analysis of variance (ANOVA)
framework. As opposed to PCC, the data are pooled in the mean calculation.

In the generic version of our use case, ICC is considered a measure that quantifies inter-rater reli-
ability between k raters on n subjects, first introduced as an application of the metric in Shrout &
Fleiss (1979). ICC measures reliability by decomposing the total variance in human evaluations into
between-subjects variance and within-subjects error variance. The ICC determines the reliability of
ratings by comparing the variability of different ratings of the same individuals to the total variation
across all ratings and all individuals. As we only consider two raters, the human and the LLM, we
consider the case k = 2.

Analogously, modern ICC estimators derive ICC through the random effects model framework. In
the random effects model, Xij , rating j on subject i, i ∈ [n], j ∈ [k], is modeled as

Xij = µ+ αi + cj + εij

such that µ is an unobserved overall mean, αi is an unobserved random effect shared by all ratings
on subject i, cj is an unobserved random effect shared by all subject ratings by rater j, and εij is
an unobserved noise term. Each class of terms is assumed to be respectively identically distributed
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with expected value 0, and the terms are assumed to be uncorrelated. For certain random effects
models, either αi or cj is neglected or considered fixed. We refer to Liljequist et al. (2019) for
a comprehensive overview of ICC definitions and derivations relating classical estimators to the
random effects model. See table in appendix A.1 for reproduced formulas.

In our specific use case, we use a two-way consistency average, i.e. ICC(3, k) as this formula-
tion treats raters as fixed effects, (i.e. cj is fixed), meaning the same evaluation panel assesses all
LLM outputs, and estimates reliability for the average rating across k evaluators rather than individ-
ual rater consistency. The numerator (MSR − MSE) captures the true variance between different
LLM responses after removing measurement error, while the denominator represents the total vari-
ance in averaged ratings, making ICC(3, k) particularly sensitive to systematic differences in how
evaluators rate different model outputs while accounting for random measurement error within the
evaluation process. With random effects model for ICC(3, k), the population ICC

ρ =
σ2
α

σ2
α + σ2

ε/k

We utilize the associated formula as the ICC metric for our experiments due to the appropriateness
of the setting, random effects model, and use in previous empirical work (Bedi et al., 2025; Croxford
et al., 2025; Li et al., 2024a). In our theoretical analysis, we provide bounds with ICC(3, 1), as the
expression resembles Fisher’s original proposal for ICC and follows previous theoretical work (Zou,
2012; Bonett, 2002; Giraudeau & Mary, 2001). Under ICC(3, 1), the associated random effects
model dictates that the population ICC

ρ =
σ2
α

σ2
α + σ2

ε

This is additionally the more commonly stated population ICC. Note that ICC(3, k) measures the
reliability of the measurement as the average of k raters, whereas ICC(3, 1) measures the reliability
of each single measurement. In the case where k = 2, these do not differ greatly. As previously
stated, we consider k = 2 only in both our empirical and theoretical results.

3.1.1 PREVIOUS WORK ON BOUNDS FOR ICC

Previous work in bounding error in ICC estimation focuses on bounding the half-width of a con-
fidence interval (Zou, 2012; Bonett, 2002; Giraudeau & Mary, 2001). In the more recent of these
works, used empirically (Bedi et al., 2025), Zou (2012) aims to determine the required sample size
for estimating the intraclass correlation coefficient (ICC) with a desired (1 − α)100% two-sided
confidence interval half-width, ω and pre-specified assurance probability, 1 − β. Thus, Zou (2012)
sets

1− β = Pr

[
zα/2

√
Var(ρ̂) ≤ ω

]
to obtain a minimum bound on the required sample size such that the half-width of the confidence
interval remains within the desired width with probability 1 − β, where ρ̂n denotes the sample
ICC(3, 1) on n samples. Similarly, the variance Var here is assumed to be the sample variance as
opposed to population variance, so

√
Var(ρ̂) is simply the sample standard deviation σ̂ρ̂, where the

(1−α)100% two-sided confidence (Wald) interval is given by ρ̂±zα/2σ̂ρ̂, thus clearly the half-width
of the confidence interval is zα/2σ̂ρ̂.

Following this, Zou (2012) shows that for ICC(3, 1) with two raters (human and LLM), the required
sample size is:

n = 1 +

Azα/2 +
√
A2z2α/2 + 4ωzα/2zβA|B|

ω
√
2k(k − 1)

2

= 1 +

 (1− ρ2)zα/2 +
√

(1− ρ2)2z2α/2 + 8ωzα/2zβ(1− ρ2)|ρ|

2ω

2
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where the latter line comes from plugging in k = 2, A = (1 − ρ)[1 + (k − 1)ρ] = 1 − ρ2,
B = k − 2 + 2ρ − 2kρ = −2ρ (thus |B| = 2|ρ|), ω is the desired half-width, and zγ denotes the
upper γ quantile of the standard normal distribution.

In the next section, we translate the question of bounding the half-width of the confidence interval
with high probability to that of bounding the difference between sample and population ICC with
high probability – a concentration inequality framework. The two frameworks are translatable, but
our concentration inequality framework is ideal for directly bounding the error with high probability,
and requires fewer assumptions than those present in the calculation of, for instance, a Wald interval,
as used in Zou (2012).

3.2 AN APPROXIMATE CHERNOFF BOUND FOR INTRA-CLASS CORRELATION COEFFICIENT

Here, we derive a straightforward concentration inequality for the intra-class correlation coefficient
(ICC). Given annotation distributions, H and G, for human and LLM-generated, respectively, we
assume a bivariate normal joint distribution, such that Hi, Gi ∼ N (µ,Σ) independently and iden-
tically distributed (i.i.d.), and i ∈ {1, . . . , n}, where n number of samples. Denote the population
ICC between H and G as ρ and the observed (sample) ICC at n samples, ρ̂n.

Fisher (1925) showed that given sufficient sample size n, and ρ not too close to its boundary [−1, 1],
the distribution of ρ̂n approaches normal asymptotically. In particular, the distribution of ρ̂n ap-
proaches a Gaussian distribution with variance (1−ρ2)2

n−1 . Therefore, we can use the Chernoff bound
technique to derive a simple concentration inequality for the intra-class correlation coefficient.

We therefore obtain the following lemma.
Lemma 1 (Chernoff bound for approximate ICC). Let H , G be two random variables of interest,
and assume independently and identically distributed samples Hi, Gi ∼ N (µ,Σ) sampled from a
bivariate normal distribution. Let ρ denote the population ICC, and ρ̂n denote the sample ICC, as
defined in Section 3.1. Given desired bound parameter ε > 0, n sufficiently large such that CLT
holds, and |ρ| not close to 1,

Pr[|ρ̂n − ρ| ≥ ε] ≲ 2 exp

(
− (n− 1)ε2

2(1− ρ2)2

)
Therefore, given δ > 0, with probability 1− δ, the sample and population ICC are guaranteed to be
ε-close if

n ≳ 1 +
2(1− ρ2)2

ε2
log

(
2

δ

)
See proof in Appendix A.2

We provide a comparison between our Chernoff bound and the bound from Zou (2012) in Table 1.
As the bound frameworks technically bound two different events, we must translate between the
relevant parameters. See Appendix A.3 for more details. Effectively, ε = ω and δ = 1 − (1 − α) ·
(1 − β). As shown in Table 1, the proposed Chernoff bound is more sample efficient, providing
relative gains over the current baseline of up to 25.0% for ρ = 0.8 and an average of 18.3% over all
ρ values1.

4 METHODS

4.1 PROBLEM FORMULATION

We study the problem of evaluating LLM judges under limited annotation budgets. Assume we have
a set of items X = {x1, . . . , xn} for evaluation, with associated inexpensive labels G = {gi} from
an LLM judge. Similarly, there exists a set of gold labels H = {hi} from humans of which we
are only able to collect some subset of size b. Reliability is measured using the Intraclass Correla-
tion Coefficient (ICC(3, k)), which captures absolute agreement. Further information regarding the
calculation of ICC scores can be found in Appendix A.1.

1Note that cases where the derived sample size is below 30, this violates the assumptions required for both
bounds (that n is sufficiently large according to CLT).
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Confidence Interval Parameters Chernoff Bound Parameters
ρ α ω, half width β Zou (2012) N ε δ (Ours) N

0.6 0.05 0.1 0.5 158 0.1 0.525 111
0.6 0.05 0.15 0.5 71 0.15 0.525 50
0.6 0.05 0.2 0.5 40 0.2 0.525 28
0.6 0.05 0.1 0.2 183 0.1 0.240 175
0.6 0.05 0.15 0.2 87 0.15 0.240 78
0.6 0.05 0.2 0.2 52 0.2 0.240 44
0.6 0.05 0.1 0.1 195 0.1 0.145 216
0.6 0.05 0.15 0.1 95 0.15 0.145 97
0.6 0.05 0.2 0.1 58 0.2 0.145 55
0.7 0.05 0.1 0.5 101 0.1 0.525 71
0.7 0.05 0.15 0.5 45 0.15 0.525 32
0.7 0.05 0.2 0.5 26 0.2 0.525 18
0.7 0.05 0.1 0.2 123 0.1 0.240 111
0.7 0.05 0.15 0.2 60 0.15 0.240 50
0.7 0.05 0.2 0.2 37 0.2 0.240 29
0.7 0.05 0.1 0.1 134 0.1 0.145 138
0.7 0.05 0.15 0.1 67 0.15 0.145 62
0.7 0.05 0.2 0.1 42 0.2 0.145 35
0.8 0.05 0.1 0.5 51 0.1 0.525 36
0.8 0.05 0.15 0.5 23 0.15 0.525 16
0.8 0.05 0.2 0.5 13 0.2 0.525 10
0.8 0.05 0.1 0.2 68 0.1 0.240 56
0.8 0.05 0.15 0.2 35 0.15 0.240 25
0.8 0.05 0.2 0.2 22 0.2 0.240 15
0.8 0.05 0.1 0.1 77 0.1 0.145 69
0.8 0.05 0.15 0.1 40 0.15 0.145 31
0.8 0.05 0.2 0.1 26 0.2 0.145 18

Table 1: The proposed Chernoff bound tighter in the required number of human annotations.
Relative to the interval-based bound of Zou (2012), our Chernoff bound achieves tighter bound by
18.3% in required sample size, with a median reduction of 21.6%. The gains are more pronounced
at higher correlations: average improvements are 12.4% for ρ = 0.6, 17.6% for ρ = 0.7, and 25.0%
for ρ = 0.8. The bold entries in the table indicate the lower sample complexity between the two
bounds.

Given a budget b < n, we seek a subset S∗ ⊆ X of size b such that the ICC ρ̂b computed on
(HS∗ , GS∗) closely approximates the ICC ρ̂n on the full dataset (H,G):

S∗ = arg min
S⊆X ,|S|=b

|ρ̂b(HS , GS)− ρ̂n(H,G)| .

We assume access to X and G, and a single-batch labeling regime (rather than an active iterative
setting) such that labels in HS are obtained all at once for a chosen S. Thus, our subset selection
must rely solely on the items X and the inexpensive labels G.2

4.2 DATA PREPARATION

We provide empirical evaluations on 4 diverse real-world datasets: MSLR (Wang et al., 2023),
HANNA (Chhun et al., 2024), MedVAL (Aali et al., 2025), and SummEval (Fabbri et al., 2021).
Each dataset is annotated along multiple axes (e.g., faithfulness, accuracy, creativity) with a total
of 15 sets of human annotations by which to evaluate sampling performance, as shown in Table 2.
All datasets contain samples that are annotated by more than one human, creating a distribution
of continuous scores that requires the use of ICC over alternative ordinal or categorical agreement
metrics. We take the average score of a subject between total raters as the true score and compare
to the LLM judge score. All datasets use Likert scaling with a range of 1–5 (Joshi et al., 2015).
The evaluation axes span from more objective to more subjective scores, capturing a broad spectrum
of evaluation types. We truncate each dataset to contain 300 human-labeled samples and perform
evaluations on subsets of this annotation set. We perform the evaluations over 100 rollouts, each with
its own random seed to account for variance in the predicted ICC value from the random components
of the selection mechanisms (i.e., random selection, cluster initialization, etc.).

2As LLM-annotated data is inexpensive, we assume that n is large, and ρ̂n effectively acts as a stand-in
for the population ICC ρ on the joint distribution (H|X , G|X ), since we cannot access ρ in our evaluation.
Similarly, we allow some abuse of notation such that H = {hi}ni=1 and G = {gi}ni=1 are assumed to capture
label distributions H|X and G|X , respectively.
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Table 2: Datasets, evaluation axes, and number of raters per datapoint.

Dataset Axes of Evaluation Raters per datapoint
SummEval Coherence, Consistency, Fluency, Relevance 8
HANNA Relevance, Coherence, Empathy, Surprise, Engage-

ment, Complexity
3

MedVAL Safety 1–3
MSLR Fluency, Population, Intervention, Outcome 1–2

4.3 SAMPLING METHODS

We compare 6 strategies for selecting S∗ as shown in Table 3 against random sampling. Additional
information regarding each algorithm is present in Appendix A.4

Table 3: Selection strategies for choosing k items from cheap ratings G.

Method Description Formula
Random Uniformly sample k

items without replace-
ment

Srand = UniformSample(N , k)

Stratified Partition ratings into k
quantile strata; sample
one per stratum

Sstrat =
⋃k

j=1 UniformSample(Stratumj , 1)

QBC Select items with largest
inter-rater difference

SQBC = argmax|S|=k

∑
i∈S |g(1)i − g

(2)
i |

Stratified QBC Combine stratified (k/2)
and QBC (k/2)

SsQBC = S
(k/2)
strat ∪ S

(k/2)
QBC

Cluster Choose item nearest to
each K-means centroid

Sclust = {argmini∈Cj |gi − cj |}kj=1

Maximum-Variation Iteratively add items
maximizing variance

St+1 = St ∪ {argmaxi/∈St
. . . }

Density-Based Balance typical (high
density) and outliers
(low density)

Sdens = Shigh ∪ Slow

5 RESULTS

5.1 ESTIMATION ERROR BY SELECTION METHOD

As shown in Figure 2, the cluster method consistently achieves a lower estimation error than ran-
dom selection. Across all datasets and tasks, cluster-based selection consistently provides more
sample-efficient ICC estimation with nexpensive ≤ 30 , with up to 31% relative improvement over
random sampling in settings with ≤ 5% of annotation budget available as shown in Table 4. We
see saturation of gains from cluster-based selection as the data budget (nexpensive) increases, as ran-
dom sampling is better able to capture the true distribution of samples with increased data points.
While some relative improvements are negative at larger nexpensive, the difference between esti-
mation error from cluster-based selection and random selection decreases as nexpensive increases,
so these negative values represent small differences (absolute differences are present in Appendix
Table 5). However, in data-scarce settings, cluster selection consistently allows for lower estimation
error between predicted and true ICC values.

In addition to minimizing the estimation error between true and predicted ICC values, cluster-based
selections are also more stable and have a demonstrably smaller confidence interval than equivalent
random selection, as shown in Table 4. For datasets HANNA, MedVAL, and SummEval, the im-
provement in confidence interval width is larger than with the MSLR dataset. Similarly, the MSLR
dataset also shows the smallest improvement against random in estimation error as well as confi-
dence interval width. We attribute this to the true ICC for all samples in this dataset against the

7
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judge model. The ICC of MSLR is 0.346, while the ICC of HANNA, MedVAL, and SummEval,
respectively, are 0.655, 0.716, 0.627. This indicates that clustering selection provides the most ben-
efit under the assumption of a minimum ICC and concordance between the judge model and human
scoring. When the raters are dissimilar, the clustering method converges to perform similarly to
random selection.

Figure 2: Cluster-based sample selection for annotation leads to consistently lower estimation
error. We compare 6 methods of sample selection against a random baseline, showing that cluster-
based approaches consistently perform at or above the precision level of random selection, providing
improved estimations of true ICC values.

nexpensive Mean ICC Improvement over Random (%) CI Width Improvement of Cluster over Random (%)

HANNA MedVAL MSLR SummEval HANNA MedVAL MSLR SummEval

10 31.0% 15.0% 5.5% 21.0% 6.4% 32.4% −0.9% 24.1%
20 21.0% 24.0% 5.4% 7.1% 7.8% 18.3% 0.1% 21.9%
30 11.0% 23.0% 8.4% 1.4% 7.1% 13.9% −2.4% 18.4%
40 11.0% 20.0% 7.6% 0.0% 2.6% 9.7% −1.0% 14.6%
50 11.0% 9.0% 3.7% 0.0% 4.9% 9.4% −0.7% 14.0%
60 0.0% 6.8% 1.3% −5.6% 2.9% 2.1% 0.0% 11.3%
70 2.5% 10.0% 2.0% −11.0% 3.5% 8.0% −0.4% 9.1%
80 3.2% −7.1% 0.0% −4.4% 1.5% 5.9% 0.0% 7.8%
90 7.5% 4.2% 3.4% 0.0% 1.8% 4.5% −1.3% 6.2%

Table 4: Cluster-based sampling can decrease estimation error and improve confidence inter-
vals in low data settings. Relative improvement (%) of Cluster over Random for both average ICC
(left block) and confidence interval width (right block). Negative values indicate cases where Clus-
ter underperforms Random.

5.2 COVERAGE PERSPECTIVE ON CLUSTERING

As discussed in Section 4.1, we frame our task as selecting a subset of samples such that the em-
pirical intra-class correlation coefficient (ICC) on b annotated items, ρ̂b, closely approximates the
ICC on the full dataset, ρ̂n. Since human labels are not available a priori, we cannot sample based
on them directly. An optimal subset (HS , GS) should preserve the distributional properties of the
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full set (H,G), specifically the variance structure that determines ICC. While the human-label vari-
ance components are inaccessible, the inexpensive labels provide a coarse but useful proxy. Thus,
our goal is to select a subset GS whose distribution approximates that of G, effectively minimizing
regret with respect to set coverage.

This motivates the use of clustering approaches to adequately capture set variance. A known problem
in the context of set coverage is the k-Centers problem. Given a metric space (X , d), the objective
of the k-Centers problem (Hakimi, 1964) is to find k centers C∗ = {c1, . . . , ck} ⊆ X such that

C∗ = arg min
C⊆X ,|C|=k

max
x∈X

min
c∈C

d(c, x)

Although this problem is NP-hard, approximate solutions yield strong coverage guarantees (Lim
et al., 2005). While k-means clustering optimizes a different criterion (minimizing within-cluster
variance rather than worst-case distance), it also provides effective coverage of the space (Wolf,
2011). By covering the inexpensive label space, k-means ensures that the selected subset spans the
diversity of the dataset, which in turn helps recover the variance structure and ICC of the full popu-
lation. Prior work has similarly leveraged clustering for diverse sampling in related contexts (Sener
& Savarese, 2018).

6 DISCUSSION

As LLMs become central in various workflows, the ability to evaluate their outputs at scale becomes
increasingly critical. LLM Judges emerge as the current state-of-the-art for scalable, non-verifiable
evaluation, but these methods are only as good as they are aligned with human preferences. One
way to quantify their correlation with human ratings is through the intra-class correlation coeffi-
cient (ICC). LLM judge outputs can be compared to gold-standard human outputs with ICC, but
human outputs are expensive and time-intensive to obtain. We explore methods to reduce the human
annotation burden.

We introduce a Chernoff bound that allows practitioners to derive an approximate bound on the
minimum number of human annotations necessary to ascertain performance given a desired toler-
ance ε and probabilistic guarantee δ. This bound improves upon current baseline methods of sample
size calculation by an average of 18.3% across parameter combinations. Additionally, we show that
cluster-based selection consistently provides the most sample-efficient estimation of the true ICC
value across a large range of potential ”budget” ratios. The greatest improvements occur in low-
budget settings, with relative improvement of 5.5% to 31% compared to random in settings where
annotation budget is ≤ 5% of total samples. This allows model practitioners to iterate on their LLM
judge methodology with higher fidelity without wasting annotation budget. We compare the confi-
dence interval size between randomly selected samples and samples selected using a cluster-based
approach. We see that the cluster-based approach provides tighter confidence intervals in addition
to the empirical results of more precise ICC estimates. This supports that in limited annotation set-
tings, cluster-based selection of points to receive human annotation decreases ICC estimation error
as well as produces narrower confidence intervals for the ICC estimate.

Future work can explore extensions beyond cluster-based methods to further reduce expensive anno-
tation requirements. The utilization of the subject text as a part of the selection process could further
act as a signal of diversity and coverage, thus allowing for improved sampling at lower budgets and
exploring associated bounds with specific data selection mechanisms. Currently, the cluster method
is most impactful under the key assumption that the LLM judge ratings are a reasonable proxy
for human ratings. Further exploration should provide means to evaluate this assumption a priori,
such that practitioners have a base understanding of what the alignment may be and whether these
assumptions hold.

ETHICS STATEMENT

This work develops methods for estimating the reliability of large language model (LLM) judges
while reducing annotation costs. We only use publicly available datasets. We do not collect new
human subject data, and our experiments do not involve personally identifiable or sensitive infor-
mation. A potential risk of this research is that efficiency gains in estimating reliability could be
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misapplied to justify reducing necessary human oversight, particularly in safety-critical domains
such as healthcare, law, or education. We stress that our methods are intended to improve the rigor
of evaluation and reduce redundant annotation effort, not to replace expert human judgment. Any
deployment in high-stakes settings must retain appropriate levels of domain-specific human review.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results. All theoretical derivations
are provided in full in the main text and appendix. For empirical evaluation, we specify all datasets,
baselines, and evaluation metrics in detail. Sampling strategies and corresponding implementation
details are described in the methods section. All datasets used are publicly available and require
no additional pre-processing beyond what is documented. We also release all code required for
reproducing our empirical results at the anonymized repository: Smarter Sampling.
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A APPENDIX

A.1 INTRA-CLASS CORRELATION COEFFICIENT DEFINITIONS

See table below for reproduced formulas (Liljequist et al., 2019).

Name Notation Rater Model Use Case Formula

One-way single ICC(1,1) Random Agreement of 1 random rater
MSR − MSE

MSR + (k − 1)MSE

One-way average ICC(1,k) Random Agreement of average random raters
MSR − MSE

MSR

Two-way absolute single ICC(2,1) Random Absolute agreement of 1 random rater
MSR − MSE

MSR + (k − 1)MSE + k
n
(MSC − MSE)

Two-way absolute average ICC(2,k) Random Absolute agreement of average raters
MSR − MSE

MSR + 1
n
(MSC − MSE)

Two-way consistency single ICC(3,1) Fixed Consistency of 1 fixed rater
MSR − MSE

MSR + (k − 1)MSE

Two-way consistency average ICC(3,k) Fixed Consistency of average fixed raters
MSR − MSE

MSR

Pearson correlation r N/A Correlation only (not agreement) r =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
∑

(yi − ȳ)2

Notation:

• MSR: Mean square between targets (rows)
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• MSC: Mean square between raters (columns)
• MSE: Residual mean square (error)
• n: Number of targets
• k: Number of raters

Formulas:

MSR =
k

n− 1

n∑
i=1

(Si −Xtot)
2

MSC =
n

k − 1

k∑
j=1

(Mj −Xtot)
2

MSE =

∑n
i=1

∑k
j=1(xij −Mj)

2 − k
∑n

i=1(Si −Xtot)
2

(n− 1)(k − 1)

Si =
1

k

k∑
j=1

xij

Mj =
1

n

n∑
i=1

xij

Xtot =
1

k · n

n∑
i=1

k∑
j=1

xij

A.2 CHERNOFF BOUND ON INTRA-CLASS CORRELATION COEFFICIENT

Given the population ICC stated in the previous section, we denote the sample ICC of n samples as
ρ̂n and calculate as the formula listed in our table for ICC(3, 1). In Fisher (1925), Fisher demon-
strates that with the assumption of sufficiently large number of samples, and given that ρ̂n is not
close to −1 nor 1, the distribution of ρ̂n on bivariate Gaussian random variables asymptotically ap-
proaches Gaussian with parameters E[ρ̂n] = ρ and Var(ρ̂n) =

(1−ρ2)2

n−1 . As earlier work on sample
bounds for ICC leverage this approximation and associated assumptions (Zou, 2012), we consider
these assumptions and approximations reasonable. As stated in Section 3.2, we assume a bivariate
normal distribution for LLM-annotated and human annotated samples.

Thus, we only require a few additional (already extant) propositions to derive an approximate Cher-
noff bound.
Proposition 2. (Chernoff, 1952) For any random variable X , the Chernoff bound dictates that

Pr(X ≥ ε) ≤ inf
λ≥0

φX(λ)e−λε

where φX(λ) is the moment generating function for X .

For a Gaussian random variable X ∼ N (µ, σ2), the moment generating function φX(λ) =
exp(µλ + σ2λ2/2). Due to linearity of the Gaussian distribution, X − µ ∼ N (0, σ2), and the
moment generating function is φX(λ) = exp(σ2λ2/2). Thus, the Chernoff bound for a Gaussian
random variable is

Pr(X − µ ≥ ε) ≤ exp

(
− ε2

2σ2

)
Analogously,

Pr(µ−X ≥ ε) ≤ exp

(
− ε2

2σ2

)
Therefore, as the events X − µ ≥ ε and µ−X ≥ ε are mutually exclusive and constitute the event
|X − µ|,

Pr(|X − µ| ≥ ε) ≤ 2 exp

(
− ε2

2σ2

)
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Combining this with the fact that ρ̂n approaches Gaussian asymptotically with variance (1−ρ2)2

n−1 , we
obtain our desired approximate bound

Pr[|ρ̂n − ρ| ≥ ε] ≲ 2 exp

(
− (n− 1)ε2

2(1− ρ2)2

)
As standard with concentration inequalities, we can derive the necessary n such that |ρ̂n − ρ| ≥ ε
with at most probability δ by setting δ equal to our bound and solving for n.

δ = 2 exp

(
− (n− 1)ε2

2(1− ρ2)2

)
log

(
2

δ

)
=

(n− 1)ε2

2(1− ρ2)2

2(1− ρ2)2

ε2
log

(
2

δ

)
= (n− 1)

1 +
2(1− ρ2)2

ε2
log

(
2

δ

)
= n

A.3 COMPARISON BETWEEN CONFIDENCE INTERVAL AND CONCENTRATION INEQUALITY
BOUNDS

In the context of the bound on a (1 − α)100% confidence interval, as detailed in Section ??, the
derived bound is technically on the confidence interval itself, in the case of (Zou, 2012), a Wald
interval, i.e. zα/2σ̂ρ̂n

. The (1− α)100% two-sided confidence interval itself is already set such that
Pr[|ρ̂n − ρ|] = 1− α. Thus, probability of the event |ρ̂n − ρ| ≥ ε must be decomposed as:

Pr[|ρ̂n − ρ| ≥ ω] = Pr[|ρ̂n − ρ| ≥ zα/2σ̂ρ̂n
∧ zα/2σ̂ρ̂n

≥ ω]

= Pr[|ρ̂n − ρ| ≥ zα/2σ̂ρ̂n ] · Pr[zα/2σ̂ρ̂n ≥ ω]

= (1− α) · Pr[zα/2σ̂ρ̂n
≥ ω]

where indeed the latter term is the component bounded in Zou (2012) (and set to 1 − β, with β
the pre-specified assurance probability). Thus, to translate between the frameworks, ε = ω and
δ = 1− (1−α) · (1−β). Note that their analysis involves multiple parameters (α, β) for our single
δ, and thus is not directly translatable in the opposite direction, as many choices for α and β suffice.
However, α = 0.05 can be assumed to be effectively constant, as this is common practice in applied
statistics.

A.4 SELECTION METHODS

A.4.1 RANDOM SELECTION

The baseline random selection strategy serves as our control method:

Srandom = UniformSample(N , k)

where items are selected uniformly at random from the full set N without replacement.

A.4.2 STRATIFIED SELECTION

Stratified selection partitions the cheap ratings into k quantile-based strata and selects one represen-
tative from each stratum:

Qj = Quantile(G,
j

k
) for j = 0, 1, . . . , k

Stratumj = {i ∈ N : Qj−1 ≤ gi ≤ Qj}

Sstratified =

k⋃
j=1

UniformSample(Stratumj , 1)
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A.4.3 QUERY-BY-COMMITTE (QBC)

This strategy prioritizes items where multiple cheap raters exhibit maximum disagreement, under
the hypothesis that such items are most informative:

di = |g(1)i − g
(2)
i | for i ∈ N

SQBC = argmax
|S|=k

∑
i∈S

di

where g
(1)
i and g

(2)
i represent ratings from two different cheap judges.

A.4.4 STRATIFIED QBC SELECTION

The hybrid approach combines stratified and disagreement-based selection:

SsQBC = S
(k/2)
sQBC ∪ S

(k/2)
QBC

where S
(k/2)
strat contains k/2 items selected via stratification and S

(k/2)
QBC contains the remaining items

selected by disagreement, excluding those already chosen.

A.4.5 CLUSTER-BASED SELECTION

This method applies K-means clustering to identify k clusters in the cheap rating space and selects
the item closest to each cluster centroid:

{c1, c2, . . . , cz} = KMeans(G, z)

Scluster =

{
argmin

i∈Cj

|gi − cj | : j = 1, 2, . . . , k

}
where Cj represents the set of items assigned to cluster j and cj is the corresponding cluster center.

A.4.6 MAXIMIZE-VARIATION SELECTION

Maximize-Variation selection aims to preserve the between-item variance crucial for ICC computa-
tion by iteratively selecting items that maximize subset variance:

S0 =

{
argmin

i∈N

∣∣gi − Median(G)
∣∣ }

St+1 = St ∪

{
argmax
i∈N\St

Var
(
GSt∪{i}

)}

A.4.7 DENSITY-BASED SELECTION

Density-based selection balances representation between high-density regions (typical cases) and
low-density regions (outliers) using kernel density estimation:

ρi = KDE(gi|G) for i ∈ N

Shigh = Sample

(
argmax
|T |=k

∑
i∈T

ρi, k/2

)

Slow = Sample

(
argmin

|T |=k,T∩Shigh=∅

∑
i∈T

ρi, k/2

)
Sdensity = Shigh ∪ Slow

where KDE(gi|G) represents the kernel density estimate of rating gi given the distribution of all
cheap ratings G.
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A.5 JUDGE MODEL INFORMATION

We use GPT-4o-mini with API version 2023-05-15 as our primary model judge for this setting due
to the balance of accuracy and cost. We use a temperature score of 0.2. For QBC based selection
methods, we use Claude-3.5-Sonnet as an additional committee member. Future work should in-
volve exploring generalizability of claims across additional judge model architectures and families.

A.6 ABSOLUTE IMPROVEMENT BETWEEN CLUSTERING AND RANDOM

We include absolute improvement between clustering selection and random selection to further
ground the relative improvement results present above. We see from these results that occasions
where random selection outperforms cluster-based selection are outperforming by relatively small
margins compared to larger gains when nexpensive ≤ 20.

nexpensive HANNA MedVAL MSLR SummEval
10 0.073 0.026 0.014 0.051
20 0.031 0.028 0.010 0.010
30 0.013 0.021 0.014 0.002
40 0.011 0.016 0.011 0.000
50 0.010 0.006 0.005 0.000
60 0.000 0.004 0.001 -0.004
70 0.002 0.005 0.002 -0.007
80 0.002 -0.003 0.000 -0.003
90 0.004 0.002 0.003 0.000

Table 5: Absolute Improvement Results across datasets for varying nexpensive.

A.7 CONFIDENCE INTERVAL VISUALIZATION

We report the confidence interval width on the returned estimated subset ICC value from cluster-
based sampling and random sampling. We use Fisher’s Z transformation to derive the 95% confi-
dence interval width, and report the standard deviation of this width across k = 100 iterations.

A.8 ABLATION: DIFFERENT JUDGE MODEL

We flip the main and QBC models to assess the reliance of our results on the specific judge model,
such that our main model becomes Claude-3.5-Sonnet and our QBC model becomes GPT-4o-mini.
We see that while the exact estimation error varies as a result of the judge, the benefit of cluster-based
sampling over random sampling remains consistent.

A.9 ABLATION: DIFFERENT ANNOTATION BUDGET RATIO

We see with our full dataset of 300 samples that clustering outperforms random selection uniformly
until our data budget is nexpensive = 40, which is 13% of the dataset. We run an ablation with
the full dataset equal to 150 samples such that we can observe whether the trends correspond to the
magnitude of the budget or the proportion of the budget in relation to the total dataset size. Similarly,
with this subsample, we see that the first instance of random outperforming cluster selection is on
the MSLR dataset at N=20, which is 13% of the data. This supports the claim that these methods
are best suited for data scarce settings and that data scarcity can be defined in relation to the total
data available.

A.10 LARGE LANGUAGE MODEL USAGE

We used large language models during the brainstorming and writing phases of our project. For writ-
ing, we used primarily for polishing grammar and improving flow between topics. We additionally
used LLMs to recommend citations that may be relevant to our particular work.
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Figure 3: Cluster selection yields more narrow confidence intervals than random selection.
95% confidence intervals for intraclass correlation coefficients (ICC) estimated using the Fisher Z
transformation.
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(a) Dataset: HANNA (b) Dataset: MedVAL

(c) Dataset: MSLR (d) Dataset: SummEval

Figure 4: Cluster based sample selection for annotation leads to lower estimation error across
models. We perform a complementary analysis of all selection methods with Claude-3.5-Sonnet
as the judge model and observe consistency in trends, with cluster based selection still being a
consistent method for improving performance over random.
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(a) Dataset: HANNA (b) Dataset: MedVAL

(c) Dataset: MSLR (d) Dataset: SummEval

Figure 5: Cluster based selection advantages scale with dataset size. We evaluate our selection
strategies with N=150 such that all nexpensive represent a larger fraction of the sample popula-
tion and observe that general trends hold as with N=300, specifically that cluster selection leads to
monotonic improvement until 13% of data is sampled and then improvement starts to converge with
random performance.
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