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ABSTRACT

We study stochastic contextual logistic bandits under the simple regret objective.
While simple regret guarantees have been established for the linear case, no such
results were previously known for the logistic setting. Building on ideas from
contextual linear bandits and self-concordant analysis, we propose the first algo-
rithm that achieves simple regret Õ(d/

√
T ). Notably, the leading term of our

regret bound is free of the constant κ = O(exp(S)), where S is a bound on the
magnitude of the unknown parameter vector. The algorithm is shown to be fully
tractable when the action set is finite. We also introduce a new variant of Thomp-
son Sampling tailored to the simple-regret setting. This yields the first simple
regret guarantee for randomized algorithms in stochastic contextual linear bandits,
with regret Õ(d3/2/

√
T ). Extending this method to the logistic case, we obtain a

similarly structured Thompson Sampling algorithm that achieves the same regret
bound — Õ(d3/2/

√
T ) — again with no dependence on κ in the leading term. The

randomized algorithms, as expected, are cheaper to run than their deterministic
counterparts. Finally, we conducted a series of experiments to empirically validate
these theoretical guarantees.

1 INTRODUCTION

We study stochastic contextual bandits with simple regret (Bubeck et al., 2009), focusing on both
linear and logistic models. In each round, the learner observes a set of actions and a context drawn
independently from the same distribution. The learner selects one of the actions and observes a
corresponding reward, whose expectation — conditioned on the chosen action and observed context
— is a function of the inner product of the known feature vector of the action and the context, and
an unknown parameter vector of dimension d. The goal is to identify a policy that maps contexts to
actions, minimizing the expected regret over future draws from the context distribution.

We start with the linear case, which is simpler and included primarily for completeness. We propose
a deterministic algorithm that selects the action with the most uncertain predicted reward, an idea
also used in Zanette et al. (2021). We explain the difference between our algorithm and that of
Zanette et al. (2021) in detail later in this section. We also include a randomized version based
on Thompson sampling (TS) (Thompson, 1935), which samples a parameter from the posterior
distribution constructed using observed contexts and zero-valued rewards, and chooses the action
whose feature vector, up to a potential change of sign, is best aligned with the chosen parameter vector.
We show that this randomized algorithm enjoys a simple regret of Õ(d3/2/

√
T ) which matches the

dimension dependency in stochastic linear bandits with cumulative regret (Agrawal & Goyal, 2013;
Abeille & Lazaric, 2017).

For the logistic case (Filippi et al., 2010), we extend the uncertainty-based action selection approach
by incorporating the nonlinearity of the problem. The deterministic algorithm estimates a lower
bound on the Hessian of the logistic loss to compute meaningful uncertainty estimates. It then jointly
selects a parameter (from a carefully constructed confidence set) and an action that maximizes the
resulting uncertainty. This is the first algorithm in the logistic setting to achieve simple regret of
Õ(d/

√
T ) where the leading term is free of κ, a potentially large constant that appeared in early work

on cumulative regret minimization, matching the seminal result of Faury et al. (2020). In particular,
κ = exp(S) where S is a bound on the ℓ2-norm of the optimal, unknown parameter vector, which
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needs to be given to all the algorithms published to date. The algorithm is also tractable when the
action set is finite. We also analyze a randomized logistic algorithm based on TS. Here, similarly to
the linear case, a parameter is sampled from the posterior induced by pseudo-observations (rewards
set to zero). Then, the action with the highest predicted uncertainty given this parameter is selected.
As expected, the randomized method saves computation over the deterministic method. We prove a
regret bound of Õ(d3/2/

√
T ), again with no κ-dependency in the leading term.

As is mentioned before, the linear contextual bandit problem under the simple regret objective was
also studied by Zanette et al. (2021). Their approach requires a pre-collected dataset of contexts
on which they compute a data-collection policy then collect online data using this policy. However,
the two-phase structure makes the method less suitable for online use, as it requires deciding in
advance how to split the time horizon between the two phases. As such, more modifications to the
algorithm are needed when the total number of rounds is unknown. Our work complements this by
providing a simpler, fully online approach with matching regret guarantees. Although we do not
explore this direction here, our method can also be easily adapted to settings where some contexts
are pre-collected. For these reasons, we view the fully online algorithm as more versatile: it avoids
phase-length tuning without requiring any additional parameters. Lastly, the linear contextual bandit
problem can be viewed as a special case of the linear Markov Decision Process (MDP) problem with
a horizon of 1. We leave more detailed discussions of the work on linear MDPs to Appendix A.

For the logistic case, the simple regret setting has, to our knowledge, not been previously studied.
The logistic bandit model was introduced as a special case of generalized linear bandits by Filippi
et al. (2010). In that work, the regret bounds for cumulative regret included the earlier mentioned,
potentially very large, constant κ in the leading term. Subsequent work (Jun et al., 2017; Li et al.,
2017) have been suffering from κ until Faury et al. (2020) used the self-concordance of the logistic
loss, which was first proposed by Bach (2010), to push κ into lower-order terms, and Abeille et al.
(2021) proposed an instance-wise minimax-optimal optimistic algorithm with a matching lower
bound. TS and its variants in logistic bandits under cumulative regret are studied in Abeille & Lazaric
(2017); Kveton et al. (2020); Ding et al. (2021); Jun et al. (2017); Faury et al. (2022). In contrast, our
work initiates a study of simple regret for logistic bandits, and provides the first deterministic and
randomized algorithms with leading-order guarantees that are independent of κ.

The main technical novelty of our work is three fold. Firstly, We provide a completely new way to
analyze randomized algorithms in stochastic contextual linear (logistic) bandits under simple regret
criteria and the idea is completely different from the cumulative case. We believe that our analysis
could also serve as a starting point for other related problems (e.g. stochastic contextual generalized
linear bandits under simple regret). Secondly, on the deterministic logistic bandit algorithm side,
we did substantive algorithmic design and more involved analysis to handle the complexities of the
logistic bandit model, where we borrowed tools from Faury et al. (2020); Abeille et al. (2021). To
complement our theoretical results, we also provide empirical comparisons of the proposed algorithms
with natural baselines on synthetic data. Thirdly, we correct a technical mistake in Zanette et al.
(2021) and provide a corrected version of their martingale concentration result (Theorem 3 in their
paper) in Appendix F.

2 PRELIMINARIES

In this section we introduce the notation, followed by explaining the problem formulation. We finish
the section with the review of some tools that will be useful for discussing our algorithms and results.

2.1 NOTATION

For a real-valued single-variable differentiable function f : R → R, we use ḟ , f̈ to denote the first and
second order derivatives of f , respectively. The ℓ2-norm on Rd is denoted by ∥ · ∥. We use Sd−1 and
Bd(r) to denote the unit sphere and the d-dimensional ball with radius r in (Rd, ∥ · ∥), respectively.
For a positive definite matrix A, we define the norm induced by A to be ∥x∥A =

√
x⊤Ax. For a

set K, let M1(K) denote the set of all distributions over K; we assume the associated measurability
structure is clear from context. For a distribution P ∈ M1(K), we write supp(P ) ⊆ K to denote its
support. The abbreviation “a.s.” refers to statements that hold almost surely. For positive semidefinite
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matrices P, S, we use P ⪯ S to denote that S − P is positive semidefinite. We use R+ to denote the
positive reals.

2.2 PROBLEM SETUP

We study stochastic logistic and linear contextual bandits with stochastic contexts. A bandit instance
is described by a tuple (S,A, ν,P, µ, ϕ, θ∗, ). Here S is the context space that potentially could be
infinite. The set of available actions can depend on the context; the structure A specifies these sets.
In particular, when the context is s ∈ S , the actions available are the elements of the set A(s), which
we assume to be finite.1 We let Z = ∪s∈S({s} × A(s)) denote the context-action space. Next,
ν ∈ M1(S) is a distribution over the contexts and without loss of generality (w.l.o.g.) we assume
supp(ν) = S. P is a probability kernel from Z to the reals: For (s, a) ∈ Z , P (·|s, a) ∈ M1(R)
is a distribution of the reward that will be received when in context action a is chosen. Finally,
µ : R → R, ϕ : Z → Rd, θ∗ ∈ Rd and these are such that µ(ϕ(s, a)⊤θ∗) =

∫
rP (dr|s, a) gives the

expected reward associated with the pair (s, a) ∈ Z . It is assumed that for each (s, a) ∈ Z , after
centering, the reward distribution P (dr|s, a) is 1-subgaussian.

For T ≥ 1, the learner interacts with the environment in rounds t = 1, 2, . . . , T . The learner does
have access to S,A and ϕ, but does not know ν, P or θ∗. At the beginning of each round t, the
learner observes a context St ∈ S sampled from ν. Next, given its past information, the learner
chooses an action At ∈ A(St), after which they receive the reward

Xt ∼ P(·|St, At) .

Here, the meaning of the above identity is that given the past (S1, A1, X1, . . . , St, At), the distribution
of Xt is P(·|St, At). We will find it useful to introduce the “noise” associated with the reward Xt,
ϵt = Xt − µ(ϕ(St, At)

⊤θ∗). For linear contextual bandits, µ is the identity function (i.e., µ(x) = x
for all x ∈ R). For logistic contextual bandits, µ(·) is the logistic function, i.e., µ(x) = 1

1+exp(−x)

and P(·|s, a) is the Bernoulli distribution with parameter µ(ϕ(s, a)⊤θ∗).

The goal of the learner is to learn enough about the instance to be able to produce a policy π that
gives as much reward as possible when deployed. Here, a policy is a map from S to ∪s∈SA(s) such
that for any s ∈ S context, π(s) ∈ A(s). We define the value of a policy π to be

v(π) =

∫
ν(ds)

∫
rP(dr|s, π(s)) =

∫
µ(ϕ(s, π(s))⊤θ∗)ν(ds) ,

which gives the expected reward when action π(s) is used the second equality is by our assumptions.
Let Π denote the set of all possible policies. The simple regret of a policy is defined to be

R(π) = sup
π′∈Π

v(π′)− v(π) (1)

which is the loss compared to using an optimal policy. Since we assumed that all action sets are finite,
an optimal policy π∗ exists and is determined by π∗(s) = argmaxa∈A(s) µ(ϕ(s, a)

⊤θ∗).2

We assume that the features are normalized in the following sense:
Assumption 1. For all (s, a) ∈ Z , ∥ϕ(s, a)∥ ≤ 1.

The algorithms also need to know an upper bound on the norm of the unknown parameter:
Assumption 2. There is a known constant S > 0 such that ∥θ∗∥ ≤ S.

These assumption are standard when studying generalized linear bandits (Faury et al., 2020; Abeille
et al., 2021; Janz et al., 2024; Lee et al., 2024; Liu et al., 2024).

In the logistic case, the nonlinearity of the mean function µ with respect to the parameter θ is
measured by the following quantity (Filippi et al., 2010; Faury et al., 2020)

κ = sup
u∈ϕ(Z),θ∈Bd(S)

1

µ̇(u⊤θ)
. (2)

1Or an infinite set such that {ϕ(s, a)}a∈A(s) is a compact subset of Rd.
2For the extension to infinite action sets, π∗ also exists because a continuous image of a compact set is

compact and hence the maximum is attained.
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Here, ϕ(Z) = {ϕ(z) : z ∈ Z}, as usual. As noted in Faury et al. (2020), from the definition of κ
and the sigmoid function µ, it holds that κ = 1 +maxu∈ϕ(Z),θ∈B2(d) exp(u

⊤θ), which could scale
exponentially with the size of the admissible parameter set S, for example, when ϕ(Z) = Bd(1).

2.3 LINEAR AND LOGISTIC REGRESSION

Given the data D = {(ϕ(Si, Ai), Xi)}t−1
i=1 collected from an environment, linear (respectively,

logistic) regression estimates the unknown parameter θ∗ by minimizing some loss Lλ
t : Rd → R:

θ̂t = argminθ∈Rd Lλ
t (θ). The estimators differ in terms of the loss used. In this work, we will

consider regularized versions of the respective losses.

Linear regression For the linear case, we consider the regularized squared loss defined via

Lλ
t (θ) := λ∥θ∥2 +

t−1∑
i=1

(Xi − ϕ(Si, Ai)
⊤θ)2. (3)

The regularized least-squares (RLS) estimator returns the minimizer of this loss. This minimizer in
this case is availably in closed form: θ̂t = V −1

t

∑t−1
i=1 Xiϕ(Si, Ai), where

Vt = λI +

t−1∑
i=1

ϕ(Si, Ai)ϕ(Si, Ai)
⊤ . (4)

Logistic regression For the logistic case, we consider the regularized negative log-likelihood
function associated with our probabilistic model:

Lλ
t (θ) = λ∥θ∥2 −

t−1∑
i=1

ℓ(µ(ϕ(Si, Ai)
⊤θ), Xi), (5)

where ℓ(x, y) = y log(x) + (1 − y) log(1 − x) is the binary cross-entropy function. (To reduce
clutter, we recycle Lλ

t to denote the loss both for the linear and logistic case: the meaning of Lλ
t

should always be clear from the context.) The minimizer of this loss will be called the regularized
maximum likelihood estimate (MLE). While in this case, the minimizer is not available in closed
form, since the loss Lλ

t is strongly convex, θ̂t is the unique stationary point of Lλ
t . Defining gt by

gt(θ) =
∑t−1

i=1 µ(ϕ(Si, Ai)
⊤θ)ϕ(Si, Ai) + λθ, it follows that

∇θLλ
t (θ̂t) = gt(θ̂t)−

t−1∑
i=1

ϕ(Si, Ai)Xi = 0, (6)

and the above equation has no other solution. We will also need the Hessian of the loss:

Ht(θ) := ∇2
θLt(θ) = λI +

t−1∑
i=1

µ̇(ϕ(Si, Ai)
⊤θ)ϕ(Si, Ai)ϕ(Si, Ai)

⊤ . (7)

3 ALGORITHMS AND RESULTS

In this section, we will present our algorithms and the associated main results, both for the linear
and the logistic cases. We start with presenting the deterministic algorithms for both settings as the
intuition developed from the design and the analysis of these algorithms will be helpful for the design
and the analysis of the randomized algorithms.

3.1 DIRECT UNCERTAINTY MAXIMIZATION: DETERMINISTIC ALGORITHMS

The main idea of the deterministic algorithms is to choose an action with maximal associated
uncertainty. That is, given the context St for each round, the learner computes an uncertainty score
associated with each of the actions and then chooses the action that maximizes it. The way the
uncertainty score is calculated depends on the setting, but the general idea is that given the data
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Algorithm 1 Max-Uncertainty-Lin (MULIN)
Require: λ > 0
1: V1 = λI , D = {} // D is a multiset
2: for t : 1 → T do
3: Observe context St ∼ ν
4: Select At = argmaxa∈A(St)

∥ϕ(St, a)∥V −1
t

5: Receive reward Xt

6: D = D ∪ {(St, At, Xt)}
7: end for
8: θ̂T = V −1

T+1

∑T
t=1 Xtϕ(St, At)

9: Return π̂ : s 7→ argmaxa∈A(s) ϕ(s, a)
⊤θ̂T

Algorithm 2 Max-Uncertainty-Log (MULOG)
Require: λ > 0, S > 0
1: L1 = λI,D = {} // D is a multiset
2: for t : 1 → T do
3: Observe context St ∼ ν
4: Solve for θ̂t and build Wt (Eq. (12))
5: Select (At, θt) by Eq. (10) and receive Xt

6: D = D ∪ {(St, At, Xt)}
7: Solve for θ′t and update Lt+1 as in Eq. (8)
8: end for
9: Solve for θ̂T+1 and build WT+1 (Eq. (12))

10: Pick any θLog
T+1 ∈ WT+1.

11: Return π̂ : s 7→ argmaxa∈A(s) ϕ(s, a)
⊤θLog

T+1

available to the learner, it should be the width of the tightest confidence interval that the learner can
use in predicting the reward associated to the context and the action. By greedily choosing the action
that maximizes uncertainty, the learner aims to shrink the width of the associated confidence intervals
as fast as possible. Thus, for each of the cases, two things remain: (i) constructing the uncertainty
score and (ii) establishing a guarantee that shows the uncertainty will be sufficiently reduced. Note
that the challenge lies in the fact that, with finite data, the learner cannot reduce uncertainty for all
possible future contexts—as some low probability contexts may never be observed. Nevertheless, as
we will show, this simple strategy still ensures uniform progress over time. When the exploration
phase is terminated, the algorithm produces a parameter estimate by minimizing the associated loss
and returns the policy that is optimal under the given parameter estimate.

MULIN: Maximizing Uncertainty in the Linear Case In round t, the uncertainty score of
(St, a) ∈ Z is ∥ϕ(St, a)∥V −1

t
where Vt is the regularized design matrix (see Eq. (4)). The pseudocode

of the full method is given in Algorithm 1. Note that the algorithm does not use the rewards for
action selection. The rewards are nevertheless stored and used at the end in choosing the policy to be
returned.

The key idea of our analysis, borrowed from Zanette et al. (2021), is that the worst-case uncertainty
is guaranteed to decrease during the execution of the algorithm. Indeed, since Vt ⪯ Vt+1 and
V −1
t+1 ⪯ V −1

t , we have for any (s, a) ∈ Z that ∥ϕ(s, a)∥V −1
t+1

≤ ∥ϕ(s, a)∥V −1
t

. Taking the maximum
over the actions and integrating over the context using ν gives the following simple lemma:
Lemma 1. [Decreasing Uncertainty Lemma, Lemma 6 of Zanette et al. (2021)] For every t ≥ 1, it
holds that ∫

max
a∈A(s)

∥ϕ(s, a)∥V −1
t+1

ν(ds) ≤
∫

max
a∈A(s)

∥ϕ(s, a)∥V −1
t

ν(ds) .

Thus, the elliptical potential lemma (Abbasi-Yadkori et al., 2011), a standard tool in linear sequential
analysis, can be used to upper bound the expected predictive uncertainty. Altogether, this leads to the
following result:
Theorem 1 (MULIN Simple Regret Bound). Under Assumptions 1 and 2, there exists some universal
constant c > 0 such that the following holds: Let δ ∈ [0, 1), T ≥ 1 be arbitrary. Then, with
probability at least 1 − δ, it holds that the simple regret of the policy π̂ computed by MULIN
(Algorithm 1) with an appropriate choice of λ, after T rounds is upper bounded by

R(π̂) ≤ c d
√

log(T/δ)/T .

The explicit choice of λ, which only depends on δ, log(T ) and S, is given in Appendix B.3. For this
and all subsequent results, their proofs are given in the appendix.

MULOG: Maximizing Uncertainty in the Logistic Case Let us now turn to the case of logistic
bandits. Define the uncertainty associated with a state-action pair (s, a) ∈ Z , a parameter vector
θ ∈ Rd and a positive definite matrix L using

U(s, a, θ, L) := µ̇(ϕ(s, a)⊤θ)∥ϕ(s, a)∥L−1 .

5
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Here, the term ∥ϕ(s, a)∥L−1 is similar to the one we have seen in the linear case. This term can
be thought of governing the uncertainty of the parameter of the Bernoulli distribution associated
with (s, a) ∈ Z . As opposed to the linear case, to make this work, it is not sufficient to use L = Vt.
Indeed, from Eq. (7), we see that if the loss is approximated using a second-order Taylor expansion at
θ = θ∗, the terms ϕ(Si, Ai)ϕ(Si, Ai)

⊤ need to be multiplied by µ̇(ϕ(Si, Ai)
⊤θ∗) (for any x ∈ R,

the variance of the Bernoulli distribution with mean µ(x) happens to be µ̇(x), hence the origin of µ̇ in
these expressions). Since θ∗ is not available, we need to be conservative in computing the uncertainty.
Therefore our algorithm will use carefully constructed confidence sets to get lower bounds on Ht(θ∗).
In round t, we propose to use the following matrix:

Lt = λI +

t−1∑
i=1

µ̇(ϕ(Si, Ai)
⊤θ′i)ϕ(Si, Ai)ϕ(Si, Ai)

⊤ where θ′i = argmin
θ∈Wi

µ̇(ϕ(Si, Ai)
⊤θ) , (8)

where Wi is a confidence set available at the beginning of round i that will be defined momentarily.
Since decreases as |z| increases, the minimization in Eq. (8) is equivalent to

θ′i = argmax
θ∈Wi

|ϕ(Si, Ai)
⊤θ| (9)

Note that when Wi is convex (which will be our case), this problem can be solved by finding both
the maximizer and the minimizer of ϕ(Si, Ai)

⊤θ over Wi and then choosing the one that gives the
highest absolute value. Since both the objective in these problems is linear, the two subproblems are
convex minimization problems and as such can be efficiently solved.

The other term µ̇(ϕ(s, a)⊤θ) in U comes from the first-order Taylor series expansion of θ 7→
µ(ϕ(s, a)⊤θ). Hence, the value of θ to be used here should be close to the true value. Since, again,
we want a conservative estimate, we use our confidence set Wt to find the value that gives the largest
uncertainty estimate for each action, leading to

(At, θt) = argmax
a∈A(St),θ∈Wt

U(St, a, θ, Lt) . (10)

By the choice of µ, using the same argument as before, for any fixed action a ∈ A(St), the
optimization problem can be replaced by the minimization of the convex function θ 7→ |ϕ(St, a)θ|
over Wt and as such is tractable.

It remains to choose the confidence sets (Wt)t≥1 and the policy returned at the end. For the confidence
set construction, the algorithm first solves for the unconstrained MLE θ̂t. Letting

Ct(δ, θ◦) =
{
θ : Lλ

t (θ)− Lλ
t (θ◦) ≤ βt(δ)

}
, (11)

where for δ ∈ (0, 1], βt(δ) : R+ → R+ is an increasing function in t whose value is introduced in
Appendix D.2 in detail, we choose

Wt = ∩t−1
i=1Ci(δ, θ̂i) ∩ Bd(S) , (12)

so that {Wt}t≥1 decreases, a step necessary to ensure the uncertainty measures decrease – a key
requirement in the analysis. The following result is borrowed from Abeille et al. (2021):
Lemma 2. (Lemma 1 of Abeille et al. (2021)) Let δ ∈ [0, 1). It follows that P

(
∀t ≥ 1, θ∗ ∈

Ct(δ, θ̂t)
)
≥ 1− δ.

Lemma 2 implies that θ∗ lies in Wt for all t ≥ 1 with probability at least 1 − δ. In the evaluation
phase, we repeat the procedure described above to construct the confidence set WT+1 in which we
pick any vector θLogT+1. When implementing our algorithm, one can employ different ways to do
so, e.g., projecting θ̂T+1 to WT+1. The output policy π̂ acts greedily w.r.t. θLogT+1. Algorithm 2
is computationally efficient for finite action sets. Specifically, lines 4,7 are convex optimization
problems. For line 5, one can first iterate over A(St) and the fact that the maximizer of µ̇(ϕ(s, a)⊤θ)
is the minimizer of |ϕ(s, a)⊤θ| makes the problem convex.

The following lemma is written in a slightly more general form for reusing it in analyzing THATS,
the Thompson sampling algorithm in this setting, which will be introduced in Section 3.2. The proof
is deferred to Appendix D.3. When applying it to MULOG, we let K = Lt, K ′ = Lt+1, Y = Wt

and Y ′ = Wt+1. As seen from the proof that Wt is shrinking and Lt is increasing is critical. In fact,
one motivation to use the specific sequence Lt was to ensure this increasing property.
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Algorithm 3 Simple Regret Linear Thompson
Sampling (SIMPLELINTS)
Require: λ > 0
1: V1 = λI , D = {} // D is a multiset
2: for t : 1 → T do
3: Observe context St ∼ ν
4: Sample θ̃t ∼ N (0, V −1

t )
5: Select At by Eq. (13) and receive Xt

6: D = D ∪ {(St, At, Xt)}
7: end for
8: θ̂T+1 = V −1

T+1

∑T
t=1 Xtϕ(St, At)

9: Return π̂ : s 7→ argmaxa∈A(s) ϕ(s, a)
⊤θ̂T+1

Algorithm 4 Try Hard Thompson Sampling
(THATS)
Require: λ > 0
1: L1 = λI , D = {} // D is a multiset
2: for t : 1 → T do
3: Observe context St ∼ ν
4: Sample θ̃t ∼ N (0, L−1

t )
5: Solve θ̄t and construct Vt by Eq. (15)
6: Select At by Eq. (16) and receive Xt

7: D = D ∪ {(St, At, Xt)}
8: Solve θ′t and build Lt+1 as in Eq. (14)
9: end for

10: Solve θ̄T+1 (15) and construct VT+1 by (17)
11: Pick any θLog

T+1 ∈ VT+1

12: Return π̂ : s 7→ argmaxa∈A(s) ϕ(s, a)
⊤θLog

T+1

Lemma 3 (Decreasing Uncertainty Lemma – Logistic Bandits). Let K ′ ⪰ K be d × d positive
definite matrices and Y ′ ⊆ Y ⊆ Rd bounded closed sets. Then,∫

max
a∈A(s), θ∈Y′

U(s, a, θ,K ′)ν(ds) ≤
∫

max
a∈A(s), θ∈Y

U(s, a, θ,K)ν(ds) .

The proof can be finished based on this lemma just like before, though due to the presence of the
nonlinear function µ, the proof becomes significantly more technical.
Theorem 2 (MULOG Simple Regret Bound). Under Assumptions 1 and 2, there exists some
universal constant c > 0 such that the following holds: Let δ ∈ [0, 1), T ≥ 1 be arbitrary. Then,
with probability at least 1− δ, it holds that the simple regret of the policy π̂ computed by MULOG
(Algorithm 2) with an appropriate choice of λ, after T rounds is upper bounded by

R(π̂) ≤ c d
√
log(T/δ)/T + poly

(
d, κ, log(T ), log(1/δ)

)
/T .

The explicit choice of λ, which only depends on δ, T , S, and proof, is given in Appendix D.3.

Connection and difference to Faury et al. (2020) Regarding the use of Lt, naively replacing Vt

with Ht(θ), which seems to be a natural choice inherited from the cumulative regret side, would not
achieve decreasing uncertainty without introducing a factor of

√
κ, no matter what θ is. One way

to deal with this is to employ a matrix quantifying uncertainty that can be built in an online fashion.
Faury et al. (2020) also considers such a matrix on which we built our idea of using Lt to quantify
uncertainty. Nevertheless, our algorithm is completely different from Log-UCB-2 of Faury et al.
(2020) in spirit. We leave detailed comparisons to Appendix D.4.

3.2 RANDOMIZED ALGORITHMS

In this section, we first present a simple regret Thompson Sampling (SIMPLELINTS) algorithm for
linear contextual bandits. Then we extend the idea to the logistic setting, giving a new algorithm
called Try Hard Thompson Sampling (THATS).

SIMPLELINTS: Linear Thompson Sampling The key difference between SIMPLELINTS and
MULIN is that instead of maximizing the uncertainty in each step, we sample a random vector θ̃t
from N (0, V −1

t ) first. The action is then chosen to be the one that, up to a sign flip, aligns with the
direction of θ̃t most:

At = argmax
a∈A(St)

|ϕ(St, a)
⊤θ̃t|. (13)

This choice can be justified as follows: We have seen that a reasonable choice in round t is to
choose the action whose feature vector u ∈ Rd maximizes ||u||V −1

t
. Now, when θ̃ ∼ N (0, V −1) for

7
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some positive definite matrix V , E(u⊤θ̃)2 = ||u||2V −1 . Thus, (u⊤θ̃)2 can be seen as a one-sample
Monte-Carlo approximation to ||u||2V −1 and maximizing this score can be seen as an approximate
approach to maximizing ||u||2V −1 .

Similarly to the cumulative regret setting, the exploration done by SIMPLELINTS is not as effective
as the one done by MULIN because the direction of θ̃t does not necessarily suggest the maximum
uncertainty direction ϕ(St, A

MU
t ). As it turns out, one can lower bound the expected uncertainty

achieved by At relative to the maximum uncertainty by, roughly, the expected normalized correlation
between Mt = V

1/2
t θ̃t and V

−1/2
t ϕ(St, A

MU
t ) given the past. This is the subject of the next lemma

which is the key to our contribution on the new analysis in randomized algorithms for linear (logistic)
contextual bandit promised in Section 1. Since the distribution of Mt, given the past and St, is
standard normal, the distribution of Mt/||Mt|| is uniform on the sphere:
Lemma 4. Fix t ≥ 1. Then, almost surely,

∥ϕ(St, A
MU
t )∥V −1

t
· I(St, A

MU
t , Vt) ≤ E

[
∥ϕ(St, At)∥V −1

t

∣∣∣Ft−1, St

]
,

where for (s, a) ∈ Z and V ⪰ 0, we let I(s, a, V ) =
∫
Sd−1

∣∣∣〈x, V −1/2ϕ(s,a)
∥V −1/2ϕ(s,a)∥

〉∣∣∣ dx.

With standard tools in probability theory, I(s, a, V ) = Ω(1/
√
d) for all (s, a) ∈ Z and V ≻ 0.

Lemma 4 combined with the previous arguments developed for MULIN gives the following result:
Theorem 3. Under Assumptions 1 and 2, there exists some universal constant c > 0 such that the
following holds: Let δ ∈ [0, 1), T ≥ 1 be arbitrary. Then, with probability at least 1 − δ, it holds
that the simple regret of the policy π̂ computed by SIMPLELINTS (Algorithm 3) with an appropriate
choice of λ after T rounds is upper bounded by

R(π̂) ≤ c d3/2
√
log(T/δ)/T .

The simple regret bound of SIMPLELINTS exhibits a dependency on d that matches that of TS in
the cumulative regret setting. Note that unlike the other algorithms, one can also set λ without the
knowledge of S with incurring a minimal extra cost in the simple regret that depends on ∥θ∗∥.

THATS: Try Hard Thompson Sampling – Logistic Case The pseudocode of THATS is shown
in Algorithm 4. Similar to SIMPLELINTS, THATS samples a parameter vector from a Gaussian
centered at zero. However, in this case, motivated by the construction of MULOG, the covariance of
the Gaussian is L−1

t , where Lt is the increasing sequence which is constructed in an analogous way
to what was seen in MULOG:

Lt = λI +

t−1∑
i=1

µ̇(ϕ(Si, Ai)
⊤θ′i)ϕ(Si, Ai)ϕ(Si, Ai)

⊤ where θ′i = argmin
θ∈Ei(δ,θ̄i)

µ̇(ϕ(Si, Ai)
⊤θ). (14)

A slight difference to MULOG is that the confidence sets used here will be centered at θ̄t, the MLE
over the S-ball. As a result, we will slightly increase the radii of the confidence sets:

Et(δ, θ◦) = {θ ∈ Bd(S) : Lλ
t (θ)− Lλ

t (θ◦) ≤ 2βt(δ)
2} and θ̄t = argmin

θ∈Bd(S)

Lλ
t (θ) . (15)

These confidence sets are also convex. The reason for using these confidence sets is so that in the
action selection, we can avoid the step of searching for a parameter vector that is in the intersection
of our confidence set and the S-ball. In particular, for action selection we will simply use

At = argmax
a∈A(St)

µ̇(ϕ(St, a)
⊤θ̄t)

∣∣∣ϕ(St, a)
⊤θ̃t

∣∣∣ , (16)

which combines ideas from SIMPLELINTS and MULOG. Note that this is a step where we save on
computation. We also save on computation in Eq. (14) by doing the optimization constrained on Ei,
instead of using intersections of these sets. When the algorithm returns a policy, we pick any vector
in the intersection of all of the confidence sets,

VT+1 = ∩T
i=1Ei(δ, θ̄i) , (17)

and return a policy that is greedy with respect to the estimated mean rewards. The purpose of
intersecting the confidence sets is to guarantee that the decreasing uncertainty argument goes through.

We will find it useful to relate the new confidence sets with the ones used previously (see Eq. (11)):

8
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Lemma 5. Let δ ∈ [0, 1). With probability at least 1− δ, θ̄t ∈ Ct(δ, θ̂t) ∩ Bd(S). Furthermore, with
probability at least 1− δ, Ct(δ, θ̂t) ∩ Bd(S) ⊆ Et(δ, θ̄t).

We also have a results similar to Lemma 4 in the logistic case to quantify the discrepancy between
the uncertainty of the action selected by THATS and the max-uncertainty action AMU

t :
Lemma 6. Let t ≥ 1, AMU

t = argmaxa∈A(St) maxθ∈Vt
µ̇(ϕ(St, a)

⊤θ)∥ϕ(St, a)∥L−1
t

. Then, it
holds almost surely that for I(·) defined in Lemma 4,

min
θ∈Et

U(St, A
MU
t , θ, Lt) · I(St, A

MU
t , Lt) ≤ E

[
U(St, At, θ̄t, Lt)

∣∣∣Ft−1, St

]
.

Using this in the analysis gives the following result:
Theorem 4. Under Assumptions 1 and 2, there exists some universal constant c > 0 such that the
following holds: Let δ ∈ [0, 1), T ≥ 1 be arbitrary. Then, with probability at least 1 − δ, it holds
that the simple regret of the policy π̂ computed by THATS (Algorithm 4) with an appropriate choice
of λ after T rounds is upper bounded by

R(π̂) ≤ Cd3/2
√
log(T/δ)/T + poly

(
κ, d, log(T ), log(1/δ)

)
/T .

4 NUMERICAL EXPERIMENT

This section presents numerical results for our proposed randomized algorithms, which are computa-
tionally tractable, across both linear and logistic models. We outline the experimental design here;
full setup details and results are available in Appendix G.

Linear Case To demonstrate the benefits of strategic exploration, we use an environment adversarial
to uniform exploration (UE), where all suboptimal arms are orthogonal to the optimal one. In this
setting, UE wastes samples on suboptimal arms, whereas SIMPLELINTS quickly eliminates them.
We include TS for cumulative regret (CumuLinTS) as a baseline to show that its need to balance
exploration and exploitation results in slower convergence than SIMPLELINTS. This comparison
illustrates the importance of tailoring algorithms specifically for the simple regret objective.

Logistic Case This experiment shows that an MLE extension of SIMPLELINTS (replacing least
squares with logistic regression) performs poorly compared to our more sophisticated method,
THATS, in the logistic setting. We designed an environment specifically to highlight this weakness.
The arm set is {−ei}d−1

i=1 ∪ {0.3 · ed,−0.3 · ed} and we set θ∗ = [M,M, . . . , 1]. The optimal
and second optimal arm are ±0.3 · ed respectively. This construction makes the rewards from
±0.3 · ed very noisy (mean reward is close to 0.5), while rewards from the other arms are certain
(and equally bad). A good algorithm should pull the noisy arms more often to get better estimates.
THATS successfully does this while the SIMPLELINTS extension fails because it incentivizes simply
growing the magnitude of its design matrix Vt, causing it to neglect the crucial noisy arms.

5 CONCLUSIONS

In this paper we considered stochastic contextual linear and logistic bandits where the objective is to
keep simple regret small. We proposed and analyzed a deterministic and a randomized algorithm
for both settings. All algorithms are constructing data by choosing actions in each round that give
the largest estimated uncertainty given the past information; an idea that has been explored in some
related setting in previous works. The main novelty of our approach is in the new analysis paradigm
of randomized algorithms and logistic case where uncertainty estimates need to use model parameters
due to the nonlinearity of the reward function model. With our novel constructions, all algorithms are
efficient and the bounds are essentially tight. One interesting question that is left open is whether the
computational cost of our randomized algorithms can be further reduced. In particular, the algorithms
still require the construction of confidence sets and solving a few linear optimization problems over
these sets in each round. This step can still be quite expensive. Another interesting question is to
reduce compute cost for large, but structured action sets.

9
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A MORE RELATED WORK

Linear contextual bandits can be viewed as a special case of linear MDPs (Yang & Wang, 2019;
Jin et al., 2020), linear mixture MDPs (Modi et al., 2020; Ayoub et al., 2020) and linear contextual
MDPs (Deng et al., 2024) with horizon H = 1, and for linear mixture MDPs the number of base
models K = 1. We report their results by converting their sample complexity bounds into simple
regret bounds. Since the hardness in reinforcement learning stems from the unknown transition
kernel, most works assume that the rewards are known and deterministic (Antos et al., 2007; Chen
& Jiang, 2019; Ayoub et al., 2024). However, these results can be extended to the case of unknown
stochastic rewards without changing the their qualitative behavior. In linear MDPs, Jin et al. (2020)
obtained a simple regret of Õ(d3/2H2/

√
T ), while later Wagenmaker & Jamieson (2022) improve

this to Õ(dH3/
√
T ). In linear mixture MDPs, Modi et al. (2020) state a simple regret bound of

Õ(d3/2KH/
√
T ); Chen et al. (2022) obtain an improved simple regret bound of Õ(d/

√
T ) (in their

setting d is the total number of parameters, while in the setting of Modi et al. (2020), dK is the total
number of parameters). In linear contextual MDPs, Deng et al. (2024) report a simple regret bound
of Õ(d3/2H5/2/

√
T ).

B REGRET ANALYSIS OF MULIN (THEOREM 1)

In this section, we will analyze the simple regret of MULIN (Algorithm 1).
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B.1 CONFIDENCE SET

In the analysis, we will use the confidence set from Abbasi-Yadkori et al. (2011)
Lemma 7 (Theorem 2 of Abbasi-Yadkori et al. (2011)). Let δ ∈ (0, 1). Then with probability at
least 1− δ, it holds that for all t ≥ 1,

∥θ̂t − θ∗∥Vt ≤
√
λ∥θ∗∥+

√
2 log(1/δ) + d log

(
1 +

t

dλ

)
:= τt(δ). (18)

B.2 DECREASING UNCERTAINTY

In this section we restate our result on the decreasing uncertainty mentioned in Section 3.1, specifically,
Lemma 1. This lemma allows us to relate the analysis techniques in the cumulative regret setting
Abbasi-Yadkori et al. (2011) to the analysis in the simple regret setting.
Lemma 1. [Decreasing Uncertainty Lemma, Lemma 6 of Zanette et al. (2021)] For every t ≥ 1, it
holds that ∫

max
a∈A(s)

∥ϕ(s, a)∥V −1
t+1

ν(ds) ≤
∫

max
a∈A(s)

∥ϕ(s, a)∥V −1
t

ν(ds) .

B.3 PROOF OF THE REGRET BOUND THEOREM 1

In this section, we first state the formal version of Theorem 1 where all the constants and dependencies
are detailed then proofs are provided.
Theorem 5 (MULIN Simple Regret Bound). Under Assumptions 1 and 2, there exists some universal
constant c > 0 such that the following holds: Let δ ∈ [0, 1), T ≥ 1 be arbitrary. Then, with
probability at least 1 − δ, it holds that the simple regret of the policy π̂ computed by MULIN
(Algorithm 1) with an appropriate choice of λ, after T rounds is upper bounded by

R(π̂) ≤
4τT+1(δ)

√
d log((dλT + T )/(dλT ))√

T
+

4τT+1(δ)16 log(log(2T/δ))

T
,

where τT+1(δ) = Õ(
√
d+ log(1/δ) + ∥θ∗∥) whose full expression can be found in Eq. (18).

A related objective to R, which is explained in the lemma that follows, when θ̂T+1 is used, is the
expected maximum prediction error

DLin(θ̂T+1) =

∫
max

a∈A(s)
|ϕ(s, a)⊤(θ∗ − θ̂T+1)|ν(ds).

Lemma 8. For a vector θ̄ ∈ Rd, let π̄ be greedy w.r.t θ̄, i.e.,

π̄(s) = argmax
a∈A(s)

ϕ(s, a)⊤θ̄,

it then follows that

R(π̄) ≤ 2DLin(θ̄).

Proof. The proof is a simple application of triangle inequality. For s ∈ S, let ∆(s) :=

maxa∈A |ϕ(s, a)⊤(θ∗ − θ̂T )|, we then add and subtract the same term below

ϕ(s, π∗(s))⊤θ∗ − ϕ(s, π̄(s))⊤θ∗

= ϕ(s, π∗(s))⊤θ∗ − ϕ(s, π∗(s))⊤θ̄ + ϕ(s, π∗(s))⊤θ̄ − ϕ(s, π̄(s))⊤θ∗

≤ ϕ(s, π∗(s))⊤θ∗ − ϕ(s, π∗(s))⊤θ̄ + ϕ(s, π̄(s))⊤θ̄ − ϕ(s, π̄(s))⊤θ∗ (Defn. of π̄T )

≤
∣∣ϕ(s, π∗(s))⊤θ∗ − ϕ(s, π∗(s))⊤θ̄

∣∣+ ∣∣ϕ(s, π̄(s))⊤θ̄ − ϕ(s, π̄(s))⊤θ∗
∣∣

≤ 2∆(s).

Finally integrating on both sides on s give the desired result.
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Hence we focus on bounding DLin(θ̂T+1). By Cauchy-Schwarz inequality, we have

DLin(θ̂T+1) =

∫
max

a∈A(s)
|ϕ(s, a)⊤(θ∗ − θ̂T+1)|ν(ds)

≤
∫

max
a∈A(s)

∥ϕ(s, a)∥V −1
T+1

∥θ∗ − θ̂T+1∥VT+1
ν(ds)

≤ τT+1(δ)

∫
max

a∈A(s)
∥ϕ(s, a)∥V −1

T+1
ν(ds),

where in the last line we used Lemma 7. Then by Lemma 1 we have that for all 1 ≤ t ≤ T ,∫
max

a∈A(s)
∥ϕ(s, a)∥V −1

T+1
ν(ds) ≤

∫
max

a∈A(s)
∥ϕ(s, a)∥V −1

t
ν(ds).

Hence, ∫
max

a∈A(s)
∥ϕ(s, a)∥V −1

T+1
ν(ds) ≤ 1

T

T∑
t=1

∫
max

a∈A(s)
∥ϕ(s, a)∥V −1

t
ν(ds).

We can then plug this into the bound for DLin(θ̂T+1) to get

τT+1(δ)

∫
max

a∈A(s)
∥ϕ(s, a)∥V −1

T+1
ν(ds) ≤ τT+1(δ)

1

T

T∑
t=1

∫
max

a∈A(s)
∥ϕ(s, a)∥V −1

t
ν(ds)

= τT+1(δ)
1

T

T∑
t=1

E
[
max

a∈A(s)
∥ϕ(St, a)∥V −1

t

∣∣∣Ft−1

]
. (19)

Now before we can call Elliptical Potential Lemma (Lemma 19), there is still one more step to be
done, that is, bounding conditional expectations with realizations. To be more specific, note that for a
stochastic process {Yt}t≥1 adapted to a filtration {Ft}t≥1, even if

∑T
t=1 Yt ≤ cT for some constants

{ct}t≥1 with probability 1, it does not necessarily follow that E[
∑T

t=1 Yt|Ft] ≤ cT with probability
13 . The good news is similar inequality holds with some blow up of {ct}t≥1, which is shown in
Corollary 4. From Corollary 4,

1

T

T∑
t=1

E
[
max

a∈A(s)
∥ϕ(s, a)∥V −1

t

∣∣∣Ft−1

]
≤ 1

T

4
√
log(log(2T/δ)) +

√√√√ T∑
t=1

∥ϕ(St, At)∥V −1
t

2

≤ 2

T

(
16 log(log(2T/δ)) +

T∑
t=1

∥ϕ(St, At)∥V −1
t

)
,

where the last line uses (a+ b)2 ≤ 2a2 + 2b2. Plug the above result back in Eq. (19),

DLin(θ̂T+1) ≤ τT+1(δ)
1

T

T∑
t=1

E
[

max
a∈A(St)

∥ϕ(St, a)∥V −1
t

∣∣∣Ft−1

]
(20)

≤ 2τT+1(δ)

T

(
16 log(log(2T/δ)) +

T∑
t=1

∥ϕ(St, At)∥V −1
t

)
(21)

≤ 2τT+1(δ)

T

16 log(log(2T/δ)) +
√
T

√√√√ T∑
t=1

∥ϕ(St, At)∥2V −1
t

 (22)

≤ 2τT+1(δ)

T

(
16 log(log(2T/δ)) +

√
T
√
d log((dλT + T )/(dλT ))

)
, (23)

where in the third line we used Cauchy-Schwarz inequality and the last line follows from elliptical
potential lemma (Lemma 19). Finally, chaining the above bound with Lemma 8 gives the desired
result.

3See this nice example.

13

https://math.stackexchange.com/questions/4834315/sum-of-conditional-expectations-of-a-bounded-stochastic-process
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C ANALYSIS OF SIMPLELINTS (ALGORITHM 3)

In this section we will analyze the simple regret of SIMPLELINTS (Algorithm 3).

C.1 ANALYSIS ON THE EXPLORATION DONE BY SIMPLELINTS AND MULIN

The analysis of SIMPLELINTS is highly related to that of MULIN algorithm. Hence in order to
identify the actions that gives the maximum uncertainty, we define it to be

AMU
t = argmax

a∈A(St)

∥ϕ(St, a)∥V −1
t

.

We now present the lemma that allows us to relate the analysis of MULIN to SIMPLELINTS.

Lemma 4. Fix t ≥ 1. Then, almost surely,

∥ϕ(St, A
MU
t )∥V −1

t
· I(St, A

MU
t , Vt) ≤ E

[
∥ϕ(St, At)∥V −1

t

∣∣∣Ft−1, St

]
,

where for (s, a) ∈ Z and V ⪰ 0, we let I(s, a, V ) =
∫
Sd−1

∣∣∣〈x, V −1/2ϕ(s,a)
∥V −1/2ϕ(s,a)∥

〉∣∣∣ dx.

Proof. We start by rewriting the right hand side of the inequality

E
[
∥ϕ(St, At)∥V −1

t

∣∣∣Ft−1, St

]
=E

[
max

x∈Sd−1

〈
V

−1/2
t x, ϕ(St, At)

〉 ∣∣∣Ft−1, St

]
≥ E

[∣∣∣∣∣
〈
V

−1/2
t · V 1/2

t θ̃t

∥V 1/2
t θ̃t∥2

, ϕ(St, At)

〉∣∣∣∣∣ ∣∣∣Ft−1, St

]

≥ E

[∣∣∣∣∣
〈

θ̃t

∥V 1/2
t θ̃t∥2

, ϕ(St, A
MU
t )

〉∣∣∣∣∣ ∣∣∣Ft−1, St

]
,

where in the last line we used the definition of At. Since θ̃t ∼ N (0, V −1
t ), we can rewrite it as

θ̃t = V
−1/2
t Mt for Mt ∼ N (0, I) given the past and the current context. Then plug it back in the

above expression,

E

[∣∣∣∣∣
〈

θ̃t

∥V 1/2
t θ̃t∥2

, ϕ(St, A
MU
t )

〉∣∣∣∣∣ ∣∣∣Ft−1, St

]

= E

[∣∣∣∣∣
〈
V

−1/2
t Mt

∥Mt∥2
, ϕ(St, A

MU
t )

〉∣∣∣∣∣ ∣∣∣Ft−1, St

]

= E
[∣∣∣∣〈 Mt

∥Mt∥2
, V

−1/2
t ϕ(St, A

MU
t )

〉∣∣∣∣ ∣∣∣Ft−1, St

]
= ∥ϕ(St, A

MU
t )∥V −1

t
E

[∣∣∣∣∣
〈

Mt

∥Mt∥2
,
V

−1/2
t ϕ(St, A

MU
t )

∥ϕ(St, AMU
t )∥V −1

t

〉∣∣∣∣∣ ∣∣∣Ft−1, St

]
= ∥ϕ(St, A

MU
t )∥V −1

t
I(St, A

MU
t , Lt),

where the third line used V
−1/2
t is symmetric (as Vt is positive definite); the fourth line fol-

lows by AMU
t is Ft−1-measurable and Proposition 1 and the last line follows by the definition

of I(St, A
MU
t , Lt).

Corollary 1. For all t ≥ 1, it holds almost surely that

E
[
∥ϕ(St, A

MU
t )∥V −1

t

∣∣∣Ft−1

]
≤
√

πd

2
E
[
∥ϕ(St, At)∥V −1

t

∣∣∣Ft−1

]
.
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Proof. The proof follows by dividing both sides of the inequality showed in Lemma 4 by

I(St, A
MU
t , Vt) and then showing that I(St, A

MU
t , Vt) is lower bounded by

√
2
πd . The latter follows

using Proposition 2 and Proposition 3. Together we get,

∥ϕ(St, A
MU
t )∥V −1

t
≤
√

πd

2
E
[
∥ϕ(St, At)∥V −1

t

∣∣∣Ft−1, St

]
,

from which the tower rule gives the desired result.

C.2 ANALYSIS OF SIMPLELINTS

In this section, we first state formally our regret bound on SIMPLELINTS where detailed constant
and polynomial dependency is presented. After that we give proof on it.
Theorem 6 (SIMPLELINTS Simple Regret Bound). Under Assumptions 1 and 2, there exists some
universal constant c > 0 such that the following holds: Let δ ∈ [0, 1), T ≥ 1 be arbitrary. Then, with
probability at least 1− δ, it holds that the simple regret of the policy π̂ computed by SIMPLELINTS
(Algorithm 3) with an appropriate choice of λ, after T rounds is upper bounded by

R(π̂) ≤
4τT+1(δ)d

√
log((dλT + T )/(dλT ))√

T
+

4τT+1(δ)16 log(log(2T/δ))

T
,

where τT+1(δ) = Õ(
√
d+ log(1/δ) + ∥θ∗∥) whose full expression can be found in Eq. (18).

All we need to do is to plug Lemma 4 into the analysis of MULIN. Lemma 8 still holds so we start
by doing the same analysis as in Appendix B.3 and then plug in the results of Lemma 4 to get the
final bound. For clarity we copy the analysis in Appendix B.3; for readers who are familiar with the
analysis of MULIN, they can skip to the end of this section where we highlight the step that is unique
to SIMPLELINTS to be red. By Cauchy-Schwarz inequality, we have

DLin(θ̂T+1) =

∫
max

a∈A(s)
|ϕ(s, a)⊤(θ∗ − θ̂T+1)|ν(ds)

≤
∫

max
a∈A(s)

∥ϕ(s, a)∥V −1
T+1

∥θ∗ − θ̂T+1∥VT+1
ν(ds)

≤ τT+1(δ)

∫
max

a∈A(s)
∥ϕ(s, a)∥V −1

T+1
ν(ds),

where in the last line we used Lemma 7. Then by Lemma 1 we have that for all 1 ≤ t ≤ T ,∫
max

a∈A(s)
∥ϕ(s, a)∥V −1

T+1
ν(ds) ≤

∫
max

a∈A(s)
∥ϕ(s, a)∥V −1

t
ν(ds).

Hence, ∫
max

a∈A(s)
∥ϕ(s, a)∥V −1

T+1
ν(ds) ≤ 1

T

T∑
t=1

∫
max

a∈A(s)
∥ϕ(s, a)∥V −1

t
ν(ds).

We can then plug this into the bound for DLin(θ̂T+1) to get

τT+1(δ)

∫
max

a∈A(s)
∥ϕ(s, a)∥V −1

T+1
ν(ds) ≤ τT+1(δ)

1

T

T∑
t=1

∫
max

a∈A(s)
∥ϕ(s, a)∥V −1

t
ν(ds)

= τT+1(δ)
1

T

T∑
t=1

E
[

max
a∈A(St)

∥ϕ(St, a)∥V −1
t

∣∣∣Ft−1

]
.

From Corollary 4,

1

T

T∑
t=1

E
[
max

a∈A(s)
∥ϕ(s, a)∥V −1

t

∣∣∣Ft−1

]
≤ 1

T

4
√
log(log(2T/δ)) +

√√√√ T∑
t=1

∥ϕ(St, At)∥V −1
t

2

≤ 2

T

(
16 log(log(2T/δ)) +

T∑
t=1

∥ϕ(St, At)∥V −1
t

)
,
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where the last line uses (a+ b)2 ≤ 2a2 + 2b2. Plug the above result back in Eq. (19),

DLin(θ̂T+1) ≤ τT+1(δ)
1

T

T∑
t=1

E
[
max

a∈A(s)
∥ϕ(s, a)∥V −1

t

∣∣∣Ft−1

]

= τT+1(δ)
1

T

T∑
t=1

E
[
∥ϕ(St, A

MU
t )∥V −1

t

∣∣∣Ft−1

]
≤ τT+1(δ)

1

T

√
d

T∑
t=1

E
[
∥ϕ(St, At)∥V −1

t

∣∣∣Ft−1

]
≤ 2τT+1(δ)

√
d

T

(
16 log(log(2T/δ)) +

T∑
t=1

∥ϕ(St, At)∥V −1
t

)

≤ 2τT+1(δ)
√
d

T

16 log(log(2T/δ)) +
√
T

√√√√ T∑
t=1

∥ϕ(St, At)∥2V −1
t


≤ 2τT+1(δ)

√
d

T

(
16 log(log(2T/δ)) +

√
T
√
d log((dλT + T )/(dλT ))

)
.

Finally, chaining the above bound with Lemma 8 gives the desired result.

D REGRET ANALYSIS OF MULOG (THEOREM 2)

The sigmoid function is known to be (generalized) self-concordant (Bach, 2010; Faury et al., 2020;
Liu et al., 2024), to be more specific,

|µ̈(z)| ≤ µ̇(z) for all z ∈ R. (24)

The logistic function is also 1/4-Lipschitz, i.e.,

µ̇ ≤ 1/4 (25)

which can be seen from the decomposiion of µ̇ = µ(1− µ) and µ ∈ [0, 1]R.

We also consider the Hessian of the loss, which takes the form of

∇2Lλ
t (θ) =: Ht(θ) =

t−1∑
s=1

µ̇(ϕ(Ss, As)
⊤θ)ϕ(Ss, As)ϕ(Ss, As)

⊤ + λI

In the analysis, we also consider the follwing matrices that are closely related to Ht(θ; {As}t−1
s=1).

Gt(θ1, θ2) = λI +
t−1∑
s=1

α(ϕ(Ss, As), θ1, θ2)ϕ(Ss, As)ϕ(Ss, As)
⊤

G̃t(θ1, θ2) = λI +

t−1∑
s=1

α̃(ϕ(Ss, As), θ1, θ2)ϕ(Ss, As)ϕ(Ss, as)
⊤,

where for x, θ1, θ2 ∈ Rd,

α(x, θ1, θ2) =

∫ 1

v=0

µ̇(x⊤θ1 + vx⊤(θ2 − θ1))dv

α̃(x, θ1, θ2) =

∫ 1

v=0

(1− v)µ̇(x⊤θ1 + vx⊤(θ2 − θ1))dv.

D.1 SELF-CONCORDANCE CONTROL

Self-concordance is a property of the logistic function µ(·) that allows us to utilize the curvature
information. Here are the lemmas borrowed from Abeille et al. (2021); Faury et al. (2020) that we
will use in the analysis.
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Lemma 9 (Lemma 9 of Abeille et al. (2021)). For all z1, z2 ∈ R, it follows that

µ̇(z2) exp(−|z2 − z1|) ≤ µ̇(z1) ≤ µ̇(z2) exp(|z2 − z1|).

Lemma 10 (First order self-concordance control, Lemma 9 of Faury et al. (2020)). For all z1, z2 ∈ R,
it follows that

µ̇(z1)
1

1 + |z1 − z2|
≤
∫ 1

v=0

µ̇(z1 + v(z2 − z1))dv ≤ µ̇(z1)
exp(|z1 − z2| − 1)

|z1 − z2|
.

Lemma 11 (Second order self-concordance control, Lemma 8 of Abeille et al. (2021)). For all
z1, z2 ∈ R, ∫ 1

v=0

(1− v)µ̇(z1 + v(z2 − z1))dv ≥ µ̇(z1)

2 + |z1 − z2|
.

Lemma 12 (Eqs.(7,8) of Abeille et al. (2021)). Let θ1, θ2 ∈ Rd. For t ≥ 1

ut =

{
0, if t = 1

maxx∈{ϕ(Ss,As)}t−1
s=1

|x⊤(θ1 − θ2)|, if t ≥ 2

Then it follows that

Gt(θ1, θ2) ⪰ (1 + 2u)−1Ht(θ) for θ ∈ {θ1, θ2}
G̃t(θ1, θ2) ⪰ (2 + 2u)−1Ht(θ1)

D.2 RESULTS ON CONFIDENCE SET

In this section, we state the lemmas on the confidence set that we will use in the analysis.

The following confidence set from Faury et al. (2020) is also used in our analysis:
Lemma 13 (Lemma 1 of Faury et al. (2020)). Let δ ∈ (0, 1]. Under assumptions 1, 2, with probability
at least 1− δ,

∀t ≥ 1, ∥gt(θ̂t)− gt(θ∗)∥H−1
t (θ∗)

≤ ρt(δ),

where

λT = 1 ∨ 2d

S
log

(
e

√
1 +

T

4d
∨ 1/δ

)
, (26)

ρt(δ) =

(
1

2
+ S

)√
λT +

4d√
λT

log

(
e

√
1 +

t

4d
∨ 1/δ

)
. (27)

Lemma 2. (Lemma 1 of Abeille et al. (2021)) Let δ ∈ [0, 1). It follows that P
(
∀t ≥ 1, θ∗ ∈

Ct(δ, θ̂t)
)
≥ 1− δ.

Recall that

Ct(δ, θ◦) =
{
θ : Lλ

t (θ)− Lλ
t (θ◦) ≤ βt(δ)

}
,

where according to Abeille et al. (2021), βt(δ) is set to be

βt(δ) = ρt(δ) +
ρt(δ)

2

√
λT

. (28)

Combining the above two lemmas (Lemmas 2 and 13) together, we have the following lemma.
Lemma 14. Under Assumption 1,2, for all δ ∈ [0, 1), with probability at least 1− 2δ, for all t ≥ 1

and θ ∈ Ct(θ̂t, δ) ∩ Bd(S), we have that

∥θ − θ∗∥Ht(θ∗) ≤ (4 + 4S)ρt(δ) +
√

(8S + 8)βt(δ) =: γt(δ),

where βt(δ) is defined in Eq. (28).
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Proof. We start from Taylor expansion. For all θ′ ∈ Rd, we have that

Lλ
t (θ

′) = Lλ
t (θ∗) +∇Lλ

t (θ∗)
⊤(θ′ − θ∗) +

1

2
∥θ′ − θ∗∥2G̃t(θ∗,θ′)

.

Let θ ∈ Ct(θ̂t, δ)(δ) ∩ Bd(S). Rearrange the terms, apply absolute value and plug in θ,

|Lλ
t (θ)− Lλ

t (θ∗)−∇Lλ
t (θ∗)(θ − θ∗)| =

1

2
∥θ − θ∗∥2G̃t(θ∗,θ)

≥ 1

2(2 + 2S)
∥θ − θ∗∥2Ht(θ∗)

,

where the last inequality follows from Lemma 12 and θ, θ∗ ∈ Bd(S). It remains to upper bound the
left most side of the above equation. By triangle inequality we can split it into two terms and we
bound them separately.

|Lλ
t (θ)− Lλ

t (θ∗)−∇Lλ
t (θ∗)(θ − θ∗)| ≤ |Lλ

t (θ)− Lλ
t (θ∗)|︸ ︷︷ ︸

(a)

+ |∇Lλ
t (θ∗)(θ − θ∗)|︸ ︷︷ ︸

(b)

.

For (a), with probability at least 1− δ we have that θ∗ ∈ Ct(δ) ∩ Bd(S), then

(a) = |Lλ
t (θ)− Lλ

t (θ̂t) + Lλ
t (θ̂t)− Lλ

t (θ∗)|
≤ |Lλ

t (θ)− Lλ
t (θ̂t)|+ |Lλ

t (θ̂t)− Lλ
t (θ∗)|

= Lλ
t (θ)− Lλ

t (θ̂t) + Lλ
t (θ∗)− Lλ

t (θ̂t)

≤ 2βt(δ)
2,

where in the third line we used the fact that Lλ
t (θ) ≥ Lλ

t (θ̂t) for all θ ∈ Rd; in the last line we used
?? and that θ ∈ Ct(δ). For (b), note that by definition of θ̂t, ∇Lλ

t (θ∗) = gt(θ∗)− gt(θ̂t). To be more
specific, for all θ ∈ Rd,

∇θL(θ) = gt(θ)−
t−1∑
i=1

ϕ(Si, Ai)Xi︸ ︷︷ ︸
=gt(θ̂t) by Eq. (6)

. (29)

Then by Cauchy-Schwarz, by Lemma 13, with probability 1 − δ, we have that ∥gt(θ̂t) −
gt(θ̂∗)∥H−1

t (θ∗)
≤ ρt(δ), then

(b) ≤ ∥gt(θ̂t)− gt(θ∗)∥H−1
t (θ∗)

∥θ − θ∗∥Ht(θ∗)

≤ ρt(δ)∥θ − θ∗∥Ht(θ∗),

where in the last inequality we used Lemma 13. Chaining all the inequality together and use the fact
that P(A ∩B) ≥ 1− P(Ac)− P(Bc), we have that with probability at least 1− 2δ, we have that

1

2(2 + 2S)
∥θ − θ∗∥2Ht(θ∗)

≤ ρt(δ)∥θ − θ∗∥Ht(θ∗) + 2βt(δ)
2.

Solving the above inequality gives us

∥θ − θ∗∥Ht(θ∗) ≤ (4 + 4S)ρt(δ) +
√

(8S + 8)βt(δ).

D.3 PROOF OF THE REGRET BOUND OF MULOG (THEOREM 2)

In this section, we first state the formal version of Theorem 2 where all the constants and dependencies
are detailed then proofs are provided.
Theorem 7 (Formal statement of Theorem 2). Let δ ∈ [0, 1). Under Assumptions 1 and 2, there
exists some universal constant c > 0 such that the following holds: Let δ ∈ [0, 1), T ≥ 1 be arbitrary.
Then, with probability at least 1 − δ, it holds that the simple regret of the policy π̂ computed by
MULOG (Algorithm 2) with λ chosen to be λT in Eq. (26), after T rounds is upper bounded by

RLog(π̂) ≤
γT+1(δ/2)

√
d log((dλT + T )/(dλT ))√

T

+
κγT+1(δ/2)

2d log((dλT + T )/(dλT ))

T
+

16 log(log(4T/δ))

T

+
1

16T
κ3γT+1(δ/2)

2 (16 log(log(4T/δ)) + d log((dλT + T )/(dλT )))
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A related objective to R, which is explained in the lemma that follows, when θLogT+1 is used, is the
expected maximum prediction error

DLog(θ
Log
T+1) :=

∫
max
a∈A

∣∣∣µ (ϕ(s, a)⊤θ∗)− µ
(
ϕ(s, a)⊤θLogT+1

)∣∣∣ ν(ds) (30)

Lemma 15. For a vector θ̂ ∈ Rd, let π̂ be greedy w.r.t θ̂, it then follows that

RLog(π̂) ≤ 2DLog(θ̂).

Proof. The proof is a simple application of triangle inequality. We add and subtract the same term
below. For all s ∈ S,

µ
(
ϕ(s, π∗(s))⊤θ∗

)
− µ

(
ϕ(s, π̂(s))⊤θ∗

)
= µ

(
ϕ(s, π∗(s))⊤θ∗

)
− µ

(
ϕ(s, π∗(s))⊤θ̂

)
+ µ

(
ϕ(s, π∗(s))⊤θ̂

)
− µ

(
ϕ(s, π̂(s))⊤θ∗

)
≤ µ

(
ϕ(s, π∗(s))⊤θ∗

)
− µ

(
ϕ(s, π∗(s))⊤θ̂

)
+ µ

(
ϕ(s, π̂(s))⊤θ̂

)
− µ

(
ϕ(s, π̂(s))⊤θ∗

)
≤
∣∣∣µ (ϕ(s, π∗(s))⊤θ∗

)
− µ

(
ϕ(s, π∗(s))⊤θ̂

)∣∣∣+ ∣∣∣µ(ϕ(s, π̂(s))⊤θ̂)− µ
(
ϕ(s, π̂(s))⊤θ∗

)∣∣∣
≤ 2max

a∈A

∣∣∣µ (ϕ(s, a)⊤θ∗)− µ
(
ϕ(s, a)⊤θ̂

)∣∣∣ ,
where in the third line we used the fact that µ is an increasing function and the definition of π̂(s).
Finally taking integral on both sides finishes the proof.

The expected simple regret is upper bounded by 2DLog(θ
Log
T+1) hence we focus on bounding

DLog(θ
Log
T+1).

We are going to use the following lemma to establish decreasing uncertainty. It is written in a compact
form that is reusable in other contexts. When applying it to our setting, we set Y = Wt, Y ′ = WT+1

and K ′ = LT+1, K = Lt for t ≤ T . The bounded closed set is for the purpose of ensuring the
maximum is attained.
Lemma 3 (Decreasing Uncertainty Lemma – Logistic Bandits). Let K ′ ⪰ K be d × d positive
definite matrices and Y ′ ⊆ Y ⊆ Rd bounded closed sets. Then,∫

max
a∈A(s), θ∈Y′

U(s, a, θ,K ′)ν(ds) ≤
∫

max
a∈A(s), θ∈Y

U(s, a, θ,K)ν(ds) .

Proof. Fix (s, a) ∈ Z , θ ∈ Rd. Since K ′ ⪰ K and µ̇ is positive valued,

U(s, a, θ,K ′) = µ̇(ϕ(s, a)⊤θ)∥ϕ(s, a)∥(K′)−1 ≤ µ̇(ϕ(s, a)⊤θ)∥ϕ(s, a)∥K−1 = U(s, a, θ,K ′) .

Since Y ′ ⊆ Y , by the definition of U(s, a, θ,K), we have
max

a∈A(s),θ∈Y′
U(s, a, θ,K ′) ≤ max

a∈A(s),θ∈Y
U(s, a, θ,K) .

Integrate over s on both sides using ν gives the result.

DLog(θ
Log
T+1) =

∫
max

a
|µ(ϕ(s, a)⊤θLogT+1)− µ(ϕ(s, a)⊤θLogT+1)|ν(ds)

≤
∫

max
a

µ̇(ϕ(s, a)⊤θLogT+1)|ϕ(s, a)
⊤(θ∗ − θLogT+1)|+ µ̈(ξ)|ϕ(s, a)⊤(θ∗ − θLogT+1)|

2ν(ds)

≤
∫

max
a

µ̇(ϕ(s, a)⊤θLogT+1)|ϕ(S1, a)
⊤(θ∗ − θLogT+1)|ν(ds) +

∫
s

max
a

µ̈(ξa)|ϕ(S1, a)
⊤(θ∗ − θLogT+1)|

2ν(ds),

= E
[
max

a
µ̇(ϕ(ST+1, a)

⊤θLogT+1)|ϕ(ST+1, a)
⊤(θ∗ − θLogT+1)|

∣∣∣FT

]
︸ ︷︷ ︸

R1

+ E
[
max

a
µ̈(ξa)|ϕ(ST+1, a)

⊤(θ∗ − θLogT+1)|
2
∣∣∣FT

]
︸ ︷︷ ︸

R2

, (31)
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where ξa in the last line is some point in between ϕ(S, a)⊤θ∗ and ϕ(S, a)⊤θLogT+1 for all a; in the third
line we upper bound µ̈ by 1 (Eqs. (24) and (25)). We start by bounding R1; the last line follows by
definition of the conditional expectation. By Cauchy-Schwarz, using Lemma 14 to obtain a bound on
∥θ∗ − θLogT+1∥HT+1(θ∗), with probability at least 1− 2δ,

R1 ≤ E
[
max

a
µ̇
(
ϕ(ST+1, a)

⊤θLogT+1

)
∥ϕ(ST+1, a)∥H−1

T+1(θ∗)
∥θ∗ − θLogT+1∥HT+1(θ∗)

∣∣∣FT

]
≤ γT+1(δ)E

[
max

a
µ̇
(
ϕ(ST+1, a)

⊤θLogT+1

)
∥ϕ(ST+1, a)∥H−1

T+1(θ∗)

∣∣∣FT

]
≤ γT+1(δ)E

[
max

a
µ̇
(
ϕ(ST+1, a)

⊤θLogT+1

)
∥ϕ(ST+1, a)∥L−1

T+1

∣∣∣FT

]
≤ γT+1(δ)E

[
max

a,θ∈WT+1

µ̇
(
ϕ(ST+1, a)

⊤θ
)
∥ϕ(ST+1, a)∥L−1

T+1

∣∣∣FT

]
, (32)

where in the third line we use the fact that HT+1(θ∗) ⪰ LT+1 and the last line follows from the
definition of WT+1. We have that Wt+1 ⊆ Wt by definition, and Lt+1 ⊆ Lt by definition. By
letting Y = Wt and Y ′ = Wt+1; K = Lt and K ′ = Lt+1 in Lemma 3, it then follows that for all
1 ≤ t ≤ T ,

E
[

max
a,θ∈WT+1

U(ST+1, a, θ, LT+1)
∣∣∣FT

]
≤ E

[
max

a,θ∈Wt

U(St, a, θ, Lt)
∣∣∣Ft−1

]
.

Hence,

E
[

max
a,θ∈WT+1

U(ST+1, a, θ, LT+1)
∣∣∣FT

]
≤ 1

T

T∑
t=1

E
[
max

a,θ∈Wt

U(St, a, θ, Lt)
∣∣∣Ft−1

]
(33)

=
1

T

T∑
t=1

E
[
U(St, At, θt, Lt)

∣∣∣Ft−1

]
. (34)

Plug the above result back in R1, and use Corollary 4,

R1 ≤ γT+1(δ)
1

T

4
√
log(log(2T/δ)) +

√√√√ T∑
t=1

µ̇ (ϕ(St, At)⊤θt)∥ϕ(St, At)∥L−1
t

2

≤ 2γT+1(δ)
1

T

(
16log(log(2T/δ)) +

T∑
t=1

µ̇
(
ϕ(St, At)

⊤θt
)
∥ϕ(St, At)∥L−1

t

)
.

For reasons why we need Corollary 4 instead of directly using elliptical potential lemma (Lemma 19),
we refer the reader to the argument following Eq. (19). In order to reduce clutter, we let ϕt :=

ϕ(St, At). It remains to bound
∑T

t=1 µ̇(ϕ
⊤
t θt)∥ϕt∥L−1

t
. Applying Taylor expansion at θ′t, for t ≥ 1

and ζt between θt and θ∗, we have that
T∑

t=1

µ̇(ϕ⊤
t θt)∥ϕt∥L−1

t
=

T∑
t=1

µ̇(ϕ⊤
t θ

′
t)∥ϕt∥L−1

t
+

T∑
t=1

µ̈(ζt)∥ϕt∥L−1
t
|ϕ⊤

t (θt − θ′t)|

≤ 1

2

T∑
t=1

√
µ̇(ϕ⊤

t θ
′
t)∥ϕt∥L−1

t
+

T∑
t=1

µ̈(ζt)∥ϕt∥L−1
t
∥ϕt∥H−1

t (θ∗)
· ∥θ′t − θt∥Ht(θ∗)︸ ︷︷ ︸
≤∥θ∗−θt∥Ht(θ∗)+∥θ∗−θ′

t∥Ht(θ∗)

≤ 1

2

T∑
t=1

∥ϕ̃t∥Ṽ −1
t

+
1

2
γT+1(δ)κ

T∑
t=1

∥ϕt∥2V −1
t

≤ 1

2

√
T

√√√√ T∑
t=1

∥ϕ̃t∥2Ṽ −1
t

+
1

2
γT+1(δ)κ

T∑
t=1

∥ϕt∥2V −1
t

≤ 1

2

√
T
√
d log((dλT + T )/(dλT )) +

1

2
γT+1(δ)κ (d log((dλT + T )/(dλT ))) ,

(35)
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where in the second line we bounded µ̇(·) by 1/4 (Eq. (25)); in the third line we

1. used self-concordance |µ̈(·)| ≤ µ̇(·) Eq. (24) and upper bounded µ̇(·) by 1/4 (Eq. (25));

2. we applied Lemma 14 twice to bound ∥θ′t − θt∥Ht(θ∗) as demonstrated in the inline expla-
nation;

3. we defined ϕ̃t :=
√
µ̇(ϕ⊤

t θt)ϕt and Ṽt :=
∑t−1

s=1 ϕ̃sϕ̃
⊤
s = Lt;

in the last line we applied elliptical potential lemma (Lemma 19) twice. Putting everything together,
we have that

R1 ≤
γT+1(δ)

√
d log((dλT + T )/(dλT ))√

T
+

κγT+1(δ)
2d log((dλT + T )/(dλT ))

T
+

16 log(log(2T/δ))

T

Now we move to R2. We need a lemma that’s similar to Lemma 3 that we will use to bound R2.

Lemma 16 (Second order decreasing uncertainty – Logistic Bandits). Let K ′ ⪰ K be d× d positive
definite matrices and Y ′ ⊆ Y ⊆ Rd be bounded closed sets. Then,∫

max
a∈A(s),θ∈Y′

U(s, a, θ,K ′)2ν(ds) ≤
∫

max
a∈A(s),θ∈Y

U(s, a, θ,K)2ν(ds).

Proof. Note that for all s ∈ S,Y ⊆ Rd and positive definite K ∈ Rd×d, we have that

argmax
a∈A(s),θ∈Y

U(s, a, θ,K)2 = argmax
a∈A(s),θ∈Y

U(s, a, θ,K).

Everything then follows from the proof of Lemma 3.

We can now bound R2. By Cauchy-Schwarz, we have that

R2 ≤ 1

4
E
[
max

a

∣∣∣ϕ(ST+1, a)
⊤(θ∗ − θLogT+1)

∣∣∣2 ∣∣∣FT

]
≤ 1

4
E
[
max

a
∥ϕ(ST+1, a)∥2H−1

T+1(θ∗)
∥θ∗ − θLogT+1∥

2
HT+1(θ∗)

∣∣∣FT

]
≤ 1

4
κ2γT+1(δ)

2E
[

max
a,θ∈WT+1

µ̇(ϕ(ST+1, a)
⊤θ)2∥ϕ(ST+1, a)∥2H−1

T+1(θ∗)

∣∣∣FT

]
≤ 1

4
κ2γT+1(δ)

2E
[

max
a,θ∈WT+1

µ̇(ϕ(ST+1, a)
⊤θ)2∥ϕ(ST+1, a)∥2L−1

T+1

∣∣∣FT

]
≤ 1

4T
κ2γT+1(δ)

2
T∑

t=1

E
[
µ̇(ϕ(St, At)

⊤θt)
2∥ϕ(St, At)∥2L−1

t
|Ft−1

]
≤ 1

64T
κ3γT+1(δ)

2
T∑

t=1

E
[
∥ϕ(St, At)∥2V −1

t
|Ft−1

]

≤ 1

64T
κ3γT+1(δ)

2

4
√

log(log(2T/δ)) +

√√√√ T∑
t=1

∥ϕt∥2V −1
t

2

≤ 1

32T
κ3γT+1(δ)

2

(
16 log(log(2T/δ)) +

T∑
t=1

∥ϕt∥2V −1
t

)

≤ 1

32T
κ3γT+1(δ)

2 (16 log(log(2T/δ)) + d log((dλT + T )/(dλT ))) ,

where in the second line we used Cauchy-Schwarz; in the third line we applied definition of WT+1

and the fact that θT+1 ∈ WT+1 by construction; in the fourth line HT+1(θ∗) ⪰ LT+1; in the fifth
line we used Lemma 16; in the sixth line we used Lt ⪰ 1

κVt; in the seventh line we used Corollary 4;
in the eighth line we used (a+ b)2 ≤ 2(a2 + b2); in the ninth line we used Lemma 19.
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Chaining the result for R1 and R2 together, the regret can be upper bounded by

R(π̂) ≤ 2D(θLogT+1)

≤ 2(R1 +R2)

≤
2γT+1(δ)

√
d log((dλT + T )/(dλT ))√

T
+

2κγT+1(δ)
2d log((dλT + T )/(dλT ))

T

+
32 log(log(2T/δ))

T

+
1

16T
κ3γT+1(δ)

2 (16 log(log(2T/δ)) + d log((dλT + T )/(dλT ))) .

Finally replace δ with δ/2 finishes the proof.

D.4 DETAILED EXPLANATION ON OUR DIFFERENCE WITH FAURY ET AL. (2020)

As is mentioned before, our algorithm is different from Faury et al. (2020) in several aspects where
we did novel algorithmic enhancements explained in the following to make the algorithm provably
κ-free:

1. We avoid their non-convex optimization problem by adopting tools introduced in Abeille
et al. (2021), making our algorithm computationally tractable. Note that naively replacing
the admissible parameter set in Faury et al. (2020) with the one from Abeille et al. (2021)
would not work. The reason is that the objective in Faury et al. (2020) (Eq. 9) is a non-convex
function of θ.

2. We completely changed the purpose of θt. In Faury et al. (2020), it was used to shape an
admissible parameter set. In our case, not only did we drop the admissible set shaped by θt
to avoid intractability as mentioned before, but we also incorporated it into the quantification
of uncertainty, the key to max-uncertainty type algorithm, serving as a non-trivial extension
from the linear case to the logistic case. As a result, Lemmas 3 and 16 are novel.

3. The matrix is directly used in the algorithm, allowing us to construct an estimation of
Hessian in an online-fashion. Sherman-Morrison can then be used to avoid matrix inversion
in each step. We also directly use as the uncertainty quantification (exploration bonus in
cumulative regret setting) while Faury et al. (2020) still uses Ht and Vt as the uncertainty
quantification.

E REGRET ANALYSIS OF THATS (THEOREM 4)

In this section, we first state formally our regret bound on THATS where detailed constant and
polynomial dependency is presented. After that we give proof on it.
Theorem 8 (Formal statement of Theorem 4). Under Assumptions 1 and 2, there exists some
universal constant c > 0 such that the following holds: Let δ ∈ [0, 1), T ≥ 1 be arbitrary. Then,
with probability at least 1− δ, it holds that the simple regret of the policy π̂ computed by THATS
(Algorithm 4) with an appropriate choice of λ after T rounds is upper bounded by

R(π̂) ≤
dγT+1(δ)

√
log((dλT + T )/(dλT ))√

T
+

κγT+1(δ)
2d3/2λT log((dλT + T )/(dλT ))

T

+
16
√
d log(log(2T/δ))

T

+
2
(
dκ3γT+1(δ) + dκ3γ2

T+1(δ) +
dκ5

λ2
1
γ4
T+1(δ)

)
·
(
16 log(log(2T/δ)) + d log

(
dλT+T
dλT

))
T

E.1 NEW CONFIDENCE SET

Recall the definition of Et(δ, θ̄t):
Et(δ, θ̄t) = {θ ∈ Bd(S) : Lλ

t (θ)− Lλ
t (θ̄t) ≤ 2β2

t (δ)}
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As is promised in Section 3.2, we relate Et(δ) to the confidence set Ct(δ).

Lemma 5. Let δ ∈ [0, 1). With probability at least 1− δ, θ̄t ∈ Ct(δ, θ̂t) ∩ Bd(S). Furthermore, with
probability at least 1− δ, Ct(δ, θ̂t) ∩ Bd(S) ⊆ Et(δ, θ̄t).

Proof. By definition of θ̄t, we have θ̄t ∈ Bd(S). Since θ∗ ∈ Bd(S), it then follows that with
probability at least 1− δ,

Lλ
t (θ̄t)− Lλ

t (θ̂t) ≤ Lλ
t (θ∗)− Lλ

t (θ̂t) ≤ βt(δ)
2,

where in the first inequality we used the fact that θ̂t is the global minimizer of Lλ
t , with probability at

least 1− δ, θ∗ ∈ Ct(δ, θ̂t)∩Bd(S) and Lλ
t (θ̄t) ≤ Lλ

t (θ∗) by definition of θ̄t; in the second inequality
we used ??. For the “furthermore” part, let θ ∈ Ct(δ, θ̂t) ∩ Bd(S), by construction Lλ

t (θ̄t) ≤ Lλ
t (θ)

hence Lλ
t (θ)− Lλ

t (θ̄t) = |Lλ
t (θ)− Lλ

t (θ̄t)| and by triangle inequality,

Lλ
t (θ)− Lλ

t (θ̄t) ≤ |Lλ
t (θ)− Lλ

t (θ̂t)|+ |Lλ
t (θ̄t)− Lλ

t (θ̂t)|
= Lλ

t (θ)− Lλ
t (θ̂t) + Lλ

t (θ̄t)− Lλ
t (θ̂t)

≤ 2βt(δ)
2.

Given the new confidence set, we can show a similar lemma to Lemma 14.

Lemma 17. Let δ ∈ [0, 1). With probability at least 1− 2δ, for all t ≥ 1 and θ ∈ Et(δ, θ̄t),

∥θ − θ∗∥Ht(θ∗) ≤ 2γt(δ).

Proof. The proof is almost exactly the same as that of Lemma 14. To be more specific, θ̂t is replaced
by θ̄t a few times when needed. We start from Taylor expansion. For all θ′ ∈ Rd, we have that

Lλ
t (θ

′) = Lλ
t (θ∗) +∇Lλ

t (θ∗)
⊤(θ′ − θ∗) +

1

2
∥θ′ − θ∗∥2G̃t(θ∗,θ′)

.

Let θ ∈ Et(δ, θ̄t). Rearrange the terms, apply absolute value and plug in θ,

|Lλ
t (θ)− Lλ

t (θ∗)−∇Lλ
t (θ∗)(θ − θ∗)| =

1

2
∥θ − θ∗∥2G̃t(θ∗,θ)

≥ 1

2(2 + 2S)
∥θ − θ∗∥2Ht(θ∗)

,

where the last inequality follows from Lemma 12 and θ, θ∗ ∈ Bd(S). It remains to upper bound the
left most side of the above equation. By triangle inequality we can split it into two terms and we
bound them separately.

|Lλ
t (θ)− Lλ

t (θ∗)−∇Lλ
t (θ∗)(θ − θ∗)| ≤ |Lλ

t (θ)− Lλ
t (θ∗)|︸ ︷︷ ︸

(a)

+ |∇Lλ
t (θ∗)(θ − θ∗)|︸ ︷︷ ︸

(b)

.

For (a), with probability at least 1− δ we have that θ∗ ∈ Ct(δ) ∩ Bd(S), then

(a) = |Lλ
t (θ)− Lλ

t (θ̄t) + Lλ
t (θ̄t)− Lλ

t (θ∗)|
≤ |Lλ

t (θ)− Lλ
t (θ̄t)|+ |Lλ

t (θ̄t)− Lλ
t (θ∗)|

= Lλ
t (θ)− Lλ

t (θ̄t) + Lλ
t (θ̄t)− Lλ

t (θ∗)

≤ 4βt(δ)
2,

where in the last line we used Lemma 5 and that θ∗ ∈ Ct(δ) ∩ Bd(S). For (b), note that by definition
of θ̂t, ∇Lλ

t (θ∗) = gt(θ∗)− gt(θ̂t). To be more specific, for all θ ∈ Rd,

∇θL(θ) = gt(θ)−
t−1∑
i=1

ϕ(Si, Ai)Xi︸ ︷︷ ︸
=gt(θ̂t) by Eq. (6)

. (36)
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Then by Cauchy-Schwarz, by Lemma 13, with probability 1 − δ, we have that ∥gt(θ̂t) −
gt(θ̂∗)∥H−1

t (θ∗)
≤ ρt(δ), then

(b) ≤ ∥gt(θ̂t)− gt(θ∗)∥H−1
t (θ∗)

∥θ − θ∗∥Ht(θ∗)

≤ ρt(δ)∥θ − θ∗∥Ht(θ∗),

where in the last inequality we used Lemma 13. Chaining all the inequality and use the fact that
P(A ∩B) ≥ 1− P(Ac)− P(Bc), we have that with probability at least 1− 2δ,

1

2(2 + 2S)
∥θ − θ∗∥2Ht(θ∗)

≤ ρt(δ)∥θ − θ∗∥Ht(θ∗) + 4βt(δ)
2.

Solving the above inequality gives us

∥θ − θ∗∥Ht(θ∗) ≤ (4 + 4S)ρt(δ) +
√

(16S + 16)βt(δ) ≤ 2γt(δ).

E.2 ANALYSIS ON THE EXPLORATION DONE BY THATS COMPARED TO MULOG

The analysis of THATS is highly related to that of MULOG. Hence in order to identify the actions
and parameter that gives the maximum uncertainty, we define them to be

θMU
t , AMU

t = argmax
a∈A(St),θ∈Vt

U(St, a, θ, Lt) (37)

ωMU
t = argmin

θ∈Et(δ,θ̄t)

µ̇(ϕ(St, A
MU
t )⊤θ). (38)

We would like to emphasize that θMU
t , AMU

t are not actions and parameters pulled by the max-
uncertainty algorithm. They are simply the ones that give the maximum uncertainty at time t. The
actions At are pulled by THATS instead of max uncertainty in this section.

Lemma 6. Let t ≥ 1, AMU
t = argmaxa∈A(St) maxθ∈Vt µ̇(ϕ(St, a)

⊤θ)∥ϕ(St, a)∥L−1
t

. Then, it
holds almost surely that for I(·) defined in Lemma 4,

min
θ∈Et

U(St, A
MU
t , θ, Lt) · I(St, A

MU
t , Lt) ≤ E

[
U(St, At, θ̄t, Lt)

∣∣∣Ft−1, St

]
.

Proof. We start by rewriting the right hand side of the inequality

E
[
µ̇(ϕ(St, At)

⊤θ̄t)∥ϕ(St, At)∥L−1
t

∣∣∣Ft−1, St

]
=E

[
max

x∈Sd−1

〈
L
−1/2
t x, µ̇(ϕ(St, At)

⊤θ̄t)ϕ(St, At)
〉 ∣∣∣Ft−1, St

]
≥ E

[∣∣∣∣∣
〈
L
−1/2
t · L1/2

t θ̃t

∥L1/2
t θ̃t∥2

, µ̇(ϕ(St, At)
⊤θ̄t)ϕ(St, At)

〉∣∣∣∣∣ ∣∣∣Ft−1, St

]

≥ E

[∣∣∣∣∣
〈

θ̃t

∥L1/2
t θ̃t∥2

, µ̇(ϕ(St, A
MU
t )⊤θ̄t)ϕ(St, A

MU
t )

〉∣∣∣∣∣ ∣∣∣Ft−1, St

]
,

where in the last line we used the definition of At. Note that θ̄t and ωMU
t are both in the confidence

set Et(δ, θ̄t) ∩ Bd(S),

E

[∣∣∣∣∣
〈

θ̃t

∥L1/2
t θ̃t∥2

, µ̇(ϕ(St, A
MU
t )⊤θ̄t)ϕ(St, A

MU
t )

〉∣∣∣∣∣ ∣∣∣Ft−1, St

]

≥ E

[∣∣∣∣∣
〈

θ̃t

∥L1/2
t θ̃t∥2

, µ̇(ϕ(St, A
MU
t )⊤ωMU

t )ϕ(St, A
MU
t )

〉∣∣∣∣∣ ∣∣∣Ft−1, St

]
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Since θ̃t ∼ N (0, L−1
t ), we can rewrite it as θ̃t = L

−1/2
t Mt for Mt ∼ N (0, I) given the past and the

current context. Then plug it back in the above expression,

E

[∣∣∣∣∣
〈

θ̃t

∥L1/2
t θ̃t∥2

, µ̇(ϕ(St, A
MU
t )⊤ωMU

t )ϕ(St, A
MU
t )

〉∣∣∣∣∣ ∣∣∣Ft−1, St

]

= E

[∣∣∣∣∣
〈
L
−1/2
t Mt

∥Mt∥2
, µ̇(ϕ(St, A

MU
t )⊤ωMU

t )ϕ(St, A
MU
t )

〉∣∣∣∣∣ ∣∣∣Ft−1, St

]

= E
[∣∣∣∣〈 Mt

∥Mt∥2
, µ̇(ϕ(St, A

MU
t )⊤ωMU

t )L
−1/2
t ϕ(St, A

MU
t )

〉∣∣∣∣ ∣∣∣Ft−1, St

]
= µ̇(ϕ(St, A

MU
t )⊤ωMU

t )∥ϕ(St, A
MU
t )∥L−1

t
E

[∣∣∣∣∣
〈

Mt

∥Mt∥2
,
L
−1/2
t ϕ(St, A

MU
t )

∥ϕ(St, AMU
t )∥L−1

t

〉∣∣∣∣∣ ∣∣∣Ft−1, St

]
= µ̇(ϕ(St, A

MU
t )⊤ωMU

t )∥ϕ(St, A
MU
t )∥L−1

t
I(St, A

MU
t , Lt),

where the third line used L
−1/2
t is symmetric (as Lt is positive definite); the fourth line follows by

AMU
t , ωMU

t are Ft−1-measurable and Proposition 1 and the last line follows by the definition of
I(St, A

MU
t , Lt).

Corollary 2. For all t ≥ 1, it holds almost surely that

E
[
U(St, A

MU
t , ωMU

t , Lt)
∣∣∣Ft−1

]
≤
√

πd

2
E
[
U(St, At, θ̄t, Lt)

∣∣∣Ft−1

]
.

Proof. The proof follows by dividing both sides of the inequality showed in Lemma 6 by

I(St, A
MU
t , Lt) and then showing that I(St, A

MU
t , Lt) is lower bounded by

√
2
πd . The latter follows

using Proposition 2 and Proposition 3. Together we get,

U(St, A
MU
t , ωMU

t , Lt) ≤
√

πd

2
E
[
U(St, At, θ̄t, Lt)

∣∣∣Ft−1, St

]
,

from which the tower rule gives the desired result.

Lemma 18. It holds almost surely that

min
θ∈Et

U(St, A
MU
t , θ, Lt)

2 · Ī(St, A
MU
t , Lt) ≤ E

[
U(St, At, θ̄t, Lt)

∣∣∣Ft−1, St

]
,

where for (s, a) ∈ Z and L ⪰ 0

Ī(s, a, L) =

∫
Sd−1

(〈
x,

L−1/2ϕ(s, a)

∥L−1/2ϕ(s, a)∥

〉)2

dx.

Proof. The proof is similar to that of Lemma 6. We replace square terms a few times when needed
compared to the proof of Lemma 6. We start by rewriting the right hand side of the inequality

E
[
µ̇(ϕ(St, At)

⊤θ̄t)
2∥ϕ(St, At)

⊤θ̃t∥2L−1
t

∣∣∣Ft−1, St

]
= E

[(
max

x∈Sd−1

〈
L
−1/2
t x, µ̇(ϕ(St, At)

⊤θ̄t)ϕ(St, At)
〉)2 ∣∣∣Ft−1, St

]

≥ E

∣∣∣∣∣
〈

θ̃t

∥L1/2
t θ̃t∥2

, µ̇(ϕ(St, At)
⊤θ̄t)ϕ(St, At)

〉∣∣∣∣∣
2 ∣∣∣Ft−1, St


≥ E

∣∣∣∣∣
〈

θ̃t

∥L1/2
t θ̃t∥2

, µ̇(ϕ(St, A
MU
t )⊤θ̄t)ϕ(St, A

MU
t )

〉∣∣∣∣∣
2 ∣∣∣Ft−1, St

 ,
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where in the last line we used the definition of At and that

argmax
a∈A(St)

µ̇(ϕ(St, a)
⊤θ̄t)

∣∣∣〈ϕ(St, a), θ̃t

〉∣∣∣ = argmax
a∈A(St)

µ̇(ϕ(St, a)
⊤θ̄t)

2
(〈

ϕ(St, a), θ̃t

〉)2
(39)

By definition of ωt, the same reasoning as Eq. (39),

E

∣∣∣∣∣
〈

θ̃t

∥L1/2
t θ̃t∥2

, µ̇(ϕ(St, A
MU
t )⊤θ̄t)ϕ(St, A

MU
t )

〉∣∣∣∣∣
2 ∣∣∣Ft−1, St


≥ E

∣∣∣∣∣
〈

θ̃t

∥L1/2
t θ̃t∥2

, µ̇(ϕ(St, A
MU
t )⊤ωMU

t )ϕ(St, A
MU
t )

〉∣∣∣∣∣
2 ∣∣∣Ft−1, St


Since θ̃t ∼ N (0, L−1

t ), we can rewrite it as θ̃t = L
−1/2
t Mt for Mt ∼ N (0, I). Then plug it back in

the above expression,

E

∣∣∣∣∣
〈

θ̃t

∥L1/2
t θ̃t∥2

, µ̇(ϕ(St, A
MU
t )⊤ωMU

t )ϕ(St, A
MU
t )

〉∣∣∣∣∣
2 ∣∣∣Ft−1, St


= E

[∣∣∣∣〈 Mt

∥Mt∥2
, L

−1/2
t µ̇(ϕ(St, A

MU
t )⊤ωMU

t )ϕ(St, A
MU
t )

〉∣∣∣∣2 Ft−1, St

]

= µ̇(ϕ(St, A
MU
t )⊤ωMU

t )2∥ϕ(St, A
MU
t )∥2

L−1
t
E

∣∣∣∣∣
〈

Mt

∥Mt∥2
,
L
−1/2
t ϕ(St, A

MU
t )

∥ϕ(St, AMU
t )∥L−1

t

〉∣∣∣∣∣
2

Ft−1, St


= U(St, A

MU
t , ωMU

t , Lt)
2 · Ī(St, A

MU
t , Lt),

where the second line follows because L
−1/2
t is symmetric (as Lt is positive definite); the third line

follows by AMU
t , ωMU

t are Ft−1-measurable and Proposition 1; the fourth line follows by definition
of Ī(St, A

MU
t , Lt).

Corollary 3. For all t ≥ 1, it holds almost surely that

E
[
U(St, A

MU
t , ωMU

t , Lt)
2
∣∣∣Ft−1

]
≤ dE

[
U(St, At, θ̃t, Lt)

2
∣∣∣Ft−1

]
.

Proof. The proof follows by dividing both sides of the inequality showed in Lemma 6 by
Ī(St, A

MU
t , Lt) and then showing that Īt(St) is exactly 1/d. The latter follows using Proposition 2

and Proposition 4. Together we get,

U(St, A
MU
t , ωMU

t , Lt)
2 ≤ dU(St, At, θ̃t, Lt)

2.

Finally tower rule gives the desired result.

E.3 REGRET ANALYSIS THATS

Now we start the regret analysis. The beginning of the analysis is similar to that of Algorithm 2. We
do the same Taylor expansion on DLog(π̂) where we substitute θLogT+1 with θ̃LogT+1 as what we did in
Eq. (31):

DLog(π̂) ≤ E
[
max

a
µ̇(ϕ(ST+1, a)

⊤θ̃LogT+1)|ϕ(ST+1, a)
⊤(θ∗ − θ̃LogT+1)|

∣∣∣FT

]
︸ ︷︷ ︸

R1

+ E
[
max

a
µ̈(ξa)|ϕ(ST+1, a)

⊤(θ∗ − θ̃LogT+1)|
2
∣∣∣FT

]
︸ ︷︷ ︸

R2

.
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For R1, we copy the analysis from that of Algorithm 2, as what we did in Eq. (32). Recall θ̃LogT+1 ∈
VT+1.

R1 ≤ E
[
max

a
µ̇
(
ϕ(ST+1, a)

⊤θ̃LogT+1

)
∥ϕ(ST+1, a)∥H−1

T+1(θ∗)
∥θ∗ − θ̃LogT+1∥HT+1(θ∗)

∣∣∣FT

]
≤ 2γT+1(δ)E

[
max

a
µ̇
(
ϕ(ST+1, a)

⊤θ̃LogT+1

)
∥ϕ(ST+1, a)∥H−1

T+1(θ∗)

∣∣∣FT

]
≤ 2γT+1(δ)E

[
max

a
µ̇
(
ϕ(ST+1, a)

⊤θ̃LogT+1

)
∥ϕ(ST+1, a)∥L−1

T+1

∣∣∣FT

]
≤ 2γT+1(δ)E

[
max

a,θ∈VT+1

µ̇
(
ϕ(ST+1, a)

⊤θ
)
∥ϕ(ST+1, a)∥L−1

T+1

∣∣∣FT

]
= 2γT+1(δ)E

[
max

a,θ∈VT+1

U(ST+1, a, θ, LT+1)
∣∣∣FT

]
,

where in the second line we use Lemma 17; in the third line we use LT+1 ⪯ HT+1(θ∗); in the
fourth line we use θ̃LogT+1 ∈ VT+1. Now we use Lemma 3, it follows that for all 1 ≤ t ≤ T , note that
Vt ⊆ Vt+1 and Lt ⪯ Lt+1 hence satisfying the conditions of Lemma 3. Using the same argument as
Eqs. (33) and (34),

E
[

max
a,θ∈VT+1

U(ST+1, a, θ, LT+1)
∣∣∣FT

]
≤ 1

T

T∑
t=1

E
[
max
a,θ∈Vt

U(St, a, θ, Lt)
∣∣∣Ft−1

]
. (40)

Recall that

U(s, a, θ, L) = µ̇(ϕ(s, a)⊤θ)∥ϕ(s, a)∥L−1 .

By Eq. (40), with probability 1− 2δ (from Lemma 17), we have that

E
[

max
a,θ∈VT+1

U(ST+1, a, θ, LT+1)
∣∣∣FT

]
≤ 1

T

T∑
t=1

E
[
max
a,θ∈Vt

U(St, a, θ, Lt)
∣∣∣Ft−1

]

=
1

T

T∑
t=1

E
[
U(St, A

MU
t , θMU

t , Lt)
∣∣∣Ft−1

]
(c.f. Eq. (37))

≤ 1

T

T∑
t=1

E
[
U(St, A

MU
t , ωMU

t , Lt) +
1

4
∥ϕ(St, A

MU
t )∥L−1

t
|ϕ(St, A

MU
t )⊤(θMU

t − ωMU
t )|

∣∣∣Ft−1

]

≤ 1

T

T∑
t=1

E
[
U(St, A

MU
t , ωMU

t , Lt) +
1

4
∥ϕ(St, A

MU
t )∥2

L−1
t
∥θMU

t − ωMU
t ∥Lt

∣∣∣Ft−1

]

≤ 1

T

T∑
t=1

E
[
U(St, A

MU
t , ωMU

t , Lt) +
1

4
∥ϕ(St, A

MU
t )∥2

L−1
t
∥θMU

t − ωMU
t ∥Ht(θ∗)

∣∣∣Ft−1

]

where the highlighted line is the line that started to make a big difference to the proof of Algorithm 2;
in the second line we use Eq. (40); in the thrid line we plug in the definition of AMU

t and θMU
t ; in the

fourth line we use Taylor expansion and upper bound µ̈(·) by 1/4 (Eqs. (24) and (25)); in the fifth
line we used Cauchy-Schwarz inequality; in the sixth line we used the fact that Lt ⪯ Ht(θ∗). Now
we give a way to bound ∥θMU

t − ωMU
t ∥Ht(θ∗). By triangle inequality, and θMU

t , θ∗ ∈ Et(δ, θ̄t),

∥θMU
t − ωMU

t ∥Ht(θ∗) ≤ ∥θMU
t − θ∗∥Ht(θ∗) + ∥θ∗ − ωMU

t ∥Ht(θ∗) ≤ 4γT+1(δ). (41)
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Plug in the above bound, we have

1

T

T∑
t=1

E
[
U(St, A

MU
t , ωMU

t , Lt) +
1

4
∥ϕ(St, A

MU
t )∥2

L−1
t
∥θMU

t − ωMU
t ∥Ht(θ∗)

∣∣∣Ft−1

]

≤ 1

T

T∑
t=1

E
[
U(St, A

MU
t , ωMU

t , Lt) +
1

4
· 4γT+1(δ)∥ϕ(St, A

MU
t )∥2

L−1
t

∣∣∣Ft−1

]

≤ 1

T

T∑
t=1

E
[
U(St, A

MU
t , ωMU

t , Lt)
∣∣∣Ft−1

]
︸ ︷︷ ︸

(i)

+ γT+1(δ)
1

T

T∑
t=1

E
[
∥ϕ(St, A

MU
t )∥2

L−1
t

∣∣∣Ft−1

]
︸ ︷︷ ︸

(ii)

,

in the second line we used the fact that both θMU
t and ωMU

t are in Vt and Lemma 17; in the last line
we used the linearity of conditional expectation.

Now it remains to bound (i) and (ii). For (i), we use our result on THATS Corollary 2 to get

(i) ≤ 1

T

T∑
t=1

√
dE
[
U(St, At, θ̄t, Lt)

∣∣∣Ft−1

]
.

Now everything starts to follow almost exactly the same to the part of analysis in Algorithm 2 again.
Specifically, Eq. (35). By Corollary 4, and put back the definition of U(St, At, θ̄t, Lt)

(i) ≤ 1

2
γT+1(δ)

√
d
1

T

4
√

log(log(2T/δ)) +

√√√√ T∑
t=1

µ̇
(
ϕ(St, At)⊤θ̄t

)
∥ϕ(St, At)∥L−1

t

2

≤ γT+1(δ)
√
d
1

T

(
16log(log(2T/δ)) +

T∑
t=1

µ̇
(
ϕ(St, At)

⊤θ̄t
)
∥ϕ(St, At)∥L−1

t

)
.

Applying Taylor expansion at θ′t and abbreviating ϕ(St, At) =: ϕt, for t ≥ 1 and ζt between θ̄t and
θ∗, we have that

T∑
t=1

µ̇(ϕ⊤
t θ̄t)∥ϕt∥L−1

t
=

T∑
t=1

µ̇(ϕ⊤
t θ

′
t)∥ϕt∥L−1

t
+

T∑
t=1

µ̈(ζt)∥ϕt∥L−1
t
|ϕ⊤

t (θ̄t − θ′t)|

≤ 1

2

T∑
t=1

√
µ̇(ϕ⊤

t θ
′
t)∥ϕt∥L−1

t
+

T∑
t=1

µ̈(ζt)∥ϕt∥L−1
t
∥ϕt∥H−1

t (θ∗)
· ∥θ′t − θ̄t∥Ht(θ∗)︸ ︷︷ ︸
≤∥θ∗−θ̄t∥Ht(θ∗)+∥θ∗−θ′

t∥Ht(θ∗)

≤ 1

2

T∑
t=1

∥ϕ̃t∥Ṽ −1
t

+ γT+1(δ)κ

T∑
t=1

∥ϕt∥2V −1
t

≤ 1

2

√
T

√√√√ T∑
t=1

∥ϕ̃t∥2Ṽ −1
t

+ γT+1(δ)κ

T∑
t=1

∥ϕt∥2V −1
t

≤ 1

2

√
T
√
d log((dλT + T )/(dλT )) + γT+1(δ)κ (d log((dλT + T )/(dλT ))) ,

where in the second line we upper bounded µ̇(·) by 1/4 (Eq. (25)) in the first term and used Cauchy-
Schwarz in the second term; in the third line we

1. used self-concordance |µ̈(·)| ≤ µ̇(·) (Eq. (24)) and upper bounded µ̇(·) by 1/4 (Eq. (25));

2. we did the same argument as Eq. (41) to bound ∥θ′t − θ̄t∥Ht(θ∗);

3. we defined ϕ̃t :=
√

µ̇(ϕ⊤
t θt)ϕt and Ṽt :=

∑t−1
s=1 ϕ̃sϕ̃

⊤
s = Lt;
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in the last line we applied elliptical potential lemma (Lemma 19) twice. The final bound on (i) is
therefore

(i) ≤
dγT+1(δ)

√
log((dλT + T )/(dλT ))

2
√
T

+
κγT+1(δ)

2d3/2λT log((dλT + T )/(dλT ))

T
+

8
√
d log(log(2T/δ))

T

For (ii),

(ii) = γT+1(δ)
1

T

T∑
t=1

E
[
∥ϕ(St, A

MU
t )∥2

L−1
t

∣∣∣Ft−1

]

≤ γT+1(δ)
κ2

T

T∑
t=1

E

µ̇(ϕ(St, A
MU
t )⊤ωMU

t )∥ϕ(St, A
MU
t )∥2

L−1
t︸ ︷︷ ︸

U(St,AMU
t ,ωMU

t ,Lt)2

∣∣∣Ft−1



≤ γT+1(δ)
dκ2

T

T∑
t=1

E

µ̇(ϕ(St, At)
⊤θ̄t)∥ϕ(St, At)∥2L−1

t︸ ︷︷ ︸
U(St,At,θ̄t,Lt)2

∣∣∣Ft−1


≤ γT+1(δ)

dκ3

4T

T∑
t=1

E
[
∥ϕ(St, At)∥2V −1

t

∣∣∣Ft−1

]
,

where in the second line we used maxa,θ∈Vt
µ̇(ϕ(St, a)

⊤θ)/κ ≤ 1; in the third line we used
Corollary 3; in the last line we used L−1

t ⪯ κV −1
t and µ̇(·) ≤ 1/4 (Eq. (25)).

By Corollary 4, we upper bound the conditional expectations with the realizations

(ii) ≤ γT+1(δ)
dκ3

4T

4
√

log(log(2T/δ)) +

√√√√ T∑
t=1

∥ϕ(St, At)∥2V −1
t

2

≤ γT+1(δ)
dκ3

2T

(
16 log(log(2T/δ)) +

T∑
t=1

∥ϕ(St, At)∥2V −1
t

)

≤ γT+1(δ)
dκ3

2T
(16 log(log(2T/δ)) + d log((dλT + T )/(dλT ))) ,

where in the last line we use the elliptical potential lemma (Lemma 19). Putting the bounds together
on (i) and (ii), we have that

R1 ≤
dγT+1(δ)

√
log((dλT + T )/(dλT ))

2
√
T

+
κγT+1(δ)

2d3/2λT log((dλT + T )/(dλT ))

T

+
8
√
d log(log(2T/δ))

T
+ γT+1(δ)

dκ3

2T
(16 log(log(2T/δ)) + d log((dλT + T )/(dλT )))

We now deal with R2.

E
[
max

a
µ̈(ξa)|ϕ(ST+1, a)

⊤(θ∗ − θ̃LogT+1)|
2
∣∣∣FT

]
≤ 1

4
E
[
max

a
∥ϕ(ST+1, a)∥2H−1

T+1(θ∗)
∥θ∗ − θ̃LogT+1∥

2
HT+1(θ∗)

∣∣∣FT

]
≤ 1

4
γ2
T+1(δ)E

[
max

a
∥ϕ(ST+1, a)∥2H−1

T+1(θ∗)

∣∣∣FT

]
≤ κ2γ2

T+1(δ)E
[

max
a,θ∈VT+1

µ̇(ϕ(ST+1, a)
⊤θ)2∥ϕ(ST+1, a)∥2L−1

T+1

∣∣∣FT

]
where in the second line we used |µ̈| ≤ µ̇ ≤ 1/4 (Eqs. (24) and (25)) and Cauchy-Schwarz; in the
third line we used Lemma 17 and that θ̃T+1 ∈ ET+1(δ); in the fourth line we used the definition of
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VT+1. We now use Lemma 16. To be more specific, we let K = Lt, K ′ = LT+1 and Y ′ = VT+1,
Y = Vt for 1 ≤ t ≤ T . Since VT+1 = (∩T+1

i=t+1Ei) ∩ Vt and LT+1 = Lt +
∑T

i=t µ̇(ϕ
⊤
i θ

′
i)ϕiϕ

⊤
i

where ϕi = ϕ(Si, Ai), the conditions of Lemma 16 are satisfied. Then running the same argument as
Eqs. (33) and (34),

κ2γ2
T+1(δ)E

[
max

a,θ∈VT+1

µ̇(ϕ(ST+1, a)
⊤θ)2∥ϕ(ST+1, a)∥2L−1

T+1

∣∣∣FT

]
≤ κ2γ2

T+1(δ)
1

T

T∑
t=1

E
[
max
a,θ∈Vt

µ̇(ϕ(St, a)
⊤θ)2∥ϕ(ST+1, a)∥2L−1

t

∣∣∣Ft−1

]

= κ2γ2
T+1(δ)

1

T

T∑
t=1

E
[
µ̇(ϕ(St, A

MU
t )⊤θMU

t )2∥ϕ(St, A
MU
t )∥2

L−1
t

∣∣∣Ft−1

]
≤ 2κ2γ2

T+1(δ)
1

T

T∑
t=1

E
[
µ̇(ϕ(St, A

MU
t )⊤ωMU

t )2∥ϕ(St, A
MU
t )∥2

L−1
t

∣∣∣Ft−1

]
︸ ︷︷ ︸

(iii)

+ κ2γ2
T+1(δ)

1

T

T∑
t=1

E
[
1

2

∣∣ϕ(St, A
MU
t )⊤(θMU

t − ωMU
t )

∣∣2 ∥ϕ(St, A
MU
t )∥2

L−1
t

∣∣∣Ft−1

]
︸ ︷︷ ︸

(iv)

,

where in the third line we used definition of AMU
t and θMU

t (c.f. Eq. (37)). We then do Taylor
expansion on µ̇(ϕ(St, A

MU
t )⊤θMU

t ) at µ̇(ϕ(St, A
MU
t )⊤ωMU

t ). For a ξt := ξ(St, A
MU
t , θMU

t , ωMU)
that is between ϕ(St, A

MU
t )⊤ωMU

t and ϕ(St, A
MU
t )⊤θMU

t

µ̇(ϕ(St, A
MU
t )⊤θMU

t )2 =
(
µ̇(ϕ(St, A

MU
t )⊤ωMU

t ) + µ̈(ξt) ·
∣∣ϕ(St, A

MU
t )⊤(θMU

t − ωMU
t )

∣∣)2
≤
(
µ̇(ϕ(St, A

MU
t )⊤ωMU

t ) +
1

4
·
∣∣ϕ(St, A

MU
t )⊤(θMU

t − ωMU
t )

∣∣)2

≤ 2µ̇(ϕ(St, A
MU
t )⊤ωMU

t )2 + 2 · 1

16

∣∣ϕ(St, A
MU
t )⊤(θMU

t − ωMU
t )

∣∣2 ,
where in the second line we used that |µ̈| ≤ µ̇ ≤ 1

4 (Eqs. (24) and (25)) and the two terms in the first
line are non-negative; in the third line we used (a+ b)2 ≤ 2a2 + 2b2. Hence,

κ2γ2
T+1(δ)

1

T

T∑
t=1

E
[
µ̇(ϕ(St, A

MU
t )⊤θMU

t )2∥ϕ(St, A
MU
t )∥2

L−1
t

∣∣∣Ft−1

]
≤ 2κ2γ2

T+1(δ)
1

T

T∑
t=1

E
[
µ̇(ϕ(St, A

MU
t )⊤ωMU

t )2∥ϕ(St, A
MU
t )∥2

L−1
t

∣∣∣Ft−1

]
︸ ︷︷ ︸

(iii)

+ κ2γ2
T+1(δ)

1

T

T∑
t=1

E
[
1

2

∣∣ϕ(St, A
MU
t )⊤(θMU

t − ωMU
t )

∣∣2 ∥ϕ(St, A
MU
t )∥2

L−1
t

∣∣∣Ft−1

]
︸ ︷︷ ︸

(iv)

,
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where in the last line we upper bound 1/8 by 1/2. For (iii),

(iii) ≤ 2dκ2γ2
T+1(δ)

1

T

T∑
t=1

E
[
µ̇(ϕ(St, At)

⊤θ̄t)
2∥ϕ(St, At)∥2L−1

t

∣∣∣Ft−1

]
≤ 1

8
dκ3γ2

T+1(δ)
1

T

T∑
t=1

E
[
∥ϕ(St, At)∥2V −1

t

∣∣∣Ft−1

]

≤ 1

8
dκ3γ2

T+1(δ)
1

T

4
√

log(log(2T/δ)) +

√√√√ T∑
t=1

∥ϕ(St, At)∥2V −1
t

2

(42)

≤ 1

4
dκ3γ2

T+1(δ)
1

T

(
16log(log(2T/δ)) +

T∑
t=1

∥ϕ(St, At)∥2V −1
t

)
(43)

≤ dκ3γ2
T+1(δ)

1

T
(16log(log(2T/δ)) + d log((dλT + T )/(dλT ))) , (44)

where in the first line we used that min(s,a)∈Z,θ∈Bd(S) µ̇(ϕ(s, a)
⊤θ) · κ ≥ 1; in the second line we

used L−1
t ⪯ κV −1

t ; in the third line we used Corollary 4; in the fourth line we used (a + b)2 ≤
2a2 + 2b2; in the fifth line we used elliptical potential lemma (Lemma 19) to bound the second term.
For (iv), we apply Cauchy-Schwarz inequality and Lemma 17 to get

(iv) ≤ κ2γ2
T+1(δ)

1

T

T∑
t=1

1

2
E
[
∥ϕ(St, A

MU
t )∥2

L−1
t
∥θMU

t − ωMU
t ∥2Lt

· ∥ϕ(St, A
MU
t )∥2

L−1
t

∣∣∣Ft−1

]
≤ κ2γ2

T+1(δ)
1

T

T∑
t=1

1

2
E
[
∥ϕ(St, A

MU
t )∥4

L−1
t
∥θMU

t − ωMU
t ∥2Ht(θ∗)

∣∣∣Ft−1

]
≤ 8κ2γ4

T+1(δ)
1

T

T∑
t=1

E
[
∥ϕ(St, A

MU
t )∥4

L−1
t

∣∣∣Ft−1

]
.

Then we use the fact that min(s,a)∈Z,θ∈Bd(S) µ̇(ϕ(s, a)
⊤θ) · κ ≥ 1,

8κ2γ4
T+1(δ)

1

T

T∑
t=1

E
[
∥ϕ(St, A

MU
t )∥4

L−1
t

∣∣∣Ft−1

]
≤ 8κ4γ4

T+1(δ)
1

T

T∑
t=1

E
[
µ̇(ϕ(St, A

MU
t )⊤ωMU

t )2∥ϕ(St, A
MU
t )∥4

L−1
t

∣∣∣Ft−1

]
≤ 8dκ4

λ2
1

γ4
T+1(δ)

1

T

T∑
t=1

E
[
µ̇(ϕ(St, At)

⊤θ̄t)
2∥ϕ(St, At)∥2L−1

t

∣∣∣Ft−1

]
≤ 8dκ5

8λ2
1

γ4
T+1(δ)

1

T

T∑
t=1

E
[
∥ϕ(St, At)∥2V −1

t

∣∣∣Ft−1

]
≤ dκ5

λ2
1

γ4
T+1(δ)

1

T
(16log(log(2T/δ)) + d log((dλT + T )/(dλT ))) ,

where in the third line we used Corollary 3;l in the fourth line we used L−1
t ⪯ κV −1

t and in the last
line we used similar argument as (iii) (Eqs. (42) to (44)).

Putting all the bounds on R2 together, we have that

R2 ≤ dκ3γ2
T+1(δ)

1

T
(16log(log(2T/δ)) + d log((dλT + T )/(dλT )))

+
dκ5

λ2
1

γ4
T+1(δ)

1

T
(16log(log(2T/δ)) + d log((dλT + T )/(dλT )))

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

And the simple regret,
R(π̂T+1) ≤ 2DLog

≤ 2(R1 +R2)

≤
dγT+1(δ)

√
log((dλT + T )/(dλT ))√

T
+

κγT+1(δ)
2d3/2λT log((dλT + T )/(dλT ))

T

+
16
√
d log(log(2T/δ))

T

+
2

T

(
dκ3γT+1(δ) + dκ3γ2

T+1(δ) +
dκ5

λ2
1

γ4
T+1(δ)

)
· (16 log(log(2T/δ)) + d log((dλT + T )/(dλT )))

F TECHNICAL LEMMAS

In Theorems 9 and 10, we provided a corrected version of Thm. 3 in Zanette et al. (2021). The
reason why it’s flawed is: the optimization over λ in eq 133 and 134 depends on a random variable,
therefore one cannot ”choose” without the knowledge of the random quantity. We rectify the situation
by forming a geometric cover over possible values for λ, which solved the issue but introduced a
second logarithmic term.
Theorem 9 (Bernstein’s inequality for Martingales). Consider the stochastic process {Xt} adapted
to the filteration {Ft}. Assume Xt ≤ 1 almost surely, and E[Xt|Ft−1] = 0. Then

∀λ ∈ (0, 1], P

(
T∑

t=1

Xt ≤ λ

T∑
t=1

E[X2
t |Ft−1] +

1

λ
log

1

δ

)
≥ 1− δ, (45)

which implies

P

 T∑
t=1

Xt ≤ 3

√√√√( T∑
t=1

E[X2
t |Ft−1]

)
log(

lg(
√
T )

δ
) + 2 log(

lg(
√
T )

δ
)

 ≥ 1− δ. (46)

Proof. Define the random variable Mt as
Mt = Mt−1 exp(λXt − λ2E[X2

t |Ft−1]), (47)
where in particular M0 = 1, and E[·|F0] = E[·] so Mt is Ft-measurable. Recall the inequalities
ex ≤ 1 + x+ x2 for x ≤ 1 and 1 + x ≤ ex:

E[Mt|Ft−1] = Mt−1E
[
exp(λXt − λ2E[X2

t |Ft−1])|Ft−1

]
(48)

≤ Mt−1E
[
1 + λXt + λ2X2

t |Ft−1

]
exp(−λ2E[X2

t |Ft−1]) (49)

≤ Mt−1

(
1 + λE[Xt|Ft−1] + λ2E

[
X2

t |Ft−1

])
exp(−λ2E[X2

t |Ft−1]) (50)

≤ Mt−1 exp(λ
2E[X2

t |Ft−1]) exp(−λ2E[X2
t |Ft−1]) (51)

= Mt−1. (52)
Thus, {Mt} is a supermartingale adapted to {Ft}. In particular E[Mt|Ft−1] ≤ M0 = 1. Then by
the Markov inequality:

P

λ

T∑
t=1

Xt − λ2
T∑

t=1

E[X2
t |Ft−1]︸ ︷︷ ︸

log(Mt)

> log
1

δ

 = P

(
Mt >

1

δ

)
≤ E [E[Mt|Ft−1]]

1
δ

≤ δ, (53)

which proves Eq. (45).

Next, to prove Eq. (46) define the sequence N(l) := {λi = l2i}⌊lg(1/l)⌋i=0 ∪ {1} for a value l ≤ 1
chosen later, and

λ̂ =

√√√√ log( ⌊lg(1/l)⌋+1
δ )∑T

t=1 E[X2
t |Ft−1]

. (54)
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Also, by using Eq. (53) and a union bound over the ⌊lg(1/l)⌋+ 1 points in N(l) we get:

P

(
∀λ ∈ N(l) : λ

T∑
t=1

Xt − λ2
T∑

t=1

E[X2
t |Ft−1] ≤ log

⌊lg( 1l )⌋+ 1

δ

)
≥ 1− δ. (55)

Firstly, if 1 ≤ λ̂, which also means
∑T

t=t E[X2
t |Ft−1] ≤ log( ⌊lg(1/l)⌋+1

δ ), for value λ = 1 ∈ N(l)
in Eq. (55) we get:

T∑
t=1

Xt ≤
T∑

t=1

E[X2
t |Ft−1] + log(

⌊lg(1/l)⌋+ 1

δ
) ≤ 2 log(

⌊lg(1/l)⌋+ 1

δ
). (56)

Secondly, for λ̂ < 1, according N(l)’s construction one of the two cases below holds:

λ̂ < l or ∃λ̃ ∈ N(l) st. λ̃ ≤ λ̂ ≤ 2λ̃. (57)

For λ̂ ≥ l by Eq. (55) and λ̃ defined in Eq. (57) we have

T∑
t=1

Xt ≤ λ̃

T∑
t=1

E[X2
t |Ft−1] +

1

λ̃
log(

⌊lg(1/l)⌋+ 1

δ
) (58)

≤ λ̂

T∑
t=1

E[X2
t |Ft−1] +

2

λ̂
log(

⌊lg(1/l)⌋+ 1

δ
) (59)

≤ 3

√√√√( T∑
t=1

E[X2
t |Ft−1]

)
log(

⌊lg(1/l)⌋+ 1

δ
) (60)

For λ̂ < l, which means log( ⌊lg(1/l)⌋+1
δ ) < l2

∑T
t=1 E[X2

t |Ft−1] , by Eq. (55) we have

T∑
t=1

Xt ≤ l

T∑
t=1

E[X2
t |Ft−1] +

1

l
log(

⌊lg(1/l)⌋+ 1

δ
) (61)

T∑
t=1

Xt ≤ 2l

T∑
t=1

E[X2
t |Ft−1] (62)

Finally, by setting l = 1√
T

, the fact that
∑T

t=1 E[X2
t |Ft−1] ≤ T , and summing up with RHS of

Eq. (56) to cover both cases we get:

P

 T∑
t=1

Xt ≤ 3

√√√√( T∑
t=1

E[X2
t |Ft−1]

)
log(

lg(
√
T )

δ
) + 2 log(

lg(
√
T )

δ
)

 ≥ 1− δ, (63)

which proves the second part of the thesis.

Theorem 10 (Reversed Bernstein’s inequality for Martingales). Let {Xt} be a stochastic process
adapted to the filteration {Ft}. Assuming 0 ≤ Xt ≤ 1 almost surely, then it holds that:

P

 T∑
t=1

E[Xt|Ft−1] ≤
1

4

c1 +

√√√√c21 + 4

(
T∑

t=1

Xt + c2

)2 ≥ 1− δ, (64)

c1 = 3

√
log

lg(
√
T )

δ
, c2 = 2 log

lg(
√
T )

δ
. (65)

Proof. Consider the random noise

ξt := E[Xt|Ft−1]−Xt, (66)
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which allows us to write

t∑
i=1

E[Xi|Fi−1] =

t∑
i=1

(ξi +Xi). (67)

Then the Theorem 9 ensures the following statement:

P

 T∑
t=1

ξt ≤ c1

√√√√ T∑
t=1

E[ξ2t |Ft−1] + c2

 ≥ 1− δ. (68)

Notice that since 0 ≤ Xt ≤ 1 almost surely, we have

E[ξ2t |Ft−1] = E[(Xt − E[Xt|Ft−1])
2 |Ft−1] (69)

= E[X2
t |Ft−1]− E[Xt|Ft−1]

2 (70)

≤ E[X2
t |Ft−1] (71)

≤ E[Xt|Ft−1]. (72)

Plugging back into Eq. (68) and using Eq. (67) gives

P

 T∑
t=1

ξt =

T∑
t=1

(E[Xt|Ft−1]−Xt) ≤ c1

√√√√ T∑
t=1

E[Xt|Ft−1] + c2

 ≥ 1− δ (73)

or equivalently

P

 T∑
t=1

E[Xt|Ft−1] ≤
T∑

t=1

Xt + c1

√√√√ T∑
t=1

E[Xt|Ft−1] + c2

 ≥ 1− δ. (74)

Solving for
∑T

t=1 E[Xt|Ft−1] gives under such event

T∑
t=1

E[Xt|Ft−1] ≤
1

4

c1 +

√√√√c21 + 4

(
T∑

t=1

Xt + c2

)2

. (75)

The following is a corollary to the above theorem, which is easier to use.

Corollary 4. Under the same assumptions of Theorem 10, with probability at least 1− δ we have

T∑
t=1

E[Xt|Ft−1] ≤

4

√
log(

2 log T

δ
) +

√√√√ T∑
t=1

Xt

2

. (76)
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Proof. Starting from the right hand side of the inequality in Eq. (64), using the fact that
√
a+ b ≤√

a+
√
b for a, b ≥ 0 we have:

1

4

c1 +

√√√√c21 + 4

(
T∑

t=1

Xt + c2

)2

≤ 1

4

6

√√√√log

(
lg
√
T

δ

)
+ 2

√√√√ T∑
t=1

Xt + 2
√
c2

2

(77)

≤ 1

4

6

√√√√log

(
lg
√
T

δ

)
+ 2

√√√√ T∑
t=1

Xt + 2

√√√√2 log

(
lg
√
T

δ

)2

(78)

≤

4

√√√√log

(
lg
√
T

δ

)
+

√√√√ T∑
t=1

Xt

2

(79)

≤

4

√
log

( 1
2 log T

log 2 · δ

)
+

√√√√ T∑
t=1

Xt

2

(80)

≤

4

√
log

(
2 log T

δ

)
+

√√√√ T∑
t=1

Xt

2

(81)

(82)

Lemma 19 (Elliptical potential lemma). Fix λ,A > 0. Let {at}∞t=1 be a sequence in ABd
2 and let

V0 = λI . Define Vt+1 = Vt + at+1a
⊤
t+1 for each t ∈ N. Then, for all n ∈ N+,

n∑
t=1

||at||2V −1
t−1

≤ 2dmax

{
1,

A2

λ

}
log

(
1 +

nA2

dλ

)
.

Proof. See, e.g., Lemma 19.4 of Lattimore & Szepesvári (2020).

Proposition 1. Let X be a bounded random variable, Y be an integrable random variable and G be
a σ-algebra such that X is G-measurable. Then it holds almost surely that

E[XY |G] = XE[Y |G].

Proof. See e.g. section XI.3.(h) of Doob (2012).

Proposition 2. If X ∼ N (0, I), then X
∥X∥2

∼ Unif(Sd−1).

Proposition 3. If X ∼ Unif(Sd−1) and u is any fixed unit vector, then it follows that

E[|⟨X,u⟩|] ≥
√

2

πd
.

Proposition 4. If X ∼ Unif(Sd−1) and u is any fixed unit vector, then it follows that

E
[
(⟨X,u⟩)2

]
=

1

d
.

G DETAILS AND RESULTS OF EXPERIMENTS

In this section, we provide more details on the experimental setup and additional results to complement
those presented in Section 4. We follow the structure of Section 4, i.e., introduce the setup and
provide the observed results as well as interpretations first for linear case then logistic case.
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Figure 1: Linear case. The noise is 0-mean Gaussian with std. dev. ∥θ∗∥. Left: Average simple regret
vs. number of rounds T for d = 8,K = 128. Right: Number of rounds needed to make the simple
regret fall below 0.1 vs. K.

G.1 LINEAR CASE

Setup The goal is to show that uniform exploration is expected to perform arbitrarily worse than
our SIMPLELINTS and CumuLinTS does not converge as fast as SIMPLELINTS due to its nature
of balancing exploration and exploitation, illustrating the necessity of tailoring algorithms to the
simple regret objective. We achieve this in the following way: The arm set is the unit sphere in
d = 8 dimensions. In each round, the learner is shown K arms where K is the parameter that
we vary. We design the environment to be adversarial to the uniform sampling algorithm to show
that naive approaches would fail in certain scenarios while ours would not. To be more specific,
θ∗ = (5, 0, . . . , 0). One of the arms shown is always the optimal arm, x⋆ = (1, 0, . . . , 0), while the
remaining arms are sampled at random from the uniform distribution restricted to the intersection
of the unit sphere and the set of vectors orthogonal to x∗. The noise on the reward is Gaussian with
standard deviation ∥θ∗∥.

Results and Interpretation Results are obtained by running all algorithms 100 times with indepen-
dent randomness between the runs. We report the average simple regret as a function of the number
of rounds T for K = 128 and report in Fig. 1 on the number of rounds T needed to make the simple
regret fall below 0.1 for K = 2, 4, . . . , 4096. We observe that for K = 128, even though CumuLinTS
is converging fast at the beginning, it hovers above 0 for a long time. Intuitively the algorithm needs
to balance exploration and exploitation, which causes a slowed-down pace on exploration after it has
already found a good arm. This is not the case for SIMPLELINTS which keeps exploring until the end.
The uniform exploration baseline is doing poorly as expected. Moreover, we observe that the number
of rounds needed for uniform exploration to reach 0.1 simple regret grows linearly with K while
SIMPLELINTS remains constant for K ≥ 64. Intuitively, this is because uniform exploration with
K → ∞ will spend all its time on exploring the suboptimal arms, ignoring the optimal arm, whose
estimate is only very slowly refined as a result. We test our algorithm in an environment designed to
make naive UE fail. The optimal arm x∗ = e1 for θ∗ = 5 · e1 is always available in the action set
in each round, where ei is the i-th Euclidean basis, while suboptimal arms are sampled randomly
orthogonal to it on the unit sphere. Results from 100 independent runs, reported in Fig. 1, show that
for K = 128, CumuLinTS’s convergence stalls due to its exploration-exploitation trade-off, unlike
our purely exploring SIMPLELINTS. The number of rounds needed for UE’s simple regret to fall
below 0.1 scales linearly with K as UE increasingly wastes trials on the growing set of suboptimal
arms. In contrast, the requirement of SIMPLELINTS is constant for K ≥ 64. The number of rounds
for CumuLinTS also does not scale with K but it has a much larger magnitude than SIMPLELINTS.

Implementation details We set the regularization parameter λ = 1 for both SIMPLELINTS and
CumuLinTS. For the UE baseline, in each round, the learner randomly selects one of the K arms
uniformly to pull, and does ridge regression on the history data to estimate θ∗ and the output policy
is greedy w.r.t. the estimate after T rounds. For CumuLinTS, we follow the same procedure as
SIMPLELINTS except that in each round, the learner samples θ̃t from N (θ̂t, V

−1
t ).
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Figure 2: Left: Logistic case where M = 2. Average simple regret v.s. number of rounds for
d = 10, T = 1500,M = 2. Right: Number of rounds needed to make the simple regret fall below
10−4 v.s. M for d = 50.

G.2 LOGISTIC CASE

Setup The purpose of this experiment is to demonstrate that the trivial extension of SIMPLELINTS
to the logistic case leads to poor behavior relative to what is possible with our more complex
method, THATS. The extension mentioned simply replaces the least-squares method with MLE.
This method will essentially focus on growing the “magnitude” of Vt. Hence we design an arm
set {−ei}d−1

i=1 ∪ {0.3 · ed,−0.3 · ed} (the arm set does not change across different rounds) and set
θ∗ = [M,M, . . . , 1]. The optimal and second optimal arm are ±0.3 · ed respectively (≈ 0.57, 0.43).
Similar to the linear case, we first run 100 runs on M = 2 (where the suboptimal means ≈ 0.12)
for T = 1500 rounds and report the average simple regret and the error of estimating each of the
componenta of θ∗. Then we vary M in {1 + 0.5 · m}18m=1 with d = 50 to see how many rounds
are needed to make the simple regret fall below 10−4. The reason why we choose 10−4 is that in
practice, for example, online advertisement clicking, the clicking probability (recall for Bernoulli it is
the mean of the distribution) is usually very small: ∼ 10−3 (Faury et al. (2020)) and a gap of 10−4 is
a relative error of 0.1 .

Observations and Interpretations Recall that κ ≈ exp(M) as M gets large. The optimal arm
(after applied an inner product with θ∗) lies in the near-linear, central part of the sigmoid function, i.e.,
having less curvature, where µ̇(·) is close to its max, while the suboptimal arms lie in the flat part (µ̇
close to zero). The reward received for ±0.3 · ed will be quite noisy, because the mean (after taking a
dot product with θ∗) is close to 1/2, and not noisy for the other arms. A clever method should thus
pull ±0.3 · ed (who also happen to be the best two arms by design) more often than the others to
get sufficiently good estimates for separating the arm values. THATS indeed does this, while the
extended SIMPLELINTS method will fail to take this into account due to its nature of growing the
magnitude of Vt mentioned before.

We also plotted the error of estimating the last component of θ∗ for M = 2 and observed that, as
expected, the error of THATS vanishes much faster than that of the adapted SIMPLELINTS, while the
variance across the runs is also much smaller as demonstrated in Fig. 7. What’s more, the estimation
of other “unimportant” components of θ∗ (the first d− 1 components) by THATS does not converge
at all while that of SIMPLELINTS does. This also provides evidence that THATS is focusing its
exploration on the important directions only, which is exactly what we want, while SIMPLELINTS
wastes its time on these “unimportant” components until it fully rules them out.

As M is varied in {1 + 0.1 ·m}90m=1, for d = 50, we observe that for a fixed level of suboptimality,
100 independent runs, the average number of rounds needed for THATS is much less than that of
SIMPLELINTS with significantly lower variance as is demonstrateed in Fig. 2.

Implementation Details For THATS, we set λlog = 1 and for SIMPLELINTS we set λlin = 1. In
order to reduce computational complexity, we set θ̄t (the constrained MLE) to be the global MLE θ̂t
and set θ′t to be the projection of θ̃t to the ℓ2-ball of radius S = ∥θ∗∥+ 1.
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Figure 3: The estimation of ”unimportant” components of θ∗ for M = 2. Left: θ∗[0], Right: θ∗[1].

Figure 4: The estimation of ”unimportant” components of θ∗ for M = 2. Left: θ∗[2], Right: θ∗[3].

H LLM USAGE DISCLOSURE

Using an LLM to help with paper writing According to ICLR 2026 guidelines on LLM usage
disclosure, we describe here our use of LLMs in the preparation of this manuscript. We used Gemini
2.5 Pro to polish on the writing of the numerical experiment section in the main paper. Specifically,
we used it to shorten the paragraph so that the main ideas are conveyed more concisely. We also used
it to help rephrase some sentences in Appendix D.4 to improve clarity. We also used github copilot to
help with writing this section and the README file of the shared code. We acknowledge that the
authors are responsible for the content of the submission.

Using an LLM as a research assistant We used Claude Opus 4.1 to generate the code for plotting
the numerical results in Appendix G. Specifically, we provided it with the implementation of the
algorithms and the environment, and asked it to generate the code for plotting the results. We then
modified the generated code to suit our needs. We acknowledge that the authors have validated
the generated code and are responsible for the content of the submission.
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Figure 5: The estimation of ”unimportant” components of θ∗ for M = 2. Left: θ∗[4], Right: θ∗[5].

Figure 6: The estimation of ”unimportant” components of θ∗ for M = 2. Left: θ∗[6], Right: θ∗[7].

Figure 7: The estimation of components of θ∗ for M = 2. Left: θ∗[8], Right: θ∗[9] (the ”important”
component).
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