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Abstract

Gaussian sketching, which consists of pre-multiplying the data with a random
Gaussian matrix, is a widely used technique in data science and machine
learning. Beyond computational benefits, this operation also provides
differential privacy guarantees due to its inherent randomness. In this work,
we revisit this operation through the lens of Rényi Differential Privacy
(RDP), providing a refined privacy analysis that yields significantly tighter
bounds than prior results. We then demonstrate how this improved analysis
leads to performance improvement in different linear regression settings,
establishing theoretical utility guarantees. Empirically, our methods improve
performance across multiple datasets and, in several cases, reduce runtime.

1 Introduction

Advances in data collection and storage have enabled the creation of massive datasets, which
have necessitated the design of scalable algorithms for efficient processing, analysis, and
inference. With the formation of such large datasets, there has also been an increased focus
on privacy-preserving analyses in a bid to protect private attributes [Apple Research, 2017,
Facebook Research, 2020, Snap Security, 2022, Ponomareva et al., 2023]. For instance,
census data consists of a variety of private information about individuals recorded, and the
United States Census Bureau has been taking various measures to ensure confidentiality in
the data, and has adopted more modern methods since the late 1900s [Bureau, 2019].

A popular mathematical notion of privacy is given by Differential Privacy (DP) [Dwork, 2006,
MecSherry and Talwar, 2007, Dwork et al., 2014], which is currently the de facto standard for
privacy-preserving mechanisms. A private mechanism is a (randomized) function M which
takes as input a dataset X, and the key challenge in designing a “good” private mechanism
is balancing the tradeoff between the loss in utility with the increase in privacy-preserving
nature of the algorithm; it is possible to obtain complete privacy by simply returning noise
regardless of the input, but this clearly does not have good utility.

With regard to designing scalable algorithms to handle massive datasets, sketching as a
technique [Sarlos, 2006] has led to more computationally scalable algorithms relative to
naively working with the full dataset; see Woodruff [2014] for a review. Given a data matrix
X € R"%? a sketch constructs a compressed representation SX € R¥*? with k < n, where
S € RF*™ is a random matrix. For the case where S is comprised of i.i.d. Gaussian elements,
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for sufficiently large k it holds that %STS ~ I, with high probability. This property is
particularly valuable in machine learning applications that rely on inner-products of the form
AT B for matrices A and B, as one could now apply a Gaussian sketching matrix S to both
A and B and largely preserve this Hilbert-Schmidt inner product (up to scaling constants).
In this work, we study a mechanism based on a “noisy” sketching operation, which we call
the Gaussian Mizing Mechanism (abbrev. GaussMix) and is defined by

M(X):=SX +0¢, withS~N(0,Trxn), & ~N(0,Tpxa), SL¢E (GaussMix)

The additive Gaussian noise (hence the “noisy” sketching operation) essentially contributes
a constant bias to the inner product between the outputs of GaussMix applied to A and B,
as for sufficiently large k and appealing to standard concentration inequalities, we have

L(SA+06)T(SB+06) ~ ATB +0L, (1)

Thus, this noisy sketch is potentially well-suited for applications involving inner products.
The intriguing aspect of GaussMix is that the Gaussian sketching operation contributes to
stronger privacy guarantees when compared to the standard Gaussian mechanism.

The first evidence of sketching yielding a differentially private mechanism was given by Blocki
et al. [2012], and later works [Sheffet, 2017, 2019] focused on establishing that GaussMix
also provides DP. While it might seem surprising that GaussMix is a differentially private
mechanism, the operation can be viewed as instantiating the classical Gaussian mechanism
for DP [Dwork et al., 2014, Appendix A] for the Gaussian sketched data matrix SX.

Intuition for GaussMix. Interestingly, certain key operations in augmenting mechanisms
for improved differential privacy can be expressed as left-multiplication operations. Two
such instances are (1) permuting the rows of the data matrix X randomly [Erlingsson et al.,
2019], which can be expressed as left-multiplication of X by a permutation matrix, and (2)
subsampling the data matrix at random, which can be expressed as left-multiplication of
X by a random matrix whose entries are either 0 or 1 [Kasiviswanathan et al., 2011, Balle
et al., 2018]. A rough intuition for why sketching is a reasonable operation for preserving
privacy is that SX generates random linear combinations of rows, which can potentially
hide the contribution of any one row. Differential privacy—a more rigorous notion—seeks to
ensure that the presence of any one particular row in the data can not be guessed well, even
by an adversary that has knowledge of the other rows. Note that sketching by itself is not
impervious to such a setting: consider a data matrix X where all but one row contain 0s, and
in this case, it is possible to make educated guesses for what the non-zero row might be from
the sketched data matrix SX. This motivates the inclusion of the noise addition in GaussMix,
which also covers this adversarial situation. Informally speaking, through our analysis, we
observe that the “richness” of the data matrix (quantified by the minimum singular value)
contributes to the success of the sketching mechanism as a differentially private mechanism.

Contributions. Expanding on the above, our primary contributions, which are both
theoretical and empirical, are summarized below.

e Tighter Privacy Analysis via Rényi Differential Privacy (RDP). We present
a new RDP analysis of GaussMix, which to the best of our knowledge, has not been
previously explored. Our bounds are simpler to derive than existing analyses and in
several cases, are tight with respect to RDP. Notably, our results show that GaussMix
achieves stronger privacy guarantees than those established by Sheffet [2019] for the same
mechanism parameters. Our imprvement extend to settings that rely on GaussMix, such
as Prakash et al. [2020], Anand et al. [2021], Sun et al. [2022], Bartan and Pilanci [2023].

e Algorithm for Private Ordinary Least Squares. We use GaussMix to develop a
differentially private algorithm for linear regression under bounded data, extending the
framework of Sheffet [2017]. Leveraging our new RDP analysis, we derive bounds on
the excess empirical risk that, in some cases, match those of the AdaSSP algorithm by
Wang [2018], a standard benchmark under domain-bound assumptions. We validate
these theoretical results through empirical evaluations, where our method consistently
outperforms the baselines of Sheffet [2017] and Wang [2018] across several benchmark



datasets. Furthermore, we show that retrofitting the improved RDP analysis into the
algorithm of Sheffet [2017] yields improved results, further demonstrating the broad
applicability of our improved analysis.

e Algorithm for Private Logistic Regression. We adapt the algorithm for private linear
regression to perform differentially private logistic regression. This specifically works by
using a second-order approximation of the loss function [Huggins et al., 2017, Ferrando and
Sheldon, 2025] that reduces the problem to a differentially private quadratic minimization,
which makes it amenable to apply GaussMix. We derive theoretical guarantees for our
proposed method and give numerical simulations over certain datasets that demonstrate
improvements in both accuracy and computation time over the commonly used objective
perturbation [Chaudhuri et al.; 2011] and DP-SGD [Abadi et al., 2016] baselines.

Organization of the paper. In Section 2, we discuss related work. Section 3 introduces
necessary preliminaries. We present the Gaussian Mixing Mechanism and our privacy analysis
in Section 4, including comparisons with prior bounds. Applications of our mechanism to DP
OLS (Section 5.1) and DP logistic regression (Section 5.2) are given in Section 5, supported
by theoretical and empirical evaluations.

2 Related Work

A substantial body of research has investigated the use of random matrix projections for pri-
vacy, particularly through the Johnson Lindenstrauss (JL) transform and its variants [Bl()(ki

et al., 2012, Kenthapadi et al., 2013, Sheffet, 2017, Showkatbakhsh et al., 2018, Sheffet, 2019].
Sheffet [)(Jl 5, 2017, 2019] and Showkatbakhsh et al, [2018] are the most relevant to our Work
as they propose using Gaussian sketches for private linear regression. Sheffet [2015, 2017,

2019] analyze the privacy-preserving characteristics of GaussMix for this problem, and show
that it achieves (e, 0)-differential privacy for certain settings of o, k. Showkatbakhsh et al.
[2018] study the same mechanism but under a modified notion of differential privacy known
as MI-DP (defined by Cuff and Yu [2016]).

The mathematical intuition for why sketching is useful in privacy-sensitive optimization
was studied by Pilanci and Wainwright [2015]. They observe that the mutual information
between X and its sketched version SX can not be too large, thus providing a form of privacy.
However, their analysis is centered around information-theoretic principles and quantities
such as the mutual information, and does not actually provide guarantees of differential
privacy. More recently, Bartan (111(1 Pilanci [2023] provides another application of Gaussian
sketching in the specific context of DP distributed linear regression, based on the results
obtained by Sheffet [2015].

In contrast to these prior approaches, our work uses the stronger RDP framework of Mironov
[2017] in its privacy analysis. We derive a simple, closed-form expression for the RDP curve
g(a) corresponding to GaussMix, which is tight and improves upon the bounds obtained in
earlier works. These improvements yield practical gains in the performance of our algorithm

for DP linear regression relative to both Sheffet [2019] and other common alternatives such
as Wang [2018], and can be further used in other settings that currently use (GaussMix),
such as Prakash et al. [2020], Anand et al. [2021], Sun et al. [2022], Bartan and Pilanci

[2023]. Moreover, we further derive a computationally efficient algorithm for private logistic
regression. Our numerlcal experiments demonstrate that these enhancements translate into
improved accuracy over standard baselines.

3 Preliminaries

Basic Notation. We denote random variables in sans-serif (e.g., X,y), and their realizations
in serif (e.g., X,y resp.). The set {1,...,n} is denoted by [n]. For a vector A € R? its
Euclidean norm is denoted by ||A||. The all-zeros column vector of length d is denoted by 0.
The k x k identity matrix is Iy and N (0,1, xx,) denotes a ki x kg matrix of i.i.d. standard
Gaussian entries. We give a more elaborate discussion of notation in Appendix A.



Differential Privacy. Differential privacy relies on the notion of a “neighboring” dataset,
which we introduce first. Two datasets X, X’ are called neighbors if X’ is formed by removing
an element from X 2 or vice-versa, and we use X ~ X' to denote this relation. In this work,
a dataset is regarded as a collection of n real-valued rows, each of length d for n,d > 1. For
a dataset given to us, we assume knowledge of an upper bound Cx (called the row bound)
where ||z;|| < Cx for all i € [n].

Intuitively, differential privacy, formalized in the next definition, requires that a randomized
algorithm induce nearly identical output distributions given neighboring input datasets.

Definition 1 ((g, §)-Differential Privacy [Dwork et al., 2006]). A randomized mechanism M
is said to satisty (e, §)-differential privacy if for all X, X’ such that X’ ~ X and measurable
subsets S C Range(M),

Pr(M(X)eS) <e*-Pr(M(X') e S)+4 .
A secondary, somewhat stronger notion of differential privacy that we adopt throughout this
work is given by Rényi-DP , first introduced by Mironov [2017].

Definition 2 ((«,e(a))-RDP [Mironov, 2017]). A randomized mechanism M is said to
satisfy (o, e(«))-RDP for some « > 1 if for all X, X’ such that X ~ X',

Do (M(X) | M(X")) < &(a)
where Dy (P || Q) == -1 log (XLEQ {(P(x))“]) denotes the a-Rényi divergence [Rényi, 1961].

Q)

The notion of (&,0)-DP can be viewed as ensuring that the likelihood ratio of events induced
by neighboring datasets are uniformly bounded, and ¢ in (g, §)-DP provides some additive
slack on this condition. On the other hand, for any « > 1, («, e(«))-Rényi-DP can be seen
as another control that bounds the moments of this likelihood ratio. The latter can be
translated into the former; this conversion is explicitly stated in the proposition below.
Proposition 1 (Canonne et al. [2020, Proposition 12]). If M satisfies (a,e(a))-RDP | then
it also satisfies (epp,8)-DP for any 0 < & < 1, where epp = e(a) +log (1 — 1) — 1?5(%15)).
Both (a, e(a))-RDP and (g, 6)-DP satisfy key properties such as graceful degradation under
composition and post-processing. In particular, the post-processing property ensures that
if a mechanism f satisfies either privacy definition, then so does g o f for any (possibly
randomized) function g [Dwork et al., 2014, Mironov, 2017].

We highlight a special family of mechanisms that satisfy («,e(a))-RDP for a range of values
of a wherein e(«) grows at most linearly in « within this range. Such mechanisms are said
to satisty truncated concentrated DP (tCDP) which is defined formally below.

Definition 3 (tCDP [Bun et al., 2018]). Let p > 0 and w > 1. A mechanism M satisfies
(p, w)-tCDP if Do( M(X)|IM(X")) < p -« for all neighboring X, X’ and for all a € (1, w).

The (p, w)-tCDP property lends to a tighter translation to (epp,d)-DP in comparison to
simply picking a € (1, w) and instantiating Proposition 1. This fact leads to tighter privacy
guarantees for GaussMix as we present in the latter parts of this paper.

Proposition 2 (Bun et al. [2018, Lemma 6]). If M satisfies (p, w)-tCDP, then its also
satisfies (epp, d)-DP for all § > 0 where

{p+2\/p log(1/5) if log(1/s) < (w—1)%-p
EDP =
p P

w + 1e8/9) if log (1/5) > (w — 1)?

w—1

Gaussian mechanism. The Gaussian mechanism is a standard baseline for achieving
(g,6)-DP by simply adding Gaussian noise to (some function of) the data before releasing
it. In our notation it amounts to Mg (X) = X + € with £ ~ N(0,1,x4). The Gaussian

mechanism is (%, oo)—tCDP (also known as zCDP [Bun and Steinke, 2016]), and (g, 0)-DP

where € = 7”21%((71'25/6) for any 6 € (0,1) [Dwork et al., 2014, Appendix A].

2For simplicity, we identify a removal of a row with its replacement by 6d7 so the dimension
remains constant. This notion is sometimes referred to as zero-out neighboring.



4 The Gaussian Mixing Mechanism

We start by providing a new privacy analysis of GaussMix, under the assumption that we
have a lower bound A, for the minimum eigenvalue of X TX (called the scale bound).

Lemma 1. For any data matrix X € R™*4 that satzfes row bound Cx and scale bound Amin,
GaussMix with parameters k and o such that vy := CX o +)\mm) > 1 satisfies (o, p(as k,))-

RDP for any « € (1,7), where ¢ (a; k,() == ) log (1 2(a 5 log (1

To help understand the role of v, this can be viewed as a lower bound on the minimal
eigenvalue of the matrix XX where X = C)_(1 C[XT, 0l T € RvtdDxd - Using this
perspective, the noise addition can be seen as a way to artificially raise the minimum singular
value of the matrix X to a predetermined threshold ~, after which a standard Gaussian
sketching step is applied. This reinforces the prior intuition that privacy arises from applying
Gaussian sketching to a matrix with a sufficiently large minimum singular value.

Proof sketch of Lemma 1. For a fixed X, we first deduce that every row of M(X) is
distributed according to a multivariate Gaussian distribution with zero mean and covariance
Y = XTX + 0%;. Using the closed form expression of the Rényi divergence between
multivariate Gaussian distributions, the quantity D, (M (X)|| M (X’)) is a monotonic function
of T ¥~z where z is the row in X that is zeroed out in X’. This quantity can be bounded
asx X lx < ()\min(E))fl )2, and Amin(2) > Amin + 02 by the scale bound. We defer
the details of this proof to Appendix C.1.

Two key observations from the analysis is that (1) the function ¢ is non-negative for every
a € (1,7) and further bounds the RDP curve of M(X) from above, and (2) for sufficiently
large -y, the function ¢ in Lemma 1 grows at most linearly in « in a certain range. The latter
property is precisely the definition of tCDP (Definition 3).

Corollary 1. Consider the setup of Lemma 1. If v > 5/2, then GaussMix satisfies
(k/2~2,27v/5)-tCDP.

Tightness of Bound. In our computations, the only inequality that occurs is the one
stated in the proof sketch. This inequality is tight when the row in which X differs from
X’ happens to be the eigenvector corresponding to the minimal eigenvalue of X T X. This
implies that the lemma is tight for specific inputs, ensuring the bound is optimal under
certain input assumptions. More precisely, for the set of matrlceb X € R™™? such that
n > d with norm bounds Cx and such that )\mm(XTX) > CX, our bound is achieved with
equality for any X such that XX = 02 - I, corresponding to the case where Clx X isa
semi-orthogonal matrix.

Comparison to Existing Literature. Below we summarise the comparison between our
guarantees for the (g,0)-DP of GaussMix and a prior result by Sheffet [2019].

Our result Sheffet [2019]
(Corollary 1 + Proposition 2) (Theorem 2)
Tk, \/2klog(1/6) 24/2klog(4/6) | 2log(4/5)
< ‘ 37 T v ¥ + ¥

For a fixed k, the dependence on ~y in our guarantee is strictly better than the result of Sheffet
[2019]; specifically the bound from Sheffet [2019] suffers from the additional 21%(4/6) term.

Numerical analysis based on the exact RDP guarantee (derived by using the conversion from
RDP to DP of Proposition 1) provides a larger improvement of Lemma 1 over the bound of
Sheffet [2019]; see Figure 1 for plots to showcasing this comparison.

Moreover, we note that with GaussMix the entire dataset contributes to the privacy protection
of a single element via mixing. Since Ay, is at most % (see discussion in [Wang, 2018]),
this resembles privacy amplification by shuffling or subsampling, whereby the added noise to
other elements contributes to the privacy protection of any element. The dependence of € on
the parameters is not trivially comparable since k affects only GaussMix, and the utility of
the two outputs might be arbitrarily different.
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Figure 1: Apin + 02 required for attaining epp, using Lemma 1 converted to (epp,0)-DP
via Proposition 1, and compared to the bound from Sheffet [2019, Theorem 2]. We plot (a)
epp as a function of Ay, + 02 and (b) the ratio between the epp bounds. Our improved
RDP analysis reduces the final epp, illustrating the benefit of our new approach.

Algorithm 1 ModifiedGaussMix

Require: Dataset X € R"*? row bound Cx, parameters k,~, T, 1.
1: if v < 7 then:

2: Output: SX +yCx&; with S ~ N (0,Ix,) and & ~ N (0, Tkxq)-
3: else:

4: Set A = max {Amin(X " X) — nC% (7 — 2),0}, where z ~ N(0,1).
5: Set 77 = /max{y — A, 0}.

6: Output: SX + ﬁCXgl with S ~ N(O,]Ian) and &1 ~ N(O,]Ikxd).

Usage Without \,;,. Since the bounded scale assumption cannot be enforced in the
general case, one way to utilize Lemma 1 is by simply using the fact that Ay, > 0 and
relying solely on the added noise. In this case, the GaussMix mechanism can be thought of as
a complicated counterpart of the Gaussian mechanism. Comparing their privacy guarantees
reveals a clear similarity, with vk /7 taking the role of 1/0 in the Gaussian mechanism. In
this case v = 02 which amounts to a quadratic dependence of ¢ on ¢ in the leading term
(rather than the linear one in the Gaussian mechanism), balanced by vk, which implies
improved privacy results when o > v/k. Since the output of these two mechanisms follows
different distributions, the privacy-utility tradeoff depends on the use case.

Instance Specific Bound. While setting A,y = 0 provides a privacy guarantee for any
matrix, one might wish to reduce the added noise in a data-dependent manner based on
Amin(X T X). Since this quantity is data-dependent, it must be used in a privacy-preserving
manner, which is achieved using Algorithm 1. A similar algorithm was proposed by Sheffet
[2017, Algorithm 1], with z sampled from a Laplace distribution, and 7 set either to 0 or to

/7 based on A, rather than interpolating between the two as we do.

Theorem 1. Let § € (0,1), k> 1, n > 0 and v > 5/2, and set T > +/21og(3/5). Then, the
output of Algorithm 1 is (E(n,v,k,9),9)-DP for

_ 2log(3-75/s
5(777% kvé) = M

log(3/6) + (o — 1) log(1 — 1/a) — log(a) }

+ min {cp(a;k,’y) + 1
(2)

I<a<y

where p(a; k, ) was previously defined in Lemma 1.



Proof sketch. The case of 7y < 7 is the previously discussed Amin = 0 setting. For the other
case, we note that w.p. > 1—9/3 we have A > A\pin (X T X), so the conditions of Lemma 1 are
met. Since A, has sensitivity C?X, the privacy properties of the Gaussian mechanism apply

to the release of . Using simple composition, we combine it with the privacy of GaussMix,
which completes the proof. We give full details in Appendix C.3.

The quantity £(n,,k,0) > 0 and further can be made arbitrarily small by increasing n and
~; we show this formally in Appendix B. As mentioned previously, the parameter « should be
thought of as the target minimal eigenvalue, 7 serves as the accuracy bound on the estimation
of Amin, and 1 controls the privacy loss of its private estimation. Setting n = v/ Vk, and
combining Corollary 1 with the DP implication of tCDP, we get that Algorithm 1 is (e, §)-DP

2+/2k log(4/s)

~ , which matches the privacy bound on GaussMix up to a constant.

_ K
where € = 302 +

5 Applications

We now demonstrate applications of GaussMix for two private learning tasks that can be
formalized as linear regression. In each case, we instantiate the mechanism on a concatenated
dataset (X1, X2) where X; € R"*% and X, € R"*%. The application of GaussMix to the
concatenation (X1, Xs) is given by

M(X1, X2) =S (X1, X2) +0(&1,62) = (SX1 + 061,5Xs + 0&2)

where S ~ N(0,Trxn), & ~ N(0,Igxa,), and & ~ N(0,Ixxq,). If M(X1, Xz) satisfies
RDP w.r.t. (X7, X2), then by post-processing the inner-product X defined as

K(M(X1,X5)) = (5X1 +0&1) " (SXs + &) (3)

also satisfies RDP . The inner-product X will form the core component of our algorithms.

5.1 Differentially Private Ordinary Least Squares

We begin with the problem of DP linear regression. Let the dataset (X,Y) such that the
design matrix X € R™? and the response vector Y € R”. Throughout, we make the
following assumptions:

(A1) Bounded domain: ||z;]| < Cx and |y;| < Cy for all i € [n]?.
(As) Owverspecified system: n > d.

Our goal is to estimate a linear predictor under (g, §)-DP, while preserving the privacy of
each individual data pair (z, ,y;). Our non-private baseline is the standard Ridge regression
estimator [Tikhonov, 1963, Hoerl and Kennard, 1970]:

0*(v) = argmin {||Y — X053 +v|03} = (XX +vly) ' XY,
0

where v > 0 is a regularization parameter. The unregularized least-squares solution is
denoted 0* := 6*(0), and we define the empirical loss as Lxy(f) == ||[Y — X0|3. Our
algorithm, summarized in Algorithm 2, uses Algorithm 1 for obtaining a privatized version
of the pair (X,Y) (interpreted as halves of one joint matrix) by setting a large enough =
and then solving the resulting least-squares problem. The existence of a v that satisfies the
conditions in Line 1 in Algorithm 2 is ensured by the analysis presented in Appendix B.
While the structure of our algorithm resembles earlier proposal by Sheffet [2017], our refined
privacy analysis under Rényi-DP improves the overall privacy—utility trade-off. Moreover,
our algorithm exploits Apin in a modified way, ensuring that the variance of the additive
noise component is always reduced by utilizing the private estimation of Apin (X T X).

Corollary 2. For any k > 1 the output 01, of Algorithm 2 is (,0)-DP .

3These domain bounds appear in many standard DP linear regression settings, such as [Sheffet,
2017, Wang, 2018].



Algorithm 2 LinearMixing

Require: Dataset (X,Y) satisfying (A1, As), privacy parameters (e, ), parameter k.
1: Find smallest v > 5/2 such that £(n,, k,d) < e, while setting n = 7/v&.

2: Calculate [)?,}7] = ModifiedGaussMix([X7 Y], \/C% + CY kv, /2log (3/5),77).
SURUNES RS
3: Output: Oy, = (XTX) XTYy.

Proof. We first note that for any k£ > 1, we are guaranteed to find a 7 in Line 1 such that the
target (1,7, k, ) < e where n = 7/V& (see Appendix B). Since we apply ModifiedGaussMix
(Line 2) with the appropriate domain bounds, the differential privacy guarantee follows
from Theorem 1. Finally, since 61, is a function of (X,Y"), which is (g, )-DP, we have by
post-processing that 6p;, also satisfies (g,0)-DP. O

Theorem 2. There exist universal constants co,c1,ce such that for any x € (0,1] satisfying
kx? > cod, the following holds with probability at least 1 — c; - exp {—czerz}:

LX,Y(HLin) _ (1 +X)2 . ijy(e*) < O((l +X)2 . \/@.(CXJFCY) . (1 + ”9*'2)) )

The proof is deferred to Appendix C.4. Notably, in the regime where Cy =~ Cx |6
and d > 1, for a target failure probability o, setting x = \/k~1 - max {cod, (1/c) log(¢1/0)}
and k = (1 4+ ) max {cod, /c. log(c1/0)} for some finite 8 > 0 yields excess empirical risk
of O (6_1\/max {d,log(1/o)} log(1/s)C% (1 + ||9*H2) + XLX7y(9*)>. In particular, we note

that the first term avoids the multiplicative log(d”/o) factor that exists in the guarantees from
Wang [2018]. Thus, whenever it holds that Ay, (X T X) < 1 and furthermore Lxy(6%) <«
e~1y/max {d, log(1/o) } log(1/s)C% (1 + H0*||2) we expect our method to outperform the
AdaSSP baseline. Conversely, in high-residual regimes—where our bound incurs the term
X Lx,y (0*)—or when Apin(X T X) is large—so that AdaSSP’s guarantee enjoy from this
minimal eigenvalue in the denominator of its guarantees, AdaSSP is likely to perform better.

To demonstrate the usefulness of Algorithm 2, we have simulated its performance on four
different datasets: the Communities & Crime dataset [Redmond and Baveja, 2002], the
Tecator dataset [Thodberg, 2015], a synthetic dataset comprised of Gaussian features trans-
formed via an MLP and another dataset comprised of Gaussian features. Full experimental
details are provided in Appendix F. We use algorithm. 1 from [Sheflet, 2017] as well as
the AdaSSP algorithm of [Wang, 2018] as our private baselines. We further simulated a
variant of algorithm. 1 from [Sheffet, 2017] that uses the analysis established in Lemma 1.
The AdaSSP algorithm is considered the leading baseline for DP linear regression under
bounded domain assumptions [Liu et al., 2022, Brown et al.; 2024]. While some recent
works, such as [Ferrando and Sheldon, 2025], have proposed practical enhancements over
AdaSSP, this method involves significantly higher computational cost and lacks theoretical
utility guarantees, as opposed to our method which runs essentially within the same time
constants. As Figure 2 shows, our method outperforms the AdaSSP method and the method
of [Sheffet, 2017] , achieving lower or equal test MSE across all privacy levels on every dataset.
Furthermore, incorporating the analysis of Lemma 1 into the algorithm of [Sheffet, 2017]
improves its performance, hinting on the further usefulness of our new analysis technique.

5.2 Differentially Private Logistic Regression

Our second application considers the problem of DP logistic regression, with the goal of
developing DP solutions to the ERM problem:

n

9 — arg;nin % ; —log (L +exp{—yf z;}) := arggnin i; Lo(s:,9i)
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Figure 2: Linear mixing performance on four linear regression tasks. The parameter k was
chosen to ensure negligible approximation error in the sketched solution.

and where y; € {—1,+1} for all i € [n]. Following [Huggins et al., 2017] (see also [Ferrando
and Sheldon, 2025]), this problem can be solved by approximating f¢(s,y) with a second-
order polynomial g(s) = by + b1s + bas?, i.e. —log (1 + exp{—s}) =~ ¢(s),for s € .7, where
 satisfies yf "z € 7 for all datapoints (x,%), ensuring the surrogate is valid over the
dataset. Substituting s; = y; @' z; and discarding the constant by, minimising the surrogate
objective reduces to ordinary least squares with a response vector ¥ = 7217712 Y, with

Y = (y1,...,yn) . Therefore, we can invoke Algorithm 2, originally designed for linear
regression, to obtain a (g, )-DP estimate for logistic regression. The utility of this solution

2
follows via similar arguments to those of Theorem 2, with the replacement of Cff with (21’712)

and with an extra factor due to the loss approximation and is presented in Appendix D.
However, in this case, the complexity of sketching the data and then solving the linear
system (for example, using a QR decomposition) will be O(nkd + kd?). In many cases,
this one-shot approach is more computationally efficient than classical approaches that use
iterative optimization techniques.

To demonstrate this point, we have tested our approach in a similar setting to that presented
by Guo et al. [2020], where we (i) trained a CNN with DP stochastic gradient descent
(DP-SGD) implemented using Opacus [Yousefpour et al., 2021] and (ii) used the pre-trained
private embeddings for DP fine-tuning of a logistic head. The CNN architecture and training
hyperparameters mirror those in [Guo et al., 2020] (see Appendix F for full details). We
train the head using one of three methods: DP-SGD [Abadi et al., 2016, Yousefpour et al.,
2021], objective perturbation as in [Guo et al., 2020], or with our approach (Linear Mixing
as depicted in Algorithm 2). As shown in Figure 3, our approach delivers lower runtime than
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Figure 3: DP logistic regression using features from a privately trained CNN on binary
subsets of Fashion-MNIST and CIFAR100. We fixed k on k = 4.5d.

both baselines and achieves consistent accuracy gains over objective perturbation. It further
exceeds DP-SGD accuracy for larger values of the privacy parameter . Full experimental
details are provided in Appendix F.2.

6 Discussion and Conclusion

In this work, we revisited the Gaussian mixing mechanism originally introduced by Blocki
ct al. [2012] and later studied by Sheffet [2017, 2019]. We derived its RDP curve, which
yields tighter bounds on the relationship between the noise parameter o and (e, d), thereby
strengthening the privacy analysis of this mechanism. We further demonstrated the practical
usefulness of this improved analysis by applying (GaussMix) to two distinct machine learning
tasks and providing: (i) an improved algorithm for DP linear regression, (ii) an algorithm
for DP logistic regression. The analysis used in the proof of Lemma 1 is tighter than that
presented in [Sheffet, 2019]. Thus, it also offers performance improvement in other settings
currently invoking the results of [Sheffet, 2019], such as [Bartan and Pilanci, 2023].

A key technical property that underpins the usefulness of (GaussMix) is its compatibility
with formulations in which terms involving the random projection matrix S cancel in
expectation, as described intuitively in (1). Identifying additional machine learning problems
and formulations that naturally admit this structure and which facilitate an implementation
using the Gaussian mixing mechanism is an interesting direction for future work, open the
possibility for applying (GaussMix) beyond the currently studied linear regression settings.
Moreover, this work focuses on the case where S is Gaussian. Extending the framework to
other classes of projections, such as those studied by Woodrufl [2014], Pilanci and Wainwright
[2015, 2016], could enable computationally efficient implementation of (3).

Broader Impact The paper develops the DP guarantees for the Gaussian mixing mechanism.
However, when used in practice, one needs to verify all the prior mathematical assumptions
we made throughout in order to guarantee data privacy in practice.
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately
reflect the paper’s contributions and scope?

Answer: [Yes]

Justification: The paper deals with differential privacy via a mechanism we dubbed
as Gaussian mixing. This is reflected in the paper title.

Guidelines:

e The answer NA means that the abstract and introduction do not include the
claims made in the paper.

o The abstract and/or introduction should clearly state the claims made, including
the contributions made in the paper and important assumptions and limitations.
A No or NA answer to this question will not be perceived well by the reviewers.

e The claims made should match theoretical and experimental results, and reflect
how much the results can be expected to generalize to other settings.

e It is fine to include aspirational goals as motivation as long as it is clear that
these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the
authors?

Answer: [Yes]

Justification: The paper describes the application of the mixing mechanism to linear
regression. Furthermore, we demonstrate results on a finite number of datasets
which we describe in the paper body.

Guidelines:

e The answer NA means that the paper has no limitation while the answer No
means that the paper has limitations, but those are not discussed in the paper.

e The authors are encouraged to create a separate "Limitations" section in their
paper.

e The paper should point out any strong assumptions and how robust the results
are to violations of these assumptions (e.g., independence assumptions, noiseless
settings, model well-specification, asymptotic approximations only holding
locally). The authors should reflect on how these assumptions might be violated
in practice and what the implications would be.

e The authors should reflect on the scope of the claims made, e.g., if the approach
was only tested on a few datasets or with a few runs. In general, empirical
results often depend on implicit assumptions, which should be articulated.

e The authors should reflect on the factors that influence the performance of the
approach. For example, a facial recognition algorithm may perform poorly when
image resolution is low or images are taken in low lighting. Or a speech-to-text
system might not be used reliably to provide closed captions for online lectures
because it fails to handle technical jargon.

e The authors should discuss the computational efficiency of the proposed algo-
rithms and how they scale with dataset size.

« If applicable, the authors should discuss possible limitations of their approach
to address problems of privacy and fairness.

o While the authors might fear that complete honesty about limitations might
be used by reviewers as grounds for rejection, a worse outcome might be that
reviewers discover limitations that aren’t acknowledged in the paper. The
authors should use their best judgment and recognize that individual actions in
favor of transparency play an important role in developing norms that preserve
the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assump-
tions and a complete (and correct) proof?

Answer: [Yes]

Justification: The assumptions made in each theorem are described in the theorem
body.

Guidelines:

e The answer NA means that the paper does not include theoretical results.

o All the theorems, formulas, and proofs in the paper should be numbered and
cross-referenced.

o All assumptions should be clearly stated or referenced in the statement of any
theorems.

e The proofs can either appear in the main paper or the supplemental material,
but if they appear in the supplemental material, the authors are encouraged to
provide a short proof sketch to provide intuition.

e Inversely, any informal proof provided in the core of the paper should be
complemented by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce
the main experimental results of the paper to the extent that it affects the main
claims and/or conclusions of the paper (regardless of whether the code and data are
provided or not)?

Answer: [Yes]

Justification: The methods and the datasets used are detailed in the paper, along
with experimental details section in the paper appendix.
Guidelines:

o The answer NA means that the paper does not include experiments.

o If the paper includes experiments, a No answer to this question will not be
perceived well by the reviewers: Making the paper reproducible is important,
regardless of whether the code and data are provided or not.

o If the contribution is a dataset and/or model, the authors should describe the
steps taken to make their results reproducible or verifiable.

e Depending on the contribution, reproducibility can be accomplished in various
ways. For example, if the contribution is a novel architecture, describing the
architecture fully might suffice, or if the contribution is a specific model and
empirical evaluation, it may be necessary to either make it possible for others
to replicate the model with the same dataset, or provide access to the model. In
general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate
the results, access to a hosted model (e.g., in the case of a large language model),
releasing of a model checkpoint, or other means that are appropriate to the
research performed.

e While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may
depend on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it

clear how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should
describe the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there
should either be a way to access this model for reproducing the results or a
way to reproduce the model (e.g., with an open-source dataset or instructions
for how to construct the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which
case authors are welcome to describe the particular way they provide for
reproducibility. In the case of closed-source models, it may be that access to
the model is limited in some way (e.g., to registered users), but it should be
possible for other researchers to have some path to reproducing or verifying
the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results, as described in
supplemental material?

Answer:
Justification: Code will be released upon publication.
Guidelines:

e The answer NA means that paper does not include experiments requiring code.

o Please see the NeurIPS code and data submission guidelines (https://nips.
cc/public/guides/CodeSubmissionPolicy) for more details.

o While we encourage the release of code and data, we understand that this might
not be possible, so “No” is an acceptable answer. Papers cannot be rejected
simply for not including code, unless this is central to the contribution (e.g., for
a new open-source benchmark).

e The instructions should contain the exact command and environment needed
to run to reproduce the results. See the NeurIPS code and data submis-
sion guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy)
for more details.

e The authors should provide instructions on data access and preparation, in-
cluding how to access the raw data, preprocessed data, intermediate data, and
generated data, etc.

e The authors should provide scripts to reproduce all experimental results for
the new proposed method and baselines. If only a subset of experiments are
reproducible, they should state which ones are omitted from the script and why.

e At submission time, to preserve anonymity, the authors should release
anonymized versions (if applicable).

o Providing as much information as possible in supplemental material (appended
to the paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits,
hyperparameters, how they were chosen, type of optimizer, etc.) necessary to
understand the results?

Answer: [Yes]

Justification: The paper contain an experimental section with details of all of the
experiments.

Guidelines:

e The answer NA means that the paper does not include experiments.

e The experimental setting should be presented in the core of the paper to a level
of detail that is necessary to appreciate the results and make sense of them.

e The full details can be provided either with the code, in appendix, or as
supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other
appropriate information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: All the plots in the paper contain corresponding confidence intervals,
claiming the statistical significance of the results.

Guidelines:

e The answer NA means that the paper does not include experiments.

e The authors should answer "Yes" if the results are accompanied by error bars,
confidence intervals, or statistical significance tests, at least for the experiments
that support the main claims of the paper.

e The factors of variability that the error bars are capturing should be clearly
stated (for example, train/test split, initialization, random drawing of some
parameter, or overall run with given experimental conditions).

o The method for calculating the error bars should be explained (closed form
formula, call to a library function, bootstrap, etc.)

o The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard
error of the mean.

o It is OK to report 1-sigma error bars, but one should state it. The authors
should preferably report a 2-sigma error bar than state that they have a 96%
CI, if the hypothesis of Normality of errors is not verified.

o For asymmetric distributions, the authors should be careful not to show in
tables or figures symmetric error bars that would yield results that are out of
range (e.g. negative error rates).

o If error bars are reported in tables or plots, The authors should explain in the
text how they were calculated and reference the corresponding figures or tables
in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed
to reproduce the experiments?

Answer: [Yes]

Justification: The computer resources of all the experiments are detailed in the
paper body.

Guidelines:

e The answer NA means that the paper does not include experiments.

e The paper should indicate the type of compute workers CPU or GPU, internal
cluster, or cloud provider, including relevant memory and storage.

e The paper should provide the amount of compute required for each of the
individual experimental runs as well as estimate the total compute.

e The paper should disclose whether the full research project required more
compute than the experiments reported in the paper (e.g., preliminary or failed
experiments that didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with
the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have verified that the research performed in this paper conformed
with the NeurIPS code of ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code
of Ethics.

o If the authors answer No, they should explain the special circumstances that
require a deviation from the Code of Ethics.
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10.

11.

12.

o The authors should make sure to preserve anonymity (e.g., if there is a special
consideration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and
negative societal impacts of the work performed?

Answer: [Yes]
Justification: We have included a broader impact subsection in our paper.
Guidelines:

e The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no
societal impact or why the paper does not address societal impact.

o Examples of negative societal impacts include potential malicious or unintended
uses (e.g., disinformation, generating fake profiles, surveillance), fairness consid-
erations (e.g., deployment of technologies that could make decisions that unfairly
impact specific groups), privacy considerations, and security considerations.

e The conference expects that many papers will be foundational research and
not tied to particular applications, let alone deployments. However, if there
is a direct path to any negative applications, the authors should point it out.
For example, it is legitimate to point out that an improvement in the quality
of generative models could be used to generate deepfakes for disinformation.
On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate
Deepfakes faster.

e The authors should consider possible harms that could arise when the technology
is being used as intended and functioning correctly, harms that could arise when
the technology is being used as intended but gives incorrect results, and harms
following from (intentional or unintentional) misuse of the technology.

o If there are negative societal impacts, the authors could also discuss possible
mitigation strategies (e.g., gated release of models, providing defenses in addition
to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a

system learns from feedback over time, improving the efficiency and accessibility
of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for
responsible release of data or models that have a high risk for misuse (e.g., pretrained
language models, image generators, or scraped datasets)?

Answer: [NA]
Justification:
Guidelines:

e The answer NA means that the paper poses no such risks.

e Released models that have a high risk for misuse or dual-use should be released
with necessary safeguards to allow for controlled use of the model, for example
by requiring that users adhere to usage guidelines or restrictions to access the
model or implementing safety filters.

o Datasets that have been scraped from the Internet could pose safety risks. The
authors should describe how they avoided releasing unsafe images.

o We recognize that providing effective safeguards is challenging, and many papers
do not require this, but we encourage authors to take this into account and
make a best faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models),
used in the paper, properly credited and are the license and terms of use explicitly
mentioned and properly respected?
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13.

14.

15.

Answer: [Yes|

Justification: All the datasets are publicly available and their sources are cited in
the paper main body.

Guidelines:

e The answer NA means that the paper does not use existing assets.

e The authors should cite the original paper that produced the code package or
dataset.

e The authors should state which version of the asset is used and, if possible,
include a URL.

o The name of the license (e.g., CC-BY 4.0) should be included for each asset.

o For scraped data from a particular source (e.g., website), the copyright and
terms of service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in
the package should be provided. For popular datasets, paperswithcode.com/
datasets has curated licenses for some datasets. Their licensing guide can help
determine the license of a dataset.

o For existing datasets that are re-packaged, both the original license and the
license of the derived asset (if it has changed) should be provided.

o If this information is not available online, the authors are encouraged to reach
out to the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the
documentation provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

e The answer NA means that the paper does not release new assets.

o Researchers should communicate the details of the dataset/code/model as part
of their submissions via structured templates. This includes details about
training, license, limitations, etc.

e The paper should discuss whether and how consent was obtained from people
whose asset is used.

o At submission time, remember to anonymize your assets (if applicable). You
can either create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does
the paper include the full text of instructions given to participants and screenshots,
if applicable, as well as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:
e The answer NA means that the paper does not involve crowdsourcing nor
research with human subjects.

¢ Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as
possible should be included in the main paper.

e According to the NeurIPS Code of Ethics, workers involved in data collection,
curation, or other labor should be paid at least the minimum wage in the
country of the data collector.

Institutional review board (IRB) approvals or equivalent for research
with human subjects
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Question: Does the paper describe potential risks incurred by study participants,
whether such risks were disclosed to the subjects, and whether Institutional Review
Board (IRB) approvals (or an equivalent approval/review based on the requirements
of your country or institution) were obtained?

Answer: [NA]
Justification:
Guidelines:

e The answer NA means that the paper does not involve crowdsourcing nor
research with human subjects.

o Depending on the country in which research is conducted, IRB approval (or
equivalent) may be required for any human subjects research. If you obtained
IRB approval, you should clearly state this in the paper.

o We recognize that the procedures for this may vary significantly between insti-
tutions and locations, and we expect authors to adhere to the NeurIPS Code of
Ethics and the guidelines for their institution.

e For initial submissions, do not include any information that would break
anonymity (if applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original,
or non-standard component of the core methods in this research? Note that if
the LLM is used only for writing, editing, or formatting purposes and does not
impact the core methodology, scientific rigorousness, or originality of the research,
declaration is not required.

Answer: [NA]
Justification:
Guidelines:

e The answer NA means that the core method development in this research does
not involve LLMs as any important, original, or non-standard components.

o Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix to the paper
The Gaussian Mixing Mechanism:
Rényi Differential Privacy via Gaussian Sketches

Organization In Section A, we elaborate on notation used throughout this work. In
Section B, we discuss a salient property of € that appears in Algorithm 2. In Section C, we
give proofs for the main theoretical results presented in the main text. Section D contains
the utility guarantees for our differentially private logistic regression method in Section 5.2.
We then discuss details of the various DP algorithms considered as baselines in Section E.
Finally, we give details of the experiments in Section F, and additional numerical experiments
in Section G.

A Notation

Given a matrix A € R™*" we denote its elements by A;; and its column-stack representation
by

vec(A) = (A11, Aoty - ooy Aty Arz, Agay ooy An) T

Random variables are denoted using sans-serif fonts (e.g., X,y), while their realizations are
represented by regular italics (e.g., X,y). The Lo norm of a vector A := (aq,...,aq) is given
1

by (Zle a? * and is denoted by ||A||. We denote the minimal and the maximal eigenvalues
of a matrix A by Anin(A4) and Apax(A4). We denote a PSD matrix A by A = 0 and a PD
matrix by A = 0. We usually denote our dataset {z;};_, where each z; € R? in the matrix
form X = (x1,...,7,)". Then, we denote the j’th entry of x; by z;(j). The determinant
of a matrix A is denoted by det (A). The set of integer numbers from 1 to n is denoted by
[n]. The all zeros column vector of size d is denoted by 0y = (0,...,0)T. We denote by
N(0,T;, xk,) @ k1 X ko matrix comprised of i.i.d. Gaussian elements with zero mean and unit
variance. We denote by Nyym(0,14) a d X d symmetric matrix whose elements on the upper
triangular matrix are i.i.d. and distributed accoring to N'(0,1). The Kronecker product
between matrices A and B is defined via

AuB ... A..B
A®B =
Aa.B ... A,.B

The k x k identity matrix is denoted by I.

B A central property of £(n,, k, )

Proposition 3. The function € in (2) is non-negative. For fived values of k, §, £(n,~, k, 9)
is a decreasing function inm, and satisfies £(n,v,k, ) < h(y) for a monotonically decreasing
function h where h(y) = 0 as v — co.

Proof. We now show that &(n, v, k,d) > 0 and further that one can make £(n,~, k, d) as small
as any desirable ¢ by increasing n and . We first note that ¢(«; k, ) is an upper bound
on D,(M(X)||M(X")). Thus, following the validity of the conversion from RDP to DP of
Canonne et al. [2020], the second term in &(n, v, k, §) provides an upper bound on the privacy
parameter ¢, and thus is non-negative. Since the first term in £(n, v, k, ) is non-negative we
get that the entire expression is non-negative.

To prove that &(n,~,k,d) can be made arbitrarily small, we use the result of Corollary 1
which tells us that p(a; k,v) < 2’% forl<a< %fy and provided that v > g However, we
note that the minimum in £(n,~, k, §) is upper bounded by

{ ka N log (3/6)} < k N log(3/s)

W a—1

min < — 5

1<a<2vy/5
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which is derived by substituting a = 2v/5. Thus, this minimum is monotonically decreasing
in v and can be made arbitrarily small by increasing . The result then follows since the first
term in (2) is monotonically decreasing in 7, and holds further in the case where n = % by

picking a sufficiently large ~.

C Proofs

C.1 Proof of Lemma 1

The proof relies on the next lemma, which establishes the a-Rényi divergence between two
multivariate Gaussian distributions.

Lemma 2 (Gil et al. [2013]). Let x; ~ N (u1,%1) and xg ~ N (2, X2). Then,
a _
Da(xallxe) = 5 (1 — p2) T (Z1+ (D2 = £1)) 7 (1 — o) (4)

1 log det (X1 4+ a(X2 — 31))
2(a—1) (det (21))' ™ (det (25))"

for all @ such that aX7" + (1 — )25 " = 0.

Proof of Lemma 1. Instead of analyzing GaussMix, we will analyze the transformed mecha-
nism
M(X)=M(X)T =XTST +0¢7,

which, in terms of privacy, is equivalent to M(X). We note that M (X) is a matrix of
Gaussian random variables, where its columns are i.i.d. and each column has a covariance of

n
E [(XTSI' + Ufi)(XTSi + O'fi)T] =XTX + O'QHd = lex: + O'QHd
i=1

where we have denoted ST = (s1,...,s;) and ¢ = (&1,...,&). Thus, we first note that

vec(M(X)) ~ N(0,T;, @ (X T X + ¢°1,)).

Let X’ be our neighbor dataset that is different from X in a single row. Throughout we
assume that X' is equivalent to X except for one row which is zeroed out (see Section 3).
We then show that the proof also covers the inverse case where one row of X is zeroed out.

Without loss of generality, assume that the differing row is the first row of X. Thus, we first
note that

I ® (XX +0%1) — I, @ (X' T X'+ 0%1) = I, @ (2127 ).
Let ¥y ==1; ® (X "X 4+ 02Iy) and ¥ :=I; ® (X'T X' + 0%1;). Now,
Lita(@-%) =L e (—ariz] + XX +0°1)
and since E {vec(Mv(X))} = E [Vec(//\/lv(X'))} = 0 by using the algebraic identity
det (Iy ® A) = (det (A))* and by using (4) we get

det (—a:rlx;r +XTX+ Jz]Id)

Da(M(X)HM<XI)> = _2(a — 1) log ((det (XTX + O.QI[d))l—a(det (XTX + O-Q]Id _ l’ll‘lT))o‘

(5)
For an invertible matrix A, the matrix determinant lemma states that

det (A+uv") =det (A) (1+v" A ).
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Since the matrix X T X + 021, is invertible whenever o2 > 0, this further tells us that the
denominator of (5) can be simplified to

[e3

(det (XTX 4 0°14)) "~ (det (XX + 02Ty — 12 ))
= (det (XTX +0%1y)) " (det (XTX +0°14))" (1= 2] (XX + 0*L)"'21)

[e3

=det (XX +0%1y) (1 — 2] (XX +0°Ly) " tay)" .

Thus, we further have
det (—a:rlxir +XTX+ azl[d)
(det (X TX + o2Iy)) 2 (det (XTX + 021y — xlxlT))a
B (det (—amlxlT +XTX+ oQ]Id)
det (XTX + 021y)

) (=2 (XTX +0%1) tay) ™™

Similarly, we can apply the same determinant identity to det (—azle +XTX + ozﬂd) and
get
det (—amlx]— +XTX+ az]Id)
det (XTX + 021,)

=1—ax] (X"X + 0% ta;.

Next, we note that this yields the next simplified form for D, (M (X)||M(X")):
Do(M(X)[M(X"))

k
= 3D log ((1 — ar] (XTX +021y) ta) (1 — 2] (XTX + o?Lg) " tay) %)
o —
_ ko (1 -2 (XTX +0%1y) tay)?
2(a—1) 1—ax] (XTX +02ly) 'z )~

(6)

We note that the function (1:2: is a monotonically non-decreasing function of ¢ in the range

0<t< é for a > 1. To see this, note that

! @ ala—1)t

o [1-pe 0 B B
(%log< e ) = pp Lodosll =) —log(l =t} = =9 4 70 = T an)

which is positive in the range 0 <t < é (recall that « > 1). Thus, to further simplify (6),

we will try to find an upper bound on z{ (X "X + 0?I4)~121. To that end, note that for a
general symmetric positive-definite matrix A we have

2
TA-1, < [Edl
o A = )\min(A)

where equality is achieved whenever z is the eigenvector of A that correspond to A\pin(A).
Then, using this relation with regard to X T X + ¢2I; > 0 and using the identity

)‘min(XTX + U2]Id) = )\min(XTX) + 0'2

yields
T XTX + 2]1 —-1,.. ||$74||2 f 11 . 1
z; ( o°lq) TSty e oralli=lon
Since we know that mz[u]( |z]]* < C% we further have
i€[n
Ck

T T 2 -1
T(XTX + 0%0y) " a; < .
zi ( Tl S T T o
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This further leads to the next final upper bound on the Rényi divergence:
Do (M(X)[M(X"))
k ) ((1—xI(XTX+02]Id)_1x1)O‘>

~ 2(a—1) A ar{ (XTX +020,) 12y
[E2 o
k (1_)\ - (XTx)+J2)
< 1 -
=2a-1) B\ - __alml (7)

Amin (X T X)+02

I U G WA S U Y 1
2(a—1) Amin (X T X) + 02 2(a—1) Amin(XTX) +02 )’

. T o2
where (7a) requires that a < Amn(HXT)gH‘

replace 21 with a general point z;, the worst case divergence between X and an X that is
changed by zeroing out one entry x; is

sup Do(M(X)[IM (X]))

i€[n

< sup _ka log | 1— HIZHQ — i log [ 1— a HxZ”Q
e | 2(a—1) Amin (X T X) + 02 2(a—1) Amin (X TX) + 02

. Then, since a similar analysis holds when we

2 2
= Q(Oim 1y o8 (1 B Amin(x(%() m 02> T 2a_1) B (1 B Amm(;%é) n 02>
2 2
o e Rl (o ) R s L (o e =
where (8a) is again by the monotonicity of (1:2: and since Apin (X T X) > Apuin, where
a < ml_in {Xrﬁ;ﬁg 2} = Xmic‘“g o’ and the bound holds whenever Amin + 02 > Ci. Finally,
note that since a—1 > 0 for all @ > 1 and since o log (1 — XC%UZ) —log (1 - Xaci‘g,‘,) >0

for all & > 1 (this follows since the function is 0 for & = 1 and since its derivative is positive)
this upper bound is non-negative and is a valid upper bound on this divergence.

For the case where one row of X is zeroed out, we note that we have X'T X' + ¢%l; =
XTX + 0%l + z;x] . Then, (6) is replaced with

2T(xT o20,) 1y )®
Da(M(X)M(X/))2<a1f_ 5 1og<(1+ T(XTX 4 020,)1ay) )

1+az] (XTX + 02ly) tay

Now, we define the function f(¢; @) = log <(17t)a ) —log (OH)Q ) Then, note that f(0; ) =0

1—at 1+at
and further since o > 1 and ot < 1 then

P 1 1
8tﬂt;a)2a<1—(at)2 N 1—t2> 20

and thus f(t;«) > 0 forall t < é, and we get that the maximum between the two divergences

is always given by the case where X’ contains a zero row. Thus, by finding the ¢2 that
makes (8a) equal to € we guarantee that our mechanism is (o, £)-Rényi-DP .

It remains to validate that the condition aX! + (1 — @)25* = 0 holds. However, since
throughout we have Yo = X7 — xlx;r with ¥; = X T X 4 o], by using the formulas for the
inverse of a rank-1 update we get

3 2—1/2 ) _TE—I/Q B
oS+ (1- )yt =27 [+ (1 —a) - 2T sy,
1-— €Z; 21 ZT;

25



We note that since ¥; > 0, for this term to be positive definite it suffices for the middle
matrix to be positive definite. However, since this matrix is a rank-1 update of I, its
eigenvalues are 1’s and an additional eigenvalue that is given by

2

21_1/2£Ei Ty —1

x, X
1+(1—-« H7:1+ l—a) —4+2L 0

( ) 1 -2/ % ey ( ) 1—a/ 2 e,

12
We note that this term is positive whenever a < #{1% However, since 2] ] 'z; < %
this inequality is satisfied by the restrictions we have on the domain of «.
O

C.2 Proof of Corollary 1

Proof. We start by defining the difference function

ka ka 1 k o
st = g5~ (13) e (- 5)

Our goal is to find when A(k, a,~) > 0 for 1 < o < . We note multiplying by the positive
factor 292(a — 1) and cancelling the term k > 0 gives the equivalent condition

1
G(a) = ala —1) — ay?log (1—7> + 7% log (1—3) >0, 1<a<w,

where w will be specified shortly. On o =1 we further get G(1) = 0. Moreover,
1 2

G'(a) =2a —1—~%log <1 - > S —

v) v-a

and multiplying by (v — a) > 0 (recall that o < ) shows G’(«) has the same sign as the
quadratic

H(a) = (y = )G’ ()

— (20— 1)(y— a) —72( — ) log (1 - i) o

1 1
2a2+<1+2’y+7210g<17>)a7<1+7+7210g(17)),

We define the discriminant to be

2
1 1
Ay = (1+2ry+72log(1—7)> —87(1+7+7210g(1_7))

which is non-negative. Thus, H has two real roots

~Plog(1=15)+2v+1+VAy

Omax / min = 4

and H(a) > 0 for o € [umin, @max] Since the coefficient of the quadratic term H(«) is
negative. However, note that ami, < 1/2 for all 4 > 1 and moreover qax > 1 for v > 5/2
and amax < 7y for all v > 5/2. Thus, since the derivative is positive and since G(1) = 0,
setting w = amax yield G'(«) > 0 for every 1 < a < w and thus the inequality G(a) > 0
holds throughout that interval, whenever v > 5/2. The proof is completed since apax > 2%
for all v > 1. O

C.3 Proof of Theorem 1

We recall that the sensitivity of the minimum eigenvalue Ay (X' X) is C3% (see, for
example Sheffet [2017], Wang [2018]). Then, by using the standard formula of the Gaussian

mechanism [Dwork et al., 2014, Appendix A] we get that X is (1/210g(3.75/8)/n,8/3) release
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of Amin (X T X). Using Lemma 1 and Proposition 1, we note that whenever Ay, (X T X)+7% >
~ the release of the output in both cases satisfies (€, /3)-DP where

log (3/5) + (a — 1) log (1 — 1/a) — log(a)}
a—1 '

S .
= min {w(a, )+

The first case (when v < 7) trivially satisfies this. However, for the second case (whenever
v > 7), this is satisfied only if 7% + A\pin (X T X) > 7, which by using the inequality

7 4 Amin (X T X) =7 = Anin (X T X) +0Cx 7 — nCxz 4+ Amin (X ' X) = v + nC%k7 — nC%kz

corresponds to having z > 7 (we note that the case X = 0 immediately satisfies Amin (XTX)+
n? > ~ since then we have 77 = ). Thus,

2
P(?Afz + Amin(X T X) < 'y) =P(z>71)< exp{—;} < 3

Then, using simple composition [Dwork et al., 2014, Chapter. 3] and substituting 7 >

v/21og(3/s) yields the desired result.

C.4 Proof of Theorem 2

Proof. We first establish the performance of a method that adds noise with a general level o,
namely,

Orin = ((SX + 0€1) T (SX + 0£1)) " H(SX 4 0&1) T (SY + 0&,).

Then, we can rewrite fg;, in the next form
2

Y X
Orin = argmin |[(S, &1, &) 6d —|ola)o
0 0T
o 0,4
Now, since rank((XT,JHd,Gd)T) = d and since 02 > 0, by Pilanci and Wainwright [2015,

cod

= W.p. at least 1 — ¢y - exp {_CQI{?XZ} we have

o () + o).

Corollary. 2], whenever k >
N 2
L,y (Orin) + 0 |0Linl” < (14 x)? (HY —X0" (o?)|" +0?|
We note that this further implies that
* 2 *
Ly (Oum) < (1402 (Y = X0° @) + 021+ 107]2)
Thus, we can write

Ly (Buin) = (14 02 Ly (67) < (14302 (||Y = X8%(@2)[|* = |V = X" + o*(1 + |6°]1"))

=0 ((1+x%* (1+]6°17))
where the last inequality is by Wang [2018, App. B.2]. Now, we note that in both of the
cases of the algorithm the magnitude of the added noise is at most v(C% + C%.), where

is determined by the calculation done in step 1. Thus, since the bound is monotonically
increasing in o2 we can further use the upper bound

Ly (Bin) = (14 X)Ly (07) = O (1 +0*UCx +C3) (1+1071%) ). (9)

We further note that

2log(3-75/s i log(3/s)+(a—1) log(1—1/a)—log(c
o= LTI iy 4 oD log 1) ogt)
2% log(3-75 3
< k log( 6)+ min ki+log( /5)
5y 1<a<2y/5 | 292 a—1
34/2k log(3:75/s)

v
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klog(1/6)
€

Thus, equating this upper bound to ¢ suggests further that v = O (
this bound in (9) leads to

) and using

3

Ly (6han) — (14 0Ly (0%) = O ((1 4 VR V) ||9*|2)> -

The proof is finished since this holds for any x under the constraints in the theorem. O

D Utility Guarantees for Logistic Regression

We now demonstrate utility guarantees on our method for DP logistic regression, presented in
Section 5.2. Those derived similarly to Theorem 2, by considering both sources of errors: the
error of approximating the objective with a polynomial and the empirical error of the linear

regression solution. Throughout the proof, we denote by 9 the private solution obtained
by scaling the output of Algorithm 2 by 72%. We also let 8* denote the minimizer of the

approximated loss, given explicitly by —2%()( TX)"'XTY. We further denote the empirical
logistic loss via

1 n
Lxy(#):=-=) log(1 —y;x, 0
x.v (0) n;Og( +exp {—yiz; 0})
and the approximated empirical logistic loss via

- 1 1
Lxy(0) :=by+b6" (XTY) + b8 (XTX) 0
n n

2

b2 5  ba by
=by— —— ||V Zll-=Yv - X6
0 4nb2 H || +n 2b2
b2 2 b2 bl
=by— —— ||V ZF(X,——VY.0).
o= g VI + 2F (X, -5v.6)

We note that Corollary 2 guarantees that our logistic regression solution obtained by
minimizing this surrogate is private. We now present the utility guarantees on this solution.

Corollary 3. Assume that Hacl||§ < C%, |yil” < C% and ‘yzxja* <Q and
all i € [n] and for some finite Q > 0. Let (by,b1,b2) chosen such that

0] <@ jor

max  |—log(1+e~*) — (bo + bis + b282)| <q. (10)
$€[-Q,Q)]

Then, there exist universal constants co,c1,ca such that for any x satisfying kx? > cod the
following holds with probability at least 1 — ¢y - exp {_CQkXQ}.'

Lxy(0") = (1+x)’Lxy (5) —(1+1+x)e+ 1 -1+x% <b0 _ bf)

4by
2 ~ (12
-0 ((1+x)“kl°g£i/5)c)‘ <1+ ‘ 0 ))
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Proof. We first note that

Ly (@) = (1+ %)Ly (8) < Ly (0%) = (1+ )% Lxy (9) (11a)
= Ly (%) — Ly (0%) + Excy (6%) — (140 Ly (0)
+ (140 (9) - (140 Lxy (9)
< (14 (400 + Ly 0) = (1+0Lxy (0)  (110)

— (1 4+ 0Dg+ (1= (14 x)?) ( ) (110)

b bi o G 2 b
+n<F<X,—2b2K9) (1+X)F(X, 2bye>)

where (11a) is by the optimality of 6%, (11b) is by (10) and (11lc) is by the definition of
nyy(o) and by the assumptions ‘ylm;rg* < @ and 'ylx;ra‘ < @. Then, the final result
follows by using Theorem 2 and since in this case |y;| = 1, thus ||[Y||=nand Cy =1. O

When we take y < 1, the bound acquires an extra 2¢ term in the excess risk, introduced by
the polynomial approximation.

E Algorithms for DP regression

E.1 Linear regression

E.1.1 AdaSSP

Algorithm 3 AdaSSP [Wang, 2018]

Require: Dataset (X,Y); Privacy parameters ¢, §; Bounds: mfﬁ( [l]]? < Ci(,mz[n]c Iy <
i€ln i€[n
2
CY.
1: Calculate the minimum eigenvalue Apin (X ' X).

~ 2
2: Privately release A\yj, = max {/\min 4 V0s(¥/5)Ck , _ loa(%/s) C%,0 } where z ~ N'(0,1).

5/3 5/3
3: Set A = max {O, dlog(ﬁ/é)gl/ig@ﬂ/g)cg( — Xmin}.

4: Privately release X TX = XTX 4+ log(%/s) ng for &1 ~ /\/’Sym(() Iq).

5/3
5: Privately release X Ty = X Ty + Y log(ﬁgjscxcyg for & ~ N(0,1,).

-1 —~—

6: return 6 « (XTX + )\]Id> XTy
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E.1.2 Algorithm 1 from Sheffet [2017] and our proposed modification

Algorithm 4 Sheffet’s Algorithm (Original)

Require: Dataset (X,Y); Privacy parameters ¢, §; Bounds: mz[au)]( ||.’L’Z||2 < C%, m?)]< lyil? <
1€(n 1€(n
C%; Hyperparameter k.
Compute Apin := Amin (X, Y)T(X,Y)).
4(C% +C3
Set y « HEEE) (| ok log (§) + 210 () ).
Sample S ~ N (0, T xr)-
2 2
if Amin > 7 + 2+ 4(Cx+Cy)log(/s) o 5 Lap (M) then

€

return 0 « ((SX)T(SX)) (SX)T(SY)
else
Sample noises & ~ N(0,Txxa), &2 ~ N(0,1).

return 0 < ((SX +7&) T (SX +7£1)) " (SX +7&1) T (SY +1&)

Algorithm 5 Sheffet’s Algorithm with Our Analysis

Require: Dataset (X,Y); Privacy parameters ¢, §; Bounds: mz[u]( ]| < C%, mz[x)]( lyi|? <
€N €N
C%/; Hyperparameter k.
Compute Apin := Amin((X,Y) (X, Y)).
Set v s.t. 11<ni1<1 {(p(oz;k,y) +log(1-1) - log(a5 } <eg/2.
a<y
Sample S ~ N (0, Ty xr).
if \pin >7v+z+ w for z ~ Lap (M) then
return § + ((SX)T(SX)) ™" (SX)T(SY)

else
Sample noises & ~ N(0,Ixxa), &2 ~ N(0,1).

return 0 « ((SX +~&)" (SX + ’yfl))_l (SX +79&) T (SY ++&)

E.2 Logistic Regression

E.2.1 Objective Pertubation

Algorithm 6 Objective Perturbation [Kifer et al., 2012]

Require: Dataset (X,Y); privacy parameters e and ¢; Bound ||z;|| < Cx for all ¢ € [n];

1: Set g = VAt81o8(/0) Cx and A =

2: Sample b ~ N(O a?ly)

3: return 6 < argmin {ZZ" L —+log (14 exp {—yiz 0}) + L + 219 }
9

F Experimental Details

All the linear regression experiments were run on 12th Gen Intel(R) Core(TM) i7-1255U,
and all the logistic experiments were run on an NVIDIA A100 GPU.

F.1 Linear Regression

For the linear regression experiments, we used four datasets. The first two are real-world
datasets: the Tecator dataset [Thodberg, 2015] and the Communities and Crime dataset [Red-
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mond and Baveja, 2002]. We have used a random train-test split of 80%/20% for generating
a train and a test set.

The other two are synthetic datasets where the responses were generated via the linear model
yi =z, 0y + 0&;, with 6y sampled as a unit vector uniformly from the (d — 1)-dimensional
sphere, &; ~ Unif(—1,1), and ¢ = 0.1.

In the first synthetic dataset (termed Gaussian dataset), the parameters were n = 8192,d =
512, and the covariates were sampled as x; ~ N (0,QQT), where Q € R%*? is a random
orthogonal matrix with ¢ = 4, ensuring the data lies on a 4-dimensional subspace. The
matrix Q was generated via QR decomposition of a random matrix with i.i.d. standard
Gaussian entries.

The second synthetic dataset (termed the synthetic dataset) was constructed as follows.
First, we sampled latent covariates Z; ~ N(0,I3). Then, we generated final covariates using
a two-layer neural network:

z; = ¢(Wap(W1Z; + b1) + ba),

where ¢(+) is the element-wise sigmoid function, Wy ~ N(0,T190x2), W2 ~ N (0, Lix100),
by ~ N(0,1076 - T10), and by ~ N(0,1076 - T). In our experiments, we have fixed d = 2°.

For both synthetic datasets, the train and test sets were generated independently, using the
same fixed 6y but with independent covariates and additive noise.

In all cases, we normalized the training data so that the maximum f3-norm of any training
sample was 1. The test data was scaled using the same normalization factor as the training
data.

The baseline (non-private) estimator was computed as 0= (XTX+NG) ' XTY for A = 1076,
ensuring invertibility in all cases. We report the mean squared error (MSE) for both the

train and the test set, computed as the squared error in predicting y; via x; 0. All results are
averaged over 250 independent trials, and we report both the empirical means and confidence
intervals.

F.1.1 Algorithms

Our algorithm was implemented as described in Algorithm 2. The AdaSSP algorithm
was implemented based on [Wang, 2018, Alg. 2], following the procedure detailed in Ap-
pendix E.1.1. Our second baseline, from [Sheffet, 2017, Alg. 1], was implemented according
to the description in Appendix E.1.2. This implementation matches that of [Sheffet, 2017,
Alg. 1], except for an adjustment to account for a factor of 2 in the parameter w, which
arises due to using the zero-out neighboring definition rather than the replacement definition.
In the variant of this baseline that incorporates our improved privacy analysis, we replaced
the original noise calibration with bounds derived from Lemma 1, translated to (e, §)-DP
using the conversion provided in Proposition 1 (see also Appendix E.1.2).

F.2 Logistic Regression

In this set of experiments, we trained a logistic regression classifier for a binary classifica-
tion task without applying any regularization. Our non-private baseline is the standard
LogisticRegression solver from the sklearn.linear_model library. The private baselines
are the objective perturbation method (described in Appendix E.2), where the minimization
is carried out using torch.optim.LBFGS with a maximum of 500 iterations and a tolerance
of 1079, following the setup of [Guo et al., 2020], and DP-SGD [Abadi et al., 2016] as
implemented in Opacus Yousefpour et al. [2021] with a batch size of 1024, 10 epochs, and a
learning rate of 0.5. While DP-SGD may benefit from hyperparameter tuning, our method
requires only one; to avoid spending additional privacy budget on tuning, we use a fixed,
reasonable configuration. We also fixed the parameter k on 4.5d.

We conducted experiments on the Fashion-MNIST [Xiao et al., 2017] and the CI-
FAR100 [Krizhevsky and Hinton, 2009] datasets, using the implementations provided in
torchvision.datasets. From each dataset, we selected only the samples corresponding to
classes 3 and 8, and relabeled them as —1,1 to fit the binary classification setting. We used
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the standard PyTorch train/test splits and normalized the training data by the maximum
L5 norm across all training samples, ensuring that each training sample has a norm of at
most 1. The same normalization factor was then applied to the test set. The train and test
loaders were generated using torch.utils.data.DataLoader with shuffling enabled. In
Appendix G.2 we present additional simulations with the CIFAR10 [Krizhevsky and Hinton,
2009] and the MNIST [LeCun and Cortes, 2010] datasets.

The network architecture used is a compact convolutional neural network for RGB image
classification. It consists of two convolutional layers with ReLU activations and max pooling,
reducing the input to a 64-channel feature map of size 8x8. The flattened features are
passed through a fully connected layer with 128 hidden units and ReLU, followed by a final
linear layer that outputs class logits. In both of the experiments, we have first trained this
network end-to-end using the DP-SGD primitive implemented in Opacus [Yousefpour et al.,
2021], where we have set the clipping parameter to 4.0, learning rate to 0.001, the number of
epochs to 20, and the batch size to 500.

Performance metrics are averaged over 50 independent runs, and as before, we report test
accuracy along with confidence intervals. Runtime comparisons show the ratio of execution
times for the largest simulated e.

G Additional Experiments

G.1 Linear Regression

We have simulated additional four datasets: the Boston housing dataset [Harrison Jr and
Rubinfeld, 1978] that contains 506 measurements of 13-dimensional features with the goal
of predicting house prices in the Boston area, the Wine quality dataset [wine, 2009] which
contains 1359 measurements of 11-dimensional features, with the goal of predicting wine
quality, the Bike sharing dataset [bike, 2019] with the goal of predicting the count of rental
bikes, and another artificial dataset that follows the same description as that of the Gaussian
dataset but now with i.i.d. features where the distribution of each entry is Unif([—1, 1]). The
additional results are presented in Figure 4.

G.2 Logistic Regression

We have simulated two additional datasets: the CIFAR10 [Krizhevsky and Hinton, 2009] and
the MNIST [LeCun and Cortes, 2010] datasets, using the same logistic regression setting. The
additional results are presented in Figure 5. Both settings demonstrate the computational
improvement of our method, as well as utility improvement for a range of the simulated
values of €.
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Figure 4: Linear mixing performance on the additional four linear regression tasks.
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Figure 5: DP logistic regression using a privately trained CNN feature extractor on binary
subsets of CIFAR10 and MNIST.
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