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Abstract
The𝑞-parameterizedmagnetic Laplacian serves as the foundation of

directed graph (digraph) convolution, enabling this kind of digraph

neural network (MagDG) to encode node features and structural

insights by complex-domain message passing. As a generalization

of undirected methods, MagDG shows superior capability in model-

ing intricate web-scale topology. Despite the great success achieved

by existing MagDGs, limitations still exist: (1) Hand-crafted 𝑞: The

performance of MagDGs depends on selecting an appropriate 𝑞-

parameter to construct suitable graph propagation equations in the

complex domain. This parameter tuning, driven by downstream

tasks, limits model flexibility and significantly increases manual

effort. (2) Coarse Message Passing: Most approaches treat all nodes

with the same complex-domain propagation and aggregation rules,

neglecting their unique digraph contexts. This oversight results

in sub-optimal performance. To address the above issues, we pro-

pose two key techniques: (1) MAP is crafted to be a plug-and-play

complex-domain propagation optimization strategy in the context

of digraph learning, enabling seamless integration into any MagDG

to improve predictions while enjoying high running efficiency. (2)

MAP++ is a new digraph learning framework, further incorporating

a learnable mechanism to achieve adaptively edge-wise propagation

and node-wise aggregation in the complex domain for better perfor-

mance. Extensive experiments on 12 datasets demonstrate thatMAP

enjoys flexibility for it can be incorporated with any MagDG, and

scalability as it can deal with web-scale digraphs. MAP++ achieves

SOTA predictive performance on 4 different downstream tasks.
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1 Introduction
As high-order structured data, the directed graph (digraph) offers a

new perspective to model intricate web-scale information by cap-

turing node relationships. Its exceptional representational capacity

at the data level has driven advancements in graph mining at the

model level, drawing significant attention in recent years [53, 57].

Notably, although existing undirected GNNs can achieve satisfac-

tory performance, the loss of directed information undeniably limits

their potential, especially when addressing topological heterophily

challenges (i.e., whether connected nodes have similar features or

same labels) [45, 54, 59]. Therefore, researchers have increasingly

focused on utilizing digraphs for modeling complex web scenar-

ios, including recommendation [64, 72] and social networks [2, 55].

Based on this, web mining problems can be translated into node-

[35, 61, 70], link- [29, 44, 71], and graph-level [37, 42, 60] tasks.

To achieve effective digraph learning, a promising approach is 𝑞-

parameterized magnetic Laplacian L𝑚 , which forms the foundation

of digraph convolution from a spectral perspective to simultane-

ously encode node features and structural insights by message pass-

ing in the complex domain. Specifically, it is an adaptation of the

standard Laplacian by incorporating complex-valued weights to ac-

count for the influence of amagnetic field on edges, which is particu-

larly beneficial for investigating network properties when the edges

are formulated as the asymmetry topology (e.g., digraphs) [5, 8].

Notably, the weights of L𝑚 denoted as exp

(
𝑖𝚯
(𝑞)
𝑢𝑣

)
, where 𝚯

(𝑞)
𝑢𝑣

represents the magnetic potential or phase linked to the directed

edge 𝑒𝑢𝑣 and 𝑞 determines the strength of direction, reflecting the

integration of the magnetic vector potential along the edge from

node 𝑢 to 𝑣 . Intuitively, it can also be viewed as the spatial phase

angle between connected nodes in the complex domain, describing

the direction and granularity of spatial message passing.

Building upon this concept, digraph neural networks based on

the 𝑞-parameterized magnetic Laplacian (MagDGs) implicitly exe-

cute eigen-decomposition during convolution [20, 35, 39, 67, 70, 75].

This approach captures crucial structural insights (i.e., key proper-

ties of the digraph, such as connectivity) under the influence of the

magnetic field, guiding optimal node encoding principles within the

directed topology. Despite recent remarkable efforts in designing

MagDGs, inherent limitations still exist:

(1) Limited Understanding of 𝑞-parameterized Magnetic Lapla-
cian in Digraph Learning. Intuitively, 𝑞 determines the strength of

direction for each edge in the digraph, manifested in the spatial

phase angle between every connected node in the complex domain.

For its direct impact on propagation and message (i.e., propagated

results) aggregation, selecting an appropriate 𝑞 is crucial. How-

ever, related studies have primarily concentrated on spectral graph

theory, providing guidance on 𝑞 selection from a strictly topolog-

ical perspective and evaluating these principles in graph signal

processing [14], community detection [12], and clustering [11]. De-

spite their effectiveness, directly applying these methods in digraph
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learning is not suitable, as node profiles (i.e., node features and

labels) are seldom considered in spectral graph theory and above

applications. In digraph learning, both node profiles and topology

play equally crucial roles, and therefore, relying solely on topologi-

cal measurements to define the𝑞-parameterized magnetic Laplacian

is insufficient and can mislead the message passing in the complex

domain. To fill this gap, existing approaches treat 𝑞 as a hyper-

parameter, finely tuning it for different datasets and downstream

tasks. Although this strategy performs well in data-driven contexts,

it often fails to thoroughly explore the optimal range of 𝑞, which

increases manual cost, particularly in web-scale scenarios.

Solution: In Sec. 3 and Sec. 5, we conduct a comprehensive em-

pirical study and theoretical analysis from topological and feature

perspectives to explore the key insights behind the 𝑞-parameterized

magnetic Laplacian in the context of digraph learning.

(2) Lack of Fine-grained Message Passing in the Complex Domain.
Most existing methods directly utilize identical 𝑞 to achieve coarse-

grained graph propagation in the complex domain. This strategy

assigns the same spatial phase angle to every directed edge, thereby

employing the same propagation rules for all edges and neglecting

their uniqueness. Furthermore, most approaches apply a simple

averaging function during message aggregation after graph prop-

agation. This approach overlooks the varying contributions from

different depths of structural insights encoded in the propagation,

which are crucial for attaining optimal node representations. Obvi-

ously, this coarse-grained message passing in the complex domain

leads to sub-optimal predictive performance. Meanwhile, real-world

web mining applications with intricate directed topology heavily

depend on the semantic contexts, which encompasses a comprehen-

sive characterization based on their features and unique topology.

Hence, it is necessary to introduce a fine-grained message passing

to capture such semantic context.

Solution. Motivated by the key insights obtained by Sec. 3, we

propose two pivotal techniques: (i) MAP, a plug-and-play strategy

seamlessly integrated with any existing MagDG, optimizes graph

propagation in the complex domain through a weight-free angle-

encoding strategy in the spatial phase, improving predictions while

maintaining scalability. (ii) MAP++, a new magnetic-based digraph

learning framework, further quantifies the influence of node profiles

and directed topology in the complex domain through a learnable

strategy. It achieves SOTA performance by flexible and adaptive

edge-wise graph propagation and node-wise message aggregation.

Our contributions. (1)New Perspective. To the best of our knowl-
edge, this paper is the first attempt to investigate the key insights

of 𝑞-parameterized magnetic Laplacian in digraph learning. We pro-

vide comprehensive empirical studies and highlight the integrated

impact of node profiles and topology. (2) Plug-and-play Strategy.We

first propose MAP, which encodes spatial phase angles in a weight-

free manner to tailor propagation rules for each node, seamlessly

integrating with MagDGs to improve predictions. (3) New Method.
To pursue superior performance, we proposeMAP++, which utilizes

learnable mechanisms to further optimize complex domain message

passing, achieving edge-wise propagation and node-wise aggrega-

tion. (4) SOTA Performance. Evaluations on 12 datasets, including

large-scale ogbn-papers100M, prove that MAP has a substantial

positive impact on prevalent methods (up to 4.81% improvement)

and MAP++ achieves the SOTA performance (up to 3.47% higher).

2 Preliminaries
2.1 Notations and Problem Formulation
We consider a digraph G = (V, E) with |V| = 𝑛 nodes, |E | = 𝑚
edges. Each node has a feature vector of size 𝑓 and a one-hot label

of size 𝑐 , the feature and label matrix are represented as X ∈ R𝑛×𝑓
and Y ∈ R𝑛×𝑐 . G can be described by an asymmetrical adjacency

matrix A(𝑢, 𝑣). Downstream tasks include node-level and link-level.

Node-level Classification. SupposeV𝑙 is the labeled set, the

semi-supervised node classification paradigm aims to predict the

labels for nodes in the unlabeled setV𝑢 with the supervision ofV𝑙 .
Link-level Prediction. (1) Existence: predict if (𝑢, 𝑣) ∈ E exists

in the edge sets; (2) Direction: predict the edge direction of pairs

of nodes 𝑢, 𝑣 for which either (𝑢, 𝑣) ∈ E or (𝑣,𝑢) ∈ E; (3) Three-
class link classification: classify an edge (𝑢, 𝑣) ∈ E, (𝑣,𝑢) ∈ E, or
(𝑢, 𝑣), (𝑣,𝑢) ∉ E. For convenience, we call it Link-C.

Data-centric Plug-and-play MAP: This approach encodes

spatial phase angles in a weight-free manner by considering the

characteristics of digraph data from both topological and feature

perspectives. It optimizes existing MagDGs by replacing their pre-

defined rigid graph propagation equations (i.e., Hand-crafted 𝑞).

Model-centric MAP++: Building on MAP, this method intro-

duces additional learnable parameters to enable adaptive edge-wise

graph propagation and node-wise message aggregation. The learn-

able modules from the above two perspectives can be selectively

applied based on the computational capabilities, offering flexibility.

2.2 Directed Graph Neural Networks
PrevalentMessage Passing. In undirected scenarios, prevalent ap-
proaches [13, 19, 26, 36, 63, 66] adhere to strict symmetric message

passing. This strategy entails the design of graph Propagation and

the subsequent message Aggregation, facilitating the establishment

of relationships among a node and its neighbors. For the current

node 𝑢, the 𝑙-th W-parameterized aggregator is denoted as:

H(𝑙 )𝑢 = Agg

(
W(𝑙 ) , Prop

(
H(𝑙−1)𝑢 ,

{
H(𝑙−1)𝑣 ,∀𝑣 ∈ N (𝑢)

}))
, (1)

where H(0) = X, N(𝑢) denotes the one-hop neighbors of 𝑢. To

obtain node embeddings in digraphs, it’s crucial to consider the

direction of edges. Hence, the current node 𝑢 initially employs

learnable weights separably for its out-neighbors (𝑢 → 𝑣) and in-

neighbors (𝑣 → 𝑢) to obtain multi-level aggregated representations

followed by the Combination after directed message passing:

H(𝑙 )𝑢,→ =Agg

(
W(𝑙 )→ , Prop

(
H(𝑙−1)𝑢 ,

{
H(𝑙−1)𝑣 ,∀(𝑢, 𝑣) ∈ E

}))
,

H(𝑙 )𝑢,← =Agg

(
W(𝑙 )← , Prop

(
H(𝑙−1)𝑢 ,

{
H(𝑙−1)𝑣 ,∀(𝑣,𝑢) ∈ E

}))
,

H(𝑙 )𝑢 = Comb

(
W(𝑙 ) ,H(𝑙−1)𝑢 ,H(𝑙 )𝑢,→,H

(𝑙 )
𝑢,←

)
.

(2)

Building upon this concept, DGCN [62] andDiGCN [61] incorporate

neighbor proximity to increase the receptive field (RF) of each node.

DIMPA [21] increases the node RF by aggregating more neighbors

during the graph propagation. NSTE [30] is motivated by the 1-

WL graph isomorphism test to design the message aggregation.

ADPA [59] explores appropriate directed patterns to conduct graph

propagation. Despite their effectiveness, these methods inevitably

introduce additional trainable weights and heavily rely on well-

designed neural architectures that hinder their deployment.
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The 𝑞-parameterized magnetic Laplacian driven MagDGs.
To address these issues, recent studies employ the 𝑞-parameterized

magnetic Laplacian to define complex-domain message passing, ex-

plicitly modeling both the presence and direction of edges through

real and imaginary components. Specifically, magnetic Laplacian is

a complex-valuedHermitianmatrix that encodes the asymmetric na-

ture of a digraph via the 𝑞-parameterized complex part of its entries.

This introduces a complex phase, influenced by a magnetic field, to

the edge weights, extending the conventional graph Laplacian into

the complex domain to more effectively capture asymmetry. The

above 𝑞-parameterized magnetic Laplacian is formally defined as:

A𝑚 (𝑢, 𝑣) := 1/2 (A(𝑢, 𝑣) + A(𝑣,𝑢)) ,

𝚯
(𝑞) (𝑢, 𝑣) := 2𝜋𝑞 (A(𝑢, 𝑣) − A(𝑣,𝑢)) , 𝑞 ≥ 0,

L(𝑞)𝑚 := D𝑚 − A(𝑞)𝑚 = D𝑚 − A𝑚 ⊙ exp

(
𝑖𝚯(𝑞)

)
,

(3)

where D𝑚 is the degree matrix of A𝑚 , 𝑞 determines the strength of

direction. The real part in L(𝑞)𝑚 (𝑢, 𝑣) indicates the presence and the

imaginary part indicates the direction. Since we only consider un-

signed digraphs, there exists cos𝚯
(𝑞) ≥ 0. Moreover, due to the pe-

riodicity of the sin𝚯
(𝑞) ,𝚯(𝑞) ∈ [−𝜋/2, 𝜋/2], we have 𝑞 ∈ [0, 1/4].

When setting 𝑞 = 0, directed information becomes negligible. For

𝑞 = 1/4, we have A(𝑞)𝑚 (𝑢, 𝑣) = −A
(𝑞)
𝑚 (𝑣,𝑢) whenever there is an

edge from 𝑢 to 𝑣 only. Based on this, we can formally define the

magnetic graph operator (MGO) with self-loop (Ã𝑚 = A𝑚 + I) to
form the foundation of digraph convolution as follows:

MGO := Â𝑚 =

(
D̃−1/2𝑚 Ã𝑚D̃−1/2𝑚 ⊙ exp

(
𝑖𝚯(𝑞)

))
. (4)

This MGO enables graph propagation in the complex domain, el-

egantly encoding deep structural insights concealed in digraphs

with asymmetric topology. Subsequently, we can instantiate the

trainable message aggregation based on the propagated results.

The aboveWC-parameterized complex-domain message passing

(proposed by MagNet [70]) can be formally defined as:

C
(𝑙−1)
𝑢 = Complex

(
H(𝑙−1)𝑢

)
:=

{
Real

(
H(𝑙−1)𝑢

)
, Imag

(
H(𝑙−1)𝑢

)}
,

C
(𝑙 )
𝑢 = Agg

(
W(𝑙 )
C
, Prop

(
C
(𝑙−1)
𝑢 ,

{
C
(𝑙−1)
𝑣 ,∀(𝑢, 𝑣), (𝑣,𝑢) ∈ E

}))
.

(5)

Based on this foundation, MSGNN [20] extends this complex do-

main pipeline to directed signed graphs by varying the range of 𝑞.

MGC [67] adopts a truncated version of PageRank named Linear-

Rank to construct a filter bank to improve the graph propagation.

Framelet-Mag [39] employs Framelet-based filtering to decompose

the magnetic Laplacian into components of different scales and

frequencies for better predictive performance. LightDiC [35] op-

timizes the MagDG framework by decoupling graph propagation

and message aggregation for scalability in large-scale scenarios.

3 Empirical Investigation
As mentioned in Sec. 1 and Sec. 2.2, despite the remarkable efforts

of existing MagDGs in improving complex-domain graph prop-

agation, two limitations still exist. To address them, we provide

comprehensive empirical analysis in terms of: (1) Illustrations:
We clarify the node semantic context driven by directed topology

and visualize the naive graph propagation in existing MagDGs.

Specifically, we choose two central nodes from Fig. 1 (a) and per-

form statistical analysis from topological and feature perspectives

in Fig. 1 (b), where Edge-Degree denotes the sum of node degrees

linked by two-hop edges of the current node and Edge-Label is the

proportion of connected nodes with same or different labels (i.e.,

homophily and heterophily [41, 43, 73]) in different directions (i.e.,

incoming, outgoing, and bidirected edges). Based on central nodes,

we provide a visualization of the complex domain message pass-

ing in Fig. 1 (c) highlighted by spatial phase angles (i.e., 𝜃1 = 𝜃2).

Notably, we select two representative digraph datasets of different

scales for comprehensive comparison. Compared to toy-sized Cora,

large-scale arXiv better reflect the scalability challenges encoun-

tered in web-scale graph mining and the complexities of directed

topology. (2) Case Studies: In Fig. 1 (d) and (e), we use various

magnetic parameters 𝑞 combined with 3-layer LightDiC [35] to

evaluate the node performance with different semantic contexts

across these two datasets. Similar to (1), we utilize node degrees and

homophily to collectively support the semantic context. Specifically,

in CoraML and arXiv, we classify nodes with degrees less than or

equal to 3 and 5 as Low-Deg and other nodes as High-Deg, where

Low-Deg at the digraph’s periphery with fewer connections and

High-Deg located at the center of densely connected communities.

Meanwhile, for both datasets, we identify nodes with homophily

less than and greater than 0.5 as Low-Homo and High-Homo, where

node homophily [51] quantifies the similarity between the labels of

the current node and its neighbors based on features, with higher

values suggesting a higher probability of sharing the same label.

Observation 1: Due to the intricate directed topology and feature
correlation, nodes within the same digraph and RF may exhibit signif-
icantly diverse semantics. As shown in Fig. 1 (a,b), nodes within the

same digraph and two-hop RF exhibit significant statistical dispari-

ties from both topological and feature perspectives, highlighting

distinct contexts. Intuitively, applying the same propagation rules

to all nodes in digraphs inevitably results in high-bias performance.

Observation 2: The predefined rigid edge-wise 𝑞 exacerbates the
coarse-grained graph propagation above in the complex domain, fur-
ther amplifying the adverse effects of overlooking the uniqueness of
nodes. Existing MagDGs adopt the same 𝑞 for all edges and assign

identical phase angles to all node pairs in Fig. 1 (c). Given the se-

mantic differences between the node and its neighbors with the

complex computation between real and imaginary components,

fine-grained propagation is necessary.

Key insight 1: From the topological perspective, High-Deg poses
greater prediction challenges than Low-Deg. Fortunately, higher 𝑞
emphasizes direction, aiding High-Deg in discerning intricate neigh-
borhoods. In Fig. 1 (d), 𝑞 = 0 and 𝑞 = 0.25 respectively yield optimal

performance for Low-Deg and High-Deg, as indicated by the blue

and brown curves across two datasets. A deeper analysis can be pur-

sued by investigating the trade-off of undirected (cos) information

and directed (sin) information in graph propagation as described

in Eq. (3). For Low-Deg, 𝑞 = 0 results in a straight acquisition of

knowledge from neighbors without additional directed information,

thereby mitigating potential feature confusion issues arising from

fewer neighbors. As for High-Deg, 𝑞 = 0.25 enables fine-grained

discrimination of massive neighbors based on edge direction. This

facilitates the discovery of neighborhood knowledge that favors

the current node for accurate predictions.
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(b) Node Semantic Context
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Real
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(a) Digraph (c) Graph Propagation
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(d) Case Study (Topology)

Imag

Real

(e) Case Study (Feature)

𝜃!

Edge-Label

Figure 1: (Left a,b,c) The illustration of different semantic contexts for two current nodes within two-hop neighbors, where
colors denote label classes. (Right, d,e) The empirical study on directed CoraML (3.3k Nodes at Upper tables) and arXiv (169k
Nodes at Lower tables) with different scales.

Key insight 2: From the feature perspective, Low-Homo poses
tougher prediction challenges than High-Homo. Fortunately, higher
𝑞 facilitates Low-Homo for fine-grained propagation by emphasiz-
ing edge direction. As depicted in Fig. 1 (e), we observe that 𝑞 = 0

and 𝑞 = 0.25 respectively result in optimal performance for High-

Homo and Low-Homo, as indicated by the red and green curves.

Notably, higher 𝑞 are particularly emphasized for discerning edge

direction, especially in the context of the intricate directed topol-

ogy of large-scale arXiv, depicted by the brown and green curves.

For Low-Homo, 𝑞 = 0.25 enables effective differentiation between

similar and dissimilar neighborhoods, thereby preventing the loss

of node uniqueness due to naive propagation. As for High-Homo,

which exhibits similarity among neighborhoods, 𝑞 = 0 achieves a

straightforward yet effective approach to propagation, mitigating

knowledge dilution introduced by additional directed information.

4 Magnetic Adaptive Propagation
Motivated by the above key insights, in this paper, we propose two

technologies: MAP and MAP++, offering a plug-and-play solution

for existing MagDGs and a new MagDG framework, respectively.

The core of our methods is the thorough integration of directed

topology and node features, aimed at circulating the most appro-

priate magnetic field potential to directed edges. In other words,

we strive to ensure the quality of complex domain message passing

by adaptive edge-wise graph propagation and node-wise message

aggregation. Specifically, MAP first identifies the topological con-

text of directed edges by quantifying the comprehensive centrality

of start and end nodes, highlighting the direction of frequently

activated edges (motivated by Key insight 1). Subsequently, MAP

quantifies the correlation between connected nodes in a weight-

free manner throughout the edge projection in the complex plane.

This process highlights the direction of edges linked by dissimilar

nodes (motivated by Key insight 2). Building upon this founda-

tion, MAP++ further introduces a learnable mechanism to achieve

adaptive spatial phase angle encoding and weighted message aggre-

gation to improve performance. The complete algorithm description

and complexity analysis can be found in Appendix A.1.

4.1 Topology-related Uncertainty Encoding
Drawing from the empirical study, we conclude that frequently

activated directed edges generate intricate information flows that

compromise the uniqueness of node representations. Based on this,

we provide a more generalized and thorough perspective: these in-
tricate information flows driven by frequently activated directed edges
introduce additional topological uncertainty to node representations,
significantly disturbing their prediction, as evidenced by Fig. 1 (d).

As Key insight 1 highlighted, the directed information introduced

by increased 𝑞 can be construed as supplementary encoding of topo-

logical uncertainty, thereby regulating graph propagation to avoid

node confusion. In other words, this directed information enhances

the capacity to discern complex information flows, enabling fine-

grained graph propagation, and thereby improving node discrimi-

nation. Consequently, we aim to understand this topology-related

uncertainty. It first identifies frequently activated directed edges

through connected nodes and then applies fine-grained encoding

to their magnetic field potentials for personalized propagation.

In a highly connected digraph, nodes frequently interact with

their neighbors. By employing random walks [50], we can capture

these interactions and introduce Shannon entropy to measure node

centrality [34] from a global perspective. Meanwhile, by adopting

cluster connectivity, we can further offer a description of node

centrality from a local perspective, which closely correlates with

neighbor connectivity. The above processes are defined as:

Global := 𝐺𝐶 (𝑣) =
˜𝑑 in𝑣

𝑚
log

˜𝑑 in𝑣

𝑚
+

˜𝑑out𝑣

𝑚
log

˜𝑑out𝑣

𝑚
,

Local := 𝐿𝐶 (𝑣) = m𝑣/
(
˜𝑑 in𝑣 · ˜𝑑out𝑣

)
,m𝑣 =

∑︁
𝑢

(
Ã2 ⊙ Ã⊤

)
𝑣𝑢
,

(6)

where
˜𝑑 in and

˜𝑑out are the in and out-degrees in the digraph. m𝑣 is
the triple motifs of node 𝑣 . Notably, in contrast to directed struc-

tural entropy defined by the previous work [34], we address the

limitation of only walking in the forward direction by incorporating

reverse walking. This modification is motivated by the non-strongly

connected nature of most digraphs, where the proportion of com-

plete walk paths declines sharply. This decline suggests that most
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walk sequences fail to capture sufficient information beyond the im-

mediate neighborhood of the starting node. Consequently, strictly

adhering to edge directions in walks (forward-only) results in severe

walk interruptions, which ultimately degrades the effectiveness of

𝐺𝐶 (𝑣). Furthermore, we add self-loops for sink nodes to obtain Ã.
This prevents the scenario where the adjacency matrix might be a

zero power and ensures that the sum of landing probabilities is 1.

Obviously, if connected nodes 𝑢 and 𝑣 exhibit large 𝐿𝐶 and 𝐺𝐶 ,

they are positioned at the core of the digraph and contribute to the

frequently activated 𝑒𝑢𝑣 during graph propagation, which intro-

duces topological uncertainty to node representations. Notably, we

have noticed that some spectral graph theory studies provide guid-

ance on selecting 𝑞 from a strictly topological perspective. However,

it is crucial to emphasize that these methods are not directly ap-

plied in node profile-driven classification tasks, thereby inherent

limitations are present. For more experimental results and analysis,

please refer to Sec. 6.2. To break this limitation, we directly assign

a larger 𝑞 for 𝑒𝑢𝑣 from the topological perspective and combine the

subsequent feature-oriented encoding, which is defined as:

𝑞
topo

𝑢𝑣 = Norm (𝐺𝐶𝑢+𝑣 + 𝐿𝐶𝑢+𝑣) ,Norm(x) = tanh

x
mean(x) . (7)

4.2 Feature-related Correlation Encoding
At this point, we have achieved topology-related uncertainly encod-

ing for frequently activated directed edges. However, node features

equally play a pivotal role in digraph learning. Therefore, we aim

to fully leverage the correlation of connected nodes to further fine-

tune the magnetic field potentials on directed edges. Motivated by

Key insight 2, we conclude the following principles: (1) A smaller 𝑞

for connected nodes with high feature similarity, disregarding di-

rected information to mitigate knowledge dilution. (2) A larger 𝑞 for

connected nodes with low feature similarity, emphasizing directed

information to enhance knowledge discernibly. These principles

enable the current node to acquire more beneficial knowledge.

According to Eq. (3), the complex plane is established by the 𝑞-

parameterized magnetic Laplacian. Each directed edge is depicted

as a vector within this complex plane and its projection on the

𝑥-axis(real part) is edge existence, while the projection on the 𝑦-

axis(imaginary part) is edge direction. For connected nodes 𝑢 and

𝑣 , dissimilar features lead to a larger 𝑞 with a greater angle for 𝑒𝑢𝑣 ,

indicating shorter projection along the 𝑥-axis and longer projec-

tion along the 𝑦-axis. This emphasizes 𝑒𝑢𝑣 direction during graph

propagation and aligns with the previously mentioned principles.

Consequently, we can directly leverage the correlation of features

between connected nodes to encode the magnetic field potential

of the corresponding directed edge, where node embeddings Z
are obtained from W-parameterized backbone MagDG. The above

process can be formally defined as:

𝑞feat𝑢𝑣 = Norm

(
arccos

(
Z𝑢 · Z𝑣

∥Z𝑢 ∥ × ∥Z𝑣 ∥

))
,Norm(x) = 2x

𝜋
. (8)

4.3 MAP Framework
Now, we have achieved fine-grained magnetic field potential en-

coding for directed edges, considering both topological and feature

perspectives. This is reflected in the adaptive spatial phase angles of

connected nodes in the complex domain. To pursue scalability, we

reformulate the originally rigid 𝑞-parameterized magnetic Lapla-

cian from Eq. (3) in a weight-free manner to obtain the optimized

graph propagation kernel ★MGO. It can be formally defined as:

Â★
𝑚 =

(
D̃−1/2𝑚 Ã𝑚D̃−1/2𝑚 ⊙exp

(
𝑖𝚯(★𝑞)

))
,★𝑞 = 𝑞0⊙𝑞feat⊙𝑞topo (9)

where 𝑞0 = 1/4 is the initial magnetic field potential parameter.

Since 𝑞feat and 𝑞topo lie within the range [0, 1], 𝑞0 can be adaptively

scaled, thereby eliminating the need for manual adjustment.

4.4 MAP++ Framework
Despite the progress made by MAP, the weight-free method often

encounters limited improvement. Furthermore, most MagDGs di-

rectly stack linear layers to implement message passing, resulting

in strict dependencies between the current and the previous layer.

This coupled architecture can only support shallow MagDGs with

limited RFs and toy-size datasets, as deeper ones would suffer from

the over-smoothing problem, out-of-memory (OOM) error, and out-

of-time (OOT) error, especially in web-scale sparse digraphs. To

break the above limitations, we propose MAP++ as follows:

Step 1: Edge-wise Graph Propagation. Based on the MAP,

we first utilize a lightweight neural architecture Edge-Mag(·) pa-
rameterized byW𝑒𝑑𝑔𝑒 to further encode magnetic field potentials

for each directed edge. In this strategy, we aim to enable iterative

optimization through the training, which is formally defined as:

★𝑞= 𝑞0⊙Edge-Mag

(
Norm

(
𝐺𝐶𝑢+𝑣 ⊙ 𝑞feat𝑢𝑣 ∥𝐿𝐶𝑢+𝑣 ⊙ 𝑞feat𝑢𝑣

))
, (10)

where ⊙ denotes the element-wise matrix multiplication. Notably,

this approach is only for small- and medium-scale datasets due to

scalability. To increase the RF of nodes, we conduct𝐾-step complex-

domain graph propagation, correspondingly getting a list of propa-

gated features (i.e., messages) under different steps as follows:

X̃(𝐾 ) = Â★𝐾
𝑚 X̃(0) → [X̃(0) , X̃(1) , . . . , X̃(𝐾 ) ], X̃(0) = X. (11)

Due to the learnable Â★𝐾
𝑚 , gradients flow towards propagated fea-

tures. Thus far, we have achieved edge-wise graph propagation by

integrating adaptive magnetic field potential during training.

Step 2: Node-wise Message Aggregation. Recent studies [13,
58, 68] have highlighted that the optimal RF varies for each node,

influenced by the intricate semantic context. This insight is es-

pecially critical for digraphs in the complex domain, where multi-

level structural encoding in Eq.(11) often provides valuable prompts

within the coupling of real and imaginary components. Therefore,

we advocate explicitly learning the importance and relevance of

multi-granularity knowledge within different RF in a node-adaptive

manner to boost predictions. This process can be defined as follows:

H =

𝐾∑︁
𝑙=0

W(𝑙 )
𝑛𝑜𝑑𝑒

X̃(𝑙 ) ,W(𝑙 )
𝑛𝑜𝑑𝑒

= 𝑒
𝛿

(
E(𝑙 )

)
/
𝐾∑︁
𝑖=0

𝑒
𝛿

(
E(𝑖 )

)
,

E(𝑙 ) = MLP

(
Complex

(
X̃(0)

)
∥ . . . ∥ Complex

(
X̃(𝐾 )

))
,

(12)

where 𝛿 is the non-linear activation function. This mechanism is de-

signed to construct a personalized multi-granularity representation

fusion for each node, facilitating the weighted message aggregation.

As the training progresses, the MAP++ gradually accentuates the

importance of neighborhood regions in the complex domain that

contribute more significantly to the target nodes.
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5 Theoretical Analysis
Now, we have achieved adaptive magnetic field potential modeling

for directed edges. To further investigate the effectiveness of our

approach and ensure theoretical interpretability, we build upon

insights from related studies [22, 56] by extending the angular

synchronization framework to graph attribute synchronization

problem, which incorporates node features and directed topology.

Graph Attribute Synchronization. The conventional angular
synchronization problem aims to estimate a set of unknown angles

𝜃1, . . . , 𝜃𝑛 from𝑚 noisy measurements of their pairwise offsets [56].

The noise associated with these measurements is uniformly dis-

tributed over the interval [0, 2𝜋). Based on this, we have:

Definition 1. In the graph G = {V, E}, each node 𝑢 ∈ V is
associated with an angle 𝜃𝑢 . Given noisy measurements of angle
offsets 𝛿𝑖 𝑗 , the angular synchronization problem aims to estimate the
angles 𝜃1, . . . , 𝜃𝑛 . The distribution of 𝛿 is divided into two categories:
reliable (good) edges Egood and unreliable (bad) edges Ebad

𝛿𝑖 𝑗 = 𝜃𝑖 − 𝜃 𝑗 for (𝑖, 𝑗) ∈ E𝑔𝑜𝑜𝑑
𝛿𝑖 𝑗 ∼ 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚 ( [0, 2𝜋)) for (𝑖, 𝑗) ∈ E𝑏𝑎𝑑 .

(13)

Based on this, the adaptive phase matrix in MAP functions as

a weighted adjacency matrix, reflecting the presence of edges and

capturing the offsets, analogous to 𝛿 . By treating it as a noisy node

feature offset matrix, we can generate attribute𝑤𝑢 for each node 𝑢

based on the node features and directed topology and have:

Definition 2. The graph attribute synchronization problem aims
to estimate a set of unknown attributes 𝑤1, . . . ,𝑤𝑛 based on their
noisy adaptive complex-domain offsets 𝚯(𝑞★) , which are defined as:

𝑤𝑢 −𝑤𝑣 := 2𝜋𝑞★𝑢𝑣 (A𝑢𝑣 − A𝑣𝑢 ) . (14)

This formulation demonstrates how the attributes 𝑤𝑢 can be

inferred from the topology and phase information by leveraging

the feature-related relationships between nodes. For the numerous

zero values in the matrix 𝚯
(𝑞★)

, we treat them as noisy data.

Spectral Analysis in MAP. According to the related studies [9,

10, 56], solving the above graph attribute synchronization prob-

lem typically involves constructing a Hermitian matrix. We first

investigate the MAP encoding process (see Sec. 4.1-4.2) and have:

Theorem 1. The adaptive phase matrix 𝚯(𝑞
★) encoding by MAP

is skew-symmetric, and H is Hermitian, where H = exp

(
𝑖𝚯(𝑞

★)
)
.

Based on this, we define the optimization objective as:

�̂� = argmax(𝑤)
𝑛∑︁

𝑖, 𝑗=1

𝑒−𝑖𝑤𝑖H𝑖 𝑗𝑒𝑖𝑤𝑗 . (15)

This formulation effectively captures complex-domain offsets from

topology and feature perspectives. However, it remains a non-

convex problem, making it difficult to solve in practice. Here, we

introduce the relaxation: let 𝑧𝑖 = 𝑒
𝑖𝑤𝑖

and impose the constraint∑𝑛
𝑖=1 |𝑧𝑖 |

2 = 𝑛. This leads to the following optimization objective:

𝑧 = argmax(𝑧) 𝑧∗H𝑧. (16)

Obviously, the maximizer 𝑧 is given by 𝑧 = 𝑣1, where 𝑣1 is the

normalized top eigenvector satisfying H𝑣1 = 𝜆1𝑣1 and | |𝑣1 | |2 =

𝑛, where 𝜆1 is the largest eigenvalue of H. Thus, the estimated

attributes can be defined as: 𝑒𝑖�̂�𝑖 = 𝑣1 (𝑖)/|𝑣1 (𝑖) |.

Although the adaptive phase matrix contains noise, which may

cause discrepancies in estimations, but these discrepancies decrease

as the noise reduces. Notably, even with significant noise, the eigen-

vector method can effectively recover attributes given enough noise-

free equations. Furthermore, we demonstrate that if the adaptive

phase matrix is devoid of noise, the estimated attributes correspond

to true attributes. Based on this, we have the following theorems.

Theorem 2. The correlation between the estimated node attributes
𝑣1 and the true attributes 𝑧 is positively correlated with the number
of nodes and inversely proportional to the square of the noise rate.

Theorem 3. If 𝚯 is noise-free, 𝑒𝑖�̂�𝑖 =
𝑣1 (𝑖 )
|𝑣1 (𝑖 ) | represents the unique

exact solution to the graph attribute synchronization problem.

Until now, we have provided the generalization of MAP to the

graph attribute synchronization, offering theoretical robustness to

our approach. Notably, traditional methods often rely on spectral

methods based on rigid topology analysis to assign fixed 𝑞 for each

edge (see Appendix A.10), which limits the flexibility and adapt-

ability of the synchronization process. In contrast, MAP enables

personalized 𝑞 values for each edge, considering not only the direc-

tion but also encoding uncertainty and correlation. In a nutshell,

MAP significantly enhances optimization capabilities for attribute

synchronization by offering a more nuanced approach to the assign-

ment of 𝑞. For detailed proofs of the above theorems, please refer to

Appendix A.2-A.4. Additionally, we acknowledge that the recently

proposed GNNSync [22] also provides a theoretical analysis from

the perspective of graph attribute synchronization. For a further

discussion of our approach and GNNSync, please see Appendix A.5.

6 Experiments
In this section, we aim to offer a comprehensive evaluation and

address the following questions to verify the effectiveness of our

proposed MAP and MAP++: Q1: As a hot-and-plug strategy, what

is the impact of MAP on the existing MagDGs? Q2: How does

MAP++ perform as a new digraph learning model? Q3: If MAP and

MAP++ are effective, what contributes to their performance? Q4:
What is the running efficiency of them? Q5: How robust is MAP

and MAP++ when dealing with sparse scenarios? To maximize the

usage for the constraint space, we will introduce datasets, baselines,

and experiment settings in Appendix A.6-A.9.

6.1 Performance Comparison
AHot-and-plugOptimizationModule.To answerQ1, we present
the performance enhancement facilitated by MAP in Table 1 and

Table 2. We observe that MAP significantly benefits all methods.

This is attributed to its adaptive encoding of magnetic field po-

tentials for directed edges, thereby customizing propagation rules.

Notably, due to the different numerical ranges of the metrics, the

improvements at the node level are more pronounced. Meanwhile,

the coupling architectures and the additional computational over-

head result in scalability issues for MagNet and Framelet, leading to

OOM errors when dealing with the billion-level dataset. Although

MGC decouples the graph propagation, its advantages require mul-

tiple propagations to fully manifest, leading to incomplete training

within 12 hours and resulting in OOT errors. For detailed algorith-

mic complexity analysis, please refer to Appendix A.1.
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Table 1: Node-C (ACC) improvement.

Models Actor Empire arXiv Papers Improv.

MagNet 32.4±0.5 78.5±0.4 64.5±0.6 OOM ⇑4.28%
+MAP 34.0±0.4 82.8±0.4 68.0±0.4 OOM

MGC 33.9±0.5 79.1±0.3 63.8±0.1 OOT ⇑4.96%
+MAP 35.2±0.3 82.8±0.4 67.6±0.2 OOT

Framelet 33.1±0.6 79.8±0.3 64.7±0.1 OOM ⇑4.54%
+MAP 34.8±0.6 83.6±0.2 68.4±0.2 OOM

LightDiC 33.6±0.4 78.8±0.2 65.6±0.2 65.4±0.2 ⇑5.12%
+MAP 35.5±0.4 83.0±0.3 69.1±0.1 68.7±0.3

Table 2: Existence (AUC) and Direction (AP) improvement.

Datasets Slashdot (Link) Epinions(Link)

Improv.

Tasks Exist. Direct. Exist. Direct.

MagNet 90.3±0.1 92.4±0.1 91.6±0.0 91.5±0.1 ⇑2.76%
+MAP 92.1±0.0 93.2±0.1 93.2±0.1 93.4±0.1

MGC 90.1±0.1 92.3±0.1 91.8±0.1 91.4±0.0 ⇑2.39%
+MAP 91.9±0.1 93.4±0.0 93.0±0.0 93.0±0.1

Framelet 90.5±0.0 92.5±0.1 91.5±0.1 91.0±0.1 ⇑2.46%
+MAP 92.3±0.1 93.1±0.0 93.3±0.1 93.1±0.1

LightDiC 90.2±0.1 92.4±0.0 91.6±0.0 91.2±0.1 ⇑2.81%
+MAP 92.5±0.1 93.6±0.1 93.1±0.0 93.2±0.0

Table 3: Node-C (ACC) Performance.

Models CoraML CiteSeer WikiCS Papers

GCNII 80.84±0.5 62.55±0.6 77.42±0.3 OOM

GATv2 81.31±0.9 62.82±1.0 77.03±0.4 OOM

OptBG 81.58±0.8 62.76±0.7 77.58±0.5 66.70±0.2

NAG 81.96±0.7 63.12±0.8 77.32±0.6 OOM

GAMLP 82.18±0.8 62.94±0.9 77.87±0.7 66.92±0.3

D-HYPR 81.72±0.5 63.87±0.7 77.76±0.2 OOM

HoloNet 81.53±06 64.13±0.8 78.66±0.3 OOM

DGCN 81.25±0.5 63.54±0.8 77.44±0.3 OOM

DiGCN 81.62±0.4 63.99±0.9 78.41±0.6 OOM

NSTE 81.87±0.6 63.63±0.7 77.63±0.4 OOM

DIMPA 82.05±0.9 63.14±0.9 77.94±0.3 OOM

Dir-GNN 81.93±0.7 64.29±0.8 78.09±0.4 OOM

LightDiC 81.76±0.4 64.19±0.6 78.35±0.2 66.83±0.2

ADPA 82.43±0.8 64.50±0.9 78.24±0.3 67.42±0.3

MAP++ 84.87±0.4 67.58±0.8 81.60±0.3 69.47±0.3

A New MagDG. To answer Q2, we present the experimental re-

sults in Table 3 and observe that MAP++ consistently outperforms

all baselines. Notably, we do not conduct additional evaluations

of MAP++ on link-level downstream tasks. This is because, as

shown in Table 2, performance improvements are already antici-

pated. Given the limited space, we prioritized incorporating more

SOTA undirected GNNs to ensure a fair comparison. However, their

reliance on symmetric message-passing limits the recognition of

complex directed relationships, leading to sub-optimal performance.

Table 4: Ablation study (ACC).

Model

CiteSeer Tolokers WikiTalk

Node-C Node-C Link-C

MagNet 64.21±0.63 79.04±0.22 90.42±0.15

MagNet + MAP 66.87±0.56 80.15±0.32 91.30±0.16

w/o Topology (Local) 66.53±0.78 79.84±0.48 91.11±0.13

w/o Topology (Global) 66.12±0.45 79.51±0.25 90.96±0.18

w/o Feature Encoding 65.60±0.50 79.34±0.36 90.78±0.12

LightDiC 63.96±0.38 79.18±0.19 90.21±0.10

LightDiC + MAP 67.25±0.37 80.36±0.27 91.05±0.14

w/o Topology (Local) 66.82±0.52 80.15±0.43 90.86±0.11

w/o Topology (Global) 66.46±0.39 79.73±0.32 90.74±0.15

w/o Feature Encoding 65.21±0.35 79.50±0.25 90.58±0.13

MAP++ 67.58±0.77 80.78±0.21 91.46±0.13

w/o Edge-wise Prop 67.10±0.84 80.36±0.28 91.12±0.15

w/o Node-wise Agg 66.49±0.65 80.12±0.24 90.78±0.12

(a) Actor

Edge-wise

𝑞 Selection

Same 𝑞

(b) WikiCS

Same 𝑞Edge-wise

𝑞 Selection

Figure 2: Node-C Performance with 𝑞 guidance.

(a) Edge-wise Graph Propagation (b) Node-wise Message Aggregation

Figure 3: The visualization of MAP++ in arXiv.

6.2 Ablation Study
The Key Design of MAP and MAP++. To answer Q3, we present
experimental results in Table 4, evaluating the effectiveness of (1)

Topology-related uncertainty and Feature-related correlation en-

coding in Sec. 4.3; (2) Edge-wise graph propagation and node-wise

message aggregation in Sec. 4.4. We draw the following conclusions:

(1) Local structural encodingmodels neighbor in a fine-grainedman-

ner, reducing the prediction variance of MagNet from 0.48 to 0.32 on

the Tolokers. (2) Global structural encoding enhances performance

upper bounds by regulating propagation granularity comprehen-

sively. (3) Feature correlation is directly relevant to downstream

tasks, thereby crucial for performance improvement. Specifically,

it boosts LightDiC’s accuracy from 65.21 to 67.25 in CiteSeer. (4)

Based upon these concepts, MAP++ introduces parameterized prop-

agation kernels and attention-based message aggregation to further

optimize predictions, leading to significant improvements.
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(a) CiteSeer (b) WikiCS (c) Tolokers (d) Empire (e) Rating (f) arXiv
Figure 4: Convergence improvement brought by MAP.

(b) ogbn-papers100M

Acc

Acc
Acc

Acc
Time Time Time TimeTime

Time

Time

Time

Acc Acc
Acc

Acc

(a) CiteSeer

Figure 5: Running efficiency performance.

𝑞 Selection in Spectral Graph Theory. As mentioned in Sec. 1,

some studies provide 𝑞 selection guidance from a topology perspec-

tive (see Appendix A.10). In this section, we review relevant studies

and compare their strategies with MAP and MAP++ in the context

of digraph learning shown in Fig. 2. Drawing from experimen-

tal findings, we discern notable performance benefits exhibited by

MAP andMAP++, highlighting the notion that previous approaches

may not yield satisfactory results in digraph learning due to their

limited incorporation of node profiles. Moreover, the performance

of MAP++ validates the advantage of further encoding the magnetic

field potentials of directed edges by learnable mechanisms.

The Visualization of MAP++. To directly demonstrate the ef-

fectiveness of MAP++, we provide visualization in Fig. 3: (a) The

average 𝑞 of directed edges within different nodes (topology-based

degree ranking and feature-based homophily ranking). (b) The aver-

age attention weights of propagated features within different nodes

(topology-based degree ranking) and propagation steps. Following

observations validate our key insights in Sec. 3: (1) Fig. 3 (a) shows

that smaller 𝑞 are chosen for pairs with higher-homophily, while

larger 𝑞 are selected for pairs with higher degrees. The increase

in 𝑞 as homophily decreases underscores the importance of node

attributes in digraph learning. (2) Fig. 3 (b) shows that 1-3 step fea-

tures hold significant importance, similar to 1-3 layer DiGNNs. For

higher-degree nodes, the weights for larger steps decrease rapidly

to prevent over-smoothing by limiting irrelevant information.

6.3 Efficiency Comparison
Convergence Improvement. To answerQ4, we present the exper-
imental results in Fig. 4, where we observe that MAP significantly

aids existing MagDGs in achieving faster and more stable conver-

gence, along with higher accuracy. For instance, in WikiCS, MAP

assists MGC in achieving rapid convergence around the 20th epoch,

saving nearly half of the training cost. Notably, due to the sparse

node features in Tolokers and the intricate topology in large-scale

arXiv, all methods inevitably suffer from over-fitting issues and slow

convergence. However, integrating MAP significantly enhances the

training efficiency of all baselines and mitigates these issues.

(a) Feature Sparsity (b) Edge Sparsity (c) Label Sparsity

Figure 6: Sparsity performance on CoraML.

Runtime Overhead. We provide an efficiency visualization in

Fig. 5. Despite the additional computational cost introduced by

MAP for fine-grained graph propagation, the time overhead re-

mains within acceptable limits and brings considerable performance

improvement. This is facilitated by topology-related one-step pre-

processing and intermittent feature-related encoding during train-

ing. Meanwhile, while MAP++ introduces extra trainable parame-

ters, its overall time overhead remains lower than the most compet-

itive ADPA, thanks to its decoupled design. Moreover, it exhibits

significant performance advantages compared to other baselines.

6.4 Performance under Sparse Scenarios
To answer Q5, we present experimental results in Fig. 6. For feature

sparsity, we introduce partial missing features for unlabeled nodes.

Consequently, methods relying solely on node quantity, such as D-

HYPR, suffer performance degradation. Conversely, DiGCN, MGC,

andMAP++ demonstrate resilience, as their high-order propagation

partially compensates for the missing features. Regarding edge

sparsity, since all baselines rely on topology to obtain high-quality

node embeddings, they all face severe degradation. However, we

observe that MAP++ outperforms others due to its fine-grained

message passing. As for the label sparsity, we observe a similar

trend to the feature sparsity. These findings collectively underscore

the robustness enhancements achieved by MAP++ over baselines.

7 Conclusion
In recent years, MagDGs have stood out for edge directionmodeling

through the complex domain, inheriting insights from undirected

graph learning. However, the extension of the 𝑞-parameterized

magnetic Laplacian to digraph learning remains under-explored.

To emphasize such a research gap, we provide valuable empirical

studies and theoretical analysis to obtain the 𝑞-parameterized cri-

teria for digraph learning. Based on this, we introduce two key

techniques: MAP and MAP++. The achieved SOTA performance,

coupled with flexibility and scalability, serves as compelling evi-

dence of the practicality of our approach. A promising direction

involves tailoring complex-domain graph propagation. Further-

more, an in-depth analysis of magnetic potential modeling from

the perspective of topological dynamics shows great potential.
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A Outline
The appendix is organized as follows:

A.1 Algorithm and Complexity Analysis.

A.2 The Proof of Theorem 1.

A.3 The Proof of Theorem 2.

A.4 The Proof of Theorem 3.

A.5 Our Approach and GNNSync.

A.6 Dataset Description.

A.7 Compared Baselines.

A.8 Hyperparameter Settings.

A.9 Experiment Environment.

A.10 𝑞 Selection in Spectral Graph Theory.

A.1 Algorithm and Complexity Analysis
For a more comprehensive presentation, we provide the complete

algorithm of MAP and MAP++ in Algorithm 1 and Algorithm 2.

Algorithm 1Magnetic Adaptive Propagation (MAP)

1: Topology-related One-step Pre-process

2: Calculate node in-degrees d𝑖𝑛 (𝑖) =
∑
𝑗 A⊤𝑖 𝑗 ;

3: Calculate node out-degrees d𝑜𝑢𝑡 (𝑖) =
∑
𝑗 A𝑖 𝑗 ;

4: Calculate node degrees d(𝑖) = d𝑜𝑢𝑡 (𝑖) + d𝑖𝑛 (𝑖);
5: Calculate node triple motifs m(𝑖) = ∑

𝑗

(
A2 ⊙ A⊤

)
𝑖 𝑗 ;

6: Calculate node cluster coefficient cc(𝑖) = m(𝑖 )
d𝑖𝑛 (𝑖 ) ·d𝑜𝑢𝑡 (𝑖 ) ;

7: Calculate the symmetric normalization Laplacian L𝑚 =

D̃−1/2𝑚 Ã𝑚D̃−1/2𝑚 according to self-loop adjacency matrix Ã𝑚 =

A + A⊤ + I and corresponding degree matrix D̃𝑚 (𝑖, 𝑖) =∑
𝑗 Ã𝑚 (𝑖, 𝑗);

8: Calculate initialized magnetic field potential encoding𝚯
(1/4) =

1/2𝜋
(
A − A⊤

)
;

9: Q𝑡𝑜𝑝𝑜 = Norm (Global-Centrality (d) + Local-Centrality (cc)),
Norm (x) = tanh

(
x

mean(x)

)
;

10: Feature-related Correlation Encoding

11: for all epoch=1, 2, · · · , 𝐸 do
12: if epoch % 𝑒 ≠ 0 then
13: ★MGO := Â(𝑞)𝑚 = L𝑚 ⊙ exp

(
𝑖𝚯(1/4) ⊙ Q𝑡𝑜𝑝𝑜

)
;

14: else
15: ★MGO := Â(𝑞)𝑚 = L𝑚 ⊙ exp

(
𝑖𝚯(1/4) ⊙ Q𝑡𝑜𝑝𝑜 ⊙ Q𝑓 𝑒𝑎𝑡

)
;

16: end if
17: for all 𝑙 = 1, 2, · · · , 𝐿 do
18: H(𝑙 ) = MagDG

(
★MGO,H(𝑙−1) ,W(𝑙 )

)
;

19: end for
20: Calculate node soft label Z = Softmax

(
H(𝐿)

)
;

21: Update trainable weights in the message aggregation layers

{W(1) ,W(2) · · · ,W(𝐿) };
22: Replace the soft label of the training set node with the real

label in the training sets YV𝑙
;

23: Q𝑓 𝑒𝑎𝑡 = Norm

(
arccos

(
Z𝑢 ·Z𝑣

∥Z𝑢 ∥×∥Z𝑣 ∥

))
, Norm(x) = 2x

𝜋 ;

24: Calculate node predictions Ŷ by the soft label Z;
25: end for

Algorithm 2 Learnable Magnetic Adaptive Propagation (MAP++)

Input: adjacency matrix A, feature matrix X, training epoch 𝐸, in-

termittent feature-related correlation encoding epoch 𝑒 , graph

propagation steps 𝐿, message update layerW𝑢𝑝𝑑𝑎𝑡𝑒 , training

set labels YV𝑙
, and learnableW𝑒𝑑𝑔𝑒 andW𝑛𝑜𝑑𝑒 ;

Output: Node predictions or link predictions Ŷ based on the node

embedding obtained by edge-wise graph propagation and node-

wise message aggregation;

1: Topology-related One-step Pre-process

2: Calculate node in-degrees d𝑖𝑛 (𝑖) =
∑
𝑗 A⊤𝑖 𝑗 ;

3: Calculate node out-degrees d𝑜𝑢𝑡 (𝑖) =
∑
𝑗 A𝑖 𝑗 ;

4: Calculate node degrees d(𝑖) = d𝑜𝑢𝑡 (𝑖) + d𝑖𝑛 (𝑖);
5: Calculate node triple motifs m(𝑖) = ∑

𝑗

(
A2 ⊙ A⊤

)
𝑖 𝑗 ;

6: Calculate node cluster coefficient cc(𝑖) = m(𝑖 )
d𝑖𝑛 (𝑖 ) ·d𝑜𝑢𝑡 (𝑖 ) ;

7: Calculate the symmetric normalization Laplacian L𝑚 =

D̃−1/2𝑚 Ã𝑚D̃−1/2𝑚 according to the self-loop adjacency matrix

Ã𝑚 = A + A⊤ + I and the corresponding degree matrix

D̃𝑚 (𝑖, 𝑖) =
∑
𝑗 Ã𝑚 (𝑖, 𝑗);

8: Calculate initialized magnetic field potential encoding𝚯
(1/4) =

1/2𝜋
(
A − A⊤

)
;

9: Q𝑡𝑜𝑝𝑜 = Norm (Global-Centrality (d) + Local-Centrality (cc)),
Norm (x) = tanh

(
x

mean(x)

)
;

10: for all epoch=1, 2, · · · , 𝐸 do
11: Edge-wise Graph Propagation (or weight-free MAP)

12: (Depending on the computational capacity and data size.)

13: if epoch % 𝑒 ≠ 0 then
14: Calculate★MGO := Â(𝑞)𝑚 = L̂𝑚 ⊙ exp

(
𝑖𝚯(1/4) ⊙ Q𝑡𝑜𝑝𝑜

)
;

15: else
16: temp =

17: Edge-Mag

(
Norm

(
𝐺𝐶 (d) ⊙ Q𝑓 𝑒𝑎𝑡 ∥𝐿𝐶 (cc) ⊙ Q𝑓 𝑒𝑎𝑡

))
,

Norm (x) = tanh

(
x

mean(x)

)
;

18: Calculate ★MGO := Â(𝑞)𝑚 = L𝑚 ⊙ exp

(
𝑖𝚯(1/4) ⊙ temp

)
;

19: end if
20: X̃(𝐿) = Â★𝐿

𝑚 X̃(0) → [X̃(0) , X̃(1) , . . . , X̃(𝐿) ], X̃(0) = X.
21: Node-wise Message Aggregation

22: for all 𝑖 = 1, 2, · · · , 𝑛 do
23: Calculate weights E(𝑙 ) =
24: MLP

(
Complex

(
X̃(0)

)
∥ . . . ∥

(
Complex

(
X̃(𝐾 )

)))
;

25: Execute aggregation H =
∑𝐾
𝑙=0

= W(𝑙 )
𝑛𝑜𝑑𝑒

X̃(𝑙 ) ,

26: W(𝑙 )
𝑛𝑜𝑑𝑒

= 𝑒
𝛿

(
E(𝑙 )

)
/∑𝐾

𝑙=0
𝑒
𝛿

(
E(𝑙 )

)
;

27: end for
28: Calculate node soft label Z = Softmax

(
W𝑢𝑝𝑑𝑎𝑡𝑒H

)
;

29: Update trainable weightsW𝑢𝑝𝑑𝑎𝑡𝑒 ,W𝑒𝑑𝑔𝑒 ,W𝑛𝑜𝑑𝑒 ;

30: Replace the soft label of the training set node with the real

label in the training sets YV𝑙
;

31: Q𝑓 𝑒𝑎𝑡 = Norm

(
arccos

(
Z𝑢 ·Z𝑣

∥Z𝑢 ∥×∥Z𝑣 ∥

))
, Norm(x) = 2x

𝜋 ;

32: Calculate node predictions or link predictions Ŷ by the soft

label Z and practical downstream tasks;

33: end for
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Table 5: Algorithm complexity analysis of existing digraph neural networks. 𝑛,𝑚, and 𝑓 are the number of nodes, edges, and
feature dimensions, respectively. 𝑏 is the batch size. 𝑘 and 𝐾 correspond to the 𝑘-order proximity of neighbors and the number
of times we aggregate features. 𝜔 is the time complexity of computing the approximate linear rank using Monte Carlo sampling.
𝐿 is the number of layers in learnable classifiers and 𝑐 represents the complex numbers consisting of real and imaginary parts.
𝐻 is the dimension of a hyperbolic space. 𝑄 denotes the number of spectral filters.

Type Model Pre-processing Training Inference Memory

Others

D-HYPR 𝑂 (𝑘𝐾𝑚𝑓 ) 𝑂 (𝐿𝐻𝐾𝑘𝑚𝑓 + 𝐿𝐻𝐾𝑘𝑛𝑓 2) 𝑂 (𝐿𝐻𝐾𝑘𝑚𝑓 + 𝐿𝐻𝐾𝑘𝑛𝑓 2) 𝑂 (𝑏𝐿𝐾𝐻 𝑓 + 𝐾𝐻 𝑓 2 + 𝑘𝐻 𝑓 2)
HoloNet 𝑂 (𝑚 + 𝑛 log𝑛) 𝑂 (𝐿𝐾𝑚𝑓 + 𝐿𝐾𝑛𝑓 2 +𝑄𝑓 2) 𝑂 (𝐿𝐾𝑚𝑓 + 𝐿𝐾𝑛𝑓 2 +𝑄𝑓 2) 𝑂 (𝑏𝐿𝐾 𝑓 + 𝐾𝑓 2 + 𝑛 log𝑛𝑓 +𝑄𝑓 )

Directed

DGCN 𝑂 (𝑚𝑘 ) 𝑂 (𝐿𝐾𝑚𝑓 + 𝐿𝐾𝑛𝑓 2) 𝑂 (𝐿𝐾𝑚𝑓 + 𝐿𝐾𝑛𝑓 2) 𝑂 (𝑏𝐿𝐾 𝑓 + 𝐾𝑓 2)
DiGCN 𝑂 (𝑘𝑚) 𝑂 (𝐿𝐾𝑚𝑓 + 𝐿𝐾𝑛𝑓 2) 𝑂 (𝐿𝐾𝑚𝑓 + 𝐿𝐾𝑛𝑓 2) 𝑂 (𝑏𝐿𝐾 𝑓 + 𝐾𝑓 2)
NSTE - 𝑂 (𝐿𝐾𝑘𝑚𝑓 + 𝐿𝐾𝑘𝑛𝑓 2) 𝑂 (𝐿𝐾𝑘𝑚𝑓 + 𝐿𝐾𝑘𝑛𝑓 2) 𝑂 (𝑏𝐿𝐾𝑘 𝑓 + 𝐾𝑘 𝑓 2)
DIMPA 𝑂 (𝑚) 𝑂 (𝐿𝐾𝑘2𝑚𝑓 + 𝐿𝐾𝑘2𝑛𝑓 2) 𝑂 (𝐿𝐾𝑘2𝑚𝑓 + 𝐿𝐾𝑘2𝑛𝑓 2) 𝑂 (𝑏𝐿𝐾𝑘2 𝑓 + 𝑘 + 𝐾𝑓 2)
Dir-GNN 𝑂 (𝑘𝑚) 𝑂 (𝐿𝐾𝑘𝑚𝑓 + 𝐿𝐾𝑘𝑛𝑓 2) 𝑂 (𝐿𝐾𝑘𝑚𝑓 + 𝐿𝐾𝑘𝑛𝑓 2) 𝑂 (𝑏𝐿𝐾𝑘𝑓 + 𝐾𝑘𝑓 2)
ADPA 𝑂 (𝑘𝐾𝑚𝑓 ) 𝑂 (𝑘𝐿𝑛𝑓 2 + 𝐾𝐿𝑛𝑓 2) 𝑂 (𝑘𝐿𝑛𝑓 2 + 𝐾𝐿𝑛𝑓 2) 𝑂 (𝑏𝑘𝐾 𝑓 + 𝐾𝑓 2 + 𝑘 𝑓 2)

Magnetic

MagNet 𝑂 (𝑚) 𝑂 (𝐿𝑚𝑐 𝑓 + 𝐿𝑛𝑐 𝑓 2) 𝑂 (𝐿𝑚𝑐 𝑓 + 𝐿𝑛𝑐 𝑓 2) 𝑂 (𝑏𝑐𝐿𝑓 + 𝑓 2)
MGC 𝑂 (𝑚 + log𝐾𝑐𝑚𝜔 𝑓 ) 𝑂 (𝐿𝑛𝑐2 𝑓 2) 𝑂 (𝐿𝑛𝑐2 𝑓 2) 𝑂 (𝑏𝑐𝐿𝑓 + 𝑓 2)

Framelet 𝑂 (𝑚 + 𝑛 log𝑛) 𝑂 (𝐿𝑚𝑓 + 𝐿𝑛𝑓 2 +𝑄𝑚𝑐𝑓 2) 𝑂 (𝐿𝑚𝑓 + 𝐿𝑛𝑓 2 +𝑄𝑚𝑐𝑓 2) 𝑂 (𝑏𝑐𝐿𝑓 +𝑄𝑓 + 𝑓 2 + 𝑛 log𝑛𝑓 )
LightDiC 𝑂 (𝑚 + 𝐾𝑐𝑚𝑓 ) 𝑂 (𝑛𝑐 𝑓 2) 𝑂 (𝑛𝑐 𝑓 2) 𝑂 (𝑏𝑐𝐾 𝑓 + 𝑓 2)
MAP++ 𝑂 (𝑛 +𝑚 + 𝐾𝑐𝑚𝑓 ) 𝑂 (𝑚𝑐𝑓 2 + 𝐾𝑛𝑐 𝑓 2) 𝑂 (𝑚𝑐𝑓 2 + 𝐾𝑛𝑐 𝑓 2) 𝑂 (𝑏𝑐𝐾 𝑓 +𝑚𝑐𝑓 2 + 𝑛𝑓 2)

In this section, we provide an overview of recently proposed

digraph neural networks and conduct a comprehensive analysis

of their theoretical time and space complexity, as summarized in

Table 5. To begin with, we clarify that the training and inference

time complexity of the DGCN with 𝐿 layers and 𝐾 aggregators can

be bounded by 𝑂 (𝐿𝐾𝑚𝑓 + 𝐿𝐾𝑛𝑓 2), where 𝑂 (𝐿𝐾𝑚𝑓 ) represents
the total cost of the weight-free sparse-dense matrix multiplication

inMessage-Agg (·) from Eq. (2), with DGCN utilizing GCN as the

mechanism of aggregation function, and 𝑂 (𝐿𝐾𝑛𝑓 2) being the total

cost of the feature transformation achieved by applying𝐾 learnable

aggregator weights. At first glance,𝑂 (𝐿𝐾𝑛𝑓 2) may appear to be the

dominant term, considering that the average degree 𝑑 in scale-free

networks is typically much smaller than the feature dimension 𝑓 ,

thus resulting in 𝐿𝐾𝑛𝑓 2 > 𝐿𝐾𝑛𝑑 𝑓 = 𝐿𝐾𝑚𝑓 . However, in practice,

the feature transformation can be performed with significantly less

cost due to the improved parallelism of dense-dense matrix mul-

tiplications. Consequently, 𝑂 (𝐿𝐾𝑚𝑓 ) emerges as the dominating

complexity term of DGCN, and the execution of full neighbor prop-

agation becomes the primary bottleneck for achieving scalability.

Building upon this, we first analyze two methods (hyperbolic for

D-HYPR and frequency-response filters for HoloNet), D-HYPR [74]

and HoloNet [28], which do not belong to the general message-

passing paradigm. For D-HYPR, its core lies in projecting the di-

graph into𝐻 -dimension hyperbolic space and designing 𝐿 trainable

aggregators based on 𝑘-order RF and 𝐾-times aggregation. Con-

sequently, its time complexity can be bounded by 𝑂 (𝐿𝐻𝐾𝑘𝑚𝑓 +
𝐿𝐻𝐾𝑘𝑛𝑓 2). As for HoloNet, it abandons the message-passing mech-

anism and focuses on digraph learning from a spectral perspec-

tive using holomorphic filters. The key lies in Fourier transform-

based spectral decomposition, with the algorithm’s time complexity

bounded by 𝑂 (𝑛 log𝑛). Regarding the subsequent filter and corre-

sponding learning mechanism design, it primarily depends on the

size 𝑄 of the filter banks, hence can be bounded by 𝑂 (𝑄𝑓 2).

Regarding methods following the prevalent directed message

passing illustrated in Sec 2.2, DiGCN [61] is similar to DGCN as

they both use 𝑘-order NP as pre-processing, but the generated real

symmetric adjacency matrix is different. DiGCN extends approxi-

mate personalized PageRank for constructing digraph Laplacian as

pre-processing with time complexity of 𝑂 (𝑚), which is equivalent

to the undirected symmetric adjacency matrix. NSTE [30] performs

an additional aggregation based on the 𝑘-order proximity in each

learnable aggregator, which is bounded by 𝑂 (𝐿𝐾𝑘𝑚𝑓 + 𝐿𝐾𝑘𝑛𝑓 2).
DIMPA [21] extends the RF by considering incoming and outgo-

ing edges independently in each aggregation step 𝑂 (𝐿𝐾𝑘2𝑚𝑓 +
𝐿𝐾𝑘2𝑛𝑓 2). Dir-GNN [54] extends the 𝑘-order based on edge di-

rection and encodes it using two independent sets of parameters

in 𝐿 trainable aggregators. Therefore, its time complexity can be

bounded by 𝑂 (𝐿𝐾𝑘𝑚𝑓 + 𝐿𝐾𝑘𝑛𝑓 2). ADPA [59] further employs a

hierarchical attention mechanism to fuse messages for both prop-

agation operators and receptive fields, bounded respectively by

𝑂 (𝐾𝑓 2) and 𝑂 (𝑘 𝑓 2). The existing methods follow directed spatial

message-passing mechanisms, which inherently rely on directed

edges for aggregator design, making it challenging to handle large-

scale digraphs. Furthermore, their use of two sets of independent

learnable weights to encode source and target nodes results in a

large 𝐾 , which further exacerbates the computational costs.

As for methods following the complex domain message pass-

ing, MAP++, MGC [67], and LightDiC [35] follow the decoupled

paradigm, MageNet [70] and Framelet [40] combines the propa-

gation and training process into a deep coupled architecture. In

the pre-processing, all approaches achieve a time complexity of

𝑂 (𝑚) to obtain the magnetic Laplacian, with the introduction of

a 𝑂 (𝑐) complexity due to the complex-valued matrix. Then, MGC

conducts multiple graph propagation approximately with signif-

icantly larger 𝐾 , bounded by 𝑂 (log𝐾𝑐𝑚𝜔 𝑓 ). Framelet employs

a spectral decomposition similar to HoloNet. However, Framelet
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extends the concept of wavelet transforms by integrating short-

duration signals from different frequency bands to achieve more

comprehensive data processing in signal representation. In con-

trast, MAP++ and LightDiC perform only a finite number of graph

propagation with small 𝐾 , bounded by (𝑂𝐾𝑐𝑚𝑓 ). In the training,

as the magnetic Laplacian involves real and imaginary parts, the

fully square recursive computation cost of MagNet and Framelet

grows exponentially with the increase of the number of nodes and

edges, reaching𝑂 (𝐿𝑚𝑐 𝑓 +𝐿𝑛𝑐 𝑓 2) and𝑂 (𝑄𝑚𝑐𝑓 2). In contrast, MGC

performs complex-valued forward propagation with a complexity

of (𝐿𝑛𝑐2 𝑓 2), while LightDiC further decouples the complex-valued

matrices and reduces the computation complexity to 𝑂 (𝑛𝑐 𝑓 2) by
employing the simple linear logistic regression. Although their

neural architectures are simple, they often encounter performance

limitations when dealing with complex digraphs. Therefore, in

MAP++, we introduce edge-wise graph propagation and node-wise

message aggregation. Notably, the former operates only on directed

structural entropy and local clustering coefficients, resulting in

negligible computational overhead. Meanwhile, the computational

complexity of the latter is strictly bounded by 𝑂 (𝐾𝑛𝑐 𝑓 2). Further-
more, during iterative training, we can intentionally reduce the

encoding frequency to further reduce overhead.

A.2 The Proof of Theorem 1
Proof. To prove the skew-symmetry of 𝚯

(𝑞★)
and the Hermit-

ian property of exp

(
𝑖𝚯(𝑞★)

)
, we begin by analyzing the relation-

ships established in Eq. (7)-(9).

From Eq. (7), we observe that 𝑞
topo

𝑢𝑣 = 𝑞
topo

𝑣𝑢 , indicating that the

topological contribution to the parameter 𝑞 between nodes 𝑢 and

𝑣 is symmetric. Similarly, from Eq. (8), we find that 𝑞feat𝑢𝑣 = 𝑞feat𝑣𝑢 ,

confirming that the feature-based contribution to 𝑞 is also symmet-

ric. Therefore, by combining these two components in Eq. (9), we

conclude that 𝑞★𝑢𝑣 = 𝑞
★
𝑣𝑢′ meaning that the overall parameter 𝑞★ is

symmetric with respect to nodes 𝑢 and 𝑣 .

Next, using this symmetry, we examine the matrix 𝚯
(𝑞★)

, which

encodes the phase differences between nodes in the complex do-

main. Specifically, we have:𝚯
(𝑞★) (𝑢, 𝑣) = −𝚯(𝑞★) (𝑣,𝑢). This re-

lationship confirms that 𝚯
(𝑞★)

is skew-symmetric, meaning that

𝚯
(𝑞★) = −

(
𝚯
(𝑞★)

)⊤
. Here, for any real skew-symmetric matrix A,

the matrix exp(𝑖A) is Hermitian. 𝚯
(𝑞★)

is skew-symmetric, it fol-

lows that exp

(
𝑖𝚯(𝑞★)

)
is a Hermitian matrix. This property is cru-

cial in ensuring that the matrix captures the directed dependencies

between nodes in a way that preserves the necessary mathematical

structure for subsequent analysis. In summary, the symmetry of 𝑞★

leads to the skew-symmetry of𝚯
(𝑞★)

, and as a result, exp

(
𝑖𝚯(𝑞★)

)
is Hermitian, confirming the desired properties. □

A.3 The Proof of Theorem 2
Proof. We suppose the proportion of noisy offsets in 𝚯 is 1 −

𝑝 . Let 𝑧 be the normalized vector defined as 𝑧𝑖 = 𝑒𝑖𝑤𝑖√
𝑛
. With a

probability of 𝑝 , the edge {𝑖, 𝑗} is good and H𝑖 𝑗 = 𝑒𝑖 (𝑤𝑖−𝑤𝑗 )
. On the

other hand, with a probability of 1 − 𝑝 , the edge is bad. The matrix

H can be decomposed as H = 𝑛𝑝𝑧𝑧∗ + R, where R is a noise matrix.

According to [56], the correlation between 𝑣1 and 𝑧 can be pre-

dicted by using regular perturbation theory for solving the eigen-

vector equation in an asymptotic expansion. In quantum mechan-

ics [17], the asymptotic expansions of the non-normalized eigen-

vector 𝑣1 is given by

𝑣1 ∼ 𝑧 +
R𝑧 − (𝑧∗R𝑧)𝑧

𝑛𝑝
+ . . . . (17)

Because | |R𝑧 − (𝑧∗R𝑧)𝑧 | |2 = | |R𝑧 | |2 − (𝑧∗R𝑧)2, the angle 𝛼 between

the eigenvector 𝑣1 and the vector of true attributes 𝑧 satisfies the

asymptotic relation

tan
2 𝛼 ∼ ||R𝑧 | |

2 − (𝑧∗R𝑧)2
(𝑛𝑝)2

+ . . . . (18)

The expected values of the numerator terms in Eq. (18) are given

by

E| |R𝑧 | |2 = E
𝑛∑︁
𝑖=1

������ 𝑛∑︁𝑗=1 R𝑖 𝑗𝑧 𝑗
������
2

=

𝑛∑︁
𝑖, 𝑗=1

Var(R𝑖 𝑗𝑧 𝑗 )

=

𝑛∑︁
𝑖=1

∑︁
𝑗≠𝑖

|𝑧 𝑗 |2 (1 − 𝑝2)

= (𝑛 − 1) (1 − 𝑝2),

(19)

and

E(𝑧∗R𝑧)2 = E

𝑛∑︁

𝑖, 𝑗=1

R𝑖 𝑗𝑧𝑖𝑧 𝑗


2

=

𝑛∑︁
𝑖, 𝑗=1

Var(R𝑖 𝑗𝑧𝑖𝑧 𝑗 )

= (1 − 𝑝2)
∑︁
𝑖≠𝑗

|𝑧𝑖 |2 |𝑧 𝑗 |2

= (1 − 𝑝2)

(
𝑛∑︁
𝑖=1

|𝑧𝑖 |2
)
2

−
𝑛∑︁
𝑖=1

|𝑧𝑖 |4


= (1 − 𝑝2)
(
1 − 1

𝑛

)
,

(20)

because the variance of R is given by 1 − 𝑝2 [56] and |𝑧𝑖 |2 = 1

𝑛 .

Based on the above three formulas, we can derive the following:

E tan2 𝛼 ∼ (𝑛 − 1)
2 (1 − 𝑝2)
𝑛3𝑝2

+ . . . . (21)

In the vast majority of cases, 𝑛 ≫ 1 and 𝑝 ≪ 1, thus we further

obtain the following formula:

E tan2 𝛼 ∼ 1

𝑛𝑝2
+ . . . . (22)

This formulation indicates that when 𝑛𝑝2 approaches infinity, the

angle between 𝑣1 and 𝑧 tends to zero and the correlation between

them approaches 1. We further infer that even for extremely small

𝑝 values, the eigenvector method effectively retrieves the attributes

if there are sufficient equations, meaning if 𝑛𝑝2 is adequately large.

□
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A.4 The Proof of Theorem 3
Proof. Since 𝚯 is noise-free, we define K as an 𝑛 × 𝑛 matrix

where K𝑖 𝑗 = 1 for all 𝑖, 𝑗 . As the K is symmetric, it possesses a

complete set of real eigenvalues 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑛 , along with

corresponding real orthonormal eigenvectors𝜓1, · · · ,𝜓𝑛 . We can

express K in terms of its eigenvalues and eigenvectors as follows:

K =

𝑛∑︁
𝑙=1

𝜆𝑙𝜓𝑙𝜓
𝑇
𝑙
. (23)

Next, let Z be an 𝑛 × 𝑛 diagonal matrix with diagonal elements

Z𝑖𝑖 = 𝑒𝑖𝑤𝑖
. It is evident that Z is a unitary matrix, satisfying ZZ∗ = I.

We then construct the Hermitian matrix B by conjugating K with

Z:
B = ZKZ∗ . (24)

The eigenvalues ofB remain the same as those ofK, namely 𝜆1, 𝜆2, . . . , 𝜆𝑛 .

The corresponding eigenvectors {𝜙𝑙 }𝑛𝑙=1 of B, satisfying B𝜙𝑙 = 𝜆𝑙𝜙𝑙 ,
are given by

𝜙𝑙 = Z𝜓𝑙 , 𝑙 = 1, . . . , 𝑛. (25)

Next, we observe the entries of B:

B𝑖 𝑗 = 𝑒𝑖 (𝑤𝑖−𝑤𝑗 ) . (26)

According to the Perron-Frobenius theorem [24], since K is a non-

negative matrix, the components of the top eigenvector𝜓1 associ-

ated with the largest eigenvalue 𝜆1 are all positive:

𝜓1 (𝑖) > 0, ∀𝑖 = 1, 2, . . . , 𝑛. (27)

Consequently, we examine the complex phases of the coordinates

of the top eigenvector 𝜙1 = Z𝜓1. Thus, the complex phases of the

coordinates of 𝜙1 are identical to the true attributes:

𝑒𝑖�̂�𝑖 =
𝜙1 (𝑖)
|𝜙1 (𝑖) |

. (28)

□

A.5 Our Approach and GNNSync
The attribute synchronization problem we propose can also be ad-

dressed by GNNSync [22]. It reframes the synchronization problem

as a theoretically grounded digraph learning task, where angles

are estimated by designing a specific GNN architecture to extract

graph embeddings and leveraging newly introduced loss functions.

This method has demonstrated superior performance in high-noise

environments. Notably, our proposed MAP framework can further

enhance the attribute synchronization process when integrated

with GNNSync in the following two significant ways.

Firstly, MAP can act as an encoder within the GNNSync frame-

work, generating higher-quality node embeddings compared to

DIMPA used in the original implementation. By more effectively en-

coding both node features and topology, MAP improves the overall

learning capability of the model. Secondly, the adaptive phase ma-

trix introduced by MAP enables personalized encoding of directed

edges, capturing critical directed information. This personalized

encoding allows the generated node attributes to more accurately

reflect the underlying characteristics of each node, ultimately im-

proving the performance of the synchronization task. Through

these enhancements, the MAP framework positions itself as a pow-

erful tool for advancing the capabilities of GNNSync and other

similar methods in digraph learning and attribute synchronization.

A.6 Dataset Description
In our experiments, we evaluate the performance of our proposed

MAP and MAP++ on 12 digraph benchmark datasets. The 12 pub-

licly available digraph datasets are sourced from multiple domains,

highlighting the comprehensive nature of our experiments. Specif-

ically, they include 4 citation networks (CoraML, Citeseer, ogbn-

arXiv, and ogbn-papers100M) in [3, 25, 47], actor network (Ac-

tor) [51], web-link network (WikiCS) in [47], crowd-sourcing net-

work (Toloklers) [53], e-commerce network (Rating) [53], syntax

network (Empire) [53], 2 social networks (Slashdot and Epinions)

in [46, 49], and co-editor network [31]. The dataset statistics are

shown in Table 6 and more descriptions can be found later.

Notably, given MAP and MAP++ focus on providing tailored

solutions for complex domain message passing based on the mag-

netic Laplacian, and considering that directed information is disre-

garded in undirected graphs, we opted not to use undirected graphs

as validation datasets and instead focused our efforts on digraph

benchmark datasets.

We need to clarify that we are using the directed version of the

dataset instead of the one provided by the PyG library (CoraML,

CiteSeer)
1
, WikiCS paper

2
and the raw data given by the OGB (ogb-

arxiv)
3
. Meanwhile, we remove the redundant multiple and self-

loop edges to further normalize the 10 digraph datasets. In addition,

for Slashdot, Epinions, andWikiTalk, the PyGSD [23] library reveals

only the topology and lacks the corresponding node features and

labels. Therefore, we generate the node features using eigenvectors

of the regularised topology. Building upon this foundation, the

description of all digraph benchmark datasets is listed below:

CoraML and CiteSeer [3] are two citation network datasets. In

these two networks, papers from different topics are considered

nodes, and the edges are citations among the papers. The node

attributes are binary word vectors, and class labels are the topics

the papers belong to.

Actor [51] is an actor co-occurrence network in which nodes

denote actors, and edges signify actors appearing together on

Wikipedia pages. Node features are bag-of-words vectors derived

from keywords found on these Wikipedia pages. They are catego-

rized into five groups based on the terms found in the respective

actor’s Wikipedia page.

WikiCS [47] is a Wikipedia-based dataset for bench-marking

GNNs. The dataset consists of nodes corresponding to computer

science articles, with edges based on hyperlinks and 10 classes

representing different branches of the field. The node features are

derived from the text of the corresponding articles. They were cal-

culated as the average of pre-trained GloVe word embeddings [52],

resulting in 300-dimensional node features.

Tolokers [53] is derived from the Toloka crowdsourcing plat-

form [38]. Nodes correspond to tolokers (workers) who have en-

gaged in at least one of the 13 selected projects. An edge connects

two tolokers if they have collaborated on the same task. The ob-

jective is to predict which tolokers have been banned in one of

the projects. Node features are derived from the worker’s profile

information and task performance statistics.

1
https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html

2
https://github.com/pmernyei/wiki-cs-dataset

3
https://ogb.stanford.edu/docs/nodeprop/
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Table 6: The statistical information of the experimental datasets.

Datasets #Nodes #Edges #Features #Classes #Train/Val/Test Description

CoraML 2,995 8,416 2,879 7 140/500/2,355 citation network

CiteSeer 3,312 4,591 3,703 6 120/500/2,692 citation network

Actor 7,600 26,659 932 5 48%/32%/20% actor network

WikiCS 11,701 290,519 300 10 580/1,769/5,847 weblink network

Tolokers 11,758 519,000 10 2 50%/25%/25% crowd-sourcing network

Empire 22,662 32,927 300 18 50%/25%/25% article syntax network

Rating 24,492 93,050 300 5 50%/25%/25% rating network

ogbn-arXiv 169,343 2,315,598 128 40 91k/30k/48k citation network

ogbn-papers100M 111,059,956 1,615,685,872 128 172 1207k/125k/214k citation network

Slashdot 75,144 425,702 100 Link-level 80%/15%/5% social network

Epinions 114,467 717,129 100 Link-level 80%/15%/5% social network

WikiTalk 2,388,953 5,018,445 100 Link-level 80%/15%/5% co-editor network

Empire [53] is based on the Roman Empire article from the

English Wikipedia [33], each node in the graph corresponds to a

non-unique word in the text, mirroring the article’s length. Nodes

are connected by an edge if the words either follow each other in

the text or are linked in the sentence’s dependency tree. Thus, the

graph represents a chain graph with additional connections.

Rating [53] is derived from the Amazon co-purchasing network

metadata available in the SNAP
4
[32]. Nodes are products, and

edges connect items bought together. The task involves predicting

the average rating given by reviewers, categorized into five classes.

Node features are based on the mean FastText embeddings [16] of

words in the product description. To manage graph size, only the

largest connected component of the 5-core is considered.

Ogbn-arxiv and ogbn-papers100M [25] are two citation graphs

indexed by MAG [65]. For each paper, we generate embeddings by

averaging the word embeddings from both its title and abstract.

These word embeddings are computed using the skip-gram model,

which captures the semantic relationships between words based on

their context. This approach allows us to create a comprehensive

representation of the paper’s content.

Slashdot [49] is from a technology-related news website with

user communities. The website introduced Slashdot Zoo features

that allow users to tag each other as friends or foes. The dataset is

a common signed social network with friends and enemies labels.

In our experiments, we only consider friendships.

Epinions [46] is an online social network centered around "who-
trusts-whom" dynamics relationship systems, where users can in-

dicate trust or distrust tags in the reviews and opinions uploaded

by other users. This network captures social interactions and the

formation of trust within the community. For the purposes of our

experiments, we focus solely on the "trust" relationships, excluding

the "distrust" connections to streamline our analysis.

WikiTalk [31] includes all users and discussions from the in-

ception of Wikipedia until January 2008. The network comprises

𝑛 = 2, 388, 953 nodes, where each node represents a Wikipedia user,

and a directed edge from node 𝑣𝑖 to node 𝑣 𝑗 indicates that user 𝑖

edited user 𝑗 ’s talk page at least once. For our analysis, we extract

the largest weakly connected component.

4
https://snap.stanford.edu/

A.7 Compared Baselines
The baselines we employ are as follows: (1) Directed prevalent mes-

sage passing-based approaches: DGCN [62], DiGCN [61], DIMPA [21],

NSTE [30], Dir-GNN [54], and ADPA [59]; (2) Directed MagDGs:

MagNet [70],MGC[67], Framelet-Mag (Framelet) [40], LightDiC [35].

(3) Undirectedmethods and other digraph neural networks: GCN [27],

GAT [63], GCNII [7], GATv2 [4], OptBasisGNN [18] (OptBG), NAG-

phormer [6] (NAG), GAMLP [69], D-HYPR [74], and HoloNet [28].

Notably, to verify the generalization of our proposed MAP and

MAP++, we compare the undirected GNNs in digraphs with coarse

undirected transformation (i.e., convert directed edges into undi-

rected edges). The descriptions of them can be found later in this

section. To alleviate the influence of randomness, we repeat each ex-

periment 10 times to represent unbiased performance and running

time (second report). Meanwhile, we present experiment results

with various baselines in separate modules, avoiding abundant

charts and validating the generalizability of our proposed methods.

DGCN [62]: DGCN proposes the first and second-order prox-

imity of neighbors to design a new message-passing mechanism,

which in turn learns aggregators based on incoming and outgoing

edges using two sets of independent learnable parameters.

DiGCN [61]: DiGCN notices the inherent connections between

graph Laplacian and stationary distributions of PageRank, it the-

oretically extends personalized PageRank to construct real sym-

metric Digraph Laplacian. Meanwhile, DiGCN uses first-order and

second-order neighbor proximity to further increase RF.

DIMPA [21]: DIMPA represents source and target nodes sepa-

rately. It performs a weighted average of the multi-hop neighbor-

hood information to capture the local network information.

NSTE [30]: NSTE is inspired by the 1-WL graph isomorphism

test, which uses two sets of trainable weights to encode source and

target nodes separately. Then, the information aggregation weights

are tuned based on the parameterized feature propagation process.

Dir-GNN [54]: Dir-GNN introduces a versatile framework tai-

lored for heterophilous settings. It addresses edge directionality by

conducting separate aggregations of incoming and outgoing edges.

Demonstrated to match the expressivity of the directed Weisfeiler-

Lehman test, Dir-GNN outperforms conventional MPNNs in accu-

rately modeling digraphs.
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ADPA [59]: ADPA adaptively explores suitable directed k-order

neighborhood operators to conduct weight-free graph propagation

and employs two hierarchical node-adaptive attention mechanisms

to acquire optimal node representations.

MagNet [70]: MagNet utilizes complex numbers to model di-

rected information, it proposes a spectral GNN for digraphs based

on a complex Hermitian matrix known as the magnetic Laplacian.

Meanwhile, MagNet uses additional trainable parameters to com-

bine the real and imaginary filter signals separately to achieve better

prediction performance.

MGC [67]: MGC introduces the magnetic Laplacian, a discrete

operator with the magnetic field, which preserves edge direction-

ality by encoding it into a complex phase with an electric charge

parameter. By adopting a truncated variant of PageRank named

Linear-Rank, it designs and builds a low-pass filter for homoge-

neous graphs and a high-pass filter for heterogeneous graphs.

Framelet [40]: Framelet utilizes the framelet transform to en-

hance the representation of digraph signals. These framelets are

constructed using the complex-valuedmagnetic Laplacian, enabling

signal processing in both real and complex domains simultaneously.

LightDiC [35]: LightDiC is a scalable adaptation of digraph

convolution built upon the magnetic Laplacian, which performs

topology-related computations during offline pre-processing.

GCN [27]: GCN is guided by a localized first-order approxi-

mation of spectral graph convolutions. This model’s scalability

is directly proportional to the number of edges, and it learns in-

termediate representations in hidden layers that capture both the

topology and node features.

GCNII [7]: GCNII incorporates initial residual and identity map-

ping. Theoretical and empirical evidence is presented to demon-

strate how these techniques alleviate the over-smoothing problem.

GAT [63]: GAT utilizes attention mechanisms to quantify the

importance of neighbors for message aggregation. This strategy

enables implicitly specifying different weights to different nodes in

a neighborhood, without depending on the graph structure upfront.

GATv2 [4]: GATv2 introduces a variant with dynamic graph at-

tention mechanisms to improve GAT. This strategy provides better

node representation capabilities and enhanced robustness when

dealing with graph structure as well as node attribute noise.

OptBasisGNN [18]: OptBasisGNN revolutionizes GNNs by re-

defining polynomial filters. It dynamically learns suitable polyno-

mial bases from training data, addressing fundamental adaptability.

NAGphormer [6] treats each node as a sequence containing

a series of tokens. For each node, it aggregates the neighborhood

features from different hops into different representations.

GAMLP [69]: GAMLP is designed to capture the inherent corre-

lations between different scales of graph knowledge to break the

limitations of the enormous size and high sparsity level of graphs

hinder their applications under industrial scenarios.

D-HYPR [74]: D-HYPR introduces hyperbolic from diverse

neighborhoods. This conceptually simple yet effective framework

extends seamlessly to digraphs with cycles and non-transitive rela-

tions, showcasing versatility in various downstream tasks.

HoloNet [28]: HoloNet demonstrates that spectral convolution

can extend to digraphs. By leveraging advanced tools from complex

analysis and spectral theory, HoloNet introduces spectral convolu-

tions tailored for digraphs.

A.8 Hyperparameter Settings
The hyperparameters in the baseline models are set according to the

original paper if available. Otherwise, we perform a hyperparame-

ter search via the Optuna [1]. For both our proposed methods, MAP

and MAP++, their satisfactory flexibility in method and neural ar-

chitecture design obviates the need for additional hyperparameter

search. However, we recommend exploring the number of graph

propagation steps and the dimension of hidden embeddings within

the range of [3, 10] and [64, 128, 256, 512] to further enhance predic-
tive performance. Regarding the experimental results of Dir-GNN

and HoloNet on the Empire dataset, we would like to clarify that

we ensured a fair comparison by using a class-balanced dataset split

instead of the pre-split datasets used in Dir-GNN and HoloNet.

A.9 Experiment Environment
The experiments are conducted on themachinewith Intel(R) Xeon(R)

Gold 6240 CPU @ 2.60GHz, and NVIDIA A100 80GB PCIe and

CUDA 12.2. The operating system is Ubuntu 18.04.6 with 216GB

memory. As for software versions in the environment, we use

Python 3.9 and Pytorch 1.11.0.

A.10 𝑞 Selection in Spectral Graph Theory
(1) Directed Edges Num [15]: It posits that the potential 𝑞 governs

the magnitude of the induced phase shift by each edge. Specifically,

in its application to digraph-level classification and regression, 𝑞

assumes a role akin to the lowest frequency in sinusoidal positional

encodings (typically 1/(2𝜋 × 10, 000)). Following the sinusoidal

encoding convention, one could fix 𝑞 to a suitable value for the

largest expected graphs. However, in their experiments, they found

that scaling the potential 𝑞 with the number of nodes 𝑛 and the

quantity of directed edges leads to marginally better performance.

In other words, they suggest opt for𝑞 = 𝑞′/𝑑G with𝑞′ as the relative
potential and 𝑑G as the graph-specific normalizer. This normalizer

is an upper bound on the number of directed edges in a simple path,

calculated as 𝑑G = max(min( ®𝑚,𝑛), 1), where ®𝑚 denotes the count

of purely directed edges ( (𝑢, 𝑣) ∈ 𝐸 where (𝑣,𝑢) ∉ 𝐸).
(2) Digraph Ring Length [11, 12]: It proposes a unique perspec-

tive on the 𝑞, suggesting its suitability for positional encodings.

Specifically, in graph visualization, the selection of 𝑞 is related to

the ring length. If the ring length is 𝑘 , then 𝑞 = 1/𝑘 . They advocate

for selecting 𝑞 as a rational number, such as 𝑞 = 1/3, which proves

effective for visualizing graphs comprising directed triangles. In

this context, each edge within a directed triangle induces a 2/3𝜋
shift, resulting in a cumulative shift of 360 degrees for the triangle.

(3) Eigenvector Perturbation [14]: It claims that the choice of

the rotation parameter 𝑞 influences the graph Fourier transform.

They propose an expedient method to select 𝑞 for graph signal

processing. Let 𝜖 be the tolerance of the smallest eigenvalue 𝜆′
0
of

the Hermitian Laplacian L (𝑞)𝑚 (𝑞 > 0) of an unweighted directed

graph G, that is 0 ≤ 𝜆′
0
≤ 𝜖 . Then, they denote the eigenvalue and

associated eigenvector of the symmetrized Laplacian 𝑳 (𝑠 ) (= L0)
of G (𝑠 ) as 𝜆 (𝑠 )𝜇 and 𝒖 (𝑠 )𝜇 , respectively. According to eigenvalue

perturbation theory [48], they obtain 0 ≤ 𝑞 ≤ cos
−1 (1−2𝜖/⟨𝑑 ⟩)

2𝜋 .

Thus, one can choose 𝑞 depending only on the average degree ⟨𝑑⟩
and the tolerance 𝜖 of the smallest eigenvalue 𝜆′

0
.


	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notations and Problem Formulation
	2.2 Directed Graph Neural Networks

	3 Empirical Investigation
	4 Magnetic Adaptive Propagation
	4.1 Topology-related Uncertainty Encoding
	4.2 Feature-related Correlation Encoding
	4.3 MAP Framework
	4.4 MAP++ Framework

	5 Theoretical Analysis
	6 Experiments
	6.1 Performance Comparison
	6.2 Ablation Study
	6.3 Efficiency Comparison
	6.4 Performance under Sparse Scenarios

	7 Conclusion
	References
	A Outline
	A.1 Algorithm and Complexity Analysis
	A.2 The Proof of Theorem 1
	A.3 The Proof of Theorem 2
	A.4 The Proof of Theorem 3
	A.5 Our Approach and GNNSync
	A.6 Dataset Description
	A.7 Compared Baselines
	A.8 Hyperparameter Settings
	A.9 Experiment Environment
	A.10 q Selection in Spectral Graph Theory


