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Abstract
An adversary wants to attack a limited number
of images within a stream of known length to re-
duce the exposure risk. Also, the adversary wants
to maximize the success rate of the performed at-
tacks. We show that with very minimal changes in
images data, majority of attacking attempt would
fail, however some attempts still lead to succeed.
We detail an algorithm that choose the optimal
images which lead to successful attack . We apply
our approach on MNIST and prove it’s significant
outcome compared to the state of the art.

1. Introduction
We are interested in an adversarial attack against an image
stream of known length N . In an image stream, the sender
transmits a sequence of N images to the receiver. The re-
ceiver receives each image and classifies it. An adversary
conducts a man-in-the-middle attack and accesses each im-
age upon arrival from the sender and intends to attack a
maximum of k images among whole N images, then send
them to the receiver so that the receiver misclassifies them.
Other images that are not chosen will be passed to the re-
ceiver untouched. The target model, which is the receiver’s
model, is a deep neural network with fixed weights. The
adversary is interested in maximizing its fool rate, which is
the number of successfully performed attacks over k. We
assume k � N because the adversary wants to minimize
its footprint and the risk of being detected. The receiver
knows the approximate frequency of the image arrival and
their order, So, upon the arrival of each image, the adversary
must irrevocably decide whether attack the current image
or wait for the future image which could yield a higher mis-
classification probability than the current image. Any image
received by the adversary should be sent to the receiver
before the next image arrives. The adversary finds out the
success or failure result only after the stream ended.
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2. Literature Review
Few papers addressed attacking sequential data. (Lin et al.,
2017) created a reinforcement learning (RL) agent that at-
tacked in limited states of a sequence of states and used it
against Atari player agents. (Gong et al., 2019) devised a
RL agent that observed data to create perturbation for unob-
served data within a stream. (Sun et al., 2020) created a RL
agent that could predict the target agent’s action, find the crit-
ical point of attacking it, and tested their approach against
game player agents. (Mladenovic et al., 2021) addressed
the same problem as ours, but we explain its approach is
erroneous. (Guo et al., 2019) implemented a simple and
fast black box attack with few queries. (Ilyas et al., 2018)
used tiling technique to reduce the input dimension. These
papers emphasize the importance of query-efficient black
box attack methods. In the following sections, we introduce
our threat model, criteria algorithm, and our proposed black
box attack method, and our results.

3. Threat Model
We define an adversarial example as:

‖p‖∞ ≤ ε (1)

x′ = x+ p (2)

F (x′) 6= y (3)

In the above formulas, x, y, p and x′ are a clean image, its
ground truth label, the perturbation and the perturbed image
coresponding to the target classsifier function F , respec-
tively. We address both black and white box methods. In
white box approach, selecting the optimal images to attack
is trivial since the adversary knows if the current image
yields a successful attack. The surrogate model black box
approach looks a similar case. If the surrogate model is
good enough that preserves output logit ordering, the adver-
sary could already know the result of each attack. We also
suppose the adversary knows the number of classes, m.

Nevertheless, we use the Fast Gradient Sign Method
(FGSM) of (Goodfellow et al., 2014) in our experiments
which we will explain later. In our black box setup, the
adversary has unlimited query access to the target model
and can get the classification loss of the query. We assume
that the target model uses Cross Entropy (CE) loss for the
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classification and that the target model does not use any
form of regularization. For an image x we define:

loss(x, y) = CE(F (x), y) = − ln(p(y)) (4)

4. Criteria Algorithm
4.1. Grouping Images by Loss

Since the adversary has access to loss in both white and
black box scenarios and no regularization loss exists, the
adversary can find the probability of ground truth class after
each query by computing as p(y) = e−CE(F (x′)). This
information helps to define three loss groups:

Low-loss group (LLG) : Images in this group will have
e−CE((F (x′)) > 1/2. These images will lead to failed at-
tack since no more than one class could have a predicted
probability of greater than 0.5. These images will never be
chosen.

High-loss group (HLG) : Images in this group will have
e−CE((F (x′)) < 1/m. Regarding the pigeonhole principle,
given m real numbers whose sum is 1, at least one of them
is not less than their average, the 1/m. So after the HLG
images are attacked, the ground truth class probability is
no longer dominant and will result in a successful attack.
Images in HLG will be chosen for attack if encountered.

Medium-loss group (MLG) : Images belonging to none
of the two above groups fall into MLG, and the adversary
could not find if the attack will be successful or not and must
use a criteria algorithm which will be described in section
4.2.

4.2. Secretary Algorithm for Medium-Loss Group

If the adversary rejects the arriving LLG data, it will no
longer know n, the size of the non-LLG images of the
stream and only knows N , the initial stream size, which
is the upper bound on n. We assume the distribution of n
on set {1, 2, . . . , N} is uniform since the adversary has no
knowledge about the target model robustness against the
current ε.

Although the adversary is only interested in maximizing its
fool rate, when the stream is ongoing, there is no way it can
find whether an image in MLG leads to a successful attack
or not. In order to tackle this problem, the adversary needs
to associate each incoming image to a metric, which is a real
number. The higher metric should reflect the higher chance
of MLG image leading to a successful attack. The metric
will be discussed in section 4.3. So, after defining a metric,
the adversary must adopt a criteria algorithm to maximize
the total metrics values of the images selected from MLG.

The adversary does not know anything about future images’
metrics and can only remember visited ones. This problem
is the k-secretary problem of unknown queue length, where
k is the number of elements to be chosen from the queue.

The k-secretary problem with the queue of an unknown
length concerns irrevocably choosing k elements of a queue
of unknown length to maximize the metric values associated
with the selected elements. Nothing about the distribution
of elements’ metrics is known. The general case for k is not
addressed in the literature yet, but for k = 1, assuming the
distribution of n on set {1, 2, . . . , N} is uniform (Presman,
1973) showed the optimal selector approach. In this paper,
the adversary, should undergo two phases: Observation and
selection phases. In the observation phase, the adversary
should only observe elements up to the index t =

⌊
N/e2

⌋
,

rejecting all observed elements and only remembering the
metric value of the best element rejected. In the selection
phase, from index t+ 1 to n, it should choose the first ele-
ment whose metric is bigger than the highest metric visited
in the observation phase. Since k � N , we use the results
of the k = 1 case and the VIRTUAL+ algorithm proposed
in (Mladenovic et al., 2021). That is, in the observation
phase, from index t = 1 to index

⌊
N/e2

⌋
, the adversary

only observes all MLG images metrics and remembers a
list R of length k of the highest MLG metrics visited so
far and ignores all observed images. In the selection phase,
which is indices t+1 to n, the current image will be chosen
if its metric is bigger than the lowest metric value of R; if
the current image is chosen, the adversary remembers its
metric value, forgetting the lowest metric value of R. If the
adversary observed HLG data in any phase, it should attack
it and reduce the k to k − 1, and move on. If it observed
LLG data, it should ignore it and continue. If the number of
unseen data equals the remained choices, all non-LLG data
must be chosen. Algorithm 2 presents our criteria algorithm.

4.3. Metrics

We study three metrics and compare results using FGSM.

After-attack loss: For a clean image x, this metric is
CE(F (x′), y) where x′ and y are the perturbed image and
its real label, respectively. The reason for this metric is that
higher loss means lower probability of the ground truth label
and higher probability of misclassification.

After and before attack loss difference:For a clean image
x, this metric is CE(F (x′), y)−CE(F (x), y). The reason
for this metric is that a higher loss difference means a more
robust attack and a higher probability that the ground truth
label is no longer dominant.

L2 gradient norm of clean image: For a clean image x,
this metric is ‖∂CE(F (x), y)/∂x‖2. The idea behind this
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metric is that regarding Taylor’s series for small ε we have:

loss(x+ ε, y) ≈ loss(x, y) + ∂loss(x, y)

∂x
× ε (5)

So, a steeper gradient will probably result in a higher loss if
the gradient path is followed. So far, we have used FGSM,
a white box approach, to compare three metrics. Referring
to Table 2, we have chosen after-attack loss as our metric
of choice. Now it is time to tackle the original non-trivial
problem, which is a black box attack. In section 4.4, we
propose our black box attack method.

4.4. The Back Box Attack Method

To tackle our original non-trivial problem of image selection
in a black box query-based attack, we need to propose a
black box attack method for computing the perturbation
and the after-attack loss metric. Inspired by (Ilyas et al.,
2018; Guo et al., 2019), we have defined the Fast Black Box
attack (FBB) method.We have used the tiling idea, which is
partitioning the input image into non-overlapping tiles. We
have assumed given that tiles’ dimensions are small, pixels
within each tile correspond to the same object in an image;
thus, the gradient of all pixels within a tile are approximately
constant. Also, according to 5, we have supposed the largest
loss happens on the boundary of the l∞ ball with a radius
of ε. Algorithm 1 indicates the pseudocode of this attack.

Algorithm 1 FBB Attack
Input: clean image x and its label y, tiles dimension t
Output: P , the calculated perturbation for x (Divide x
into t× t pixel tiles)
Let P = 0 be the crafted perturbation of shape x
for tile T in x do
xplus = x;xminus = x
xplus[T ] = xplus[T ] + ε;xminus[T ] = xminus[T ]− ε
if loss(xplus, y) > loss(xminus, y) then
P [T ] = ε;x = xplus

else
P [T ] = −ε;x = xminus

end if
end for
return P

5. Experimental Results and Discussion
For a convolutional neural network model, we have tested
our approach on MNIST test set. To get the results of
Table 2, we have analyzed numerous random permutations
of the full MNIST test set, 1000 in our experiment, for all
three metrics and performed our criteria algorithm with each
metric separately.

Algorithm 2 Criteria Algorithm
Input: stream parameters(X,N, k)
Let R = [],i = 1, j = bN/e2c+ 1, s = 0, r = k
while i < bN/e2c and s < k do

if X[i] ∈ low-loss then
continue

else if X[i] ∈ high-loss then
Attack X[i]; s = s+ 1; r = r − 1
while len(R) > r do
R.remove(R[0])

end while
else if len(R) < r then
R.append(Metric(X[i]);R.sort() //Ascending

else if Metric(X[i]) > R[0] then
R[0] =Metric(X[i]);R.sort() //Ascending

end if
i = i+ 1

end while
while j ≤ N and s < k do

while len(R) > r do
R.remove(R[0])

end while
if X[j] ∈ low-loss then

continue
else if X[j] ∈ high-loss then

Attack X[j]; s = s+ 1; r = r − 1
else if Metric(X[j]) > R[0] then
R[0] =Metric(X[j]);
Attack X[j]; s = s+ 1;R.sort() //Ascending

else if N − j + 1 ≤ r then
for q = j to N do

if X[q] /∈ low-loss then
Attack X[q]; s = s+ 1;

end if
end for
break

end if
end while

For the black box case, we have also implemented our FBB
method on 1000 random permutations of full MNIST test
set for various ε and obtained the Table 1 results. Regarding
both tables, the LLG size and HLG size columns show the
length of these two groups among all data. The next two
columns show the number of data chosen by the secretary
and from HLG, respectively. Then comes the success rate
for the secretary chosen data in the next column. After that,
the random selection success rate in MLG is presented. The
next column shows the random selection success rate among
non-LLG data, which is the case wherem is not known. The
last column is the percentage of chosen data divided by k.
If ε is too low, there will not be enough non-LLG data and
fewer than k images will be chosen, leading to a low fool
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Table 1. FBB attack results on full MNIST test set with 4× 4 tiles averaged for 1000 random permutation with after attack loss metric.
(RS-SR,F-R and N-C stand for random selection success rate, fool-rate and number of chosen data)

k ε AVERAGE
F-R (%)

LLG
SIZE

HLG
SIZE

N-C FROM
HLG

N-C BY
SECRETARY

SECRETARY
S-R (%)

RS-SR
IN MLG

RS-SR NOT
KNOWING m

N-C
k

(%)

1000
1
20

35.4
9353 251

250.4 106 98.5
89.1 93.3

35.6
100 98.9 68.5 31.5 98.1 100
10 100 10 0 - 100

1000
3
40

74.4
8632 517

516 231.4 98.5
88.4 92.8

74.7
100 100 90.7 9.3 100 100
10 100 10 0 - 100

1000
1
10

99.6
7344 1117

687.1 312.9 98.7
93.9 90.2

100
100 100 100 0 - 100
10 100 10 0 - 100

Table 2. Comparison of metrics in FGSM attack with ε = 0.05 on full MNIST test set averaged for 1000 random permutation. (RS-SR,F-R
and N-C stand for random selection success rate, fool-rate and number of chosen data)

METRIC k AVERAGE
F-R (%)

LLG
SIZE

HLG
SIZE

N-C FROM
HLG

N-C BY
SECRETARY

SECRETARY
S-R (%)

RS-SR
IN MLG

RS-SR NOT
KNOWING m

N-C
k

(%)

4CE
1000 58

8968 412

410.8 168.8 98.5

87.3 92.4

58
100 100 83.4 16.6 98.9 100
10 100 10 0 - 100

l2 GRAD
1000 57 411 168.2 92.3 57.9
100 98 83 16.9 90.8 100
10 100 10 0 - 100

CE(x′)
1000 58 410.7 169 98.4 58
100 100 83.1 16.9 98.9 100
10 100 10 0 - 100

rate. A set’s success rate is the number of images in the set
leading to a successful attack divided by the set size.

As Table 2 shows, the after-attack loss and the loss differ-
ence metrics yield the same fool rate, but since the former
uses half the queries of the latter, it was the metric of choice
in our black box approach. In contrast, the L2 gradient norm
metric has not performed higher than random selection in
the non-LLG data when not knowing m, so it is not a good
metric (m is equal to 10 in MNIST dataset (LeCun & Cortes,
2010)). Regarding Table 1 and Table 2, even relatively low
epsilons lead to high fool rates. There are several reasons
for this. First, we only need a few successful attacks to
reach high fool rates. Second, even with low epsilons, many
images belong to HLG , and for sufficiently large k such
as k=100 and k=1000 cases in both tables, our algorithm
almost selects all HLG images. Third, since the vast ma-
jority of images belong to LLG and the vast majority of
MLG lead to a successful attack, the success rate among the
non-LLG group is high and the adversary still gets above
90% fool rates only by rejecting LLG data and choosing
randomly among non-LLG data, that is, MLG and HLG
combined. Also, as Table 1 and Table 2 suggest, introduc-

ing the secretary approach slightly improves the random
selection strategy among MLG. Tiles’ dimension is another
important parameter. Should the adversary have enough
time between image arrivals, smaller tiles are preferable
because they allow greater exploitation of the adversarial
space, thus; requiring lower epsilons.

Comparing our Table 1 results with (Mladenovic et al.,
2021), with ε = 3/40 which is one-fourth of their ε, we
outperformed their white box approach on all k equal to
10,100 and 1000. Typically, epsilons between 0.2 and 0.3
are used for MNIST. We do not need these high epsilons be-
cause we are interested in fooling a small share of the stream.
It should be noted that although the adversary knows the
initial length of the stream, N , the vast majority of images
are rejected because they belong to LLG; thus, we used the
secretary problem with the unknown length of the stream.

Note that when k is relatively large, the k = 1000 case,
the low fool rate is because fewer than k images belong
to non-LLG. We tackled this issue by switching to slightly
higher epsilons, 3/40 and 1/10 namely. .
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6. Conclusion
Our approach results in high fool rates using very low ep-
silons in irrevocable limited-budget online adversarial at-
tacks with known stream length is. By introducing the loss
grouping idea, fool rates significantly improved. Future
work should address the theoretical rationale behind metrics
and criteria algorithm, and address the general architecture
with possible regularization loss.
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