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Abstract

Teaching an agent to perform new tasks using natural language can easily be hin-
dered by ambiguities in interpretation. When a teacher provides an instruction
to a learner about an object by referring to its features, the learner can misunder-
stand the teacher’s intentions, for instance if the instruction ambiguously refer to
features of the object, a phenomenon called referential ambiguity. We study how
two concepts derived from cognitive sciences can help resolve those referential
ambiguities: pedagogy (selecting the right instructions) and pragmatism (learning
the preferences of the other agents using inductive reasoning). We apply those
ideas to a teacher/learner setup with two artificial agents on a simulated robotic
task (block-stacking). We show that these concepts improve sample efficiency for
training the learner.

1 Introduction

Language is intrinsically contextual and often ambiguous [18]. Linguistic ambiguity is a quality of
language that makes communication shorter but open to multiple interpretations. As a consequence,
the receiver of the message may need some additional information to reliably decode its meaning.
A notable source of ambiguity is referential ambiguity [1]: when a person linguistically refers to
an object through some features, the receiver can misinterpret the object referred to for another that
shares the same features. Usually, humans can resolve such ambiguities in two ways: precisely
specifying which item they refer to, or using contextual information such as relative position to
another object. We would like artificial agents to resolve such ambiguities in the same way and
benefit from the improved communication efficiency.

In this paper, we address referential ambiguity with a teacher/learner setup with two artificial agents
in multi-goal environments. Both agents are equipped with an action policy and an instruction policy
with which they can respectively act in the environment and communicate about goals using language.
We consider environments where there are objects with multiple features, and the agents can only
refer to one feature of the object they want to designate. The teacher provides instructions to the
learner, which has to infer the desired goal associated to the instruction.

To resolve referential ambiguities in this setup, we draw inspiration from ideas in developmental
psychology [14]. We define 1) pedagogical teachers who wisely choose instructions to avoid
ambiguities (as opposed to naive teachers who randomly pick any valid instruction) and 2) pragmatic
learners who reason inductively to better understand the intentions behind the teacher’s instructions
(as opposed to literal learners that do not adapt to their teacher).

To validate that it has inferred the right goal, the learner reformulates the goal it inferred with another
instruction, from which the teacher deduces a goal, and tells the learner if goal inference was correct.
When it is so, the learner can pursue the goal and use Reinforcement Learning to update its action
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policy. With this approach, we show that pedagogy and pragmatism can help resolve referential
ambiguities for goal inference from instructions. This improves communication between the teacher
and the learner and results in more sample efficient learner training.

Related work

Our work is rooted in the Goal-Conditioned Reinforcement Learning (GCRL) literature [8], in
which agents learn to pursue and reach different goals by conditioning their action policy with
representations of these goals. More specifically, we study agents that can both set their own goals
(i.e. autotelic agents [8]) and be helped by other agents (i.e. teachable agents [19]). Previous work
has shown that linking language to action is a powerful approach to improve upon classic GCRL
approaches that are only based on actions [2, 7]. In our case, instructions can encode for goals, an
approach called instruction-following [5, 12]. Most of these works rely on using optimal teachers and
classic reinforcement learning learners without different goals and without optimizing the teacher or
the learner to improve their communication efficiency by adding pedagogy or pragmatism.

Additionally, a long line of work in linguistics, natural language processing, and cognitive science
has studied pragmatics: how linguistic meaning is affected by context and communicative goals,
which led to a variety of frameworks for pragmatic communication [17, 10, 9, 13, 1, 16]. In our work,
we take inspiration from the pragmatics ideas in linguistics to provide a simple way to add pedagogy
and pragmatism to instruction-following tasks.

2 Methods

We present the teacher and learner implementation, and their communication through instructions.

2.1 Bayesian Goal Inference from Instructions

We formally introduce the Bayesian Goal Inference (BGI) mechanism used to infer goals from a goal-
conditioned instruction policy (GCIP). In this work, the agents use it to infer goals from instructions
provided by other agents.

Action policy and Instruction policy All our agents are equipped with a GCIP πI(i|g), which
outputs an instruction probability distribution i given a goal g. Additionally, the learner is equipped
with a goal-conditioned action policy πA(a|s, g), which outputs an action probability distribution a
given a state s and a goal g. The action policy πA is similar to a regular GCRL policy, and is used
by the learner to reach goals in the environment. The instruction policy πI is used by the agent to
communicate goals to the other agent. It generates a valid language instruction for the given goal,
which can be transmitted to other agents. In our case, those instructions use features of the objects
(e.g. color) to refer to them and goals involve moving those objects such as "Put the red block next to
the blue one".

Inferring the Goal from an Instruction The instruction policy outputs a probability distribution
for all valid instruction for a given goal. An agent can use its own instruction policy to infer the goal
from an instruction (refer to [6] for a detailed explanation of BGI). To infer a goal from an instruction,
by using Bayes’ rule we can derive P(G|i), the probability distribution over the goal space G given
the instruction: P(G|i) ∝ P(i|G) · P(G) = πI(i|G) · P(G).

For each goal g, the prior P(G) is uniform if not specified otherwise. Given P(G|i), an agent can
infer the goal from an instruction by either taking the most probable goal, or sampling from the
distribution. To perform this inference, the agent uses its own instruction policy.

2.2 Training the Naive/Pedagogical Teacher and Literal/Pragmatic Learner

Defining the teachers The naive teacher has an instruction policy for which all valid instructions
for a given goal are equally likely. By contrast, the pedagogical teacher only assigns a positive
probability to an instruction given a goal if this instruction is not valid for all other goals. Between
those two extremes, we define teachers with attribute preferences. For instance, a teacher with color
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preference will more likely refer to the color feature of objects rather than other features such as
texture.

Training the Learner with Teacher’s instructions The learners’ task is to learn how to master all
goals starting from their untrained action policy πA, following the goals instructed by the teacher.
In order to understand the instructions and communicate, learners have also access to an instruction
policy πI . This instruction policy is initialized by assigning the same probability to all valid
instruction for a given goal.

Given πA and πI , the literal learner’s training loop is the following. The teacher samples a goal g
and provides the learner with an instruction i for this goal using its instruction policy. The learner
receives the instruction and uses BGI to infer the goal ĝ requested by the teacher. In order to validate
that the learner inferred the right goal, it samples another instruction using the inferred goal ĝ and
its instruction policy, and transmits this evaluative feedback if to the teacher. The teacher infers the
goal gf of this evaluative feedback using BGI. If the inferred goal does not match the original goal
(gf ̸= g), then the teacher starts over with a new instruction. If the inferred goal matches the original
goal (gf = g), the learner attempts at reaching this goal, collects a trajectory and add it to its replay
buffer. Every n episodes, the action policy of the learner is updated using GCRL.

Literal and pragmatic learners Pragmatic learners differ from literal learners by iteratively
improving their instruction policy during training. If the teacher announces that the inferred goal
from the learner’s feedback does not match the intended goal, the pragmatic learner will modify its
instruction policy by lowering the probability of selecting the feedback instruction given the inferred
goal: P(if |ĝ) = πI(if |ĝ)− γ, with γ being an hyperparameter (set to 0.1 in our work). Then, the
instruction policy is normalized back to a probability distribution. This way, the pragmatic learner is
able to adjust its instruction policy to maximize communication efficiency with the teacher.

3 Experiments and results

Environment: Fetch Block Stacking We use the same "Fetch block-stacking" (FBS) environment
as in [6]. In the instance used here, there are three blocks in the environment with different colors
and textures: a red plain block (block 1), a blue plain block (block 2) and a blue striped block (block
3). These color and texture attributes are the basis for instructions used by the agents to refer to goals.
The goal space is composed of 3 goals: each goal represents two blocks being close to each other.
In order to create instructions about these goals, the agents are allowed to refer to one attribute of
each blocks that has to be placed next to another. For instance, "Put the striped block next to the red
block" would be a valid instruction for the goal of making block 1 and block 3 close. From those
conditions, referential ambiguities emerge: when referring to a blue block, is the agent referring
to block 2 (blue and plain) or block 3 (blue and striped)? Our experiments aim to show that with
pedagogy and pragmatism, one can avoid those ambiguities.

Action policy implementation The training procedure and policy architecture of the naive teacher
are taken from GANGSTR [3] which already implements Fetch Block Stacking. For architecture,
training and hyperparameters details, please refer to [3]. The policy is a message passing graph neural
network [11]. This action policy is trained using Soft Actor Critic (SAC) [15], a state-of-the-art RL
algorithm, combined with Hindsight Experience Replay (HER) [4].

Main results We experiment with all combinations of teachers and learners, and report the results
in Fig. 1(left), where we plot the GRA as a function of the number of instructions given by the teacher.
As a metric, we use the Goal Reaching Accuracy (GRA), which is the average success rate of an
agent over the goal space. The results clearly show the benefits of using pedagogy and pragmatism in
our experimental setup. Indeed, the naive teacher + literal learner combination performs the worst
compared to all other approaches that either use pedagogy or pragmatism. On the left of Fig. 1, we
can see that both pragmatism and pedagogy alone improves performance, but the combination of the
two yields an even greater performance gain. In Fig. 1(right), we show experiments with teachers
that are non-ambiguous if you know their preferences (shapes or colors). We can see that a naive
learner cannot benefit from these teachers, as they are not able to learn their preferences. By contrast,
the pragmatic learner uses inductive reasoning to fine-tune its own instruction policy and is able to
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learn the preferences of the teacher, thereby improving drastically its performance with results close
to the pedagogical+pragmatic combination.

Fig. 1: Learner’s GRA as a function of number of instructions given by the teacher for all possible
combinations of teacher and learners. Left: results with pedagogy and pragmatism. Right: results
with color/texture preference teachers.

Why does the pedagogical teacher increase communication efficiency? We provide a visual
representation of the instruction policy of the pedagogical teacher in Fig. 2. This table presents all
the 14 possible instructions and the three existing goals. To show the instruction policy, we insert in
all cells the probabilities of picking the instruction given the goal.

We can clearly see that the pedagogical GCIP does not use the same instruction for two different
goals, thus avoiding referential ambiguity. Besides, non-ambiguous instructions for a given goal are
equally probable. Note that this not the only solution for a non-ambiguous GCIP, e.g. having only
one non-ambiguous instruction for a given goal would work as well.

Fig. 2: Instruction policy of the pedagogical
teacher. Green: instructions used by the ped-
agogical teacher, which are the only instructions
that are not valid for other goals to avoid any
type of ambiguity. Red: incompatibilities be-
tween the instruction and the goal. White: valid
instructions with zero probability.

Fig. 3: Number of communication errors be-
tween the teacher and the learner. Pragmatic
learners improve their instruction policy and re-
duce the communication errors wrt literal learn-
ers whose errors increase linearly.

Why does the pragmatic learner increase communication efficiency? In Fig. 3, we plot the
number of communication errors as time progresses for all possible combination of teachers and
learners. These errors stem from inference error from the learner or inference errors from the teacher
when receiving the feedback. For literal learners, their instruction policy are fixed like the teachers,
thus the communication efficiency between both agents remains the same during training. This is
why in Fig. 3, the number of communication errors between the teacher and the learner increases
linearly over time.

By contrast, the pragmatic learners improve their instruction policy over time. Indeed, the number of
communication errors grows faster in the beginning of training, and then slows down. These results
show that the learner communicates better and better, and thus requires less attempts to rightfully
infer the goal of the instruction and get correct feedback from the teacher. For the pedagogical +
pragmatic combination, we even see the number of communication errors becomes constant as the
communication between the two agents becomes flawless.
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Conclusion In this paper, we have shown how referential ambiguities in instruction-following
Reinforcement Learning can be countered by pedagogy and pragmatism ideas taken from the
developmental psychology and cognitive sciences literature. In future work, we will explore how a
teacher that can both provide instructions and demonstrations about goals can teach tasks efficiently
to a learner. This will help understand the effects of the teaching signals on the training of the learner:
when and how does a teacher should help the learner?
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