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Abstract

We consider a multi-armed bandit problem with A actions and M latent contexts,
where an agent interacts with the environment for an episode of H time steps.
Depending on the length of the episode, the learner may not be able to estimate
accurately the latent context. The resulting partial observation of the environment
makes the learning task significantly more challenging. Without any additional
structural assumptions, existing techniques to tackle partially observed settings
imply the decision maker can learn a near-optimal policy with O(A)H episodes,
but do not promise more. In this work, we show that learning with polynomial
samples in A is possible. We achieve this by using techniques from experiment
design. Then, through a method-of-moments approach, we design a procedure that
provably learns a near-optimal policy with O(poly(A) + poly(M,H)min(M,H))
interactions. In practice, we show that we can formulate the moment-matching via
maximum likelihood estimation. In our experiments, this significantly outperforms
the worst-case guarantees, as well as existing practical methods.

1 Introduction

In Multi-Armed Bandits (MABs), an agent learns to act optimally by interacting with an unknown
environment. In many applications, interaction sessions are short, relative to the complexity of the
overall task. As a motivating example, we consider a large content website that interacts with users
arriving to the site, by making sequential recommendations. In each such episode, the system has
only a few chances to recommend items before the user leaves the website – an interaction time
typically much smaller than the number of actions or the types of users. In such settings, agents often
have access to short horizon episodes, and have to learn how to process observations from different
episodes to learn the best adaptation strategy.
Motivated by such examples, we consider the problem of learning a near-optimal policy in Latent
Multi-Armed Bandits (LMABs). In each episode with time-horizon H , the agent interacts with one of
M possible MAB environments (e.g., type of user) randomly chosen by nature. Without knowing the
identity of the environment (we call this the latent context), an agent aims to maximize the expected
cumulative reward per episode (see Definition 2.1 for a formal description). The LMAB framework
is different from the setting considered in [31] where multiple episodes proceed in parallel without
limiting the horizon of an episode H . For long horizons H , we show that it is possible to find a
near-optimal policy and to determine near-optimal actions for each episode, as if we knew the hidden
context. If H ≪ A where A is the total number of actions, however, this is no longer possible. Instead,
we aim to learn the best history-dependent policy for H time steps.
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1.1 Our Results and Contributions

In this work, we study the problem of learning a near optimal policy of an LMABs for both long and
short horizon H . In the long horizon case, we show the problem’s latent parameters are learnable.
However, for short horizon, the latent parameters may not be identifiable and a different perspective is
required.
A naive approach to learn a near optimal policy of an LMAB starts by casting the problem as a Markov
Decision Process (MDP). Assume that the reward values are discrete and defined over a finite alphabet
of cardinality Z. By defining the state space as the set of all sequences of history observations an
LMAB can be formulated as an MDP with O((AZ)H) states. Appealing to standard reinforcement
learning algorithms (e.g., [18, 6]) we can learn an ϵ-optimal policy with O(AZ)H/ϵ2 samples.
A natural way to improve upon the naive approach is through using the unique structure of the LMAB
setting. In this work we focus on the following question: can we learn a near-optimal policy with
fewer than O(AZ)H/ϵ2 samples as the naive approach?
Our work answers the above question affirmatively. Specifically, our main contributions are as follows.
We show that the dependence of our algorithm is poly(A)+poly(H,M)min(H,M), and thus tractable
when either H or M is small, even for very large A. That is, we are particularly focused on the setting
with a few contexts or relatively short episodes (in comparison to A), i.e., M = O(1) or H = O(1),
where a natural objective is to learn a near-optimal history-dependent policy for H time steps (see
also Figure 3 in Appendix B.1).

1.2 Related Work

Due to space constraints, we discuss only the most closely related work here, and defer a lengthier
discussion on related work to Appendix B.1.

Learning priors in multi-armed bandit problems Several recent works have considered the
Bayesian learning framework with short time-horizon [29, 35, 21]. The focus in this line of work is
on the design of algorithms that learn the prior, while acting with a fixed Bayesian algorithm (e.g.,
Thompson sampling). While Bayesian learning with short time-horizon may be viewed as a special
case of LMABs, the baseline policy we compare ourselves to is the optimal H-step policy, which is a
harder baseline than considering a fixed Bayesian algorithm.

Latent MDPs Some prior work considers the framework of Latent MDPs (LMDPs), which is the
MDP generalization of LMAB [16, 37, 24, 23]. In particular, [24] has shown the information-theoretic
limit of learning in LMDPs with no assumptions on MDPs, i.e., an exponential number of sample
episodes Ω(AM ) is necessary to learn a near-optimal policy in LMDPs. In contrast, we show that
in LMABs, the required number of episodes can be polynomial in A. This does not contradict the
result in [24], since their lower bound construction comes from the challenge in state-exploration
with latent contexts. In contrast, there is no state-exploration issue for bandits, which enables the
polynomial sample complexity in A. Furthermore, our upper bound does not require any assumptions
or additional information such as good initialization or separations as in [24]. To the best of our
knowledge, no existing results are known for learning a near optimal policy of LMAB instances for
M ≥ 3 without further assumptions.

Learning in POMDPs with full-rank observations One popular learning approach in partially
observable systems is the tensor-decomposition method, which extracts the realization of model
parameters from third-order tensors [1, 7, 15]. However, the recovery of model parameters require
specific geometric assumptions on the full-rankness of a certain test-observation matrix. Furthermore,
most prior work requires a uniform reachability assumption, i.e., all latent spaces should be reached
with non-negligible probabilities by any exploration policy for the parameter recovery. Recent results
in [19, 30] have shown that the uniform reachability assumption can be dropped with the optimism
principle. However, they still require the full-rankness of a test-observation matrix to keep the
volume of a confidence set explicitly bounded. Since LMAB instances do not necessarily satisfy the
full-rankness assumption, their results do not imply an upper bound for learning LMABs.
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2 Preliminaries

We define the problem of episodic latent multi-armed bandits with time-horizon H ≥ 2 as follows:

Definition 2.1 (Latent Multi-Armed Bandit (LMAB)) Let LMAB be a tuple B =
(A, {wm}Mm=1, {µm}Mm=1), where A is a set of actions, {wm}Mm=1 are the mixing weights
such that a latent context m is randomly chosen with probability wm, and µm is the model parameter
that describes a reward distribution, i.e., Pµm

(r | a) := P(r | m, a), according to an action
a ∈ A conditioning on a latent context m (each µm parameterizes the probability model, and is not
necessarily a mean reward vector).

We do not assume a priori knowledge of mixing weights. The bulk of this paper considers discrete
reward realizations, when the support of the reward distribution is finite and bounded. In Appendix D,
we also show that our results can be adapted to Gaussian reward distributions.

Assumption 2.2 (Discrete Rewards) The reward distribution has finite and bounded support. The
reward attains a value in the set Z . We assume that for all z ∈ Z we have |z| ≤ 1. We denote the
cardinality of Z as Z and assume that Z = O(1).

As an example, Bernoulli distribution satisfies Assumption 2.2 withZ = {0, 1} andZ = 2. We denote
the probability of observing a reward value z by playing an action a as µm(a, z) := P(r = z | m, a) in
a contextm. We often use µm as a reward-probability vector inRAZ indexed by a tuple (a, z) ∈ A×Z .
At the beginning of every episode, a latent context m ∈ [M ] is sampled from a mixing distribution
{wm}Mm=1 and fixed for H time steps, however we cannot observe m directly. We consider a policy
class Π which contains all history-dependent policies π : (A × Z)∗ → A. Our goal is to find
a near optimal policy π ∈ Π that maximizes the expected cumulative reward V for each episode
V ⋆ = maxπ∈Π V (π) := Eπ

[∑H
t=1 rt

]
, where the expectation is taken over latent contexts and

rewards generated by an LMAB instance, and actions following a policy π.

Definition 2.3 (Approximate Planning Oracle) A planning oracle receives an LMAB instance B
and returns an ϵ-approximate policy π such that V ⋆ − V (π) ≤ ϵ.

Concretely, the point-based value-iteration (PBVI) algorithm [33] is an ϵ-approximate planning
algorithm which runs in time O(HMAZ(H2/ϵ)O(M)).

Additional notation. For any quantity q with respect to the true LMAB, B, we use q̂ to refer to its
corresponding empirical estimate. We use wmin := minm∈[M ] wm for the minimum mixing weight.
For any lth-order tensor Tl ∈ Rn×...×n (n repeated l times), we denote ∥Tl∥∞ for the element-wise
largest absolute value. For any vector in v ∈ Rn in dimension n ∈ N+, we use v

⊗
l to denote a

degree l tensorization of v. We often use ∥µm(a, ·)− µ̂m(a, ·)∥1 to mean the l1 statistical distance
between reward distributions:

∑
z∈Z |µm(a, z)− µ̂m(a, z)|. Lastly, we denote by at and rt as the

action and reward realizations observed at time step t ∈ [H].

3 Sample-Complexity of Learning LMABs

In this section, we develop our main algorithm that learns a near-optimal policy of an LMAB instance
with O(poly(A)+poly(M,H)min(M,H)) samples. Towards achieving this goal, we first elaborate on
a low rank representation of the LMAB problem. Then, we show how experimental design techniques
can assist in utilizing this structure to improve over the naive upper bound to the problem.

3.1 Dimensionality Reduction via Experimental Design

When H = 1, estimating the latent context is not possible, and executing a standard MAB strategy
(e.g., UCB) is optimal. However, to obtain a near-optimal history-dependent policy with longer
time-horizons H > 1, tracking the mean reward of an action is not enough, since rewards from
previous time steps are correlated with current and future rewards.
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We consider a model-based learning approach from the lth-order moments of reward observations.
Since there are A actions, this implies that we have O(Al) quantities to estimate, which would incur
O(Al) sample complexity if we separately measure every correlation between l pairs of actions.
On the other hand, when M ≪ A, the distributions µm (recall these are reward probabilities for
each action, in each context) occupy only a M -dimensional subspace of AZ-dimensional space:
U := span{µ1, µ2, . . . , µM}. Thus if we could estimate U, and project all observations to U, we
could remove the unfavorable dependence on A.
However, even when the subspace U is known a priori, dimensionality reduction with bandit feedback
is non-trivial. We need to compute directly the projection onto U of estimates of the reward probability
vectors. To see the challenge, let {βj}Mj=1 ⊂ RAZ be an orthonormal basis of U. To compute the
projected estimate µ⊤

mβj , we need a sampling policy π such that π(a) ∝
∑

z |βj(a, z)|. The variance
of this sampling policy can be as much as O(∥βj∥21), which in general scales with ∥βj∥21 = O(A).
Therefore, reliable estimation for any statistics in the reduced dimension would still have a dependence
on A. In particular, since our approach is based on higher-order method-of-moments, an estimation
of lth-order statistics for l ≥ 2 would require Ω(Al/2) samples.
The general idea of dimensionality reduction is not fatally flawed. Instead, we need to avoid the
pitfalls of the approach outlined above. First, the calculation above shows that we need to control the
∥ · ∥1-norm of the vectors βj , ideally, ∥βj∥1 = O(1). Second, we only need a good estimate for each
µm such that maxa∈A ∥µm(a, ·)− µ̂m(a, ·)∥1 ≤ ϵ to compute an ϵ-optimal policy.
The key is to show that we can choose βj’s to be a subset of the standard basis in RAZ (hence
they will have ∥βj∥1 = 1), in such a way that guarantees the approximation quality for µm from
estimating µ⊤

mβj’s. In terms of the original problem, the existence of such a subset of the standard
basis is equivalent to the existence of a small set of informative action-value pairs, that are sufficiently
correlated with all other action-value pairs. This is called a core set in the experimental design
literature, and its existence in our context, is an important consequence of the Kiefer–Wolfowitz
theorem. Specifically, we can select a core set of coordinates with the following crucial lemma:

Lemma 3.1 Let U be a given k-dimensional linear subspace in Rd where d ≫ k and let u, ū ∈ U.
There exists an algorithm that runs in time Õ(dk2) and returns the following.

1. A core set of at most n = 4k log log k + 16 coordinates {ij}nj=1 ⊆ [d] such that
∥u− ū∥∞ ≤

√
2kmaxj∈[n] |u(ij)− ū(ij)|.

2. A linear transformation that maps [ū(i1), . . . , ū(in)] to its corresponding ū ∈ U.

Note that in our setting, d = AZ and k = M . We prove Lemma 3.1 in Section C.1, essentially as
a corollary of the Kiefer–Wolfowitz theorem (and its geometric interpretation) for (near)-optimal
experimental design [20, 39].
In the context of bandits and RL, the Kiefer–Wolfowitz theorem has been used to study how the
misspecification in linear representation changes the problem landscape (e.g., [27, 32]). However,
experimental design has not been previously used for dimensionality reduction for problems with
bandit feedback (as far as we know). We believe it is a powerful tool. We review the basics of
experimental design in Appendix B.2.

A direct consequence of Lemma 3.1 is an algorithm to find a set of coordinates of size Õ(M) that are
sufficient to reconstruct the latent reward model {µm}Mm=1 where µm ∈ RAZ . We refer to this set of
coordinates as the set of core action-value pairs.

Corollary 3.2 Suppose the subspace U = span{µ1, . . . , µM} is given. Then for any µ̂ ∈ U, there
exists an algorithm that runs in time Õ(ZAM2) and returns the following.

1. A set of core action-value pairs {(aj , zj)}nj=1 ⊆ A × Z of size at most
n = 4M log logM + 16, such that for all m ∈ [M ]

max
a∈A

∥µm(a, ·)− µ̂m(a, ·)∥1 ≤ 2Z
√
2M ·max

j∈[n]
|νm(j)− ν̂m(j)|,

where νm, ν̂m ∈ Rn such that νm(j) := µm(aj , zj) and ν̂m(j) := µ̂m(aj , zj).
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2. A linear transformation that maps [ν̂(i1), . . . , ν̂(in)] to its corresponding µ̂ ∈ U.

Assuming access to the subspace U (we remove this assumption in Section 3.4), Corollary 3.2 implies
a strategy for estimating the latent model parameters {µm}Mm=1: obtain core action-value pairs
{(aj , zj)}nj=1, estimate {νm}Mm=1, and construct latent model parameters via a linear transformation
of {νm}Mm=1. In the following sections, we show that by matching higher-order moments we can
estimate {νm}Mm=1 to sufficiently good accuracy with only polynomial dependence in A.

3.2 H ≥ 2M − 1: Identifiable Regime in Wasserstein Metric

In the regime where that H ≥ 2M − 1 we can measure moments up to order (2M − 1)th. Then,
we can leverage recent advances in learning parameters of mixture distributions from higher-order
moments [40, 12]. That is, we can recover {νm}Mm=1 by estimating 2M − 1 higher-order moments
and find {ν̂m}Mm=1 that matches them. This further emphasizes the importance of the dimensionality
reduction we take to obtain the set of core action-values pairs; otherwise, a moment-based approach
to recover {µm}Mm=1 would have an exponential dependence in A.
We now elaborate on the estimation procedure of {νm}Mm=1 from higher-order moments. We define
the l-order tensor as Tl :=

∑M
m=1 wmν

⊗
l

m . For an LMAB instance, we can access the tensor Tl using
observational data by simply estimating correlations between l core action-value pairs within each
episode. Specifically, for any I = (i1, i2, ..., il) ∈ [n]l the tensor Tl(i1, i2, ..., il) is also given by

Tl(i1, i2, ..., il) = EπI
[
Πl

t=11 {rt = zit}
]
, (1)

where πI is a policy that performs the sequence of actions (ai1 , ai2 , ..., ail) for t = 1, . . . , l.

Suppose we find estimators {(ŵm, ν̂m)}Mm=1 such that moments match Tl up to error δ for all l ∈
[2M − 1]. The results in [40, 12] imply that the closeness in moments of up to (2M − 1)th degree
implies the closeness in model parameters:

Lemma 3.3 Suppose ∥Tl −
∑M

m=1 ŵmν̂
⊗

l
m ∥∞ < δ for all l = 1, 2, ..., 2M − 1 for some sufficiently

small δ > 0. Then,
inf
Γ

∑
(m,m′)∈[M ]2

Γ(m,m′) · ∥νm − ν̂m′∥∞ ≤ O
(
M3n · δ−1/(2M−1)

)
, (2)

where Γ is a joint distribution over (m,m′) ∈ [M ]2 satisfying
Γ(m,m′) ∈ RM×M

+ :
∑M

m′=1 Γ(m,m′) = wm,
∑M

m=1 Γ(m,m′) = ŵm. (3)

The form of guarantee given for {ŵm, ν̂m}Mm=1 is in the Wasserstein distance between two latent
model parameters. A useful property of the Wasserstein metric is that the distance measure is invariant
to permutation of individual components, and flexible with arbitrarily small mixing probabilities or
arbitrarily close components [40] (see also Appendix B.3 for the review on Wasserstein distance).
Once we obtain estimates of {νm}Mm=1, we can estimate {µ̂m}Mm=1 as implied by Corollary 3.2 (see
Appendix C.8 for further details). We then show that for any history-dependent policy π, the expected
cumulative rewards of π are approximately the same for any close LMAB instances.

Proposition 3.4 Let B = (A, {wm}Mm=1, {µm}Mm=1) and B̂ = (A, {ŵm}Mm=1, {µ̂m}Mm=1) be any
two LMABs. Then, for any history-dependent policy π : (A×Z)∗ → A, we have

|V (π)− V̂ (π)| ≤ H2 · inf
Γ

∑
(m,m′)∈[M ]2

(
Γ(m,m′) ·max

a∈A
∥µm(a, ·)− µ̂m′(a, ·)∥1

)
, (4)

where the infimum over Γ is taken over joint distributions over (m,m′) satisfying (3).

From Corollary 3.2 we have maxa∈A ∥µm(a, ·) − µ̂m′(a, ·)∥1 ≤ 2Z
√
2M∥νm − ν̂m′∥∞ for any

m,m′ ∈ [M ]. Plugging this into Proposition 3.4, we have
|V (π)− V̂ (π)| ≤ poly(H,Z,M, n) · δ−1/(2M−1).

Thus, using Lemma 3.3 with δ < (poly(H,Z,M, n)/ϵ)2M−1, we can conclude that any ϵ-optimal
policy for B̂ is O (ϵ)-optimal for the underlying LMAB B.
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3.3 H < 2M − 1: Unidentifiable Regime with Short Time-Horizon

A more interesting regime is the one in which the time-horizon H is smaller than the required degree
of moments 2M − 1. For such a setting we cannot measure moments of degree higher than H .
Therefore, if H < 2M − 1, we cannot rely on the identifiablility of the underlying LMAB model.
Instead, we make the following claim: to compute an optimal policy only for time horizonH < 2M−1,
we only need to match the Hth order moments. This is formalized in the next lemma.

Lemma 3.5 Suppose that ∥
∑M

m=1 wmµ
⊗

H
m −

∑M
m=1 ŵmµ̂

⊗
H

m ∥∞ ≤ δ, then for any history de-
pendent policy π ∈ Π, we have

|V (π)− V̂ (π)| ≤ HZH · δ.

Therefore, it is sufficient to find estimates of mixing weights and latent models that match the measured
Hth-order moment, and then compute an optimal policy for the estimated model. Lemma 3.5 is
natural for discrete reward distributions with bounded support. Interestingly, we extend this result to
Gaussian rewards, which are continuous and unbounded, in Appendix D.
Hence, a natural idea is to estimate parameters {ŵm}Mm=1, {µ̂m}Mm=1 that satisfy the condition in
Lemma 3.5 without incurring O(AH) sample complexity. This is possible if we have good estimates
of moment-matching parameters for a set of core action-values.

Proposition 3.6 For any given l ≥ 1, if ∥
∑M

m=1 wmν
⊗

l
m −

∑M
m=1 ŵmν̂

⊗
l

m ∥∞ ≤ δ, then∥∥∥∑M
m=1 wmµ

⊗
l

m −
∑M

m=1 ŵmµ̂
⊗

l
m

∥∥∥
∞

≤ (2M)l/2 · δ.

By Proposition 3.6, we can conclude that it is sufficient to estimate TH :=
∑M

m=1 wmν
⊗

H
m and find

{(ŵm, ν̂m)}Mm=1 that matches TH element-wise up to accuracy δ := (ϵ/H)/(Z
√
2M)H .

3.4 Main Result

The sections above have outlined the key ideas we need assuming knowledge of U. In this section,
we show how we can estimate U, and we describe the complete procedure that learns a near-optimal
policy of an LMAB instance. We give the details in Algorithm 1. Our algorithm is divided to three
steps as detailed below.
Step 1: Estimating U. Algorithm 1 first estimates the second-order moments M2 =∑M

m=1 wmµmµ⊤
m. Let Û be the top-M eigenvectors of an empirical estimate of M2, where M̂2 is

constructed by collecting samples of reward correlations by taking random actions at first two time
steps. Note that Û may not be a good proxy for some µm with small mixing probability wm ≈ 0,
and thus all elements in U are not necessarily close to Û. We defer the details of subspace recovery
procedure to the proof of the following lemma in Appendix C.7.

Lemma 3.7 Let Û be a subspace spanned by top-M eigenvectors of M̂2. After we estimate M̂2 using
N0 = O(A4Z2 log(ZA/η)/δ4sub) episodes, with probability at least 1− η, for all m ∈ [M ], there
exists ∆m : ∥∆m∥∞ ≤ δsub/w

1/2
m such that µm +∆m ∈ Û.

Our choice of δsub differs in two regimes as the following:

δsub =
ϵ

2ZMH2
, if: H ≥ 2M − 1,

δsub =

min

(√
wmin + ϵ/(MH2(Z

√
2M)H), ϵ/(H

√
M)

)
2Z

√
MH

, else: H < 2M − 1, (5)

where wmin = minm∈[M ] wm. The main difference in two regimes is that for H ≥ 2M − 1,
when the parameters are identifiable, latent contexts with small mixing probabilities can be ignored
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Algorithm 1
1: Input: Accuracy level ϵ, δsub, δtsr > 0, model parameters M,A,Z,H .
2: // Step 1: Estimate subspace U.
3: Construct M̂2, an estimate of M2 =

∑M
m=1 wmµmµ⊤

m using N0 = Õ(A4Z2/δ4sub) episodes.
4: Calculate Û, the span of top-M eigenvectors of M̂2.
5: // Step 2: Estimate {(wm, νm)}Mm=1.
6: Get core action-value pairs {(aj , zj)}nj=1 by calling Corollary 3.2.
7: Construct {T̂l}min(H,2M−1)

l=1 using N = Õ(nmin(2M−1,H) ·M2/δ2tsr) episodes.
8: Find valid empirical parameters {(ŵm, ν̂m)}Mm=1 satisfying (7).
9: // Step 3: Use the core-action value pairs to construct an empirical LMAB.

10: Construct empirical model B̂ = (A, {ŵm}Mm=1, {µ̂m}Mm=1).
11: Output: optimal policy of B̂ by calling a planning oracle (Definition 2.3) for B̂.

once wm = o(ϵ/M) to guarantee the closeness in distributions of observations. However, in the
parameter unidentifiable regime, total variation distance is bounded only through errors in the moment
space. Therefore, the estimated subspace needs to be accurate even for contexts with small mixing
probabilities to keep the higher-order moments well approximated. Note that for instances with
well-balanced mixing probabilities, i.e., if wmin = Ω(1/M), the order of δsub remains the same as in
the H ≥ 2M − 1 case.

Step 2: Moment Matching. Given Û, the subspace spanned by top-M eigenvectors of M̂2, Algo-
rithm 1, follows the procedure described in Sections 3.1-3.3. It constructs the set of (approximate) core
action-values pairs {(aj , zj)}nj=1 (see Appendix C.8.1 for the detailed algorithm). Then, we construct
higher-order moments of the core action-value pairs. For every multi-index (i1, i2, ..., il) ∈ [n]l, using
N1 = O(log(lnl/η)/δ2tsr) episodes, we execute akt = ait for t = 1, ..., l and estimate higher-order
moments (as also described in equation (1))

T̂l(i1, i2, ..., il) =
1

N1

N1∑
k=1

Πl
t=11

{
rkt = zit

}
. (6)

Using standard concentration inequalities and applying the union bounds over all elements in tensors,
we get ∥T̂l − Tl∥∞ < δtsr with probability at least 1 − η. Then we find empirical parameters
{(ŵm, ν̂m)}Mm=1 that satisfy∥∥∥∑M

m=1 ŵmν̂
⊗

l
m − T̂l

∥∥∥
∞

< δtsr, ∀l ∈ [min(H, 2M − 1)]. (7)

We set δtsr = O(ϵ/(ZH2M3.5n))2M−1 when H ≥ 2M − 1. In the parameter unidentifiable regime
H < 2M − 1, we set δtsr = O(ϵ/H)/(Z

√
2M)H .

Step 3: Constructing Empirical LMAB. Finally, Algorithm 1 uses the estimates {(ŵm, ν̂m)}Mm=1

to construct an empirical model B̂ = (A, {ŵm}Mm=1, {µ̂m)}Mm=1) after proper clipping and normal-
ization. For this step to succeed, we require ŵm and ν̂m to be valid parameters for the reconstruction
of a valid empirical model. We state details on the recovery procedure in Appendix C.8.1.

Once a valid empirical model B̂ is obtained, the remaining step is to call the planning oracle that
gives an ϵ-approximate optimal policy for B̂. We conclude this section with an end-to-end guarantee.

Theorem 3.8 For any LMAB instance with M latent contexts, with probability at least 1− η, Algo-
rithm 1 returns an ϵ-optimal policy given total number of episodes of at most

poly(H,M,Z,A, 1/ϵ) · log(AZ/η) + poly(H,Z,M)2M−1 · log(M/η)/ϵ4M−2, if H ≥ 2M − 1,

poly(H,w−1
min, Z,A, 1/ϵ) · log(AZ/η) +H2 log(M/η) ·

(
2MZ2

)H
/ϵ2, otherwise.

Note that the dependency on A is polynomial. This polynomial term is needed to control the subspace
estimation error. The exponential term is derived from the closeness in moments as discussed earlier.
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Remark 3.9 (Note on wmin) Ideally, mixing weights are well balanced such that wmin = Ω(1/M).
However, in general we may have arbitrarily small wmin. Note that when H ≥ 2M − 1, the upper
bound does not depend on wmin. However when H < 2M − 1 with arbitrarily small wmin, effectively
we have wmin ∝ ϵ/(Z

√
M)H as can be seen in equation (5). This is mainly because in the parameter

unidentifiable regime, we give guarantees from moment-closeness, and thus the subspace has to be
very accurate to approximate higher-order moments well. Nevertheless, we are not aware whether
this is tight, and believe this to be an interesting question for future research.

Continuous Rewards – Gaussian Case. So far we have focused on rewards with finite support
Z = O(1). However, some steps in the algorithm cannot be straightforwardly extended to continuous
reward distributions. In Appendix D, we show a similar upper bound that is at most

poly(H,M,A, 1/ϵ) · log(A/η) + poly (H,M, log(1/(ηϵ)))
min(H,M)

/ϵmin(2H+2,4M−2),

assuming the rewards are Gaussian with unknown mean (see Theorem D.2 for the exact upper bound).

4 Maximum Likelihood Implementation

In the previous section, we derived a procedure that learns a near-optimal policy of an LMAB instance.
However, our procedure relies on matching higher-order moments, which, in general, is not suitable
for practical implementation. In this section, we describe a maximum likelihood (MLE) method,
motivated by our previous results. Importantly, we can use the Expectation-Maximization (EM) [11]
heuristic to find an approximate solution to the MLE optimization problem.
We can start from the set of core action-value pairs {(aj , zj)}nj=1 given by Corollary 3.2. Now for
every time step t, we choose it randomly from a uniform distribution over [n], play action ait , and
observe bt := 1 {rt = zit}. After repeating this for N episodes, we formulate the log-likelihood
function with parameterization θ = {(wm, νm)}Mm=1 as follows:

lN (θ) :=
1

N

N∑
k=1

log

(
M∑

m=1

wmΠH
t=1(btνm(it) + (1− bt)(1− νm(it)))

)
(8)

To prevent the confusion with searching parameters, we use q∗ to denote any quantity q constructed
with ground truth parameters, e.g., θ∗ := {(w∗

m, ν∗m)}Mm=1. Let θN be the maximum likelihood
estimator, i.e., θN = argmaxθ∈Θ lN (θ) in some valid parameter set Θ.
We can recover the sample-complexity guaranteed by moment-matching methods studied in the
previous section. Specifically, we show that the maximum likelihood estimator with sufficiently many
samples have nearly matching moments:

Lemma 4.1 Consider the maximum likelihood estimator θN = {(ŵm, ν̂m)}Mm=1 with N episodes
for large enough N . If N ≥ C · nmin(2H+1,4M−1) log(N/η)/δ2 for some sufficiently large constant
C > 0, then with probability at least 1− η,

∥T ∗
l − T̂l∥∞ ≤ δ, ∀l ∈ [min(H, 2M − 1)]. (9)

Therefore, by setting the same accuracy parameter δ used in Algorithm 1, we can obtain the required
θN = {(ŵm, ν̂m)}Mm=1 for matching moments. We only replace the moment-matching step (Step 2
in Algorithm 1) with solving the MLE optimization problem (8).

Implementation Details While the log-likelihood formulation (8) is still non-convex and thus
intractable, we can rely on powerful heuristics: we initialize the parameters with clustering methods
[2] or spectral methods [1, 7], and run the EM algorithm to improve the accuracy [11] (regardless of
conditions or guarantees). Therefore, while the sample-complexity upper bound for both methods
remains the same, we benefit from the log-likelihood formulation despite the non-convexity.
Specifically, we follow the same steps in Algorithm 1. We first find the core action-event pairs from
second-order moments as described (Step 1). Then we form the maximum log-likelihood objective
(8) and find an approximate MLE solution with the EM algorithm (Step 2). After obtaining θN , we
recover an empirical model which we use as an input to an approximate planning oracle (Step 3). We
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Figure 1: Per time-step rewards for increasing lengths of episodes with history-dependent policies returned after
the exploration phase

compare our MLE-based implementation with experimental design (ED + MLE) to other baselines
applicable to learning in LMABs (e.g., L-UCRL + EM [24], tensor-decomposition methods [1, 7, 41],
naive-UCB [6]). In our experimental results, we can observe that in practice, our method (ED+MLE)
outperforms other baselines and the worst case guarantee given in Theorem 3.8.

Provable Benefits of MLE In Appendix E.2, we also show that MLE solutions can automatically
adapt to mild separation conditions. Specifically, we show that if H = Õ(M2/γ2) for some separation
parameter γ > 0 (see Assumption E.1), then we can achieve the polynomial sample complexity for
learning a near-optimal policy with the MLE solution θN .
In Figure 1, we compare the averaged per time-step rewards obtained with returned policies from
different algorithms after some exploration episodes. Note that with increasing H , it becomes easier
to identify contexts, i.e., we have bigger separations, and thus MLE based approaches can benefit
from larger separations. Due to space constraints, we defer the remaining details to Appendix A.

5 Conclusion and Future Work

In this work, we designed an algorithm that learns a near-optimal policy for an LMAB instance that
requires only poly(A) + poly(M,H)min(H,2M−1) number of samples. We achieved this with the
experimental design and method-of-moments, and the maximum likelihood estimation which is more
suitable in practice. We discuss a few limitations of this work and future directions below.

Lower Bounds The question of a lower bound on the sample complexity of the LMAB problem
remains unresolved. For LMDP, an MDP extension of LMAB, a lower bound of Ω(AM ) is known due
to [24]. While we conjecture that some exponential dependence in M is unavoidable, characterizing
the minimax dependence of the exponent is left as an interesting future research question.

Latent MDPs We believe that the moment-matching based approach we took in this work offers a
promising way for designing RL algorithms in the presence of latent contexts. Specifically, we believe
these techniques can be used to design algorithm that finds a near-optimal policy of LMDPs [24] or
reward-mixing MDPs [23] with M = O(1) and without further separation assumptions.

Linear Bandits / Continuous Rewards Our work has focused on the tabular setting, where all arms
are independent. It will be an interesting future work to consider the same objective in linear bandit
settings. Also, while we only considered Gaussian rewards, we believe our approach can also be
extended to a broader class of parametric distributions. Investigating more general classes of rewards
is an important future research direction from practical perspective.

9



Acknowledgement

This research was partially funded by the NSF IFML Institute (NSF 2019844), the NSF AI-EDGE
Institute (NSF 2112471), and NSF 1704778, and was also supported by the Israel Science Foundation
(grant No. 2199/20).

References
[1] A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky. Tensor decompositions for

learning latent variable models. The Journal of Machine Learning Research, 15(1):2773–2832,
2014.

[2] D. Arthur and S. Vassilvitskii. k-means++ the advantages of careful seeding. In Proceedings of
the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages 1027–1035, 2007.

[3] J.-Y. Audibert, S. Bubeck, et al. Minimax policies for adversarial and stochastic bandits. In
COLT, volume 7, pages 1–122, 2009.

[4] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem.
Machine learning, 47(2):235–256, 2002.

[5] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The nonstochastic multiarmed bandit
problem. SIAM journal on computing, 32(1):48–77, 2002.

[6] M. G. Azar, I. Osband, and R. Munos. Minimax regret bounds for reinforcement learning. arXiv
preprint arXiv:1703.05449, 2017.

[7] K. Azizzadenesheli, A. Lazaric, and A. Anandkumar. Reinforcement learning of pomdps using
spectral methods. In Conference on Learning Theory, pages 193–256, 2016.

[8] A. Bhaskara, M. Charikar, A. Moitra, and A. Vijayaraghavan. Smoothed analysis of tensor de-
compositions. In Proceedings of the forty-sixth annual ACM symposium on Theory of computing,
pages 594–603. ACM, 2014.

[9] E. Brunskill and L. Li. Sample complexity of multi-task reinforcement learning. In Uncertainty
in Artificial Intelligence, page 122. Citeseer, 2013.

[10] R. Chawla, A. Sankararaman, A. Ganesh, and S. Shakkottai. The gossiping insert-eliminate
algorithm for multi-agent bandits. In International Conference on Artificial Intelligence and
Statistics, pages 3471–3481. PMLR, 2020.

[11] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological),
39(1):1–22, 1977.

[12] N. Doss, Y. Wu, P. Yang, and H. H. Zhou. Optimal estimation of high-dimensional gaussian
mixtures. arXiv preprint arXiv:2002.05818, 2020.

[13] A. Garivier and E. Moulines. On upper-confidence bound policies for switching bandit problems.
In International Conference on Algorithmic Learning Theory, pages 174–188. Springer, 2011.

[14] C. Gentile, S. Li, and G. Zappella. Online clustering of bandits. In International Conference on
Machine Learning, pages 757–765, 2014.

[15] A. Gopalan, O.-A. Maillard, and M. Zaki. Low-rank bandits with latent mixtures. arXiv preprint
arXiv:1609.01508, 2016.

[16] A. Hallak, D. Di Castro, and S. Mannor. Contextual markov decision processes. arXiv preprint
arXiv:1502.02259, 2015.

[17] J. Hu, X. Chen, C. Jin, L. Li, and L. Wang. Near-optimal representation learning for linear
bandits and linear RL. In International Conference on Machine Learning, pages 4349–4358.
PMLR, 2021.

10



[18] T. Jaksch, R. Ortner, and P. Auer. Near-optimal regret bounds for reinforcement learning. Journal
of Machine Learning Research, 11:1563–1600, 2010.

[19] C. Jin, S. Kakade, A. Krishnamurthy, and Q. Liu. Sample-efficient reinforcement learning of
undercomplete pomdps. Advances in Neural Information Processing Systems, 33:18530–18539,
2020.

[20] J. Kiefer and J. Wolfowitz. The equivalence of two extremum problems. Canadian Journal of
Mathematics, 12:363–366, 1960.

[21] B. Kveton, M. Konobeev, M. Zaheer, C.-w. Hsu, M. Mladenov, C. Boutilier, and C. Szepesvari.
Meta-thompson sampling. In International Conference on Machine Learning, pages 5884–5893.
PMLR, 2021.

[22] J. Kwon and C. Caramanis. The EM algorithm gives sample-optimality for learning mixtures of
well-separated gaussians. In Conference on Learning Theory, pages 2425–2487, 2020.

[23] J. Kwon, Y. Efroni, C. Caramanis, and S. Mannor. Reinforcement learning in reward-mixing
mdps. Advances in Neural Information Processing Systems, 34, 2021.

[24] J. Kwon, Y. Efroni, C. Caramanis, and S. Mannor. RL for latent mdps: Regret guarantees and a
lower bound. Advances in Neural Information Processing Systems, 34, 2021.

[25] J. Kwon, Y. Efroni, C. Caramanis, and S. Mannor. Coordinated attacks against contextual
bandits: Fundamental limits and defense mechanisms. In Proceedings of the 39th International
Conference on Machine Learning, pages 11772–11789. PMLR, 2022.

[26] T. Lattimore and C. Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

[27] T. Lattimore, C. Szepesvari, and G. Weisz. Learning with good feature representations in bandits
and in rl with a generative model. In International Conference on Machine Learning, pages
5662–5670. PMLR, 2020.

[28] M. L. Littman, A. R. Cassandra, and L. P. Kaelbling. Learning policies for partially observable
environments: Scaling up. In Machine Learning Proceedings 1995, pages 362–370. Elsevier,
1995.

[29] C.-Y. Liu and L. Li. On the prior sensitivity of thompson sampling. In International Conference
on Algorithmic Learning Theory, pages 321–336. Springer, 2016.

[30] Q. Liu, A. Chung, C. Szepesvári, and C. Jin. When is partially observable reinforcement learning
not scary? arXiv preprint arXiv:2204.08967, 2022.

[31] O.-A. Maillard and S. Mannor. Latent bandits. In International Conference on Machine Learning,
pages 136–144, 2014.

[32] A. Modi, N. Jiang, A. Tewari, and S. Singh. Sample complexity of reinforcement learning using
linearly combined model ensembles. In International Conference on Artificial Intelligence and
Statistics, pages 2010–2020. PMLR, 2020.

[33] J. Pineau, G. Gordon, and S. Thrun. Anytime point-based approximations for large pomdps.
Journal of Artificial Intelligence Research, 27:335–380, 2006.

[34] W. Schudy and M. Sviridenko. Concentration and moment inequalities for polynomials of
independent random variables. In Proceedings of the twenty-third annual ACM-SIAM symposium
on Discrete Algorithms, pages 437–446. SIAM, 2012.

[35] M. Simchowitz, C. Tosh, A. Krishnamurthy, D. J. Hsu, T. Lykouris, M. Dudik, and R. E.
Schapire. Bayesian decision-making under misspecified priors with applications to meta-learning.
Advances in Neural Information Processing Systems, 34, 2021.

[36] A. Slivkins and E. Upfal. Adapting to a changing environment: the brownian restless bandits.
In COLT, pages 343–354, 2008.

11



[37] L. N. Steimle, D. L. Kaufman, and B. T. Denton. Multi-model markov decision processes.
Optimization Online URL http://www. optimization-online. org/DB_FILE/2018/01/6434. pdf,
2018.

[38] W. R. Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3-4):285–294, 1933.

[39] M. J. Todd. Minimum-volume ellipsoids: Theory and algorithms. SIAM, 2016.

[40] Y. Wu, P. Yang, et al. Optimal estimation of gaussian mixtures via denoised method of moments.
Annals of Statistics, 48(4):1981–2007, 2020.

[41] X. Zhou, Y. Xiong, N. Chen, and X. Gao. Regime switching bandits. In Thirty-Fifth Conference
on Neural Information Processing Systems, 2021.

6 Checklist
1. For all authors...

• (a) Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope? [Yes]

• (b) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

• (c) Did you discuss any potential negative societal impacts of your work? [N/A] : This
work is primarily focused on the theoretical aspect and its purpose is too general for us
to speculate about broader societal impacts.

• (d) Did you describe the limitations of your work? [Yes]
2. If you are including theoretical results...

• (a) Did you state the full set of assumptions of all theoretical results? [Yes]
• (b) Did you include complete proofs of all theoretical results? [Yes] : in Supplementary

Materials
3. If you ran experiments...

• (a) Did you include the code, data, and instructions needed to reproduce the main
experimental results (either in the supplemental material or as a URL)? [Yes]

• (b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] : in Supplementary Materials

• (c) Did you report error bars (e.g., with respect to the random seed after running
experiments multiple times)? [No] : We did average errors over multiple independent
experiments, but error bars are not reported due to computational burden.

• (d) Did you include the amount of compute and the type of resources used (e.g., type of
GPUs, internal cluster, or cloud provider)? [N/A]

The remaining issues are not applicable to us.

12


	Introduction
	Our Results and Contributions
	Related Work

	Preliminaries
	Sample-Complexity of Learning LMABs
	Dimensionality Reduction via Experimental Design
	H 2M-1: Identifiable Regime in Wasserstein Metric
	H < 2M-1: Unidentifiable Regime with Short Time-Horizon
	Main Result

	Maximum Likelihood Implementation
	Conclusion and Future Work
	Checklist

