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ABSTRACT

Medical image segmentation is vital for clinical diagnosis, yet current deep learning
methods often demand extensive expert effort, i.e., either through annotating large
training datasets or providing prompts at inference time for each new case. This
paper introduces a zero-shot and automatic segmentation pipeline that combines off-
the-shelf vision-language and segmentation foundation models. Given a medical
image and a task definition (e.g., "segment the optic disc in an eye fundus image"),
our method uses a grounding model to generate an initial bounding box, followed
by a visual prompt boosting module that enhance the prompts, which are then
processed by a promptable segmentation model to produce the final mask. To ad-
dress the challenges of domain gap and result verification, we introduce a test-time
adaptation framework featuring a set of learnable adaptors that align the medical
inputs with foundation model representations. Its hyperparameters are optimized
via Bayesian Optimization, guided by a proxy validation model without requiring
ground-truth labels. Our pipeline offers an annotation-efficient and scalable solu-
tion for zero-shot medical image segmentation across diverse tasks. Our pipeline is
evaluated on seven diverse medical imaging datasets and shows promising results.
By proper decomposition and test-time adaptation, our fully automatic pipeline
not only substantially surpasses the previously best-performing method, yielding a
69% relative improvement in accuracy (Dice Score from 42.53 to 71.81), but also
performs competitively with weakly-prompted interactive foundation models.

1 INTRODUCTION

Medical image segmentation plays a critical role in diagnosis and treatment planning (Patil & Deore,
2013; Litjens et al., 2017). Artificial Intelligence has emerged as a transformative force in this domain,
significantly enhancing the efficiency and accuracy of clinical workflows (Hesamian et al., 2019). In
particular, deep learning-based segmentation models have outperformed traditional computer vision
techniques by leveraging large datasets and effective deep feature learning (Ronneberger et al., 2015;
Zhou et al., 2018; Oktay et al., 2018). Despite these advancements, most state-of-the-art models rely
heavily on supervised learning, which requires extensive and high-quality annotations provided by
medical experts (Papandreou et al., 2015). Furthermore, supervised models have poor scalability as
they are constrained to the pre-defined classes and image domains supported by the training data.

In recent years, the emergence of vision foundation models like the Segment Anything Model
(SAM) (Kirillov et al., 2023) offers promising new avenues for more efficient image segmentation.
Unlike conventional methods that require separate training on each individual dataset, SAM enables
general segmentation at inference time using simple prompts such as points or bounding boxes, sig-
nificantly reducing the need for extensive labeled data. More advanced models such as MedSAM (Ma
et al., 2023) and SAM-Med2D (Cheng et al., 2023) further improve medical image segmentation by
fine-tuning SAM on clinical data. However, they may still fail on certain datasets due to the wide
variability in medical image modalities, low-contrast features, and subtle anatomical boundaries.
Moreover, inference-time prompting still requires expert supervision, which becomes non-negligible
when processing large batches of data.
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Figure 1: Conceptually illustration of our proposed annotation-free and non-interactive paradigm
for medical image segmentation (AutoMiSeg), compared with traditional supervised and interactive
segmentation, which require considerable efforts of medical experts.

The goal of this paper is to realize a brand new paradigm of automatic medical image segmentation
that embodies both the zero-shot capacity of the prompting paradigm and the annotation-free inference
characteristic of the supervised learning paradigm. The idea is illustrated in Figure 1. To achieve this
goal, the following key challenges must be addressed:

(1) Medical image segmentation is too complex for a single existing model to achieve effective
zero-shot and annotation-free prediction. Therefore, properly decomposing the task into a sequence
of simpler, modular steps is crucial for building a robust and adaptable pipeline.

(2) As medical images often exhibit domain-specific characteristics that differ from the data used
to train general-purpose foundation models, effectively adapting medical images to the pre-trained
models without losing their generalization capacity is essential for the broad applicability across
various datasets.

This paper presents a general pipeline AutoMiSeg for zero-shot, annotation-free automatic medical
image segmentation. Given a medical image and a task description (e.g., "segment the optic disc
from an eye fundus image"), the pipeline automatically generates the corresponding target mask
without additional training or manual annotations. Our basic pipeline consists of a grounding module
which aims to provide spatial prompts and an promptable segmentation module for the final mask
generation. A prompt boosting module is integrated between them to enhance the prompt quality.
Based on the pipeline, we propose a novel test-time adaptation method which employs Bayesian
Optimization on a set of Learnable Test-time Adaptors (LTAs). A surrogate validation model is
designed to evaluate the segmentation output, and its feedback is used to optimize the LTAs.

Experiments across seven diverse medical imaging datasets demonstrate the effectiveness of Au-
toMiSeg. Our method delivers a 69% relative improvement in accuracy, raising the average Dice
Score from 42.53 up to 71.81, which represents a practically significant advancement over the
strongest prior solution. It also achieves competitive performance compared to weak-prompt foun-
dation models, highlighting the potential of the new automatic segmentation paradigm. Detailed
ablation studies confirm that the grounding model plays a critical role, and the LTAs significantly
impact segmentation accuracy. Additionally, the proxy validator shows strong correlation with true
segmentation performance, validating its use in guiding hyperparameter optimization.

2 RELATED WORK

Medical Image Segmentation. Deep learning, particularly U-Net architectures (Ronneberger
et al., 2015; Zhou et al., 2018; Oktay et al., 2018), has become the standard for medical image
segmentation but is often hampered by the need for large, manually annotated datasets (Hesamian
et al., 2019). To reduce this dependency, researchers have explored few-shot (Snell et al., 2017),
weakly-supervised (Papandreou et al., 2015), and zero-shot learning (ZSL) methods (Xian et al.,
2019; Xu et al., 2023; Yang et al., 2024). Our work aligns with the emerging trend of training-free
methods that leverage large pre-trained foundation models directly for downstream tasks through
prompting and composition, avoiding task-specific fine-tuning (Kirillov et al., 2023; Bommasani
et al., 2021).

Promptable Models for Medical Image Segmentation. The Segment Anything Model
(SAM) (Kirillov et al., 2023) initiated a paradigm shift towards promptable segmentation. While
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its zero-shot capabilities are impressive, studies in medical imaging found its performance in-
consistent, often requiring precise user prompts and struggling with fine details or low-contrast
regions (Mazurowski et al., 2023; He et al., 2023; Deng et al., 2023). This led to medical-specific
adaptations like MedSAM (Ma et al., 2023). Besides SAM based pipelines, One-Prompt (Wu &
Xu, 2024) developed a customized network structure that accepts various types of prompt, such as
doddle, box, click, etc, for medical image segmentation. A key challenge remains the automation
of prompt generation. Recent works have built text-driven pipelines, such as SaLIP (Aleem et al.,
2024), MedCLIP-SAM (Koleilat et al., 2024b;a) and others aiming for universal text-prompted
segmentation (Zhao et al., 2023). In parallel, large-scale supervised models like BiomedParse (Zhao
et al., 2025) achieve strong performance on a wide range of tasks but may lack the flexibility of
zero-shot approaches for out-of-domain data. Our work is distinct in its fully automatic, training-free,
and compositional design, which uses a dedicated grounding model to interpret text queries for initial
localization, followed by a segmentation model.

Test-Time Adaptation. To handle domain shifts without retraining, Test-Time Adaptation (TTA)
adapts models to new, unlabeled data during inference (Wang et al., 2020; Sun et al., 2020). Recent
approaches (Farina et al., 2024; Shin & Kim, 2024; Hoang et al., 2024) demonstrated effectiveness
in adapting single backbones under distribution shift. However, most existing solutions rely on
online backpropagation and hence are not suitable for non-differentiable pipelines. The most relevant
work is SaLIP (Aleem et al., 2024), which considers test-time adaptation but does not address
the challenge of domain shift between medical images and general foundation models. Our work
pioneers a novel TTA strategy specifically for a compositional segmentation pipeline. We introduce
a set of Learnable Test-time Adaptors (LTAs) whose hyperparameters are optimized via Bayesian
Optimization, guided by a proxy validation model, making our framework uniquely adaptable in a
fully automatic, training-free manner.

AutoML for Medical Imaging. A key to the success of our method lies in applying AutoML
principles (He et al., 2021) to medical image segmentation. Existing work on AutoML for medical
imaging (Jidney et al., 2023; Ali et al., 2024) has been applied to supervised models, focusing on
network architecture design (Isensee et al., 2019; Yu et al., 2023a) and hyperparameter configuration
for training (Myronenko et al., 2023). Despite boosting segmentation performance, these methods
remain limited to task-specific supervised pipelines. To the best of our knowledge, no prior work has
considered AutoML in the context of foundation model adaptation. Our work is the first to bridge
this gap, offering a new direction towards robust and supervision-free medical imaging solutions.

3 METHODOLOGY

3.1 OVERVIEW

The AutoMiSeg pipeline achieves text-guided medical image segmentation without requiring any
task-specific training or fine-tuning. The pipeline is illustrated in Figure 2.

Let I ∈ RH×W×C denote a medical image and let T = {Ttarget, Twhole} denote a structured task
description, where Ttarget specifies the object to be segmented (e.g., “optic disc”) and Twhole names the
image context (e.g., “eye fundus image”). Given I and T , AutoMiSeg outputs a binary segmentation
mask M ∈ RH×W that matches the task description. The pipeline begins with a grounding module,
which takes the transformed image IG and a sentence SG constructed from the task definition T as
input and predicts a bounding box indicating the rough target region. The output is further refined by
the prompt booster, which improves the prompt’s information and quality. The enhanced prompt is
then passed to an promptable segmentation module, which also takes a transformed image IS and
generates the final segmentation mask M .

As a fully automatic pipeline, we need a validator to estimate the quality of the output. It’s realized
by a vision-language model that checks whether the predicted mask M is consistent with the task
description T . To adapt the general pre-trained models to various medical image domains, we
introduce Learnable Test-time Adaptors (LTAs), which consists of a set of tunable operations
applied to the inputs of the grounding and segmentation module. We apply Bayesian Optimization
to search for the optimal configuration of LTAs that maximizes the validator’s score.
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Figure 2: Overview of the proposed AutoMiSeg pipeline. Given a medical image and task description,
a grounding module predicts a coarse region, refined by a prompt booster. A promptable segmentation
model then generates the binary mask. A validator checks consistency with the task, while Learnable
Test-time Adaptors (LTAs) adapt inputs and are optimized via Bayesian Optimization.

3.2 TARGET AREA GROUNDING

To initially localize the region specified by the text query T = {Ttarget, Twhole}, we leverage a pre-
trained Vision-Language Model (VLM) capable of text-to-bounding-box grounding. Given the
task definition, we first generate a set of prompt sentences {SG|SG = LLM(Ttarget, Twhole)}
which describe the visual characteristics of the target in the whole image. Here LLM refers to
a general large language model which is responsible for generating a diverse set of text descrip-
tions according to its internal medical knowledge about the image type and the target object. The
input image I is transformed to IG by a set of pre-defined vision operations with the specified
hyperparameters. A grounding model Mgrd(IG, SG) is then employed to generate a bounding box
B = (xmin, ymin, xmax, ymax), which defines the coordinates of the predicted primary region corre-
sponding to Ttarget. By default, we use ChatGPT-4o (OpenAI, 2023) as the LLM and CogVLM
(Wang et al., 2024) as the grounding module. A more detailed introduction of grounding models and
CogVLM is presented in Appendix A.

3.3 VISUAL PROMPT BOOSTING

Inspired by CoVP (Tang et al., 2024), to refine the initial bounding box B, we generate n supple-
mentary positive point prompts via a deterministic, feature-driven process. This utilizes a pre-trained
DINOv2 (Oquab et al., 2024), a pretrained vision foundation model valued for its strong semantic
features representations. First, an anchor point pa is set to the geometric center of B, and its DINOv2
feature vector fa is extracted. We then identify the top-k points Pk (e.g., k = 10), restricted to lie
within B for efficiency, whose DINOv2 features f(p) exhibit the highest cosine similarity to fa.
To ensure these Pk points represent diverse parts of the target object, their spatial coordinates are
subsequently clustered into n groups (e.g., n = 3) using the K-Means algorithm. The centroids of
these n clusters constitute the final set of generated positive point prompts, Pc. These points Pc are
then used in conjunction with the original bounding box B by the promptable segmentation model. A
more detailed description of the visual prompt boosting module is presented in Appendix B.

3.4 PROMPTABLE SEGMENTATION

Equipped with the bounding box B from Section 3.2 and the augmented point set Pc generated in
Section 3.3, we utilize a pre-trained promptable segmentation model Mseg, such as the Segment
Anything Model (SAM) (Kirillov et al., 2023). The model takes the image I and the visual prompts
(B,Pc) as input and produces a segmentation mask M corresponding to the prompted object, again
without any training or fine-tuning.

M = Mseg(I,B, Pc) (1)
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3.5 LEARNABLE TEST-TIME ADAPTORS

We consider the following two types of tunable variables in our test-time adaptors. A complete
description about the variable types and value ranges are introduced in Appendix C.

Domain-adapted Image Transformation. To enhance the compatibility of medical images with
general pre-trained vision models, we applied a set of targeted image transformations aimed at
improving visual quality and mitigating domain-specific biases. Each transformation was indepen-
dently applied to both the grounding and segmentation models using separate hyperparameters to
optimize performance for their respective tasks. The operations specifically include (1) HSV shift,
which is used to simulate variations in lighting and acquisition conditions; (2) Channel-wise RGB
shift, which introduces color perturbations that reduce reliance on fixed intensity distributions often
found in medical datasets; (3) Contrast Limited Adaptive Histogram Equalization (CLAHE)
(Zuiderveld et al., 1994), which is applied to enhance local contrast and reveal subtle anatomical
structures typically underrepresented in low-contrast regions; and (4) unsharp masking, which is
employed to emphasize fine details and edge clarity, which are critical for precise localization and
segmentation. These transformations collectively promote better alignment between the test images
and the pre-trained vision models.

Automatic Prompt Enhancement. LTAs also incorporate an automatic prompt enhancement
mechanism to better guide the grounding and segmentation models. Specifically, we consider two
tunable choices: (1) selecting the most effective prompt sentence for the grounding model from a
set of candidates generated by the LLM, and (2) determining the optimal value of k in the prompt
boosting module, which controls how many points with the most similar features are aggregated to
produce the final spatial prompt.

3.6 PROXY VALIDATOR

The proxy validator is designed to estimate the chance that a segmentation mask generated by Mseg is
the actual target. While it is not a rigorous probability score, we expect that a higher validation score
indicates better quality of the generated mask. The designed proxy validator specifically consists of
the following two pseudo evaluation tasks.

Pseudo Evaluation with Zero-shot Classification. Given an image I and the candidate segmenta-
tion mask M , we first generate the test image by only keeping the target region as Itest = I⊙(1−M),
where ⊙ denotes pixel-wise multiplication. To design the pseudo classification task, we use a pre-
defined template incorporating the task information Ttarget and Twhole to prompt a general LLM,
and get a list of contrastive categories in the form of text descriptions {Tci}mi=1. We then employ a
vision-language model Mval to perform zero-shot classification for Itest and output the probability
score for Ttarget as the validation score Szc.

Pseudo Evaluation with Image-text Matching While the zero-shot classification evaluates the
image-text alignment with formal medical terminologies, it doesn’t consider to verify the segmented
region by its expected visual characteristics such as color, shape, textures and so on. Here we employ
another pseudo evaluation by considering the image-text matching. Similar to the grounding module,
we use a LLM to generate a set of descriptive prompts, and apply the same Mval to calculate the
similarity between the test image Itest and each descriptor. The average image-text matching score
Smt is calculated and contributed to the validation score. The final validation score for an input image
I and its candidate segmentation M is Sval = Szc + Smt. By default, we employ BioMedCLIP
(Zhang et al., 2024) as Mval. It is worth noting that, with the pre-defined LLM templates, the
validation process is fully automatic given the task definition T = (Ttarget, Twhole) as input. In
Appendix D, we present all the LLM templates used in our pipeline.

3.7 TEST-TIME ADAPTATION

To make the domain-adapted pipeline compatible to black box modules (e.g., foundation models
with API interfaces) and alleviate potential over-fitting, we adopt the Bayesian Optimization (Snoek
et al., 2012) in our pipeline for test-time adaptation. The goal is to maximize the evaluation score
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Table 1: Segmentation performance comparison across seven medical imaging datasets. Reported
numbers are Dice scores. MedSAM results on weak prompts are ignored as they are extremely low.

Category Seg model Kvasir Busi Isic2016 Promise12 Kidney SkinCancer REFUGE Average

Supervised

ResNet-18 (He et al., 2016) 73.9 67.4 87.8 89.5 97.9 86.4 90.4 84.8
ResNet-50 (He et al., 2016) 69.8 63.2 88.7 88.8 97.8 84.6 90.1 83.3

EfficientNet (Tan & Le, 2019) 81.2 71.1 90.3 89.2 98.1 89.0 88.2 86.7
MobileNet-v2 (Sandler et al., 2018) 75.4 65.5 89.1 89.6 98.0 87.9 84.5 84.3
DenseNet-121 (Iandola et al., 2014) 79.4 69.5 89.3 90.0 98.0 85.6 91.1 86.1

Mix-ViT (Yu et al., 2023b) 56.9 – 89.1 – – 88.1 88.1 –
BiomedParse (Zhao et al., 2025) 90.7 87.4 94.3 84.5 78.9 95.6 78.5 87.1

Strong prompt
SAM-Med2D (Cheng et al., 2023) 89.63 89.91 93.89 87.00 87.82 92.99 83.49 89.25

MedSAM (Ma et al., 2023) 96.46 92.40 92.88 88.77 97.02 95.79 91.35 93.52
SAM (Kirillov et al., 2023) 94.83 87.41 87.38 91.10 91.97 93.59 91.89 91.17

Weak prompt SAM-Med2D (Cheng et al., 2023) 61.92 76.39 87.22 62.11 56.81 88.18 52.74 69.33
SAM (Kirillov et al., 2023) 86.37 65.39 72.24 65.09 70.91 88.33 74.32 74.66

Automatic zero-shot

SaLIP (Aleem et al., 2024) 32.35 19.39 28.05 19.21 8.15 48.66 29.06 26.41
MedCLIP-SAM (Koleilat et al., 2024b) 56.29 10.60 36.53 2.49 6.49 48.23 4.58 23.26

MedCLIP-SAM-v2 (Koleilat et al., 2024a) 44.57 34.26 47.33 17.15 32.55 74.52 47.35 42.53
AutoMiSeg (Ours) 74.80 61.65 68.38 60.61 73.05 84.41 79.78 71.81

of the proxy validator by tuning the hyperparameters used in the LTA modules. Specifically, we
employ the Tree-structured Parzen Estimator (TPE) as the surrogate model in Bayesian Optimization
to better support mixed-type variables. To balance the efficiency and effectiveness, we allow up to
Nt trials (e.g., Nt = 100) to identify the optimal configuration on a subset of the test set up to Ns

(e.g., Ns = 100) examples for Bayesian Optimization. The solved configuration is then applied to
the entire test set.

4 EXPERIMENTS

4.1 DATASETS

To ensure a comprehensive and diverse evaluation of segmentation performance, we collected seven
public medical imaging datasets. These datasets span a broad range of imaging modalities, including
fundus photography, endoscopy, ultrasound, dermoscopy and MRI. They cover multiple organ systems
such as the eyes, gastrointestinal tract, breast, skin, prostate and kidneys, enabling an assessment of
generalization across heterogeneous domains.

Here we provide a brief introduction of the datasets. (1) The REFUGE (Orlando et al., 2020) dataset
includes retinal fundus photographs used to segment the optic disc for glaucoma risk assessment.
(2) The Kvasir (Pogorelov et al., 2017)dataset contains endoscopic images of the gastrointestinal
tract with annotated polyps. (3) The Busi (Al-Dhabyani et al., 2024) dataset provides ultrasound
images of the breast labeled for benign and malignant tumors. (4) The ISIC2016 (Gutman et al.,
2016) dataset includes dermoscopic images annotated for general skin lesion segmentation. (5) The
UWSkinCancer (Vision and Image Processing Lab, University of Waterloo, 2021) dataset focuses
on skin cancer detection from dermoscopic images. (6) The Promise12 (Litjens et al., 2014) dataset
comprises T2-weighted prostate MRI scans annotated for prostate volume segmentation. (7) The
Usforkidney (Song et al., 2022) (siatsyx, 2024) dataset offers kidney ultrasound images labeled for
tumor segmentation. Except for REFUGE (Orlando et al., 2020), all the remaining datasets are from
MedSegBench (Kuş & Aydin, 2024) and we adopt the official test splits.

4.2 EVALUATION

We evaluate our AutoMiSeg pipeline on the official test split of each dataset to ensure a fair and
consistent comparison. As our method represents the first fully automatic, non-interactive zero-shot
segmentation framework in the medical imaging domain, we additionally benchmark it against both
supervised models trained on pre-defined classes and interactive foundation models guided by various
types of prompts. These competing methods serve as practical upper bounds for our pipeline, as they
rely on different forms of expert intervention, such as labeled data or inference-time guidance, which
our approach explicitly avoids.
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Figure 3: Qualitative visualization of our AutoMiSeg pipeline on two examples from the Kvasir
(Pogorelov et al., 2017) and Busi (Al-Dhabyani et al., 2024) dataset. The columns from left to right
represent: (1) input image, (2) ground truth, (3) input image of the grounding model and its output,
(4) input of the segmentation model and its output, and (5) input of the validator.

For supervised models, we present the performance reported in the MedSegBench (Kuş & Aydin,
2024) paper. For interactive models, we follow the practice of SAM-Med2D (Cheng et al., 2023) and
One-prompt (Wu & Xu, 2024) to simulate the interaction process. Specifically, we consider two types
of interaction, which are strong and weak prompts. The strong prompt is derived from the ground
truth mask as the minimal bounding box enclosing all foreground pixels, defined by its top-left and
bottom-right coordinates. The weak prompt is defined as a single point uniformly sampled from the
target region’s foreground pixels. We also evaluate baseline methods SaLIP (Aleem et al., 2024),
MedCLIP-SAM (Koleilat et al., 2024b) and MedCLIP-SAM-v2 (Koleilat et al., 2024a), which are
also designed to achieve zero-shot medical image segmentation.

4.3 MAIN RESULTS

From the results shown in Table 1, supervised models achieve consistently strong results and interac-
tive foundation models with strong prompts demonstrate even higher or comparable performance.
However, models using weak prompts exhibit a notable drop in performance. This emphasizes
the importance of our proposed strategy that decomposes the segmentation task and incorporates
a grounding model to first localize the target region with a bounding box. Within the zero-shot
setting group, our method AutoMiSeg substantially surpasses the previously best-performing method
MedCLIP-SAM-v2 (Koleilat et al., 2024a) by 69% relative improvement, i.e., improving the average
dice score from 42.53 to 71.81. Figure 3 shows qualitative examples of our results. More examples
are presented in Appendix E.

Interestingly, within the weak prompt group, SAM (Kirillov et al., 2023) and SAM-Med2D (Cheng
et al., 2023) do not exhibit consistent relative performance across all datasets. For instance, SAM (Kir-
illov et al., 2023) significantly outperforms SAM-Med2D (Cheng et al., 2023) on Kvasir (Pogorelov
et al., 2017) (87.21 vs. 61.49), whereas SAM-Med2D (Cheng et al., 2023) yields higher accuracy
on Busi (Al-Dhabyani et al., 2024) (77.99 vs. 68.50). These discrepancies suggest that different
models (even particularly adapted with medical data such as SAM-Med2D (Cheng et al., 2023)) have
dataset-specific strengths and are affected differently by prompt ambiguity, reinforcing the need for
test-time adaptation in zero-shot settings.

Our fully automatic pipeline achieves comparable performance with interactive foundation models
under weak prompts. While it does not yet reach the performance levels of supervised models or
strong-prompt foundation models, this result underscores the promise of the automatic, zero-shot
segmentation paradigm1. By eliminating the need for manual prompts and annotations, our approach

1Note that BiomedParse (Zhao et al., 2025) also supports text input for segmentation. Although this capability
resembles a zero-shot paradigm, these approaches still fundamentally fall under the supervised category. A more
detailed discussion is provided in Appendix F.
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Table 2: Performance comparison across different combinations of Pgrd and Pseg on Kvasir (Pogorelov
et al., 2017) and Busi (Al-Dhabyani et al., 2024) datasets. In these experiments, we fix the optimal
choice of the prompt enhancement hyperparameters and only affect the domain-adapted image trans-
formation process for simplicity. Base refers to using the original image without any transformation.

Pgrd Pseg Kvasir (Pogorelov et al., 2017) (endoscopy) Busi (Al-Dhabyani et al., 2024) (ultrasound)

Optimal Optimal 74.80 61.65
Optimal Base 71.43 57.13
Optimal Random 66.97 54.86
Base Optimal 25.94 15.72
Random Optimal 22.78 15.09

Figure 4: The left two figures show correlation between the normalized validation scores and true
scores on the Kvasir (Pogorelov et al., 2017) Busi (Al-Dhabyani et al., 2024) datasets with the
searched hyperparameters. The right two figures present the process of Bayesian Optimization.

provides a scalable solution that balances performance with usability, and demonstrates the potential
of further research in this direction. Regarding the efficiency, our method shows comparable inference
speed with existing zero-shot pipelines. Detailed results are in Appendix G.

5 MECHANISM ANALYSIS

5.1 ROLE OF THE GROUNDING MODEL

We find that the grounding model is the most critical component in the pipeline. This is expected,
since the segmentation model relies on the grounding box to localize the target. The results show a
dramatic drop in performance when the grounding model uses base or random transformations. For
example, on the Kvasir dataset, the Dice score drops from 74.80 (Optimal) to 25.94 (Base) and 22.78
(Random). This confirms that test-time image transformation is essential for grounding accuracy and
the reliability of the whole pipeline. When the grounding model is optimal, the segmentation model is
more robust to changes. Even with random or no transformation, the performance only drops slightly.
This also aligns with the observations in Table 2 that foundation models with strong box prompts
achieve excellent performance. Interestingly, random transformations perform worse than using the
original image. This suggests that poorly chosen transformations may hurt performance more than
help. Careful searching the hyperparameter space is necessary to achieve good results.

5.2 PERFORMANCE OF THE PROXY VALIDATOR

Additional analyses are presented to verify both the quality of the proxy validator and the dynamics
of the Bayesian optimization process. In the analyses, ground truth masks are used post hoc to
assess the alignment between the validation scores and the actual performance (measured by Dice
score), without influencing the optimization directly. As we can observe in Figure 4, the two left
plots reveal a strong linear relationship between the normalized validation scores and true scores
on the Kvasir (Pogorelov et al., 2017) and Busi (Al-Dhabyani et al., 2024) datasets, with high
Pearson correlation coefficients, confirming that the designed validator serves as a reliable surrogate
for model performance. Meanwhile, the two right plots show how the validation and true scores
evolves during Bayesian Optimization. The overall trends clearly move toward higher-performing
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Bayesian Optimization Iterations

Input Image Ground Truth

Task Info T = (optic disc, eye fundus)

Val Score = 0 Val Score = 0.13 Val Score = 0.49 Val Score = 1.12 Val Score = 1.26

Figure 5: An example from the REFUGE (Orlando et al., 2020) dataset showing how the segmentation
quality gradually improves in the optimization process.

configurations, validating the effectiveness of the search process. Some fluctuations (especially for
the Busi (Al-Dhabyani et al., 2024) dataset) reflect the inherent trade-off between exploring new
hyperparameter regions and exploiting promising ones.

Figure 5 illustrates a representative case from the REFUGE (Orlando et al., 2020) dataset, where
the task is segmenting the optic disc from a fundus image. The optimization process begins with
random configurations in the LTA space, often resulting in the segmentation of background regions.
In early stages, the macula, which has a similar shape and size to the optic disc, is mistakenly
segmented. However, the validator assigns low zero-shot classification and image-text matching
scores to these incorrect predictions. As the optimization progresses, the pipeline gradually refines its
focus, ultimately localizing the optic disc and producing accurate segmentation results.

Figure 6: Evaluate per-sample BO
on the Kvasir dataset. B refers to
batch and S refers to per-sample.

We also find hyperparameter selection with BO on a batch of
test samples show better performance than per-sample BO. As
shown in Figure 6, although per-sample BO achieves higher
validation scores, the overall true scores decrease compared
to the default setting of batch BO, as BO tends to overfit each
individual test example and may lose the chance to find more
robust configurations.

6 LIMITATION AND FUTURE WORK

While AutoMiSeg substantially outperforms prior automatic
zero-shot segmentation methods, a clear performance gap re-
mains compared to supervised models and foundation models
guided by strong expert prompts. Given the modular nature of
our pipeline, a promising future direction is to expand the search
space to include different model configurations. As shown in
our preliminary ablation studies (Appendix H), there is consid-
erable room for improvement through better foundation model
selection within the AutoML framework. Our method will also
naturally benefit from the continuous advances of general foundation models. Another important
avenue is to develop more effective test-time adaptation strategies tailored for the non-differentiable
and compositional nature of the pipeline.

7 CONCLUSION

This paper presents AutoMiSeg, a fully automatic, zero-shot segmentation pipeline for medical
images that eliminates the need for manual annotations or interaction at inference time. By leverag-
ing pretrained vision-language and segmentation foundation models, along with a novel test-time
adaptation framework, our method effectively addresses the challenges of domain shift and prompt
generation in medical image segmentation. Experimental results across seven diverse datasets demon-
strate the pipeline’s significant advantages over zero-shot baselines and also competitive performance
compared to both weak-prompt interactive models. This work underscores the potential of modular,
training-free pipelines for scalable medical image analysis and opens up promising directions for
future research in improving the performance with more powerful pre-trained models and designing
advanced test-time adaptation approaches for more complex pipelines.
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A VISUAL GROUNDING MODELS

Visual Grounding (also known as Referring Expression Comprehension) is a crucial task in computer
vision and natural language processing that aims to localize specific objects or regions in an image
based on a natural language textual description (a "text prompt" or "referring expression"). Unlike
traditional object detection systems that identify objects from a predefined set of categories, visual
grounding models are designed to understand free-form, often complex, textual prompts that can
describe an object by its attributes, spatial relationships to other objects, or other distinguishing
characteristics.

The input to a typical visual grounding model consists of an image and a text prompt indicating
the object of interest. The output is usually the set of coordinates for a bounding box that precisely
encloses the described object within the image. This capability to "ground" language in visual content
makes these models powerful tools for fine-grained image understanding and interaction.

The ability of these models to interpret nuanced language and map it to specific image regions makes
them highly valuable for various downstream applications, including human-computer interaction,
robotics, image editing, and, as in our work, providing precise visual prompts (bounding boxes) for
subsequent processing stages like segmentation. Given their relatively recent surge in capability and
application, a brief introduction is warranted for reviewers who may be less familiar with this specific
class of models.

For our training-free medical image segmentation pipeline, we required a robust and versatile visual
grounding model capable of accurately localizing objects of interest based on textual prompts, which
would affect the location and quality of masks generated by the successory mask proposing modules.

We selected CogVLM (Wang et al., 2024) as the grounding module in our pipeline for several key
reasons:

1. State-of-the-Art Performance and Open Access: CogVLM is a powerful, open-source
visual language model that has demonstrated strong performance across a wide array of
vision-language tasks, including those requiring fine-grained understanding and localization.
Its availability facilitates reproducibility and further research.

2. Effective Grounding Capabilities: While CogVLM is a general visual language model,
its architecture is inherently well-suited for tasks that require grounding textual concepts
in images. It can be effectively prompted or adapted to output bounding box coordinates
corresponding to objects described in the text. Its ability to handle detailed descriptions and
disambiguate objects makes it suitable for generating precise visual prompts.

3. Strong Generalization and Zero-Shot Potential: Due to its extensive pre-training on
large-scale image-text datasets, CogVLM exhibits impressive generalization capabilities to
novel objects and scenarios. This strong zero-shot or few-shot performance aligns perfectly
with the "training-free" philosophy of our proposed pipeline, allowing us to leverage its
capabilities without task-specific fine-tuning for the grounding step.

B VISUAL PROMPT BOOSTING

While the bounding box B provides a coarse localization, promptable segmentation models often
benefit from more precise internal points to disambiguate the target object from the background or
adjacent structures. We generate these point prompts automatically by analyzing the visual features
within the image I . This process is deterministic given the chosen pre-trained encoder.

Anchor Point Selection. We define an initial anchor point pa = (xa, ya) as the geometric center
of the bounding box B.

xa =
xmin + xmax

2
, ya =

ymin + ymax

2
(2)

Dense Feature Extraction. We employ a pre-trained vision encoder, specifically DINOv2 (Oquab
et al., 2024) known for its strong semantic feature representation capabilities without fine-tuning, to
extract dense feature maps F ∈ RH′×W ′×D from the image I . Let f(p) ∈ RD denote the feature
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vector corresponding to a spatial location p = (x, y) in the image (potentially requiring interpolation
if p does not align perfectly with the feature grid). Let fa = f(pa) be the feature vector of the anchor
point.

Similarity-Based Point Selection. We identify candidate points within the image (or potentially
restricted to the bounding box B for efficiency) that are semantically similar to the anchor point in
the DINOv2 feature space. We compute the cosine similarity between the anchor feature fa and all
other features f(p) and select the top-k points Pk = {p1, ..., pk} with the highest similarity scores:

Pk = top-k
p∈I,p̸=pa

(
fa · f(p)

∥fa∥∥f(p)∥

)
(3)

In our experiments, we typically use k = 10.

Point Clustering and Center Calculation. The top-k similar points might form distinct spatial
clusters within the target object. To obtain representative points covering potentially different parts of
the object, we cluster the coordinates of the points in Pk into n groups using K-Means clustering.

C1, ..., Cn = KMeans({(xi, yi) | pi ∈ Pk}, n) (4)

where Cj represents the set of points belonging to the j-th cluster. We set n = 3 in our typical
configuration.

Final Point Prompt Generation. We calculate the centroid (mean coordinate) pc,j for each cluster
Cj . These centroids form our set of additional positive point prompts Pc = {pc,1, ..., pc,n}. The final
set of visual prompts for the segmentation model consists of the bounding box B and the generated
points Pc.

C LEARNABLE TEST-TIME ADAPTORS

We introduced a set of domain-adapted image transformations within our Learnable Test-time
Adaptors (LTAs) in an effort to reduce the domain shift between clinical images and foundation
models pretrained on natural images. We applied a series of light-weighted image transformation
and prompt enhancement during the test time. The operations are designed to enhance local contrast,
simulate modality-specific variability and emphasize the anatomical features that are hard to detect
within the original images.

All the transformations have a couple of tunable parameters, and we optimize over them using
Bayesian optimization (TPE (Bergstra et al., 2011)). We apply these transformations separately to
the grounding input and segmentation input, each with their own set of parameters. We also include
two non-augmentation parameters in the search: the grounding prompt index igrd controls which
predefined prompt to use for the grounding model, and the number of enhanced prompt points k
controls the number of point clusters used to boost the box prompt. These parameters affect the
quality and stability of the grounding and segmentation process, especially in noisy or ambiguous
settings. A complete description of the involved operations is as follows.

• HSV Shift: Shift of image hue, saturation, and brightness. This captures variations in
scanner settings or lighting.

• RGB Shift: Adds individual offsets to all of the R/G/B channels. This is used to reduce the
model’s dependence on an even intensity distribution.

• CLAHE (Zuiderveld et al., 1994): Performs contrast-limited adaptive histogram equaliza-
tion for greater visibility in locally low-contrast areas.

• Unsharp Masking: Sharpens edges by subtracting a blurred version of the image, making
anatomical boundaries clearer.

• Grounding Prompt Selection: Controls the choice of a predefined bounding box prompt
used for the grounding model. Different prompt configurations can significantly affect
alignment between the language and the vision encoder.
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Table 3: Hyperparameters and search spaces used in LTA optimization.

Operation Hyperparameter Type Range Description

HSV Shift
hsv_hue_shift Integer [0, 20] Amount of hue rotation
hsv_sat_shift Integer [0, 30] Change in color saturation
hsv_val_shift Integer [0, 30] Change in image brightness

RGB Shift
r_shift Integer [0, 20] Red channel offset
g_shift Integer [0, 20] Green channel offset
b_shift Integer [0, 20] Blue channel offset

CLAHE clahe_clip Float [0.0, 4.0] Clip limit for local contrast
clahe_grid Integer [1, 4] Number of tiles per image axis

Unsharp Masking edge_strength Float [0.0, 1.0] Edge enhancement level

Prompt Selection grd_prompt_id Categorical {0,1,. . . ,9} Choice of grounding prompt ID

Prompt Boosting bst_k_points Integer [0, 5] Number of point prompts

• Number of Boosted Points: Controls the number of points used for box prompt boosting.
The choice can be 0, which means prompt boosting is not performed. In practice, we find
this component is probably learned to be skipped if the target region contains diverse visual
patterns and the central point is not very representative. Otherwise, the prompt boosting
module tends to generate a few representative points as additional prompts and make the
segmentation boundary more accurate.

We list the hyperparameters and their search spaces below in Table 3. These parameters are optimized
using Bayesian optimization with a Tree-structured Parzen Estimator (TPE), maximizing proxy
validation scores, and were chosen to provide a moderate set of variations without over-warping the
input.

D PRE-DEFINED LLM TEMPLATES

We use the following templates to generate necessary text resources used in our automatic medical
image segmentation pipeline.

D.1 TEXT PROMPT FOR THE GROUNDING MODEL

Input to ChatGPT-4o

I want to describe the visual characteristics of the Ttarget in an image of Twhole. Please
generate 10 sentences for the purpose of computer vision annotation. Each sentence should
describe the shape, size (relative to the entire image), color, texture, and other visual features
that help humans easily recognize the target. Each sentence must begin with "Locate the
Ttarget in the image of Twhole, which". Each sentence should be limited within 20 words.
Ensure the 10 sentences are diverse and distinct. Write the results in a .txt file, with each
description on a separate line and without line numbers.

Sample Output for the REFUGE dataset

Locate the optical disc in the image of eye fundus, which is round, bright, and positioned toward the nasal side.
Locate the optical disc in the image of eye fundus, which appears yellowish, slightly elevated, and sharply bordered by retina.
Locate the optical disc in the image of eye fundus, which shows a pale circular region where blood vessels radiate outward.
Locate the optical disc in the image of eye fundus, which is circular, bright pink, and textured with fine vascular structures.
Locate the optical disc in the image of eye fundus, which looks like a smooth light-colored oval near the nasal margin.
Locate the optical disc in the image of eye fundus, which appears as a distinct white spot with central vessel branching.
Locate the optical disc in the image of eye fundus, which displays a soft granular texture and contrasts with darker retina.
Locate the optical disc in the image of eye fundus, which looks bright, circular, and located slightly off-center to the left.
Locate the optical disc in the image of eye fundus, which appears as a light area with radial vascular convergence.
Locate the optical disc in the image of eye fundus, which is smooth, round, pale, and lies near the nasal boundary.
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D.2 GENERATING CONTRASTIVE CLASSES FOR THE VALIDATION MODEL

Input to ChatGPT-4o

In an image of Twhole, what are the typical regions that have visual features and positions
distinct from the Ttarget? List 2 to 4 of the most visually different parts or regions, using
names commonly found in medical literature. Write the results in a .txt file, with the names
separated by comma without additional output.

Sample Output for the REFUGE dataset

macula, fovea, retinal blood vessels, peripheral retina

In our pipeline, we manually add "background" as a default contrastive class for each dataset in
addition to the generated classes. We empirically find this is beneficial to validate the foreground
targets with the visual language model Mval.

D.3 GENERATING TARGET DESCRIPTIONS FOR THE VALIDATION MODEL

We use a similar template as that used for the grounding model, only differing in the requirements of
prefix and length of results.

Input to ChatGPT-4o

I want to describe the visual characteristics of the Ttarget in an image of Twhole. Please
generate 10 sentences for the purpose of computer vision annotation. Each sentence should
describe the shape, size (relative to the entire image), color, texture, and other visual features
that help humans easily recognize the target. Each sentence must begin with "It appears", "It
looks" or "It is". Ensure the 10 sentences are diverse and distinct. Write the results in a .txt
file, with each description on a separate line and without line numbers.

Sample Output for the REFUGE dataset

It appears as a round, pale yellow region slightly off-center, with a smooth texture and well-defined
margins that stand out against the darker retina.
It looks like a circular, elevated area occupying about 10% of the image width, with a pinkish hue and
radiating blood vessels.
It is an oval-shaped, bright region located nasally, with a creamy white color and a central depression
known as the optic cup.
It appears as a clearly demarcated disk with a light peach tone, fine granular texture, and a ring-like
structure due to the cup-to-disc contour.
It looks like a small, reflective area with a yellow-white coloration, prominent vessel branches emerging
from its center, and a slightly rough surface.
It is a slightly oval, pink-colored disk occupying approximately one-eighth of the image, with a smooth
edge and a central dip.
It appears as a bright, circular area with a distinct boundary, a pale central cup, and a surrounding rim
that contrasts with the adjacent retina.
It looks like a sunken, light-toned region, slightly raised at the edges, and serves as the entry and exit
point for retinal blood vessels.
It is a well-circumscribed, yellowish-white disk, relatively small compared to the full image, with a
visible vascular pattern originating from its core.
It appears as a doughnut-like structure with a pink outer ring and a paler inner cup, located toward the
nasal side and distinct in texture from the rest of the fundus.
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E MORE QUALITATIVE EXAMPLES
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Figure 7: More qualitative results with our automatic segmentation pipeline.
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F COMPARISON WITH TEXT-PROMPTED SUPERVISED MODELS

The recent state-of-the-art medical image segmentation model BiomedParse (Zhao et al., 2025)
also accepts text prompts at inference. However, it is not a genuine zero-shot learning model.
Its text-conditioning ability is learned in a supervised manner, where the textual inputs during
training are largely restricted to domain-specific terms and their limited variations contained in the
annotated datasets. Consequently, its zero-shot capability does not extend to unseen domains or novel
terminology, and the model exhibits poor generalization on out-of-domain datasets, being inherently
constrained by the supervised bias of its training data.

To more comprehensively assess the robustness of our approach and such baselines, we additionally
compare performance on datasets outside the domain of BiomedParse (Zhao et al., 2025). The datasets
used are the BUU (Lumbar Vertebrae X-ray) dataset (Klinwichit et al., 2023) and the FUSC2021
(Diabetic Foot Ulcer) dataset (Cassidy et al., 2021) . These results have been presented in Table 4. On
datasets included in BiomedParse’s training data, BiomedParse achieves performance comparable to
the evaluated supervised models (as observed in Table 1), as expected. However, on unseen datasets,
our approach substantially outperforms BiomedParse as shown in Table 4.

Table 4: Segmentation performance comparison across out-of-domain datasets between BiomedParse
and our approach.

Method BUU (Lumbar Vertebrae X-ray) FUSC2021 (Diabetic Foot Ulcer)

BiomedParse (Zhao et al., 2025) 4.25 21.61
AutoMiSeg (Ours) 67.24 56.19

G INFERENCE TIME COMPARISON WITH OTHER ZERO-SHOT METHODS

Here we compare the inference times of the different zero-shot segmentation methods with our
approach. All inferences were run on an Nvidia A100 GPU, and the average per-sample inference
time (in seconds) over 100 samples from the Busi dataset was computed. These values are presented
in Table 5.

Although our pipeline does introduce more components to address the challenging zero-shot problem
in medical domains, many of these components are only involved in the one-time adaptation process.
Only the grounding and segmentation models are used during inference. As seen in Table 5, our
approach achieves a comparable inference speed to the baselines.

Table 5: Comparison of average per-sample inference times over 100 samples from the Busi (Al-
Dhabyani et al., 2024) dataset between other zero-shot segmentation baselines and our approach. All
values are in seconds.

SaLIP (Aleem et al., 2024) MedCLIP-SAM (Koleilat et al., 2024b) MedCLIP-SAM-v2 (Koleilat et al., 2024a) AutoMiSeg (Ours)

1.50 0.49 2.09 1.56

H MODULAR ABLATION STUDY

We perform an ablation study to evaluate our choice of choosing the base variant of CogVLM as our
grounding model for target area grounding. We replace CogVLM with the base variant of Grounding
Dino (Liu et al., 2024), while keeping all other components of the pipeline fixed. We evaluate the
performance on the Kvasir and Busi datasets, using the same grounding prompts that were used
with CogVLM. Since Grounding Dino outputs a number of bounding boxes along with their scores,
we select the bounding box with the top score. Similarly, we also evaluate suitable variants for the
segmentation and validator modules. For segmentation, we replace the default SAM with MedSAM
and SAM-Med2D. For the validator, we replace the default BiomedCLIP with BioVIL-T (Bannur
et al., 2023). The results of the ablation study are presented in Table 6.
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Table 6: Segmentation performance under ablation when evaluating CogVLM and Grounding DINO
separately as grounding models on Kvasir (Pogorelov et al., 2017) and Busi (Al-Dhabyani et al.,
2024) datasets.

Module Ablation Kvasir (endoscopy) Busi (ultrasound)

- AutoMiSeg default 74.80 61.65

Grounding CogVLM → Grounding Dino 67.80 51.50

Segmentation SAM → MedSAM 78.50 66.81
SAM → SAM-Med2D 72.88 66.30

Validator BiomedCLIP → BioVIL-T 73.60 60.65
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