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Abstract—We propose an application of occupancy networks
for 3D medical image segmentation, demonstrating their ef-
fectiveness on the publicly available KiTS23 dataset. Unlike
conventional CNN-based methods that operate in voxel space
using encoder-decoder architectures, our approach represents
anatomical structures as continuous decision boundaries within
normalized coordinate space. This formulation enables fine-
grained surface delineation and flexible inference resolution. Our
architecture integrates a MedicalNet-pretrained ResNet encoder,
a multi-scale Bi-directional Feature Pyramid Network (BiFPN)
feature fusion backbone, and class-specific parallel prediction
heads. To address the high anatomical variability and class
imbalance in the dataset, we design a training strategy based on
structured 3D patch sampling, coupled with a targeted refinement
mechanism during inference that leverages coarse predictions
to guide high-resolution queries for underrepresented classes.
Extensive experiments show that our model achieves competitive
performance on Dice and Surface Dice metrics compared to
leaderboard methods. These results underscore the potential
of continuous occupancy-based representations for high-fidelity
medical segmentation.

Index Terms—Occupancy Networks, Medical Imaging, Seg-
mentation, KiTS23 Challenge.

I. INTRODUCTION

EMANTIC segmentation of medical images plays a crit-

ical role in the diagnosis, treatment planning, and lon-
gitudinal monitoring of a wide range of diseases. Accurate
delineation of anatomical structures and pathological regions,
such as organs, tumors, and cysts, is essential for quantitative
image analysis. Despite the extensive research in automated
segmentation methods, manual annotation remains the clinical
standard in many settings, creating a need for efficient, reliable,
and generalizable segmentation models [1], [2].

In recent years, convolutional neural networks (CNNs) have
emerged as the dominant paradigm in medical image segmen-
tation [3]-[5], offering powerful nonlinear feature extractors
and strong generalization across imaging modalities. Archi-
tectures based on fully convolutional networks (FCNs) and
encoder-decoder designs, such as U-Net [4], have become
foundational, enabling dense pixel- or voxel-level predictions
while preserving contextual understanding via skip connec-
tions. These models have shown state-of-the-art performance
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across numerous domains, including brain [5], cardiac [6], and
abdominal imaging [7].

To further enhance feature discrimination, modern architec-
tures often incorporate attention mechanisms. Inspired by their
success in computer vision and natural language processing
[8], [9], attention modules have been adapted to medical
segmentation tasks to emphasize salient spatial and channel-
wise information [10], [11]. Models such as Attention U-Net
[10], DANet [12], and PAN [13] integrate self-attention at
various stages to improve long-range dependency modeling
and context aggregation. Recent work has also proposed multi-
scale strategies that fuse semantic information at different res-
olutions [14], [15], further boosting segmentation performance
[16].

Despite these advancements, voxel-based models are limited
by their discretized grid representations, which tie predictions
to image resolution and require memory-intensive scale-fusion
mechanisms to capture fine boundaries [17]-[19]. In contrast,
occupancy networks learn a continuous function mapping 3D
coordinates to labels [20], enabling resolution-free surface
modeling and smoother, anatomically consistent segmenta-
tions.

In this paper, we explore the application of occupancy
networks for 3D medical image segmentation. Our work targets
the KiTS23 challenge dataset [21], focusing on the segmenta-
tion of kidneys, tumors, and cysts in CT scans (Fig. 1). The
proposed model takes a 64x64x64 ([643]) patch sample from
the whole CT scan and uses a MedicalNet-pretrained ResNet
encoder with a BiFPN head [22] to construct a canonical
3D feature grid. Query points are sampled as 3D coordinates
within the normalized coordinate space [—0.5, 0.5, represent-
ing a cube centered at the origin where each axis spans the
range [—0.5,0.5]. They are then processed through conditional
batch normalization layers to incorporate information from
the latent feature grid. These conditioned embeddings are
then passed through class-specific predictor heads to estimate
occupancy for each semantic class.

To improve performance across all classes and adapt to the
anatomical variability present in CT imaging, we introduce
structured patch sampling during training and a refinement
strategy during inference. These components allow the model
to handle underrepresented structures such as cysts more
effectively and to iteratively refine segmentation boundaries
in anatomically ambiguous regions.

Our results on the KiTS23 dataset demonstrate that this
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Fig. 1. Example of a CT scan slice from the KiTS23 dataset, with the ground
truth for the kidney, tumor, and cyst classes.

approach achieves competitive performance across Dice and
Surface Dice metrics compared to voxel-based architectures,
while offering the flexibility of continuous spatial reasoning
and resolution-invariant boundary modeling.

II. RELATED WORK

A. CNN-Based Medical Image Segmentation

Convolutional Neural Networks (CNNs) have been the dom-
inant paradigm in medical image segmentation over the past
decade. U-Net [4] and its 3D extension [23] introduced a
now-standard encoder-decoder structure with skip connections,
enabling multi-scale feature fusion and precise boundary lo-
calization. These networks have become foundational across
domains due to their simplicity, effectiveness, and extensibility.
V-Net [24] introduced residual connections and a Dice-based
loss function, optimizing performance in imbalanced clinical
datasets. More recently, nnU-Net [25] demonstrated that care-
ful configuration of preprocessing, architecture, and training,
instead of novelty, can yield state-of-the-art performance across
a wide range of biomedical tasks.

Despite their success, CNN-based models are inherently
voxel-centric, predicting discrete class labels at fixed grid
locations. Their reliance on pooling and upsampling operations
introduces a trade-off between resolution and receptive field,
and capturing fine-grained boundary information often requires
architectural add-ons such as deep supervision or cascaded
refinements. These models also implicitly assume that the
target structures conform to the discretized spatial resolution
of the input image, which may not hold for complex or small-
scale anatomy.

B. Transformer-Based Architectures in Segmentation

Transformers have recently emerged as a compelling alter-
native to traditional CNNs for modeling long-range depen-
dencies. UNETR [26] replaces convolutional encoders with
pure transformer blocks operating on flattened 3D patches,
enabling global context aggregation from the earliest layers.
Swin-Unet [27] introduces hierarchical vision transformers
with window-based self-attention, achieving improved effi-
ciency and scalability. DS-TransUNet [28] extends this idea
by integrating dual Swin transformer blocks symmetrically in
both encoder and decoder paths, effectively bridging local and
global representations.

These transformer-based models are voxel-based at their
output and typically inherit the same spatial discretization
constraints as CNNs. While they excel at modeling semantic
relationships across a volume, they do not fundamentally alter
the representation of anatomical boundaries or the resolution
of the prediction space. The segmentation outputs remain tied
to a grid and suffer from the same resolution-accuracy-memory
trade-offs.

C. Occupancy Networks and Implicit Representations

Occupancy Networks [20] offer a fundamentally different
representation strategy by modeling the volumetric space as a
continuous function. Instead of predicting voxel labels directly,
they learn a binary classifier f : R® — {0,1} that estimates
whether any arbitrary point in 3D space lies inside or outside
a target structure. This function is trained using point-wise
supervision and conditioned on latent features extracted from
the input data. Such models can represent complex shapes with
sub-voxel precision and support resolution-agnostic inference,
making them highly attractive for applications where boundary
fidelity is critical.

Although first introduced for shape modeling and 3D re-
construction in computer graphics, occupancy networks have
seen limited adoption in medical imaging. Their continuous
formulation enables surface-based reasoning without commit-
ting to a discretized voxel grid, and supports mesh extraction
via isosurface techniques such as marching cubes or Multi-
resolution IsoSurface Extraction (MISE). Recent work such
as SWIPE [29] has demonstrated the potential of implicit
neural representations in segmenting whole-body CT scans,
but these approaches remain rare and underexplored in the
clinical domain. Our work builds upon this foundation and
applies occupancy networks to a multi-class segmentation task,
where each anatomical structure is predicted by an independent
occupancy function conditioned on a shared latent space.

D. Segmentation Approaches in the KiTS23 Challenge

The KiTS23 challenge presented a rigorous benchmark
for kidney, tumor, and cyst segmentation in CT volumes.
Among the top-performing teams, Myronenko et al. [30]
used Auto3DSeg, a fully automated segmentation pipeline that
integrates nnU-Net-style architectures with learned data-driven
heuristics. Uhm et al. [31] proposed a multi-scale 3D U-
Net combined with post-processing steps such as connected
component analysis and morphological filtering to refine pre-
dictions. Other strong entries adopted ensemble strategies,



attention-based modules, or hierarchical decoders tailored for
the class imbalance inherent in cyst segmentation.

All of these approaches are voxel-based and rely on dense
per-voxel classification over the CT volume. By contrast,
our method departs from this paradigm entirely, representing
each anatomical structure as a continuous boundary function.
This enables flexible querying, supports test-time resolution
adaptation, and allows us to refine predictions with minimal
reliance on memory-heavy volumetric inference.

III. METHODS

In this section, we describe each component of our
occupancy-based segmentation framework. We begin by out-
lining how query coordinates are defined and supervised,
followed by an explanation of our feature encoding pipeline
using a pretrained 3D ResNet and BiFPN. We then detail how
query points are processed via conditional batch normalization,
and conclude with descriptions of our loss function, structured
patch sampling strategy, and inference-time refinement using
MISE.

A. Feature Encoding and Grid Construction

Following the preprocessing steps of [30], we rescaled the
CT voxel values from [—54,242] to [—1,1], followed by a
sigmoid activation function. The CT patch x is processed
using a 3D ResNetlO encoder pretrained via MedicalNet,
which has been trained on 22 diverse clinical imaging datasets.
From this backbone, we extract three spatial feature maps
at resolutions [323], [16%], and [83]. These multiscale fea-
tures are passed through a Bi-directional Feature Pyramid
Network (BiFPN) [22], which performs iterative top-down
and bottom-up fusion, yielding a single feature grid Fy €
REXHXWXD with channel size C = 128 and H = W =
D = 32. This grid forms a dense latent representation of the
input anatomy across the patch volume.

B. Query Processing and Conditional Feature Fusion

A query point p € R? represents an arbitrary spatial location
within the normalized coordinate space [—0.5,0.5]% of a CT
patch. Given a set of such points, the network evaluates
their class occupancy probabilities by conditioning on local
anatomical context from the CT image.

To generate a point-wise prediction, we first extract a latent
feature vector f; € R12® by performing trilinear interpolation
of the feature grid F' at coordinate p;. This feature encodes
anatomical context from the CT image in the vicinity of p;. The
query coordinate itself is passed through a sinusoidal positional
encoding function v(p;) € RP to produce a spatially aware
embedding.

These two signals, the positional embedding ~(p;) and the
interpolated feature vector f;, are fused through a sequence of
five residual blocks, each containing Conditional Batch Nor-
malization (CBN) layers. Each block applies normalization and
affine transformation to the hidden features, modulated by the
local context f;, followed by a ReL.U activation and skip con-
nection. This produces a conditioned representation z; € R'28
that is spatially informed and anatomically grounded. From this
shared latent vector z;, we apply a separate binary classifier
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Fig. 2. Overview of the adapted ConvOccNet architecture for 3D CT scan
data. The CT patch is processed through a pretrained 3D ResNet encoder
producing feature maps with channel dimensions CO — C4, followed by
a BiFPN feature fusion backbone. Query points are sampled in normalized
coordinate space, positionally encoded and passed through conditional batch
normalization layers. The final occupancy prediction is made by a class
specific MLP.

head #,. for each class ¢ € {1,2,3} (kidney, tumor, cyst).
Each head consists of a lightweight Multi-Layer Perceptron
(MLP) (1):

H.(2;) = Linear(128,128) — ReLU — Linear(128,1) (1)

producing a final predicted occupancy value 6§ = o(H.(z:)),
where o denotes the sigmoid activation. The complete archi-
tecture is illustrated in Fig. 2.

During inference, if all heads predict values below a pre-
defined confidence threshold 7 (i.e., max. 6{ < 7), the query
point p; is assigned to the background class. This allows the
model to express uncertainty in ambiguous regions without
forcing a foreground prediction.

C. Training

1) Patch Sampling: Training is performed on 3D patches of
size [643] extracted from the original CT volumes. To ensure
both anatomical diversity and balanced supervision across all
classes, we employ a composite patch sampling strategy using
the TorchlO library.

Each patient scan contributes ten patches per epoch:

+ Random Sampler (2 patches): Uniformly samples patch
locations across the entire volume, without label con-
straints.

o Label Sampler (4 patches): Prioritizes patches centered
on foreground classes using per-class label probabilities,
increasing the frequency of underrepresented structures.

o Donut Sampler (4 patches): A custom sampler for
cysts, which centers samples within a padded margin
surrounding, but not inside, cyst volumes. This promotes
spatial variability in cyst locations within patches and
reduces positional overfitting.



TABLE I
LEADERBOARD COMPARISON ON THE KITS23 TEST SET ACROSS ALL CHALLENGE METRICS.

Team Avg. | Avg. Surface Tumor Kidney+Masses | Masses Kidney+Masses | Masses Tumor
Dice Dice Dice Dice Dice SD SD SD
A. Myronenko et al. [30] 0.835 0.723 0.758 0.956 0.792 0.913 0.641 0.616
K. Uhm et al. [31] 0.820 0.712 0.738 0.948 0.776 0.899 0.635 0.602
Y. George et al. [32] 0.819 0.707 0.713 0.958 0.785 0.908 0.640 0.573
G. Stoica et al. [33] 0.807 0.691 0.713 0.947 0.760 0.895 0.609 0.569
S. Liu and B. Han [34] 0.805 0.706 0.697 0.952 0.767 0.919 0.631 0.568
L. Qian et al. [35] 0.801 0.680 0.687 0.948 0.767 0.891 0.612 0.538
Z. Salahuddin et al. [36] 0.795 0.681 0.690 0.940 0.754 0.887 0.603 0.552
Z. Huang et al. [37] 0.794 0.692 0.686 0.951 0.746 0.909 0.612 0.556
C. Chen and R. Zhang [38] 0.799 0.676 0.691 0.954 0.752 0.897 0.591 0.541
J. Michaud et al. [39] 0.790 0.678 0.670 0.949 0.750 0.899 0.603 0.531
ConvOccNet (Ours) 0.791 0.744 0.693 0.947 0.725 0.930 0.671 0.652

This combined sampling policy significantly improves gen-
eralization and boosts minority-class performance, particularly
for cyst segmentation.

2) Point Sampling: Within each patch, we randomly sam-
ple N = 2048 query points in normalized coordinate space
[—0.5,0.5]3. Each point is mapped to the corresponding index
in the full-resolution label mask to determine its binary label
for each of the three foreground classes.

During training, points are sampled independently of their
proximity to anatomical boundaries or foreground structures.
This provides a broad sampling distribution over space and
allows the network to implicitly learn to separate semantic
boundaries through continuous occupancy classification.

3) Loss Function: We supervise each class prediction head
using a Binary Cross-Entropy (BCE) loss (2). Let 65 denote the
predicted occupancy value for point p; and class ¢, and y; €
{0, 1} its ground-truth label. Let N be the number of query
points in a patch sample. The total training loss is computed
as:

3 N
Lace = Y Y BCE(65,y5) @)
c=1 i=1

Each class head is trained independently without inter-
class exclusivity. As such, query points may be predicted as
foreground by multiple heads (though this is rare in practice),
or assigned to background when all outputs fall below a fixed
confidence threshold (as described during inference).

4) Training Hyperparameters: We train the model using
the Adam optimizer with an initial learning rate of 1x107%,
decayed by a factor of 0.75 every 20 epochs. Training is run
for a maximum of 500 epochs with a batch size of 16, selected
based on GPU memory constraints.

D. Inference and Refinement

To generate full-volume predictions, we tile the CT scan
using a minimal-overlap grid sampler, producing a set of 643
patches that cover the entire image space. For each patch, a set
of spatial query points is evaluated using our trained occupancy
network, and the results are accumulated to form a unified
segmentation volume.

We employ Multi-resolution IsoSurface Extraction (MISE)
[20] as the backbone of our inference process. In the first
pass, a coarse 3D grid of query points is evaluated across

each patch, producing class-wise occupancy scores at low
resolution. MISE identifies voxels near decision boundaries
by comparing occupancy values of adjacent vertices, and
recursively subdivides these boundary voxels to query finer
points until a target resolution is reached. Once complete, the
final occupancy field is binarized and passed to the Marching
Cubes algorithm to extract a continuous isosurface for each
class.

To improve cyst prediction quality, we perform a second
refinement pass based on the results of the first. Connected
components in the initial cyst mask are identified, and new
643 patches are extracted from the CT volume, centered on
each component. MISE is rerun from these new locations,
starting again from the coarse resolution and proceeding with
its standard subdivision strategy.

This refinement aligns inference with training dynamics, as
the donut sampler avoids strictly centered cysts but instead
places them within a narrow padded margin, keeping them
roughly central within patches without introducing positional
bias.

For each query point visited in both passes, we retain the
prediction with the higher class-specific sigmoid confidence
score. This selective fusion ensures that refined predictions
are only adopted when beneficial, while preserving coarse
predictions elsewhere.

IV. RESULTS

We evaluate our model on the publicly available KiTS23
challenge dataset using the official evaluation metrics: Dice
and Surface Dice scores. Table I summarizes the average and
per-class performance of our model compared to the top 10
submissions on the leaderboard.

Our model achieves a competitive average Dice of 0.791
and the highest reported average Surface Dice of 0.744 among
the top leaderboard entries. These results reflect the effective-
ness of our continuous occupancy formulation across multiple
anatomical structures.

A. Per-Class and Per-Region Performance

Table II presents a detailed breakdown of per-class perfor-
mance for our method. The kidney class achieved the highest
Dice and Surface Dice scores at 0.927 and 0.905, respectively,
owing to its relatively large volume and consistent appearance
across patients. Tumor segmentation yielded a Dice of 0.693



TABLE 11
PER-CLASS DICE AND SURFACE DICE (SD) SCORES.

Class Dice Surface Dice (SD)
Kidney 0.927 0.905
Tumor 0.693 0.652
Cyst 0.447 0.781
Kidney + Masses | 0.947 0.930
Masses 0.725 0.671
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Fig. 3. Decoding time (ms) as a function of the number of query points.

and Surface Dice of 0.652, while cysts yielded a lower Dice
score of 0.447 but 0.781 for Surface Dice. These patterns
reflect the inherent difficulties occupancy networks face when
segmenting smaller, irregularly shaped structures.

B. Model Efficiency and Runtime Analysis

Our model has 36.98M parameters and uses 141.07MB of
memory. The encoder processes each patch in 9.40 ms on
average. Decoder speed as a function of query points is shown
in Fig. 3. On an NVIDIA RTX 4070 GPU, total inference
takes about 6.2 seconds per CT volume without cysts, and
up to 7.9 seconds with cysts. The MISE-based refinement
adaptively increases resolution only near boundaries, avoiding
unnecessary high-resolution queries across the whole volume.

V. DISCUSSION

Our findings demonstrate the viability and benefits of apply-
ing occupancy networks to 3D medical image segmentation. In
this section, we discuss the results, design choices, and broader
implications of our work.

A. Analysis of Results

The results in Table I confirm that our approach achieves
strong performance across all evaluation metrics, with the
highest reported average Surface Dice of 0.744. In particular,
the kidney class attained a Dice score of 0.927 and Surface
Dice of 0.905, as shown in Table II. These high scores reflect
the relatively large volume and consistent appearance of the
kidney across patients. Tumors, which are typically smaller
and more structurally irregular, yielded lower scores (Dice
0.693, SD 0.652), while cysts, being even smaller and often
indistinct, achieved a Dice of 0.447 and Surface Dice of 0.781.
Figure 4 illustrates qualitative results across six cases, showing
consistently high-fidelity segmentations and highlighting a

failure mode in which a cyst was misclassified as a tumor.

B. Class-Specific Patterns and Sampling Implications

A closer look at the per-class results reveals that anatomical
scale plays a central role in segmentation quality within
occupancy-based models. The kidney class achieved the high-
est Dice and Surface Dice scores, reflecting its large physical
size and consistent appearance across patients. With high spa-
tial occupancy and frequent intersection by randomly sampled
points, kidneys naturally provide dense supervision signals
during training.

In contrast, the tumor and cyst classes occupy substantially
less spatial volume and are thus more easily overlooked during
patch and point sampling. Although their overall shapes are
not particularly irregular, their compact size means they are
statistically underrepresented within the continuous coordi-
nate space. In the absence of targeted sampling strategies, a
randomly drawn batch of 2048 points might include only a
handful from a cyst, insufficient to meaningfully contribute to
learning. This sparsity is exacerbated by class imbalance and
further complicated by the fact that the smaller a structure
is, the more its representation becomes sensitive to how and
where sampling occurs.

To mitigate this, the label-aware sampler increased the
occurrence of patches centered on less frequent classes, while
the custom donut sampler proved particularly effective in
improving cyst segmentation. By sampling the region sur-
rounding the cyst rather than directly on it, we achieved
two goals simultaneously: increased exposure of cyst voxels
across training and greater variation in their spatial presentation
within patches.

These adaptations underscore an important nuance in using
occupancy networks for segmentation: the visibility of a struc-
ture during training is a function not only of its class frequency
but also of its geometric footprint in coordinate space. Our
results suggest that tailoring sampling schemes to anatomical
scale can be more impactful than modifying loss functions or
network capacity alone.

C. Architectural Insights

Several architectural modifications were instrumental in
achieving the presented results beyond the classical convo-
lutional occupancy network. The use of multi-head binary
predictors proved essential in alleviating class imbalance, as
each class received dedicated supervision and gradient flow.
Without this design, smaller classes like cysts were consistently
overwhelmed by dominant structures. Although we experi-
mented with a weighted loss to further boost sensitivity to
cysts, this did not yield improvements. The multi-head design,
however, proved robust and clean, especially in the context of
implicit representations.

A core strength of the occupancy framework is its ability to
decouple resolution from output representation. This enables
dense, high-fidelity boundaries without incurring the memory
costs of dense volumetric decoding. Additionally, inference-
time querying allows for targeted resolution increases without
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Fig. 4. a) The ground truth and ConvOccNet predicted segmentation for the kidney, tumor, and cyst classes are shown for six test cases using our two-step
refinement process. b) A comparison of boundary delineation between the ground truth, ConvOccNet, and nnUnetv2 [31]. The ConvOccNet model was queried
to have 0.33mm isotropic resolution, while nnUNetv2 was queried at 1mm, matching the initial scan’s resolution.

architectural modification, a unique benefit not easily available
to voxel-label methods.

D. Training Lessons and Spatial Dynamics

Beyond anatomical class imbalance, our experiments re-
vealed that the spatial distribution of occupancy points has a
significant effect on training dynamics. Uniform random sam-
pling, though simple, offered the most stable convergence due
to its even and unbiased coverage of the full coordinate space.
In contrast, alternative sampling methods such as near-surface
sampling or cluster-weighted sampling for localized structures
introduced strong spatial biases. Figure 5 illustrates the effect
of querying dense regions around some classes while under-
sampling others. As a result, certain regions of the coordinate
space remained underrepresented throughout training, making
the model sensitive to new test-time structures.

We also observed that patch size plays a subtle but important
role in spatial reasoning. While the 643 patch size enabled
efficient training, its limited field of view sometimes excluded
relevant anatomical context, particularly for tumor and cyst
prediction. For instance, we observed cases where a tumor-like
texture appeared ambiguous when cropped in isolation but was
disambiguated in larger patches due to adjacent structures. In
early overfitting experiments on single CT volumes, we found
that larger patches (e.g., 1283) consistently produced cleaner

(a) Uniform Samplin; (b) Near-Surface Samplin,
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Fig. 5. Uniform, Near-Surface, and Cluster-Weighted sampling are shown in
an example 2D coordinate space.

and more stable predictions, especially in resolving tumor/cyst
boundaries.

Finally, we note that training with CBN layers introduces
additional sensitivity to batch size. These layers rely on
accurate batch-level statistics, and small batch sizes make it
difficult to compute reliable estimates of mean and variance.
This amplifies early training noise and slows convergence.
Larger batch sizes smooth this effect and lead to more sta-
ble function learning, though they require significantly more
memory during training.

E. Future Directions

While this work presents a strong case for implicit segmen-
tation in volumetric data, several avenues remain for explo-
ration. One promising direction is replacing Conditional Batch
Normalization with attention-based modules. Additionally, we
are actively investigating the flexibility and scalability of the
architecture for use in real-time applications.

VI. CONCLUSION

This work presented a novel application of occupancy
networks to the task of 3D medical image segmentation.
By representing anatomical boundaries as continuous implicit
functions, our method departs from conventional voxel-based
approaches and achieves highly accurate, surface-aware pre-
dictions. We introduced a hybrid architecture with multi-
head binary predictors and a targeted sampling strategy that
specifically addresses the challenges posed by small, under-
represented structures such as cysts.

Our results on the KiTS23 dataset demonstrated that implicit
representations can not only match, but in some cases ex-
ceed, the performance of state-of-the-art voxel-based models,
particularly in surface accuracy and adaptability to sparse
regions. More broadly, our findings highlight the importance
of anatomical sampling design in the context of occupancy-
based learning. We believe this work lays the foundation
for further exploration of continuous segmentation models in
medical imaging and opens new directions for adaptive and
high-fidelity anatomical reconstruction.
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