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Abstract

Measuring or inferring the physiological prop-
erties of motor neurons, such as during disease
progression or aging, remains challenging, often
requiring longitudinal invasive measurements or
analysis techniques based on simplifying assump-
tions. Here we use the framework of simulation-
based inference to train neural density estima-
tors that directly infer the posterior distribution of
properties of interest (i.e., the physiological prop-
erties most likely to explain the observations) by
simulating from a state-of-the-art electromyogra-
phy simulator. We not only surpass conventional
methods in accuracy and sensitivity, but also in-
fer properties that have so far been impossible
to measure. We believe this will significantly im-
pact the possibilities for both clinical and research
contexts in motor neurophysiology.

1. Introduction
Motor neurons (MN) are fundamental components of the
motor system, translating our intention to move into actual
movement. Originating in the spinal cord, these neurons
innervate muscle fibers, collectively activating them to pro-
duce movement. Estimating the physiological properties of
MNs, such as the number of muscle fibers they innervate
and the conduction velocity of these fibers, provides critical
insights into the mechanisms by which the brain controls
movement in health and disease. This understanding is
particularly vital as alterations in MN properties can serve
as biomarkers for various conditions, including neuromo-
tor disorders like amyotrophic lateral sclerosis (ALS) and
healthy ageing. Identifying and monitoring these alterations
not only sheds light on the underlying mechanisms of these
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Figure 1. Inferring physiological properties of MNs. (Elements of
the figure have been modified from Maksymenko et al. 2023, and
Farina & Holobar 2015 with due permissions.)

conditions but also holds promise for evaluating the efficacy
of treatments and interventions.

Despite the importance of understanding MN properties,
accurately measuring them remains challenging. Current
methods often rely on invasive procedures, which are un-
comfortable and impractical for routine use, while yet other
properties cannot be feasibly measured in vivo (Mills &
Shaw, 2020). Surface electromyography (sEMG) offers a
promising noninvasive alternative by recording the electri-
cal activity of MNs through electrodes placed on the skin.
These surface action potentials (SAPs, the ‘electrical sig-
natures’ of individual MNs) provide valuable insights into
their physiology. However, traditional methods of analyz-
ing these SAPs to infer properties of interest are based on
simplifying assumptions, limiting their accuracy and appli-
cability.

To overcome these limitations, we propose using advanced
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modeling techniques and modern machine learning (Figure
1). The generation and propagation of electrical activity in
muscles – from their origin in the muscle belly through bio-
logical tissues to the skin – is well understood. Sophisticated
forward simulators have been developed to model this pro-
cess accurately at a personalized scale (Maksymenko et al.,
2023; Ma et al., 2022). Recent advances in simulation-based
inference (SBI), particularly techniques that leverage the
expressivity of neural density estimators, have transformed
the ability to draw inferences from implicit models defined
by such complex simulators (Cranmer, 2020). Neural poste-
rior estimation (Papamakarios & Murray, 2016; Lueckmann
et al., 2017; Greenberg et al., 2019), for instance, trains
a conditional density estimator q(θ|x), given access only
to a simulator that can generate x ∼ p(x|θ). As a result,
such SBI techniques readily represent uncertainty in multi-
dimensional settings and handle inverse problems naturally.
Subsequently, these methods have shown success in various
fields, including astrophysics (Dax et al., 2021; 2023), neu-
roscience (Gonçalves et al., 2020; Boelts et al., 2022), and
more recently cardivascular electrophysiology (Wehenkel
et al., 2023; Senouf et al., 2023).

In this paper, we leverage state-of-the-art EMG simulators
and apply simulation-based inference techniques to improve
the estimation of MN properties. By comparing our re-
sults with traditional methods, we demonstrate significant
improvements in the accuracy and reliability of these infer-
ences. Our approach offers a substantial advancement in
the noninvasive assessment of MN physiology, with broad
applications in both clinical and research contexts.

2. Simulating the electrical activity of motor
neurons

Biophysical models of MN SAPs proceed by first modelling
the propagation of an action potential across the muscle
fibres, and the subsequent ‘volume conduction’ effects ex-
perienced by the generated electric field as it passes through
surrounding biological tissues and reaches the electrodes
located on the skin (Merletti & Farina, 2016). The former
is modelled as a travelling dipole, where the potential and
current density source in the muscle fibre are given by

Vm(z) = 96z3e−z − 90

I(z, t) = f(
d2Vm

dt2
, γ, zi, ν, ℓ)

(1)

where Vm is the membrane potential, I is the current density
source, z is the location along the muscle fibre whose 3-D
path is γ and length is ℓ, ν is the propagation (or conduction)
velocity and zi is the location of the neuromuscular junction
– where the motor neuron innervates the muscle fibres.

The effect of the volume conductor is then modelled using

the quasi-static Maxwell’s equations with Neumann bound-
ary conditions as

∇ · (σ∇ϕ) = −I in Ω,

σ
∂ϕ

∂n
= σ∇ϕ · n = 0 on ∂Ω,

(2)

where Ω ⊂ R3 is the domain of the volume conductor, σ(z)
denotes the conductivity tensor at each point in Ω, ϕ(z) is
the electric potential, and n is the outward pointing surface
normal to ∂Ω. These equations can be solved numerically
using finite element solvers for arbitrarily complex volume
conductor geometries. Recent innovations (Maksymenko
et al., 2023) also make it feasible to create personalized sim-
ulation models specific to an individual’s anatomy, captured
using magnetic resonance images (MRIs).

However, these simulators are still computationally expen-
sive, especially for workloads often required in SBI. To
overcome this limitation, Ma et al. 2022 built a conditional
generative model, trained to mimic the numerical model
mentioned before, that outputs the SAP given 4 important
physiological parameters, including 3-D location of the MN
zi, conduction velocity ν, fibre density or the number of
fibres innervated by the muscle ρ, and the average length
of the innervated fibres ℓ̄. Specifically, they build a model
capable of simulating SAPs from 8 superficial muscles of
the forearm captured with a grid of 10×32 electrodes placed
around the distal third of an individual’s right forearm (see
1). The SAPs are modelled to be approximately 48ms in
duration, corresponding to 96 samples at 2048 Hz. Notably,
the emulator uses a normalized range between 0.5 and 1 for
each dimension of the parameter vector. For the rest of this
paper, we limit our attention to this ‘emulator’ of SAPs.

3. Experiments
In essence, we have access to a high-fidelity emulator g :
Θ → X , that given a 6-D vector of parameters θ ∈ Θ,
(i.e., 3-D location zi, ν, ρ, and ℓ), returns a simulated SAP
x ∈ X . Our objective is to solve the corresponding inverse
problem of mapping SAPs to plausible parameters.

In this work, we consider a dataset of 1000 distinct SAPs
generated by uniformly sampling Θ across the 6-D space
using a latin-hypercube sampling strategy. We apply the
following methods to solve the inverse problem, and report
the accuracy and sensitivity of each method.

3.1. Simulation-based inference

We considered two SBI approaches in this paper. Given that
in a typical experimental EMG recording session, SAPs of
the order of ten to hundred motor neurons can be recorded,
we trained an amortized neural posterior estimation (NPE)
algorithm. Specifically, we trained a masked autoregressive
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flow network with 5 flow transforms, each with two blocks
of 50 hidden units, tanh activation and batch normalization,
using a simulation budget of 100,000 samples. A uniform
prior over the support of the parameters was used here, but
knowledge of experimental recording such as the spatial
location of the muscle under investigation or its maximum
length can be used to devise more informative priors.

Given the high dimensionality of the input SAPs (10×32×
96), we used an embedding network to jointly learn sum-
marizing features of the data. Here, we used a simple 3-D
convolutional network, mimicking the feature extractor of
the emulator (Ma et al., 2022). We used 3 convolutional
layers with (64, 32, and 16) 3-D convolutional kernels of
size 3, and stride 2, with a ReLU activation. The resulting
output was passed through a single linear layer to gener-
ate a 64-dimensional output, which was used by the NPE
algorithm.

Further, as a baseline, we performed classical approximate
bayesian computation (ABC) using the sequential monte-
carlo ABC (SMCABC) algorithm. While this is not an amor-
tized algorithm, we used a simulation budget of 100,000
samples here too, given that sampling from the emulator
was cheap, and since lower simulation budgets were too re-
strictive to narrow the search space for SMCABC. We used
euclidean distance in data space as the distance measure. We
used an initial population of 5000, with a population size of
1000 for the reminder of the algorithm. The perturbation ker-
nel, which controls the exploration of the parameter space,
was set to scale by 0.5 with respect to the empirical covari-
ance from the previous population, while the quantile-based
acceptance tolerance’s decay was set to 0.2. For further
information about the algorithm see Lueckmann et al. 2021.

All experiments were conducted using the sbi package
(Tejero-Cantero et al., 2020) and the code to reproduce the
experiments will be made open access upon acceptance.

3.2. Conventional methods

We compared the performance of the NPE and SMCABC
algorithms against conventional methods used to determine
MN location and conduction velocity. It is important to note
that there are no existing methods that can directly estimate
the fibre density or the fibre length from SAPs.

The state-of-the-art method for estimating the 3-D location
of MNs, by Lundsberg et al. 2024, proceeds by first estimat-
ing the x-y location on the electrode grid with the highest
signal intensity. This is done by fitting a 2-D gaussian
kernel to the peak-to-peak amplitudes of the SAPs. Then,
they use a simplified cylindrical volume conductor to model
signal attenuation properties of the peak-to-peak SAP, and
reverse engineer the distance of the source from the elec-
trodes given the observed attenuation from the maximally
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Figure 2. Inferred posteriors for the 6-D parameter vector by NPE
(orange) and SMCABC (gray) for a sample observation (ground
truth values shown in black). Univariate and pairwise marginals
are plotted by using 10,000 samples drawn from the posteriors.
Interestingly, even with identical simulation budgets, NPE far
outperforms SMCABC despite the amortization.

active electrode outwards. Importantly, this method requires
that the MN be located within the space covered by the elec-
trode grid. On the contrary, the inverse modelling approach
doesn’t have such a restriction as long as the SAP of such a
MN can be simulated, and creates a non-zero potential on
the electrodes.

To estimate conduction velocity, we use an algorithm that
estimates the delay between the signal from successive elec-
trodes along the fiber direction (Farina et al., 2001; Casolo
et al., 2023). However, the algorithm assumes that the
electrodes grids are aligned with the muscle fibre paths γ.
Moreover, it has been shown to be sensitive to initial condi-
tions.

3.3. Metrics

As indicated before, we report results on the 1000 ground
truth parameters sampled uniformly from Θ. Since both SBI
approaches both recover parameters in Θ-space directly, we
report mean relative error across the ground truth parameters
to report their accuracy. On the other hand, the conventional
methods estimate the location and velocity parameters in
‘true units’, given the inter-electrode distances, and the sam-
pling frequency. We convert these back into the normalized
range of the emulator using the mapping from the original
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Method → NPE SMCABC Conventional

Property

zi 0.02 ± 0.01 0.17 ± 0.11 0.07 ± 0.09
ρ 0.009 ± 0.01 0.18 ± 0.12 -
ν 0.02 ± 0.01 0.14 ± 0.11 0.04 ± 0.06
ℓ 0.03 ± 0.02 0.18 ± 0.08 -

Table 1. Accuracy (mean relative error ± standard deviation across
the 1000 ground truth samples) of SBI and conventional ap-
proaches to estimating MN properties. Bold indicates the method
with best performance.

publication (Ma et al., 2022), and similarly report mean
relative errors in this normalized range, for consistency. In
Table 1, results are displayed for the 3-D location directly,
instead of each of the coordinates separately.

Additionally, we generated a probability-probability plot for
the NPE posteriors by first evaluating the percentile score
of each ground truth parameter value within its inferred
marginal posterior. We then sorted the percentile scores and
generated the empirical cumulative distribution function
(CDF) to compare to the theoretical Uniform CDF.

4. Results
Figure 2 shows the resulting posterior distributions from
both NPE and SMCABC. The NPE estimated posteriors
were noticeably narrower than their SMCABC counterparts,
despite the amortization in NPE and a simulation budget of
only 105 samples. Highest uncertainty was seen in the fibre
length parameter, arguably the hardest parameter to infer
since the electrodes in the emulator do not cover the entire
muscle belly of any of the 8 modelled muscles.

Full results in Table 1 corroborate the impressions of the
density plots from Figure 2. Mean relative error for NPE was
at most 5-6% of the normalized range (i.e., the mean relative
error of 0.03 in ℓ corresponds to 6% given the range is 0.5),
which is almost one order of magnitude more accurate than
the SMCABC, while also far outperforming established
methods in the field. Particularly, the variability of the
relative errors for NPE with respect to the conventional
methods was much lower. Importantly, NPE enables us to
infer properties such as fibre density and average fibre length
of the innervated fibres, that have never before been directly
estimated using SAPs. Impressively, on these parameters,
NPE only had a mean relative error of 2% and 6% for fibre
density and fibre length respectively.

Additionally in Figure 3, we present the P-P plot of the NPE
posteriors for the ground truth test data. This plot presents
the CDF of the percentile score of the true parameter value
within its inferred marginal posterior. For true posteriors,

Figure 3. Probability-probability plot of the NPE posteriors for the
ground truth test data.

the percentiles are uniformly distributed, so the CDF is a
diagonal. Overall, we found that the CDFs for NPE lie
close to the diagonal for each of the parameters, indicating
a strong agreement with true posteriors.

5. Discussion
In this paper, we have demonstrated the success of Neu-
ral Posterior Estimation (NPE) on an important problem
in motor neurophysiology: identifying the physiological
properties of motor neurons. We used NPE together with a
high-fidelity simulator of EMG signals to achieve this goal.
We tested its performance against an SMCABC algorithm
and conventional methods used in the field. While NPE
outperforms all tested methods, it crucially also enables the
estimation of properties that are currently unestimable by
other methods.

A limitation of our current efforts is that we only tested the
methods on data that is entirely consistent with the train-
ing distribution, i.e., all data was synthetically generated
through the emulator. Therefore, we still lack experimental
evidence for the success of these methods. Moving forward,
we need methods that take into consideration the effects
of model misspecification inherent in current biophysical
models, however accurate they may be. The sim-to-real gap
is a major challenge to the success of these methods, and
therefore needs careful handling of all sources of uncertain-
ties involved. It is also of interest to consider a hierarchical
inference framework, since properties such as those per-
taining to muscle architecture and tissue conductivity are
shared among sets of motor neurons, and including such
relationships in the inference pipeline can facilitate estima-
tion of such shared properties. We believe that sophisticated
simulators and sbi approaches are poised to revolutionize
the field of motor neurophysiology.
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Nonnenmacher, M., and Macke, J. H. Flexible statistical
inference for mechanistic models of neural dynamics.
Advances in neural information processing systems, 30,
2017.

Lueckmann, J.-M., Boelts, J., Greenberg, D. S., Gonçalves,
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