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Abstract001

Most state-of-the-art large language models002
(LLMs) are trained mainly on English data,003
limiting their effectiveness on non-English, es-004
pecially low-resource, languages. This study005
investigates whether language adapters can fa-006
cilitate cross-lingual transfer in English-centric007
LLMs. We train language adapters for 13 lan-008
guages using Llama 2 (7B) and Llama 3.1009
(8B) as base models, and evaluate their ef-010
fectiveness on two downstream tasks (MLQA011
and SIB-200) using either task adapters or in-012
context learning. Our results reveal that lan-013
guage adapters improve performance for lan-014
guages not seen during pretraining, but provide015
negligible benefit for seen languages. These016
findings highlight the limitations of language017
adapters as a general solution for multilingual018
adaptation in English-centric LLMs.019

1 Introduction020

Most state-of-the-art LLMs are English-centric021

(Touvron et al., 2023; Jiang et al., 2023). To il-022

lustrate, in Llama 2 (Touvron et al., 2023), English023

constitutes 90% of the pre-training data. Despite024

this data imbalance, recent English-centric LLMs025

exhibit some multilingual capabilities (Kew et al.,026

2024; Ye et al., 2023). However, these capabilities027

are inconsistent across languages and tasks, with028

low-resource languages being particularly affected029

(Razumovskaia et al., 2024).030

To endow LLMs with more profound multilin-031

gual capabilities, cross-lingual transfer (XLT) has032

emerged as a prevalent paradigm, aiming to trans-033

fer task-specific knowledge from a high-resource034

source language to a lower-resource target lan-035

guage, thereby alleviating the constraint of having036

supervised task data (Philippy et al., 2023).037

As LLMs grow larger and full fine-tuning be-038

comes less feasible, parameter-efficient fine-tuning039

(PEFT) methods have been explored for XLT040

(Houlsby et al., 2019; Hu et al., 2021). One com-041

Figure 1: To evaluate cross-lingual transfer, language
adapters (for 13 languages) and task adapters (for 3 high-
resource source languages) are trained on top of a frozen
English-centric LLM. Task adapters are evaluated on all
languages of interest on two selected tasks.

mon setup for enhancing XLT abilities is to combine 042

small language and task adaptation modules, as in- 043

troduced by Pfeiffer et al. (2020b). The authors 044

propose language adapters (LAs) and task adapters 045

(TAs), parameter-efficient modules that are trained 046

on top of a frozen base LLM and capture language- 047

and task-specific representations, respectively. 048

While LAs have been extensively evaluated 049

for small-scale multilingual LLMs (Pfeiffer et al., 050

2020b; Parović et al., 2022; Rathore et al., 2023; 051

Yong et al., 2023), there is only a paucity of work 052

that assesses its applicability to large-scale English- 053

centric LLMs (Lin et al., 2024; Razumovskaia et al., 054

2024). Our work closes this gap by making the fol- 055

lowing contributions: 056

1. We evaluate in a systematic manner whether 057

LAs help enhance XLT abilities of English- 058

centric LLMs across 13 linguistically diverse 059

languages and two tasks (one QA and one 060

NLU task) to inspect the impact of typological 061

relatedness and task-related intricacies. 062

2. We conduct a detailed analysis of the variables 063

critical for successful XLT in English-centric 064

LLMs by comparing different task adaptation 065

methods (TAs vs. in-context learning (ICL)) 066

and base LLMs (Llama 2 vs. Llama 3.1). 067
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Our main findings on English-centric LLMs un-068

cover that (1) surprisingly, LAs are beneficial ex-069

clusively for languages that are unseen during070

pretraining, while (2) they are at best redundant071

for rarely seen languages; and (3) that - in contrast072

to previous findings on multilingual models - the073

typological relatedness of languages for language074

transfer has only a minimal effect.075

2 Related Work076

Language Adapters. LAs represent a parameter-077

efficient and modular method for language adap-078

tation (Poth et al., 2023). They are added to a079

frozen base LLM and typically trained on mono-080

lingual, unsupervised data using a language model-081

ing objective in order to learn language-specific082

representations (Pfeiffer et al., 2020a). In gen-083

eral, any adapter architecture can be utilized for084

LA training: Prior work on small-scale, multilin-085

gual base LLMs has primarily employed bottleneck086

adapters (Houlsby et al., 2019) for LA training087

(Pfeiffer et al., 2020b; Parović et al., 2022; Faisal088

and Anastasopoulos, 2022; Yong et al., 2023; Gur-089

gurov et al., 2024). They observed enhanced XLT,090

particularly for lower-resource languages. How-091

ever, Kunz and Holmström (2024) find that the092

effect of LAs varies considerably across target lan-093

guages and omitting LAs is beneficial in some094

cases. More recent work that employs large-scale,095

English-centric base LLMs prefers LoRA adapters096

(Hu et al., 2021) for LA training (Lin et al., 2024;097

Razumovskaia et al., 2024), arguably due to the in-098

ference latency that bottleneck adapters introduce,099

which LoRA helps mitigate by merging its weights100

with the base LLM’s weights (Hu et al., 2021). An101

alternative strand of work made use of other PEFT102

methods such as soft prompts for XLT (Philippy103

et al., 2024; Vykopal et al., 2025)104

Cross-lingual transfer in English-centric LLMs.105

Previous work evaluating XLT in English-centric106

LLMs can be roughly divided into two approaches:107

one-stage XLT, which omits LAs entirely and ap-108

plies task adaptation only, and and two-stage XLT,109

in which LAs are trained prior to task adaptation.110

One-stage XLT. Three task adaptation methods111

can be distinguished: In (1), single-task TAs are112

trained followed by an ICL1 evaluation at inference.113

Ye et al. (2023) show that minimal pre-training114

data for a given target language suffices to enable115

1Following Li (2023), ICL encompasses any learning with-
out parameter updates, including zero-shot evaluation.

successful zero-shot XLT. In (2), ICL is applied 116

exclusively. Asai et al. (2024) and Ahuja et al. 117

(2024) establish XLT ICL benchmarks, revealing 118

that English-centric LLMs perform well in high- 119

resource languages but struggle with low-resource 120

languages. Finally, in (3), multi-task instruction 121

tuning (IT) is employed to fine-tune a base LLM, 122

followed by ICL at inference. Previous work finds 123

that multilingual IT with only a few languages 124

(Aggarwal et al., 2024; Kew et al., 2024; Chen 125

et al., 2024), or even monolingual IT in English 126

(Chirkova and Nikoulina, 2024), suffices to elicit 127

robust XLT abilities. In this study, we omit multi- 128

task IT and focus on a comparison between single- 129

task TAs and ICL. 130

Two-stage XLT. Lin et al. (2024) train a sin- 131

gle LA covering 534 languages. They report per- 132

formance gains for languages with low-resource 133

scripts while performance drops for high-resource 134

languages. Razumovskaia et al. (2024) train 135

language-specific LAs and emphasize that perfor- 136

mance improvements over setups without LAs are 137

limited to NLG tasks. Kunz (2025) conducts a 138

case study on Icelandic summarization, comparing 139

several PEFT methods for language adaptation. It 140

is shown that LoRAs situated in the feed-forward 141

layers and bottleneck adapters yield the largest per- 142

formance improvements. 143

3 Experimental Setup 144

Unlike most previous work that assessed the XLT 145

abilities of English-centric LLMs, we begin by 146

adapting the XLT setup as commonly employed for 147

multilingual LLMs, i.e., we train LAs and TAs. Fig- 148

ure 1 illustrates our training and evaluation pipeline, 149

including the selected languages and tasks. Subse- 150

quently, we study the effect of the task adaptation 151

method and the base LLM, resulting in three differ- 152

ent XLT configurations. 153

3.1 Models 154

The open-weights LLMs Llama 2 7B (Touvron 155

et al., 2023) and its successor Llama 3.1 8B (Dubey 156

et al., 2024) are selected as base LLMs. Both mod- 157

els are decoder-only, autoregressive LLMs. Despite 158

the limited non-English pre-training data (2% in 159

Llama 2 and 5% in Llama 3.12), the models have 160

demonstrated certain XLT abilities when fine-tuned 161

for specific tasks (Ye et al., 2023) or evaluated us- 162

ing ICL (Asai et al., 2024; Ahuja et al., 2024). 163

2See Appendix B for a detailed language distribution.
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3.2 Adapter Method164

In this study, we use bottleneck adapters3 as pro-165

posed by Pfeiffer et al. (2020b) to train LAs and166

TAs (see Appendix A for details). This method167

injects trainable adapter layers into the frozen base168

LLM, consisting of a down- and an up-projection169

which are situated after the feed-forward block of170

each transformer layer. Crucially, this architec-171

ture allows composition, i.e., multiple bottleneck172

adapters can be easily stacked on top of each other.173

3.3 Data174

Language Data Following previous work (Pfeif-175

fer et al., 2022; Kunz, 2025), this work trains LAs176

on monolingual, unlabeled data extracted from CC-177

100, a multilingual, web-crawled corpus created by178

Conneau et al. (2020) for XLM-R pre-training. All179

LAs are trained on the first 200k4 CC-100 samples180

of the respective language. While not explicitly181

stated, it is likely that CC-100 was seen during182

Llama 2 and 3.1 pre-training. Thus, the models183

are not necessarily trained on new data but rather184

primed towards the respective target languages.185

Task Data We evaluate the effect of LAs based186

on model performance on one Question Answering187

(QA) and one NLU downstream task. For QA, we188

use MLQA-en (T) (henceforth MLQA), an extrac-189

tive QA dataset from the Aya Collection (Singh190

et al., 2024), that extends the English subset of191

MLQA (Lewis et al., 2020) with translations into192

100 languages. F1 as implemented for SQuAD (Ra-193

jpurkar et al., 2018) is used as evaluation metric.194

For NLU, SIB-200 (Adelani et al., 2024) is se-195

lected, a topic classification dataset with seven la-196

bels. Exact Match (EM) is used as evaluation met-197

ric.5 These datasets were chosen primarily for their198

extensive language coverage and availability of par-199

allel data. Given the use of autoregressive LLMs,200

both tasks - though not inherently generative - are201

framed as generation problems; that is, we generate202

targets (see Appendix D for task templates).203

3.4 Languages204

The set of languages comprises 13 Latin-script lan-205

guages from three language groups. We exam-206

3In preliminary experiments, we observed that prompt
tuning (Lester et al., 2021) and LoRA (Hu et al., 2021) under-
perform.

4Doubling the number of LA training samples to 400k did
not yield any performance gains.

5We cut off generations after the first word to account for
verbose model outputs.

ine seven Germanic languages (English, German, 207

Dutch, Swedish, Danish, Icelandic, Afrikaans), 208

four Romance languages (Spanish, Portuguese, 209

Catalan, Galician), and two Finno-Ugric languages 210

(Finnish, Hungarian). In each XLT setup, one lan- 211

guage is selected as the source language, with the 212

remaining ones as target languages. 213

All experiments use English, German, and Span- 214

ish as source languages. English serves as a ref- 215

erence, given its frequent use as source language 216

(Pfeiffer et al., 2020b; Parović et al., 2022). Due to 217

data availability and based on the assumption that 218

higher-resource languages transfer more effectively 219

than lower-resource languages (Senel et al., 2024), 220

German and Spanish are chosen as non-English 221

source languages. Each source language is evalu- 222

ated on all 13 target languages. 223

3.5 Training and Evaluation Settings 224

We include three main experiments, each of which 225

essentially compares two XLT setups: 226

(1) noLA employs one-stage XLT, i.e., omits LAs 227

entirely and relies only on task adaptation. 228

Thus, this setup relies on cross-lingual rep- 229

resentations that emerge during pre-training. 230

(2) LA employs two-stage XLT, i.e., trains LAs 231

prior to task adaptation. Thus, this setup relies 232

on strengthening cross-lingual representations 233

after pre-training through LAs. 234

We hypothesize that if LAs show a positive ef- 235

fect, LA should outperform noLA which serves 236

as a baseline. We define a base configuration in 237

Experiment 1 and modify one variable at a time, 238

resulting in Experiment 2 and 3. 239

Experiment 1: Llama-2/TA We adapt the MAD- 240

X framework (Pfeiffer et al., 2020b) to English- 241

centric LLMs (see Appendix E for a detailed walk- 242

through example): As for the LA setup, language- 243

specific LAs for all relevant languages are trained 244

on top of frozen Llama 2. Next, a TA in the selected 245

source language is trained on top of the frozen 246

source LA. At inference, XLT is evaluated zero- 247

shot by replacing the source LA with the target LA 248

while retaining the source TA. As for the noLA 249

setup, only a TA is trained in the source language, 250

then evaluated zero-shot in the target languages. 251

Experiment 2: Llama-2/ICL We modify the 252

task adaptation method: Instead of task-specific 253

TAs, we use ICL and craft a prompt, consisting 254
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Figure 2: MLQA F1 scores for all target languages
averaged across the three source languages en, de, es
for all experiments.

of five and ten randomly sampled source language255

demonstrations for MLQA and SIB-200, respec-256

tively,6 followed by the test instance in the respec-257

tive target language (see Appendix D.2 for the full258

prompt templates). Hence, we reduce the required259

computational cost, as only LAs need to be trained.260

We also address issues that may arise from stacking261

adapters. Again, we utilize Llama 2 as base LLM.262

Experiment 3: Llama-3.1/TA We modify the263

base LLM and replace Llama 2 by Llama 3.1, po-264

tentially benefiting from more multilingual corpora.265

We train TAs for task adaptation. LAs and TAs are266

trained similar to Experiment 1.267

4 Results and Analysis268

In the following section, the findings of the three ex-269

periments are presented and discussed. Full scores270

are reported in Tables 5 to 10 in Appendix F. We271

use italic en, de, es to denote the source language of272

a specific setup, i.e., ‘with en’ means ‘with English273

as source language’.274

4.1 General Findings275

LAs do not consistently enhance XLT across target276

languages and tasks; they are often redundant or277

harm performance. Table 5 and 6 show that even278

for the source languages themselves, noLA outper-279

forms or is on par with LA. This aligns with prior280

work (Kunz and Holmström, 2024; Oji and Kunz,281

6First experiments revealed that for SIB-200, five demon-
strations result in an overreliance on the label geography.

Figure 3: SIB-200 EM scores for all target languages
averaged across the three source languages en, de, es
for all experiments.

2025), which reports inconsistencies across lan- 282

guages and tasks in multilingual LLMs, as well as 283

performance degradation with LAs in some cases. 284

As a topic classification task, SIB-200 requires 285

less language-specific knowledge than the extrac- 286

tive QA task MLQA, where more fine-grained 287

language understanding is necessary. This is re- 288

flected in Table 1 which shows that models gen- 289

erally achieve substantially better performance on 290

SIB-200 than on MLQA with a less pronounced 291

gap between English and non-English languages. 292

Regarding target-language related differences, 293

Figures 2 and 3 show that Finnish Hungarian and 294

Icelandic (summarized as IsFiHu) perform the 295

worst across tasks. We attribute the poor perfor- 296

mance of IsFiHu to a misaligned vocabulary. Due 297

to their typological distance from English, lan- 298

guages like IsFiHu may lack language-specific to- 299

kens in the English-centric vocabulary. This leads 300

to a less efficient tokenization7 which in turn results 301

in a suboptimal flow of input through the model 302

and a decreased downstream task performance as 303

similarly shown by Ali et al. (2024). 304

4.2 Experiment 1: Base 305

MLQA. As Table 5 illustrates, target languages 306

unseen during Llama 2 pre-training (i.e., Afrikaans, 307

Galician and Icelandic) benefit most from the usage 308

of LAs across all source languages. Regarding seen 309

languages, LAs do not reveal a discernible pattern. 310

As Figure 2 shows, with en and de, LAs tend to 311

7Indicated by higher fertility (token/word ratio) scores in
Table 4 in Appendix C.
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Setup

Llama-2/TA Llama-2/ICL Llama-3.1/TA

MLQA SIB-200 MLQA SIB-200 MLQA SIB-200

non-en en avg. non-en en avg. non-en en avg. non-en en avg. non-en en avg. non-en en avg.

LAen 0.44 0.78 0.47 0.67 0.85 0.68 0.40 0.57 0.42 0.59 0.75 0.60 0.42 0.80 0.46 0.79 0.88 0.80
LAde 0.47 0.44 0.47 0.80 0.83 0.80 0.39 0.57 0.40 0.68 0.73 0.68 0.46 0.37 0.46 0.80 0.80 0.80
LAes 0.44 0.43 0.44 0.76 0.82 0.76 0.35 0.49 0.36 0.68 0.65 0.67 0.42 0.43 0.42 0.81 0.86 0.81
noLAen 0.45 0.78 0.47 0.74 0.86 0.75 0.37 0.64 0.40 0.37 0.78 0.41 0.46 0.79 0.48 0.79 0.83 0.79
noLAde 0.44 0.38 0.44 0.81 0.86 0.81 0.36 0.56 0.38 0.61 0.78 0.63 0.51 0.35 0.50 0.79 0.84 0.79
noLAes 0.38 0.32 0.38 0.76 0.85 0.77 0.35 0.47 0.36 0.54 0.73 0.56 0.46 0.31 0.45 0.81 0.84 0.81

Table 1: Average scores across experiments and tasks, containing scores across non-English languages (non-en),
English (en) and all languages (avg.). For MLQA, F1 scores and for SIB-200, EM scores are reported. Bold
numbers indicate best scores per experiment and dataset.

Figure 4: Heatmap comparing MLQA F1 LA and
noLA scores across source and target languages for
Experiment 1. Positive scores mean LA is superior.

show negligible or detrimental effects (with LAen:312

-0.04 for Swedish, Catalan and Danish compared to313

noLAen). All non-English seen target languages314

are rarely seen, thus, possess minimal pre-training315

data compared to English. We hypothesize that316

LAs might interfere with language-specific repre-317

sentations, existing in the base LLM for the respec-318

tive target language, resulting in reduced down-319

stream task performance. For unseen languages,320

this interference is reduced, which facilitates learn-321

ing more meaningful language-specific representa-322

tions.323

As for the impact of the source language, we324

find that en and de generally yield similar results325

while es falls behind. German can be leveraged ef-326

fectively as a source language despite constituting327

only 0.17% of Llama 2’s pre-training data. Notably,328

as Table 1 shows, performance drops drastically for329

English as target language when transferring from330

German or Spanish under both noLA and LA. We331

conjecture that training TAs reinforces a source332

language bias, and that using non-English source333

languages introduces noise, as all training data is334

translated from English, leading to lower-quality335

data and hindering generalization to English.336

SIB-200. Figure 17 illustrates that the benefit of337

LAs vanishes for SIB-200. This aligns with previ-338

ous work (Kew et al., 2024; Razumovskaia et al.,339

2024). A topic classification task such as SIB-200340

probably requires less language-specific knowledge 341

and rather relies on high-level, language-agnostic 342

semantic features that are already well-encoded in 343

the base LLM. Adding LAs may disrupt existing 344

task-relevant features. 345

We notice other differences to MLQA: LAs are 346

less harmful for de (−0.04) and es (−0.02) than 347

for en (−0.09)8. We assume that while source 348

languages with a weaker pre-training bias are ben- 349

eficial, they cannot fully mitigate the disruptions 350

induced by the LAs. As for English as target lan- 351

guage, in both LA and noLA, de and es are com- 352

petitive with en, suggesting effective cross-lingual 353

generalization to English on SIB-200. 354

4.3 Experiment 2: ICL 355

Figure 5: Heatmap comparing MLQA F1 LA and
noLA scores across source and target languages for
Experiment 2 with ICL. Positive scores mean LA is
superior.

MLQA. Figure 2 illustrates that performance 356

generally drops only moderately when using ICL 357

instead of TAs. This suggests robust ICL capabili- 358

ties of the base LLM for even more complex tasks. 359

Similar to Experiment 1, with ICL, LAs are most 360

effective for the unseen languages Afrikaans, Gali- 361

cian and Icelandic across source languages (see 362

Figure 5). en and de yield absolute performance 363

gains of +0.08 and +0.07 on average over the noLA 364

setup, respectively. 365

Regarding seen languages, Figure 5 shows 366

mostly minimal performance differences between 367

8All numbers are averaged over five random seeds.
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LA and noLA across source languages. Consider-368

ing that ICL disentangles the LA effect from the369

task adaptation stage as the latter does not involve370

any parameter updates, results with ICL indicate371

that LAs may rather add redundant than interfering372

representations, as observed for Llama-2/TA.373

SIB-200. Unlike Experiment 1 with TAs, Figure374

18 shows that LA consistently outperforms noLA375

with ICL. However, Figure 3 illustrates that a sin-376

gle TA, a computationally cheaper setup, suffices377

to surpass LA with ICL across target languages,378

again making LAs an inefficient choice. Similar379

to MLQA, LAs provoke particularly pronounced380

performance improvements for unseen languages.381

In line with Llama-2/TA, in any Llama-2/ICL382

setup examined, de and es considerably outperform383

en, suggesting that the heavy English pre-training384

bias may hinder the transfer of task-relevant knowl-385

edge stored in pre-trained representations.386

4.4 Experiment 3: Llama 3.1387

Figure 6: Heatmap comparing MLQA F1 LA and
noLA scores across source and target languages for
Experiment 3 with Llama 3.1. Positive scores mean LA
is superior.

MLQA. Figure 2 shows that Llama-3.1/TA sur-388

passes Llama-2/TA. When comparing the overall389

best scores across experiments, there is no lan-390

guage where Llama 2 surpasses Llama 3.1. How-391

ever, performance gains are only marginally across392

most non-English target languages, highlighting393

that simply switching to a stronger, more multilin-394

gual base LLM does not bridge the performance395

gap in English-centric LLMs.396

Figure 6 shows that the positive effect of LAs397

for unseen languages vanishes with Llama 3.1.398

Moreover, across source languages, for unseen lan-399

guages, Llama 3.1 under noLA is on par with or400

outperforms Llama 2 under LA. Considering the401

amplified pre-training data size in Llama 3.1 (15T402

tokens vs. 2T tokens in Llama 2), we hypothe-403

size that previously unseen languages Afrikaans,404

Galician and Icelandic in Llama 2 effectively turn405

into rarely seen languages in Llama 3.1 and benefit406

from larger language-specific pre-training corpora.407

Thus, LAs for these languages may be prone to 408

the same interference as discussed for seen lan- 409

guages in Llama 2. These findings further suggest 410

that adding language-specific representations dur- 411

ing pre-training may be more effective for XLT than 412

after pre-training through LAs, as highlighted by 413

Pfeiffer et al. (2022). 414

Regarding seen languages, LAs with Llama 3.1 415

induce more severe deterioration than with Llama 416

2. This results in Llama 3.1 building both the 417

performance-wise head (noLA setup) and the tail 418

(LA setup) across base LLMs. More language- 419

specific pre-training data seems to be generally 420

beneficial for XLT in the noLA setup, while stack- 421

ing LAs in the target language and a TA trained 422

in the source language may be more susceptible to 423

interference. 424

SIB-200. As Table 10 shows, performance is sim- 425

ilar across source languages and within each source 426

language, only marginal differences exist between 427

noLA and LA. This is dissimilar to findings for 428

Llama 2 where de and es outperformed en and 429

LAs produced performance deterioration across 430

the board. 431

Table 10 shows that es consistently yields the 432

best EM scores across target languages in both XLT 433

setups. LA outperforms noLA only marginally, 434

with a maximum absolute performance improve- 435

ment of +0.03 for Galician. Considering the gen- 436

erally high performance on SIB-200 (with es: avg. 437

of 0.81 across target languages for both XLT se- 438

tups), we do not assume that LAs add meaningful, 439

language-specific representations, leading to better 440

performance. 441

5 Qualitative Analysis 442

Based on the results of Experiment 1-3, we conduct 443

a qualitative analysis and analyze model represen- 444

tations of intermediate layers. The goal here is to 445

better understand the representation shifts that LAs 446

do or do not induce. 447

Method. We utilize Logit Lens (nostalgebraist, 448

2020) to visualize next-token distributions. Logit 449

Lens applies the unembedding matrix of the model 450

to project hidden states of intermediate layers into 451

the space of the output vocabulary. Thus, Logit 452

Lens yields next-token distributions across differ- 453

ent input positions and layers. 454
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Figure 7: Logit Lens for MLQA test instance with en
and German as target language. Target: sieben (seven).
Base LLM: Llama 2. Setup: LA.

Figure 8: Logit Lens for MLQA test instance with en
and German as target language. Target: sieben (seven).
Base LLM: Llama 2. Setup: noLA.

Setup. Logit Lens9 is used to investigate whether455

LAs introduce shifts in the next-token distributions.456

Given the observed interferences with Llama-2/TA,457

we stick to Llama-2/ICL for Logit Lens experi-458

ments. Again, we use 5 and 10 source language459

demonstrations for MLQA and SIB-200, respec-460

tively. We aim for test instances with single-token,461

language-specific targets, given that Logit Lens vi-462

sualizes only the first token of the output by default463

and to assess the promotion of language-specific464

tokens through LAs, respectively.10465

We select German and Icelandic as target lan-466

guages to represent the two extremes of LA impact,467

with LAs being consistently redundant for German468

and beneficial for Icelandic. We discuss all exam-469

ples with en. As LAs showed larger effects on470

MLQA, we focus on MLQA and present Logit471

Lens visualizations for SIB-200 in Appendix G.2.472

MLQA. Figures 7 to 10 show the Logit Lens473

visualizations for German and Icelandic with en474

9Using the implementation of the Tuned Lens library.
10See Appendix D.2 for the full examples.

Figure 9: Logit Lens for MLQA test instance with en
and Icelandic as target language. Target: sjö (seven).
Base LLM: Llama 2. Setup: LA.

Figure 10: Logit Lens for MLQA test instance with en
and Icelandic as target language. Target: sjö (seven).
Base LLM: Llama 2. Setup: noLA.

under LA and noLA. The Figures show the final 475

five input positions from layer 16 onward.11 The 476

token in the upper-right corner corresponds to the 477

token being predicted, i.e., the target.12 478

Regarding German, LAs had no impact on 479

MLQA. This is reflected in the Logit Lens anal- 480

ysis by negligible differences between LA (Figure 481

7) and noLA (Figure 8) across layers and posi- 482

tions, suggesting that next-token distributions are 483

mainly preserved. Moreover, in both XLT setups, 484

intermediate layers at the final position are domi- 485

nated by English tokens. This aligns with findings 486

by Wendler et al. (2024) and Zhang et al. (2024a), 487

who made the identical observation for Chinese. 488

Regarding Icelandic, Figures 9 and 10 show that 489

differences in the next-token distributions between 490

LA and noLA are most salient at the final position. 491

While similar to German, LA ranks the English 492

11Earlier layers mostly contain tokens without meaningful
signal.

12Note that the underscore represents a whitespace. Models
often predicted the digit 7 with a leading whitespace instead
of the written-out variant.
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variant of the correct token highest in intermediate493

layers, noLA fails to extract the correct token.13494

Thus, LAs may assist in steering the base LLM to-495

wards the correct token by upweighing contextually496

related English tokens.497

If these observations can be verified to be a trend498

among more German and Icelandic MLQA test499

instances, Logit Lens provides valuable insights500

into why performance for German is unchanged501

and improved for Icelandic, and further strengthens502

the hypothesis that LAs provoke only marginal503

transformations to the base LLM.504

SIB-200. As Figures 20 to 23 illustrate, the cor-505

rect label politics emerges in intermediate layers506

and is predicted confidently in both XLT setups507

across target languages. This suggests that for SIB-508

200, ten task demonstrations suffice to elicit robust509

ICL abilities and establish a solid understanding510

useful for XLT. Furthermore, negligible differences511

between LA and noLA next-token distributions512

highlight that LAs are at best redundant for SIB-513

200 across target languages.514

6 Main Take-Aways515

We take the findings from the three experiments516

the qualitative analysis and summarize them as517

follows.518

LAs are beneficial for unseen languages on519

tasks requiring more language-specific knowl-520

edge. Unseen languages (Afrikaans, Galician and521

Icelandic in Llama 2) evaluated on MLQA are the522

only languages that consistently benefit from the523

usage of LAs. This is corroborated by Experiment524

2 with ICL which disentangles the effect of the LA525

from the task adaptation stage more explicitly.526

LAs are at best redundant for rarely seen527

languages and tasks requiring less language-528

specific knowledge. Across all experiments,529

noLA is competitive with or surpasses LA for530

most task-language-combinations. Experiment 3531

with Llama 3.1 as base LLM substantiates this532

finding, as the positive effect of LAs vanishes en-533

tirely; attributed to previously unseen languages534

in Llama 2 turning into rarely seen languages in535

Llama 3.1. Hence, in most cases, adding language-536

specific representations during pre-training appears537

performance-wise more effective and computation-538

ally more efficient than after pre-training via LAs.539

13Tokens like _Sand and _Jason occur in the instance’s
passage and denote names.

The impact of the typological relatedness be- 540

tween source and target language is minimal. 541

Rather, the source language bias and task-specific 542

requirements were found to be critical for the 543

source language choice. English as source lan- 544

guage consistently yielded the best performance 545

across target languages on the QA task, whereas 546

German and Spanish were superior on the NLU 547

task. 548

LAs and XLT to underrepresented target lan- 549

guages are constrained by the inherent English 550

bias of the base LLM. While the competitive re- 551

sults of the XLT setup without LAs across our exper- 552

iments suggest that English-centric representations 553

are able to generalize across non-English target lan- 554

guages, this generalization is severely limited, as 555

evidenced by the performance gap between English 556

and non-English languages on the QA task. Prelim- 557

inary analyses using the Logit Lens, based on a lim- 558

ited number of test instances and languages, further 559

suggest that LAs, as implemented in our work, may 560

not be able to induce profound language-specific 561

transformations and mitigate the strong English 562

bias of the base LLM. 563

7 Conclusion 564

We comprehensively evaluated the efficacy of LAs 565

for XLT in English-centric LLMs on 13 languages 566

and 2 downstream tasks. We investigated several 567

XLT configurations with varying task adaptation 568

methods and base LLMs and found that the ef- 569

fect of LAs is largely inconsistent across target 570

languages and tasks. Omitting LAs entirely and re- 571

lying on a single TA often yielded superior results. 572

A positive effect of LAs was mostly observed for 573

unseen languages, while even minimal language- 574

specific pre-training data tended to diminish this 575

effect. We conclude that LAs do not consistently 576

help enhance XLT and cannot fully mitigate the 577

evident performance gap between English and non- 578

English languages in English-centric LLMs. 579

From a broader perspective, our findings estab- 580

lish a solid foundation for future research to ex- 581

plore, in greater depth, the capabilities of LAs and 582

the transformations they provoke within English- 583

centric LLMs. 584

Limitations 585

Languages. As we rely on automatic evaluation, 586

data sparsity hinders the inclusion of truly low- 587

resource languages. We focus on mainly mid- 588
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to high-resource languages, underrepresented in589

English-centric LLMs. Future work is encouraged590

to include low-resource languages that are likely591

to have yet less pre-training data in the respective592

base LLMs to test the hypothesis that LAs can help593

enhance XLT to unseen languages in greater de-594

tail. Besides, all languages examined use the Latin595

script. It is, therefore, straightforward to include596

non-Latin script languages in future experiments.597

Tasks & Data. This study is restricted to one598

QA and one NLU task. Naturally, this hinders us599

from asserting strong conclusions regarding XLT600

in English-centric LLMs and implications for real-601

world applications that rely on robust multilingual602

generation capabilities. Moreover, we note that au-603

tomatic translations and metric flaws may confound604

the obtained results for non-English languages on605

MLQA.606

Base LLMs. Our XLT evaluations are limited607

to two Llama variants. To account for potential608

Llama-specific biases and to strengthen our hypoth-609

esis that LAs primarily benefit unseen languages, a610

more diverse set of base LLMs is essential.611

Language Adapters. We highlight four LA-612

related limitations: First, we did not conduct com-613

prehensive LA hyperparameter tuning. While we614

briefly explored the number of training samples by615

doubling the default, we did not examine the reduc-616

tion factor or potential domain mismatches in the617

LA data -factors that may be especially important618

for performance. Second, LAs, as utilized in this619

study, do not operate on vocabulary level. Thus,620

the English-centric vocabulary of the base LLM621

remains unchanged throughout LA training, po-622

tentially adversely affecting excessively tokenized623

languages. Third, we restricted the evaluation of624

the effect of LAs to an extrinsic evaluation based625

on downstream task performance. Finally, LAs,626

as trained in this work, follow a data-driven, post-627

hoc approach, meaning that we rely on the ability628

of the base LLM to learn language-specific repre-629

sentations after pre-training by simply feeding in630

unlabeled, language-specific data while freezing all631

parameters of the base LLM. Hence, we do not take632

into account language-specific neurons or regions633

of the base LLM that may impact performance, as634

shown by Tang et al., 2024; Zhang et al., 2024b,635

inter alia.636
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A Training Details971

Hyperparameter Value

LAs

Reduction factor 16
Trainable parameters 67.1M
Batch size 4
Training steps 50k
Context length 1024

MLQA TAs

Reduction factor 16
Trainable parameters 67.1M
Dropout 0.0
Batch size 4
Training epochs 3

SIB-200 TAs

Reduction factor 32
Trainable parameters 33.6M
Dropout 0.1
Batch size 4
Training epochs 20

Table 2: Details for training LAs and TAs. These values
apply to all languages. I.e., LAs are trained on 200k
samples per language à 1024 tokens. Due to the same
hidden dimension and the same number of hidden lay-
ers, the number of trainable parameters applies to both
Llama 2 and Llama 3.1. Unspecified hyperparameters
were set to the default values as provided in the adapters
and transformers library.

B Llama 2 Language Distribution972

Language Data (in %)

en 90.00
de 0.17
sv 0.15
es 0.13
nl 0.12
pt 0.09
ca 0.04
fi 0.03
hu 0.03
da 0.02
is 0.00
gl 0.00
af 0.00

Table 3: Amounts of pre-training data in Llama 2 for
languages relevant to this work. No detailed language
distribution is available for Llama 3.1.

C Fertility 973

Language Fertility

en 1.45
de 2.04
sv 2.21
es 1.77
nl 2.00
pt 1.92
ca 1.96
fi 3.75
hu 3.00
da 2.22
is 3.03
gl 1.97
af 2.11

Table 4: Fertility (token/word ratio) as measured on the
dev split of Flores-200 (Team et al., 2022) using the
English-centric tokenizer of Llama 2.
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D Task Templates974

D.1 Task Adapters975

MLQA

### Human: Refer to the passage below and
then answer the question afterwards in the
same language as the passage:

Passage: {passage}

Question: {question}

### Assistant: {answer}

Figure 11: Prompt template used for MLQA during TA
training and at inference for setups using TAs.

SIB-200

Classify the following sentence into one of
the following topics:
1. science/technology
2. travel
3. politics
4. sports
5. health
6. entertainment
7. geography

Sentence: {sentence}

Topic: {topic}

Figure 12: Prompt template used for SIB-200 during
TA training and at inference for setups using TAs.

D.2 In-context Learning 976

MLQA

### Instruction: The task is to solve
reading comprehension problems. You will
be provided questions on a set of passages
and you will need to provide the answer
as it appears in the passage. The answer
should be in the same language as the
question and the passage. Provide nothing
else beyond the answer.

— n source language demonstrations —
### Human:
Passage: {passage}
Question: {question}

### Assistant: {answer}

### Human:
Passage: The aircraft involved in
the hijacking was a Boeing 757–222,
registration N591UA, delivered to the
airline in 1996. The airplane had a
capacity of 182 passengers; the September
11 flight carried 37 passengers and
seven crew, a load factor of 20 percent,
considerably below the 52 percent average
Tuesday load factor for Flight 93. The
seven crew members were Captain Jason Dahl,
First Officer LeRoy Homer Jr., and flight
attendants Lorraine Bay, Sandra Bradshaw,
Wanda Green, CeeCee Lyles, and Deborah
Welsh.
Question: How many crew members were there?

### Assistant: seven

Figure 13: ICL prompt template for MLQA. The string
‘- - n source language demonstrations - -’ is not part
of the prompt. This example is also the English test
instance chosen for Logit Lens experiments on MLQA.
Target is not provided. We set n = 5.
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SIB-200 English

Classify the following sentence into one
of the following topics:
1. science/technology
2. travel
3. politics
4. sports
5. health
6. entertainment
7. geography

— n source language demonstrations —
Sentence: {sentence}
Topic: {topic}

Sentence: After a week of losses in the
midterm election, Bush told an audience
about the expansion of trade in Asia.
Topic: politics

Figure 14: ICL prompt template for SIB-200. The
string ‘- - n source language demonstrations - -’ is not
part of the prompt. This example is also the English test
instance chosen for Logit Lens experiments on SIB-200.
Target is not provided. We set n = 10.
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E Training & Evaluation Setups977

E.1 LA Setup978

Figure 15: LA setup (blue and red edges indicate frozen and trainable parameters,
respectively): (1) LAs are trained for each language of interest (here: English and
Icelandic) on a frozen English-centric LLM (e.g., Llama 2 7B). (2) A TA (in this
case, for a QA task) is trained in the source language (here: English) by stacking
it on top of the frozen LA in the respective source language. (3) At inference, the
source LA is replaced by the target LA (here: Icelandic) while retaining the TA in
the source language. This setup is then evaluated zero-shot in the target language.
Own illustration.

E.2 noLA Setup979

Figure 16: noLA setup (blue and red edges indicate
frozen and trainable parameters, respectively): (1) A
TA (in this case, for a QA task) is trained in the source
language (here: English) on top of the frozen English-
centric LLM. (2) At inference, the TA in the source
language is retained and evaluated zero-shot in the target
language (here: Icelandic). Own illustration.
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F Scores980

F.1 Experiment 1: Llama-2/TA981

982

Setup af gl is da fi hu ca pt nl es sv de en avg.

LAen
0.51

(±0.02)
0.56

(±0.01)
0.32

(±0.02)
0.49

(±0.01)
0.33

(±0.01)
0.39

(±0.02)
0.53

(±0.03)
0.53

(±0.02)
0.53

(±0.01)
0.47

(±0.01)
0.46

(±0.02)
0.51

(±0.00)
0.78

(±0.00) 0.47

LAde
0.50

(±0.01)
0.54

(±0.01)
0.32

(±0.01)
0.47

(±0.01)
0.37

(±0.01)
0.42

(±0.01)
0.54

(±0.01)
0.52

(±0.00)
0.52

(±0.01)
0.47

(±0.00)
0.47

(±0.01)
0.54

(±0.00)
0.44

(±0.09) 0.47

LAes
0.45

(±0.02)
0.51

(±0.02)
0.31

(±0.02)
0.45

(±0.02)
0.34

(±0.01)
0.39

(±0.01)
0.52

(±0.01)
0.51

(±0.01)
0.48

(±0.01)
0.53

(±0.01)
0.44

(±0.01)
0.46

(±0.01)
0.43

(±0.05) 0.44

noLAen
0.49

(±0.01)
0.52

(±0.01)
0.26

(±0.01)
0.53

(±0.01)
0.34

(±0.01)
0.39

(±0.01)
0.57

(±0.01)
0.55

(±0.01)
0.55

(±0.01)
0.48

(±0.01)
0.50

(±0.01)
0.51

(±0.00)
0.78

(±0.00) 0.47

noLAde
0.40

(±0.01)
0.47

(±0.01)
0.23

(±0.00)
0.50

(±0.01)
0.37

(±0.00)
0.43

(±0.01)
0.55

(±0.01)
0.54

(±0.01)
0.47

(±0.02)
0.47

(±0.01)
0.46

(±0.00)
0.54

(±0.00)
0.38

(±0.01) 0.44

noLAes
0.38

(±0.01)
0.38

(±0.01)
0.20

(±0.01)
0.44

(±0.02)
0.31

(±0.01)
0.34

(±0.02)
0.46

(±0.02)
0.45

(±0.01)
0.45

(±0.03)
0.53

(±0.01)
0.41

(±0.03)
0.40

(±0.03)
0.32

(±0.04) 0.38

Table 5: MLQA-en F1 scores averaged over five random seeds for Experiment 1. We use the main variables task
adaptation method = TA (task-specific FT), adapter method = bottleneck adapter (BN), base large language model
(LLM) = Llama 2, LA coverage = monolingual. Standard deviation in parentheses. Bold numbers indicate best
scores between XLT setups (LA, noLA), underscored numbers indicate best scores within XLT setup between source
languages (en, de, es).

983

984

Setup af gl is da fi hu ca pt nl es sv de en avg.

LAen
0.50

(±0.17)
0.74

(±0.05)
0.55

(±0.06)
0.71

(±0.06)
0.66

(±0.10)
0.59

(±0.16)
0.66

(±0.06)
0.79

(±0.03)
0.71

(±0.10)
0.78

(±0.06)
0.68

(±0.12)
0.82

(±0.04)
0.85

(±0.02) 0.68

LAde
0.77

(±0.09)
0.81

(±0.04)
0.70

(±0.03)
0.78

(±0.06)
0.81

(±0.04)
0.82

(±0.02)
0.77

(±0.05)
0.84

(±0.06)
0.85

(±0.03)
0.81

(±0.04)
0.79

(±0.07)
0.87

(±0.01)
0.83

(±0.05) 0.80

LAes
0.74

(±0.06)
0.76

(±0.02)
0.60

(±0.11)
0.80

(±0.03)
0.69

(±0.09)
0.71

(±0.07)
0.76

(±0.09)
0.82

(±0.02)
0.82

(±0.03)
0.82

(±0.02)
0.81

(±0.04)
0.81

(±0.05)
0.82

(±0.05) 0.76

noLAen
0.72

(±0.03)
0.79

(±0.03)
0.40

(±0.07)
0.79

(±0.02)
0.68

(±0.06)
0.73

(±0.03)
0.80

(±0.03)
0.84

(±0.03)
0.80

(±0.03)
0.82

(±0.03)
0.78

(±0.02)
0.81

(±0.02)
0.86

(±0.02) 0.75

noLAde
0.83

(±0.02)
0.83

(±0.02)
0.56

(±0.04)
0.85

(±0.01)
0.81

(±0.02)
0.82

(±0.02)
0.84

(±0.02)
0.84

(±0.03)
0.86

(±0.02)
0.84

(±0.02)
0.84

(±0.02)
0.85

(±0.03)
0.86

(±0.02) 0.81

noLAes
0.74

(±0.05)
0.79

(±0.02)
0.45

(±0.05)
0.80

(±0.03)
0.73

(±0.06)
0.74

(±0.04)
0.83

(±0.03)
0.84

(±0.01)
0.81

(±0.04)
0.83

(±0.01)
0.81

(±0.03)
0.81

(±0.04)
0.85

(±0.02) 0.77

Table 6: SIB-200 EM scores averaged over five random seeds for Experiment 1. We use the main variables
task adaptation method = TA (task-specific FT), adapter method = BN, base LLM = Llama 2, LA coverage =
monolingual. Standard deviation in parentheses. Bold numbers indicate best scores between XLT setups (LA,
noLA), underscored numbers indicate best scores within XLT setup between source languages (en, de, es).
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F.2 Experiment 2: Llama-2/ICL986

987

Setup af gl is da hu fi ca pt nl es sv de en avg.

LAen 0.45 0.47 0.30 0.45 0.34 0.31 0.48 0.47 0.47 0.41 0.43 0.43 0.65 0.42
LAde 0.41 0.42 0.28 0.42 0.32 0.30 0.44 0.42 0.44 0.38 0.41 0.41 0.57 0.40
LAes 0.40 0.35 0.25 0.38 0.29 0.28 0.37 0.41 0.39 0.37 0.38 0.38 0.49 0.36
noLAen 0.39 0.41 0.20 0.44 0.33 0.31 0.48 0.46 0.47 0.40 0.43 0.42 0.64 0.40
noLAde 0.36 0.37 0.18 0.40 0.32 0.29 0.44 0.42 0.42 0.37 0.38 0.40 0.56 0.38
noLAes 0.35 0.38 0.18 0.40 0.30 0.28 0.43 0.40 0.39 0.36 0.36 0.35 0.47 0.36

Table 7: MLQA-en F1 scores for Experiment 2 which uses ICL instead of TAs for task adaptation. We 5 source
language task demonstrations. Bold numbers indicate best scores between XLT setups (LA, noLA), underscored
numbers indicate best scores within XLT setup between source languages (en, de, es).

988

989

Setup af gl is da hu fi ca pt nl es sv de en avg.

LAen 0.67 0.61 0.55 0.57 0.53 0.55 0.50 0.64 0.66 0.64 0.59 0.69 0.75 0.60
LAde 0.74 0.66 0.54 0.70 0.58 0.65 0.63 0.80 0.74 0.72 0.70 0.81 0.73 0.68
LAes 0.74 0.78 0.56 0.62 0.62 0.66 0.65 0.75 0.73 0.79 0.66 0.68 0.65 0.67
noLAen 0.23 0.30 0.23 0.45 0.48 0.47 0.39 0.50 0.37 0.47 0.47 0.51 0.78 0.41
noLAde 0.46 0.56 0.33 0.68 0.66 0.67 0.63 0.68 0.66 0.71 0.70 0.78 0.78 0.63
noLAes 0.32 0.55 0.25 0.59 0.58 0.61 0.60 0.64 0.59 0.75 0.64 0.61 0.73 0.56

Table 8: SIB-200 EM scores for Experiment 2 which uses ICL instead of TAs for task adaptation. We use 10 source
language task demonstrations. Bold numbers indicate best scores between XLT setups (LA, noLA), underscored
numbers indicate best scores within XLT setup between source languages (en, de, es).

990
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F.3 Experiment 3: Llama-3.1/TA991

992

Setup af gl is da fi hu ca pt nl es sv de en avg.

LAen
0.50

(±0.01)
0.56

(±0.04)
0.34

(±0.02)
0.48

(±0.05)
0.25

(±0.05)
0.33

(±0.05)
0.54

(±0.05)
0.54

(±0.03)
0.54

(±0.03)
0.49

(±0.02)
0.38

(±0.07)
0.51

(±0.01)
0.80

(±0.00) 0.46

LAde
0.47

(±0.03)
0.53

(±0.04)
0.35

(±0.02)
0.47

(±0.04)
0.34

(±0.02)
0.46

(±0.01)
0.51

(±0.06)
0.49

(±0.06)
0.55

(±0.01)
0.49

(±0.01)
0.44

(±0.05)
0.56

(±0.00)
0.37

(±0.11) 0.46

LAes
0.44

(±0.02)
0.52

(±0.02)
0.32

(±0.02)
0.32

(±0.05)
0.28

(±0.05)
0.39

(±0.01)
0.57

(±0.01)
0.51

(±0.01)
0.47

(±0.03)
0.56

(±0.00)
0.30

(±0.07)
0.47

(±0.03)
0.43

(±0.07) 0.42

noLAen
0.51

(±0.04)
0.56

(±0.04)
0.37

(±0.02)
0.52

(±0.03)
0.34

(±0.01)
0.42

(±0.02)
0.55

(±0.05)
0.53

(±0.05)
0.54

(±0.03)
0.47

(±0.04)
0.50

(±0.02)
0.50

(±0.03)
0.79

(±0.00) 0.48

noLAde
0.54

(±0.01)
0.57

(±0.01)
0.38

(±0.00)
0.54

(±0.01)
0.40

(±0.01)
0.48

(±0.00)
0.59

(±0.01)
0.57

(±0.01)
0.56

(±0.01)
0.50

(±0.01)
0.53

(±0.01)
0.56

(±0.01)
0.35

(±0.01) 0.50

noLAes
0.48

(±0.01)
0.51

(±0.01)
0.34

(±0.01)
0.49

(±0.01)
0.36

(±0.02)
0.42

(±0.01)
0.51

(±0.02)
0.51

(±0.00)
0.50

(±0.01)
0.56

(±0.00)
0.48

(±0.01)
0.46

(±0.01)
0.31

(±0.08) 0.45

Table 9: MLQA-en F1 scores averaged over five random seeds for Experiment 4 with main variable base LLM =
Llama 3.1. The remaining main variables are task adaptation method = TA (task-specific FT), adapter method =
BN, LA coverage = monolingual. Standard deviation in parentheses. Bold numbers indicate best scores between
XLT setups (LA, noLA), underscored numbers indicate best scores within XLT setup between source languages (en,
de, es).
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LAen
0.78

(±0.06)
0.81

(±0.04)
0.71

(±0.05)
0.78

(±0.05)
0.78

(±0.03)
0.80

(±0.04)
0.78

(±0.03)
0.82

(±0.03)
0.85

(±0.02)
0.85

(±0.05)
0.80

(±0.05)
0.86

(±0.02)
0.88

(±0.02) 0.80

LAde
0.80

(±0.03)
0.82

(±0.03)
0.72

(±0.05)
0.81

(±0.04)
0.78

(±0.07)
0.80

(±0.04)
0.80

(±0.05)
0.81

(±0.03)
0.82

(±0.05)
0.81

(±0.04)
0.79

(±0.04)
0.84

(±0.03)
0.80

(±0.06) 0.80

LAes
0.79

(±0.04)
0.84

(±0.02)
0.72

(±0.07)
0.77

(±0.08)
0.79

(±0.02)
0.81

(±0.03)
0.80

(±0.04)
0.85

(±0.01)
0.86

(±0.02)
0.86

(±0.02)
0.82

(±0.03)
0.86

(±0.01)
0.86

(±0.01) 0.81

noLAen
0.81

(±0.04)
0.79

(±0.05)
0.69

(±0.05)
0.82

(±0.07)
0.74

(±0.05)
0.77

(±0.05)
0.80

(±0.05)
0.82

(±0.05)
0.84

(±0.06)
0.82

(±0.05)
0.83

(±0.06)
0.80

(±0.06)
0.83

(±0.05) 0.79

noLAde
0.79

(±0.04)
0.78

(±0.05)
0.68

(±0.07)
0.81

(±0.03)
0.78

(±0.05)
0.76

(±0.07)
0.80

(±0.05)
0.80

(±0.04)
0.84

(±0.06)
0.81

(±0.07)
0.82

(±0.04)
0.83

(±0.03)
0.84

(±0.03) 0.79

noLAes
0.79

(±0.03)
0.81

(±0.01)
0.70

(±0.02)
0.82

(±0.02)
0.78

(±0.03)
0.80

(±0.01)
0.84

(±0.01)
0.83

(±0.02)
0.84

(±0.02)
0.83

(±0.03)
0.82

(±0.02)
0.83

(±0.03)
0.84

(±0.01) 0.81

Table 10: SIB-200 scores averaged over five random seeds for Experiment 4 with main variable base LLM = Llama
3.1. The remaining main variables are task adaptation method = TA (task-specific FT), adapter method = BN, LA
coverage = monolingual. Standard deviation in parentheses. Bold numbers indicate best scores between XLT setups
(LA, noLA), underscored numbers indicate best scores within XLT setup between source languages (en, de, es).
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G Additional SIB-200 Results996

G.1 Heatmaps997

G.1.1 Experiment 1: Llama-2/TA998

Figure 17: Heatmap comparing SIB-200 EM LA and
noLA scores across source and target languages for
Experiment 1 with Llama 2 and TAs. Positive scores
mean LA is superior.

G.1.2 Experiment 2: Llama-2/ICL999

Figure 18: Heatmap comparing SIB-200 EM LA and
noLA scores across source and target languages for
Experiment 2 with Llama 2. Positive scores mean LA
is superior.

G.1.3 Experiment 3: Llama-3.1/TA1000

Figure 19: Heatmap comparing SIB-200 EM LA and
noLA scores across source and target languages for
Experiment 3 with Llama 3.1. Positive scores mean LA
is superior.
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G.2 Logit Lens Visualizations1001

Figure 20: Logit Lens for SIB-200 test instance with en
and German as target language. Base LLM: Llama 2.
Setup: LA.

Figure 21: Logit Lens for SIB-200 test instance with en
and German as target language. Base LLM: Llama 2.
Setup: noLA.

Figure 22: Logit Lens for SIB-200 test instance with en
and Icelandic as target language. Base LLM: Llama 2.
Setup: LA.

Figure 23: Logit Lens for SIB-200 test instance with en
and Icelandic as target language. Base LLM: Llama 2.
Setup: noLA.
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