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ABSTRACT

Recent years have witnessed increasing interests in tackling heteroscedastic noise
in bandits and reinforcement learning (e.g., Zhou et al., [2021}; [Zhao et al.| 2023aj
Jia et al.| [2024; [Pacchianol 2025). In these works, the cumulative variance of the
noise A = Zle o2, where o} is the variance of the noise at round ¢, is used
to characterize the statistical complexity of the problem, yielding simple regret
bounds of order O(d+/A/T?) for d-dimensional linear bandits with heteroscedas-
tic noise (Zhou et al, 2021} |Zhao et al.| [2023a). However, with a closer look, A
remains the same order even if the noise is close to zero at half of the rounds,
which indicates that the A-dependence is not optimal.

In this paper, we revisit the stochastic linear bandit problem with heteroscedastic
noise, where the action set is prefixed throughout the learning process. We pro-
pose a novel variance-adaptive algorithm VAEE (Variance-Aware Exploration with
Elimination) for large action set, which actively explores actions that maximizes
the information gain among a candidate set of actions that are not eliminated. With
the active-exploration strategy, we show that VAEE achieves a simple regret with a
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nearly harmonic-mean dependent rate, i.e., O (d { Zle 713 - Z?:(f) ﬁ} i )H
where o(*) is the i-th smallest variance among {o;}7_,. For finitely many ac-
tions, we propose a variance-aware variant of G-optimal design based exploration,

~ 1
which achieves a simple regret of O (\/dlog | Al [ Sy Fe o) ﬁ} ’ ) .
We also establish a nearly matching lower bound for the fixed action set setting
indicating that harmonic-mean dependent rate is unavoidable. To the best of our
knowledge, this is the first work that breaks the /A barrier for stochastic linear
bandits with heteroscedastic noise.

1 INTRODUCTION

The stochastic multi-armed bandit (MAB) problem is a fundamental framework for studying the
exploration-exploitation trade-off in sequential decision-making (Auer et al., 2002). In the clas-
sic stochastic bandit setting, an agent repeatedly selects an arm from a set of arms and receives a
stochastic reward associated with the chosen arm. The goal of the agent is to maximize the cumu-
lative reward over a series of rounds by balancing exploration (trying out different arms to gather
information) and exploitation (choosing the best-known arm based on past observations). Over the
past few decades, various algorithms have been proposed to tackle the stochastic bandit problem
from the perspectives of minimax optimal sample complexity (Audibert & Bubeckl, 2009; Ménard
& Garivier, 2017; Jin et al.| [202152023)).

To further leverage the heteroscedastic nature of the noise in real-world applications, recent works
have extended the classic bandit framework to account for heteroscedastic noise, where the vari-
ance of the noise can vary across different arms and time steps (Zhou et al., 2021} Zhao et al.
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!The formal notation is given by @(d[x;l (%2 — Z;g’” [ (1)]2} 2), where +(d,T) = O(d) is a
t (o8

function of d and T'. For simplicity, we use O(d) to denote «(d, T') throughout the paper.
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2023a}; Jia et al.| 2024} |Pacchiano, [2025). These works have shown that by taking into account the
varying variance of the noise, it is possible to design more efficient algorithms that achieve bet-
ter performance in terms of regret bounds. In detail, |[Zhou et al.[(2021) first considered the linear
bandit problem with heteroscedastic noise and proposed a variance-aware algorithm that achieved
a regret bound of order @(d\/K + /dT), where A = Zthl o? is the cumulative variance of the
noise along 7T time steps and d is the dimension of the feature space. Later, Zhou & Gu| (2022)
improved the cumulative regret bound to @(d\ﬂ + d), yielding a simple regre bound of order
O(d\/A/T? + d/T). More recently, Jia et al.| (2024) proposed VarCB, which achieves a tighter
cumulative regret bound of order O(\/ |A|Ad + d?) for contextual bandits with a fixed action set,

where |A| is the size of the action set and A = ZtT:l o? is the variance budget, and further extended
their analysis to general function classes. In the same work, they proved a minimax lower bound of
order Q(/min(|A],d), A +d) when d < /| A|T, showing that the v/A dependence is unavoidable
in the worst case over instances and variance sequences. Recently, He & Gu|(2025) further estab-
lished (up to logarithmic factors) matching variance-dependent lower bounds of order Q(d\/K) for
linear contextual bandits with time-varying action sets and arbitrary variance sequences, confirming
that the v/A scaling is information-theoretically optimal even when the entire variance sequence is
revealed to the learner. On the other hand, He & Gu|(2025) proved that for stochastic linear bandits
where the action set is prefixed, the €2 (d\/K) lower bound does not hold. This motivates us to pursue
sharper variance-dependent regret bounds for stochastic linear bandits with a fixed action set (either
finite or infinite).

More specifically, existing regret bounds depend on the total variance term A, which overlooks the
heterogeneity of information gain across actions and time steps with different noise levels. Consider
an extreme case: if o7 ~ 0 for all t < ¢y with t, = O(d) < T, the d-dimensional weight
parameter in the linear bandit problem could be recovered almost exactly. In such a case, the regret
bound should be essentially independent of the noise variance after time step ¢y. This motivates an
important open question in heteroscedastic stochastic linear bandits:

Can we improve upon the /A dependence in the regret bounds in stochastic linear heteroscedastic
bandits?

In this paper, we revisit the problem of best-arm identification in stochastic linear bandits under het-
eroscedastic noise, where the action set is prefixed and the variances of the reward distribution may
vary significantly across actions. The primary performance metric we focus on is the simple regret,
which measures the suboptimality of the action recommended after a fixed budget of exploration.
Our results highlight the fundamental role of the harmonic mean of the variances in characterizing
the attainable regret rate.

Our main contributions are summarized as follows:

* Variance-adaptive exploration for large action sets. We propose a novel algorithm, VAEE
(Variance-Aware Exploration with Elimination), designed to handle large (potentially infinite)
action sets. The key idea is to maintain a candidate set of promising actions and actively ex-
plore those that maximize the information gain subject to elimination rules. We prove that VAEE
achieves a simple regret bound of

@<d

where d is the feature dimension, and {[o(*)]?} are the ordered list of the variance sequence {o7}.
This establishes a nearly harmonic-mean dependent rate for the simple regret.

(4)
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* Variance-aware G-optimal design for finite action sets. For the case of a finite action set A4,
we propose a variance-adaptive variant of G-optimal design based exploration. We show that this

2Simple regret quantifies the expected gap between the optimal reward and the reward of the arm proposed
by the algorithm.
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Table 1: Comparison between different algorithms for stochastic (linear) contextual bandits. Here
d is the feature dimension, 7" is the number of rounds, {at}tem is the variance of noise at round

t € [T), |A| is the size of the arm set, and A = Ele o? is the cumulative variance of the noise. The
time-varying means that the action set is allowed to change over time (possibly chosen in advance
by an oblivious adversary), whereas fixed means that the same action set is used in all rounds. The
infinite means the action set may contain infinitely many actions, whereas finite means the action
set contains only finitely many actions. The lower bounds from |Jia et al.| (2024); [He & Gul(2025)
are derived for the cumulative regret. We convert them to be comparable to our simple regret by
dividing them by 7'. Note that their lower bounds are derived for the worst case sequence of noise
variance, while our lower bound has a refined dependence on the noise variance sequence.

Algorithm Simple Regret Upper Bound Simple Regret Lower Bound Action Set
Weighted OFUL (Zhou et al.|[2021) d\/A/T? - Time-varying/Infinite
Weighted OFUL+ (Zhou & Gu.[2022) d\/A/T? - Time-varying/Infinite
VOFUL (Zhang et al.{[2021} d°/%\/AT? - Time-varying/Infinite
VOFUL?2 (Kim et al.[[2021) d3/%\/AT? - Time-varying/Infinite
SAVE (Zhao et al.|[2023a) d\/A/T? - time-varying/Infinite
LinNATS (Xu et al.|[2023) d3/%\/A]T? - Time-varying/Infinite
VarCB (Jia et al.|[2024} vV \A|Aaz/T2 Q(y/min(]A[,d)A/T?) Time-varying/Finite
He & Gu|(2025) Q(d/A/T?) Time-varying/Infinite
o -3 H . .
VAEE (Ours) ATl % - 22 tp) ‘ e(a(Tii ) %) Fixed/Infinite
VAGD (Ours) VA A Ly & - S o] - Fixed/Finite

strategy achieves a simple regret bound with improved dependence on the dimension d as follows

- 1
T (d) -2
O dlog|A] Z - > 0_(1)
t= 1 1=1

* Lower bound matching the harmonic-mean rate. We establish a nearly matching lower bound
for the fixed-action setting, showing that the harmonic-mean dependence is intrinsic to the prob-
lem. This demonstrates that our algorithms are essentially optimal in their variance dependence.

« Breaking the \/A barrier. To the best of our knowledge, this is the first work that surpasses
the classical v/A-type dependence in simple regret bounds for linear bandits with heteroscedastic
noise, where A denotes the variance proxy commonly used in prior analyses. A comprehensive
comparison on the simple regret bounds is provided in for the reader’s reference.

Notations. We use bold lowercase letters (e.g., a) to denote vectors and bold uppercase letters (e.g.,
A) to denote matrices. For a vector a € RY, we use ||a]|2 to denote its Euclidean norm. For a
positive definite matrix A € R?*4, we define the elliptical norm of a vector a as ||al|a = VaT Aa.
We use I; to denote the d x d identity matrix. For a set A, we use |A| to denote its cardinality. We
use O( ) to hide logarithmic factors in d,T,1/6,1/0min, 1/0max. For a sequence {a;}7_,, we use
a™ to denote the i-th smallest element in the sequence.

2 RELATED WORK

Variance-Aware Regret for Linear Bandits with Heteroscedastic Noise. The incorporation of
variance information in linear bandit algorithms has garnered significant attention in recent years,
leading to substantial improvements in regret bounds. Early work by [Kirschner & Krause| (2018])
introduced the concept of information-directed sampling for bandits with heteroscedastic noise,
demonstrating that leveraging variance information can lead to more efficient exploration strate-
gies. Later, |Zhou et al.| (2021)) proposed a variance-aware algorithm for linear bandits that achieves

a regret bound of order O(dv/A + v/dT), where A = Zthl o? is the cumulative variance of the

noise. This result was further improved by |Zhou & Gul(2022) to a tighter bound of (’j(d\/f\ +d).
Zhao et al.[(2023b) later proposed a peeling-based algorithm that achieves a similar regret bound.

The challenge of unknown conditional variances has been addressed by several researchers. [Zhang
et al.[(2021) and|Kim et al.[(2021)) developed algorithms that operates without prior knowledge of the
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variance, achieving regret bounds that adapt to the observed noise levels. However, these approaches
are not tractable for large action sets and incur sub-optimal dependence on d. [Zhao et al.| (2023a))
proposed a computationally efficient algorithm that achieves a regret bound of order O(dv/A + d)
without requiring prior knowledge of the variances.

More recently, |Pacchiano| (2025) extended the variance-aware framework of |[Zhao et al.
(2023a) to the general function approximation setting, achieving a regret bound of order
O(deiuderv/108(F)A + depuder log(F)), where dejyder is the eluder dimension and log(F) is the
log-covering number of the function class F. Concurrently, Jia et al.| (2024) introduced VarCB, an
algorithm that attains a regret bound of O(+/].A[Ad + d?) for bandits with few actions, and extended
their results to general function classes. They also established a worst-case lower bound of order
Q(y/min(|A|,d)A + d) when d < /| A|T. |He & Gu|(2025) further studied the setting where the
action set can change arbitrarily over time and proved an instance-dependent lower bound of order
Q(dv/A/logT) for the expected cumulative regret. These results indicate that the v/A dependence
is unavoidable in such settings.

Bandits with Heavy-Tailed Noise. The topic of robustness to heavy-tailed rewards has received
considerable attention in recent years, addressing the limitations of classical bandit algorithms that
assume sub-Gaussian or bounded noise. Bubeck et al.| (2013)) pioneered this research direction by
studying heavy-tailed rewards in multi-armed bandits, establishing that standard concentration in-
equalities fail in such environments. For linear bandits, Medina & Yang|(2016) proposed truncation-
based methods and median-of-means estimators to handle heavy-tailed noise, achieving sublinear
regret bounds. [Shao et al.| (2018)) adopted median-of-means techniques with a well-designed allo-
cation of decisions to achieve nearly optimal regret bounds. Later, |Xue et al.|(2020) introduced a
SupLin-based algorithm (Chu et al.| 201 1)) which further improved the dimension dependence in the
regret bounds. More related works include |Li & Sun|(2024)), Huang et al.| (2023)), which proposed
Huber regression based algorithms to handle heteroscedastic heavy-tailed noise. Recently, Ye et al.
(2025) proposed a Catoni’s estimator based algorithm that achieves adaptive regret bounds in bandits
with general function approximation.

Variance-Dependent Bounds in MDPs. As a natural extension of bandits, Markov Decision Pro-
cesses (MDPs) have also been studied under the lens of variance-dependent regret bounds. In tabular
MDPs, Zanette & Brunskill/(2019) first established a variance-dependent regret bound which scales
with the square root of the maximum variance of the value function. Afterwards,|[Zhou et al.|(2023)
proposed MVP-V, an algorithm that achieves a regret bound scaling with the square root of the total
variance of the value function, achieving worst-case optimal regret bound. In MDPs with linear
function approximation, |[Zhao et al.| (2023a)) proposed a variance-aware algorithm that achieves a
second-order and horizon-free regret bound. More recently, there have been several works (Wang
et al., 2024; Zhao et al.,[2024; Wang et al., 2025} [Zhao et al., 2025) presenting variance-dependent
regret bounds in MDPs with general function approximation.

3 PRELIMINARIES

We consider a heteroscedastic variant of the stochastic linear bandit problem. Let 7" be the total
number of rounds. The action set A is fixed. At each round ¢t € [T, the interaction between the
agent and the environment is as follows:

1. The agent selects a; € A based on the past observations F;_1 = (a1,71,...,8¢_1,7¢—1) up to
time ¢t — 1.

2. The environment generates the stochastic noise 7; at round ¢ and reveals the stochastic reward
ry = (0%, a;) + 1 to the agent.

WLOG, we assume that for all a € A, it holds that ||al|z < 1 and [|0*|]2 < 1.
Remark 3.1. Our assumption that the action set is fixed is necessary for achieving the harmonic-

mean dependent rate. In scenarios where the action set can change arbitrarily over time, it is possible

to construct instances where the cumulative variance A = ZtT:1 o2 remains the most appropriate
measure of statistical complexity. This is because an adversarially chosen action set can force the
algorithm to repeatedly explore less informative actions when the noise level is low, thereby negating
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the benefits of a harmonic-mean based approach. A detailed study of this phenomenon is provided
by [He & Gu| (2025)), which demonstrates that in the case of adversarially changing contexts, there

exists a lower bound of order Q(dv/A/log T') for the expected cumulative regret, indicating that the
v/A dependence is unavoidable in such settings.

Therefore, to fully leverage the advantages of our proposed variance-adaptive algorithms and
achieve the improved regret bounds, we focus on the standard stochastic linear bandit setting (Latti-
more & Szepesvari, [2020) where the action set is fixed throughout the learning process.

We introduce the following assumption on the noise 7.

Assumption 3.2. The noise 7; is conditionally o;-sub-Gaussian, i.e., for all A € R, it holds that
E[exp (An;) | Fi—1] < exp(A\20?/2), where F;_1 is the filtration up to round ¢ — 1. We assume
that there exist known constants omin, Cmax > 0 such that o, < 0y < omax forall ¢ € [T7].

Remark 3.3. This assumption follows from the original formulation of heteroscedastic bandits by
Kirschner & Krause|(2018)). Later works (Zhou et al., 2021;|Zhao et al., 2023a; Jia et al.,|2024) have
slightly generalized this assumption to only require the variance of 7; to be bounded by o7 and the
magnitude of 7, to be bounded by a constant. However, this generalization does not significantly
affect our analysis or results, as we will discuss in that our algorithms can be extended
to handle heavy-tailed noise by replacing the least-squares estimator with a robust estimator.

In this paper, we focus on the best-arm identification problem in linear bandits with heteroscedastic
noise. The performance of an algorithm is measured by the simple regret defined as follows:

SR(T) = E[max(6",a) - (6", 47)], 3.1)

where ar is the action recommended by the algorithm after 7" rounds of exploration.

Remark 3.4. In the stochastic linear bandit literature, simple regret is closely connected to cumu-
lative regret. In particular, if an algorithm achieves cumulative regret of order O(v/dT'), then its
simple regret can be shown to be of order O(1/d/T) (Lattimore & Szepesviri, 2020). In the het-
eroscedastic setting, however, the varying and unpredictable noise levels make this relationship more
subtle. For example, a harmonic-mean dependence of the simple regret on the variances does not
necessarily translate to the same dependence for cumulative regret. In this work, we therefore focus
on directly analyzing the simple regret of our proposed algorithms.

4 STOCHASTIC LINEAR BANDITS WITH INFINITE ACTION SPACE

In this section, we propose Variance-Aware Exploration with Elimination (VAEE), a variance-
adaptive approach designed for linear bandits operating in environments with heteroscedastic noise
and potentially large action spaces. The algorithm is displayed in which builds upon
the Optimism in the Face of Uncertainty for Linear bandits (OFUL) framework while incorporating
variance information to improve exploration efficiency and regret bounds.

Variance Adaptation. The algorithm explicitly incorporates variance information o, observed at
each time step and uses variance-weighted updates for both the covariance matrix and parameter
estimation (Zhou et al.l 2021). This allows the algorithm to adaptively adjust its confidence sets
based on the observed noise levels, leading to more accurate estimates of the underlying parameters.

Active Exploration. [Algorithm I|employs an active exploration strategy that selects actions based
on their potential to maximize information gain. Specifically, at each round, the algorithm chooses
the action that maximizes the uncertainty in the parameter estimate, as measured by the Mahalanobis
distance with respect to the inverse covariance matrix. This encourages exploration of actions that
are expected to provide the most informative feedback.

4.1 CASE STUDY ON WHY WEIGHTED OFUL FAILS

We now present a two-dimensional case study to illustrate that Weighted OFUL fails for struc-
tural reasons rather than due to a loose analysis, especially when the variance sequence contains
low-variance windows and the information for learning the d-dimensional parameter vector grows
anisotropically across coordinates. In contrast, our variance-sequence-aware design reallocates
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Algorithm 1 Variance-Aware Exploration with Elimination (VAEE)
Require: A C R4, 6.

1: Initialize Vi < Ay, 69 < 0, A; <+ A.

2: fort=1,...,7do

3:  Pull the action a;  maxXec 4, ||e||V:11.

The agent receives the reward r; and the variance o;.
Calculate V; < V,_; + o, 2a,a/ .
A _ t _
Calculate 0, < V7' 3", 05 2a,r,.
Set confidence set as follows C; < {0 | |0 — OtH%/,l < B:}.
t

Eliminate low rewarding arms: A;;; < {a € Ay : maxeca, mingee,(0,€) <

maxgec, (0, a) }
9: end for

® >0k

exploration toward weak coordinates and achieves an instance- and variance-sequence-dependent
bound. In the example below, our algorithm attains simple regret of order € exp( —O(logT/ 52)) ,

whereas Weighted OFUL yields only ¢ exp( — ©(logT)). When e = T~'/4, the simple regret of
VAEE is sharper than that of Weighted OFUL by a factor of TOWT),

Setup. Consider a two-dimensional linear bandit with action set A = {ej, e, x}, where e; =
(1,0), e2 = (0,1),and z = (1 — €, ), and with true parameter vector 8* = e;. We take confidence
radii satisfying 3, < 8 = O(y/IogT) and set ¢ = T~'/%. The variance profile contains a global
window W of length L in which the noise variance is 07 = T~ for all t € W with a € (0,1),
while outside W the variance is constant.

Simplifying assumption. To isolate the behavior along the second coordinate, we make the fol-
lowing simplifying assumption. We assume that before entering W, both algorithms have already
collected enough information in the e; direction so that the estimation error in the first coordinate is
negligible. This is justified because pulls of e; and x both provide substantial information about the
first coordinate, and both our method and Weighted OFUL sample z (or e;) frequently. As a result,
information in the first coordinate dominates that in the second, and the dominant source of error
comes from limited information along the second coordinate, which is therefore our focus.

Weighted OFUL in the Low Variance Window. In the low-variance window W where 07 =

T~ each pull of an arm a contributes 7 (a, e5)? units of information to the second coordinate.

Case 1 (start with es). If Weighted OFUL initially pulls e2 in W, then each pull adds 7' units of
second-coordinate information. After about logT'/ 2 such units have been gathered, the second-
coordinate error is at most . Since p, = {(x,0*) = 1 — ¢ and 0* € C; w.h.p., we have p, <
UCB,(t) and hence UCB,(t) > 1 —e=1—o(1).

Moreover, after m = ©(T~%logT/&?) pulls of ex we have mT* = O(logT/&?), so H62||Vt_1 =

O(g/+/1og T) and therefore UCB,(t) = (eg,§t>+ﬂH€2||V;1 < e4+0(Be//logT) = O(e) = o(1)
using e = T~'/* and 8 = ©(y/Tog T). Thus UCBy(t) < UCB,(t) and Weighted OFUL switches
to selecting x.

Case 2 (keep pulling z). If instead Weighted OFUL keeps pulling x throughout IV, then each pull of
x contributes only 27 to the e, direction, so after L pulls the total second-coordinate information
is at most L 2T,

Simple Regret of Weighted OFUL. Choose L = ¢, T~ 6L = Le2T = ¢y logT. By a
standard Chernoff/Hoeffding concentration, the failure probability of recommending a; = x decays
as exp ( — ©(log T')), hence the simple regret satisfies SR(T') < ¢ -exp ( — O(logT)).

Simple Regret of Algorithm Since our algorithm pulls the arm with the largest exploration
bonus (Line 2 of Algorithm , it allocates the window W to ey and gains LT =< cp, IOE%T units
of second-coordinate information within W. By the standard concentration inequality, the failure
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probability of recommending ar = x decays as exp ( — O(logT/ 52)), hence the simple regret
satisfies SR(T) < e-exp (— O(logT/e?)). Since e = T~/%, our simple regret is significantly
lower than that of Weighted OFUL by a factor of T7OWT),

4.2 THEORETICAL RESULTS FOR VAEE

We now present the main theoretical results for VAEE. The following theorem establishes a simple
regret bound with harmonic-mean dependence.

dA+to 2

Theorem 4.1 (Simple Regret of VAEE). Set 5; = 2v/\ + 16\/10g(4t2/5) - dlog === and

A = 1 in|Algorithm 1} Let o) be the i-th smallest element in {o2}T_,. With probability at least
1 — 9, the simple regret of [Algorithm I|satisfies

SR(T) = O~(\/E min T = M
1<k<T+1 Ei:k ﬁ
or

T € [U;k_1)70;k)] ’

where ((T') = 2dlog(1 + ZTE[T] o-%/d).

Remark 4.2. Theorem [.T|provides a simple regret bound for VAEE that depends on the harmonic
mean of the variances o7. To see this, we can simplify the bound by substituting ¥ = O(d) and
«(T") = O(d) , which yields the following simplified expression:

. T 1 O(d) 1 -3
t= g i=

This bound in highlights that the simple regret decreases as the harmonic mean of the variances
increases, effectively capturing the influence of low-variance actions on the overall performance.
Notably, this result breaks the traditional /A barrier, where A = Zthl O’?, demonstrating that
our variance-adaptive approach can achieve significantly better performance in environments with
heteroscedastic noise.

Remark 4.3. It is worth noting that our harmonic-mean dependence is subtracted by the contribu-
tion of the O(d) smallest variances. This subtraction is unavoidable due to the inherent difficulty of
estimating a d-dimensional parameter, which requires at least d well-explored actions. In the worst-
case scenario, these d actions may correspond to the smallest variances, and then it is impossible to
achieve a near zero simple regret with only 7" = O(1) rounds of noise-free exploration. Therefore,
the subtraction term in our bound is necessary to account for this fundamental limitation.

Nonetheless, we can still show that our simple regret bound is strictly sharper than the v/A-type
bounds in prior works (Zhou et al., 2021} |Zhao et al. 2023a} Jia et al.| 2024). To see this, we

observe that min; <x<741 {I = [ e [ngk_l), Ugﬂk)}} is the solution to the following
- i=k T ()2
loe5)]
equation: 22 = # We further have
=1 max(c?,22)
_ t
2 [’(t) < L(t) — L(t) (:L'2 + i ! Zi:l 0—12) ) (4'2)

D S EEp———— t
i=1 o2 fa2 x2+t-1Y o2

1=1"1

where the second inequality follows from mean inequality. Rearranging the terms yields 22 =
O(dA/t?) when t = Q(d). Please refer to Appendixfor detailed derivations.

4.3 COMPARISON WITH WEIGHTED OFUL

In this subsection, we present a case study to illustrate the limitations of using the cumulative vari-

ance A = Zthl o? as a measure of statistical complexity in linear bandits with heteroscedastic
noise and the potential weakness of existing algorithms that rely on this measure. For simplicity, we
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Table 2: Simple and Cumulative Regrets of Algorithm [I]and Weighted-OFUL (Zhou & Gul [2022).
We use R(T') < Zt 1 SR(t) to upper bound the regret of Algorlthml All comparisons in Table
are made under the assumption that Zt 1/o? > Z D1 /[c®]2. For the concrete variance

profiles in the table this assumption holds when T is large enough relative to d: for the fast-decaying,
flat-noise, and many-moderate-spike profiles it is satisfied as soon as 1" > d, while for the front-

loaded super-precision profile it holds once 7" >> d°/*.

Scenario o? Simple Regret Cumulative Regret
Algorithm Weighted OFUL | Algorithm Weighted OFUL
Fast-Decaying Noise o7 = 1/t? O(73) O(4) i O(d) i 0(d)
Flat Noise (1/d) o2 = 1/d ()(\/g) 0(\/2) O(VdT) O(var)
ac(0,1), =
i _d_ (4 ) 1/3 )
Many Moderate Spike {f z <ol o O(74=) O(ﬁ) O(dTY?) O(dVT)
) T,
Front-Loaded o = ~ ~ ~ ~
Super-Precision min{1/2, t=2}, t < TY5, O(7i) 0(%) O(d) O(avT)
1/2, t> T3,

assume Zt [ 1/o? > Zo(d) 1/[0)]2. Therefore, according to #T)) and|Zhou & Gul(2022),

T —1/2 T 52
1 \/ 2 i=1 O
SRalg1 < d( E ) ; SRweighted—OFUL X d Yoo 4.3)

o2 T
t=1 t

First, by the HM-AM inequality, we have 7'/(3_, 2) < 3, 07 /T, which leads to a general rela-
tionship between the regret bounds of our methods: SRale 1 < SRweighted—oFuL for any sequence

o2. Therefore, our regret bound is always sharper whenever Y1, 1/02 > 329 1/[¢()]2_ In the
Table 2] we demonstrate the specific rate of improvement for some special variance sequences. We
note that an improvement in simple regret does not necessarily lead to an improvement in cumulative
regret. For example, this is evident in fast-decaying noise, as discussed in Remark [3.4]

5 STOCHASTIC LINEAR BANDITS WITH FINITE ACTION SPACE
In this section, we consider the special case where the action set A is finite. We propose a variance-
adaptive G-optimal design based exploration strategy and establish a simple regret bound with

harmonic-mean dependence which improved over Theoremby a factor of V/d.

5.1 VARIANCE-ADAPTIVE G-OPTIMAL DESIGN BASED EXPLORATION

Algorithm 2 Variance Adaptive G-Optimal Design (VAGD)

Require: A C R% §
1: Find nearly G-optimal design 7 € A(A) with |supp(7)| < 4dloglogd + 16 as described in
[Theorem 5.2 that minimizes

max llally (x)-1 subject to Z =1
acA

Let Tp(a) + @ foralla € A.

fort=1,...,T do
Pull the action a; := argminge 4 >, c7(a)
Observe reward r; and variance o;.
Update the set T¢(a:) < Ti—1(a;) U {t} and T¢(a) + T:—1(a) for all a # a;.

end for . )

Outout ap;1 = argmax, ,(0r,a) where Oy = V{l ZtT:1 J[QTtat and Voo = I +

T 2. T
D i—1 0 gy .

1
o2.m(a)
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G-optimal design. In Algorithm [2| we need to find a nearly G-optimal design 7 € A(A)
that maximizes logdet V' (w). We first introduce some necessary notations and definitions re-
garding D-optimal and G-optimal designs. Let 7 : A — [0,1] be a distribution on 4 so
that >, ,m(a) = 1. Based on 7 € P(A), define V(r) € R?*? and g() € R as fol-
lows V() = Y ,cam(@)aa’, g(m) = maxaca HaH%/(W)_l. A design 7 is defined as a G-
optimal design if it minimises g. And a design 7 is defined as a D-optimal design if it maximises
f(m) = logdet V(m). The set Supp(w) is sometimes called the core set. The following theorem
characterizes the size of the core set and the minimum of g and establishes the equivalence of G-
optimal and D-optimal designs.

Theorem 5.1. (Lattimore & Szepesvari, 2020, Kiefer-Wolfowitz) Assume that A C R% is compact
and span(A) = R<. The following are equivalent: (a) 7* is a minimiser of g; (b) 7* is a maximiser
of f(m) =logdet V(r); (c) g (7*) = d.

Furthermore, there exists a minimiser 7* of g such that | Supp (7*) | < d(d + 1)/2.

However, the core set size of the G-optimal design given by [Theorem 5.1|is at most d(d + 1)/2,
which may cause additional overhead in our variance-adaptive algorithm. To address this issue, we
can find an approximate G-optimal design with a smaller core set size using the following theorem.

Theorem 5.2 (Lattimore et al.[2020). Suppose that A C R? is compact and span(.A) = R?. There
exists a probability distribution 7 € A(A) such that g(7) < 2d and the cardinality of the core set of
m is at most 4d log log d + 16.

Adaptive arm selection. After obtaining the approximate G-optimal design 7, we use it to guide
the arm selection process. Unlike traditional G-optimal design-based algorithms, which pull arms
according to the fixed distribution 7, our algorithm adaptively selects arms based on the observed
variances o;. Specifically, at each round ¢, we choose the arm a, that has been pulled the fewest
times relative to its probability under 7, weighted by the inverse of the observed variance. This
adaptive strategy prevents over-exploration caused by the unpredictable and heteroscedastic nature
of noise and ensures that we collect sufficient information from all arms in the core set of 7.

Weighted least-squares estimator. Inspired by Zhou et al.|(2021), we use a variance-weighted
least-squares estimator to estimate the unknown parameter 8*. Specifically, after 7" rounds of ex-

ploration, we compute the estimator 67 as follows:

T
GT—VleO’t Teag, VT:I+ZU1‘ atatT.

= t=1

Under the finite action space regime, we show that this estimator achieves a tighter confidence bound
compared to the general case, replacing the v/d factor with y/log(].A[) in the confidence radius.

Finally, we recommend the action ar; that maximizes the estimated reward based on éT.

5.2 SIMPLE REGRET BOUND FOR VAGD

Theorem 5.3 (Simple Reret of Algonthm' Suppose that A C R? is compact and span(A) =
R?. If we follow | then it holds that with probability at least 1 — §,

4dloglog d+16

=
T

i=1

T
(0%,a") — (6", ars1) < 2, | dlog(|41/6)/[

t=1

SM\ -

Remark 5.4. Theorem [5.3] - establishes a simple regret bound for Algorithm [2] that depends on the
harmonic mean of the noise variances o7, while improving the dependence on the dimension d com-
pared to Theorem In particular, the v/d factor in the numerator is replaced by v/log(].A]), which
can be substantially smaller when the action set A is finite and of moderate size. This improvement is
obtained by exploiting the finite action space structure and employing a variance-adaptive G-optimal
design exploration strategy. Consequently, Algorithm 2]is especially effective in settings with lim-
ited action sets, enabling more efficient exploration and improved simple regret performance.
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6 LOWER BOUND

In this section, we establish a lower bound for the simple regret in linear bandits with heteroscedastic
noise. Our lower bound nearly matches the upper bound in Theorem [.1] up to logarithmic factors,
demonstrating the optimality of our proposed algorithm.

Theorem 6.1 (Instance-dependent lower bound.). For any d > 2 and T > 1, and any algorithm .4,
there exists a linear bandit instance with heteroscedastic Gaussian noise satisfying our assumptions
such that the simple regret is lower bounded as follows:

BISR(D)] > 4. (i 2 o

o
t=1 t

Remark 6.2. Theorem |[6.1]establishes an variance-sequence-dependent lower bound for the simple
regret in linear bandits with heteroscedastic noise. This lower bound matches the upper bound in
Theorem [4.T] up to logarithmic factors, indicating that our proposed algorithm is nearly optimal
in terms of its dependence on the harmonic mean of the variances o2. This result highlights the
fundamental difficulty of the best-arm identification problem in linear bandits with heteroscedastic
noise and underscores the effectiveness of our variance-adaptive approach. In contrast, in Table
E], the worst-case lower bound established in previous studies (He & Gul [2025] Jia et al.l 2024)
is derived by constructing an instance where all variances are equal, which does not capture the
complexity of heteroscedastic linear bandits, especially when the variances vary significantly across
actions and time steps.

7 CONCLUSION AND FUTURE WORK

In this paper, we study the sample complexity of stochastic linear bandits with heteroscedastic noise
under a fixed action set. We propose a variance-adaptive algorithm that achieves a nearly instance-
optimal simple regret bound, characterized by the harmonic mean of the noise variances. We further
establish a nearly matching lower bound, demonstrating the optimality of our algorithm. Together,
these results provide a comprehensive characterization of the statistical complexity of linear bandits
with heteroscedastic noise.

There are several promising directions for future work. First, one could consider settings where the
context is not fixed but instead sampled from an unknown distribution. Second, it would be natural
to extend our results to the case where the noise variances are unknown and must be estimated
from data. Third, in reinforcement learning, the variance of the noise is governed by the transition
dynamics, which can themselves be estimated from historical data. Extending our results to Markov
decision processes using such estimated variances would be an interesting direction to explore.

10
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A LLM USAGE

We used an LLM only for grammatical and stylistic polishing of the manuscript. No research ideas
or results were generated by the LLM. The authors wrote and verified all technical content.

B PROOF OF THEOREM [4_1]

Lemma B.1 (Matrix Inversion Lemma, Harville| (1998)). For any invertible matrix A € R%*4,
vector u, v € R?, it holds that

1 A luv T A1
1+viA-1u’
Lemma B.2 (Elliptical Potential Lemma, |/Abbasi-Yadkori et al.| (2011)). For any sequence of vec-

tors {x;}2_; C R%, let Vo = Al for some A > Oand V; = V;_; +x;x, fort > 1. If ||x;||2 < L for
all ¢, then we have

(A+uv')l=A4"

2
meu Ixill?, 1} < 2dlog ”fL

Lemma B.3. With probability at least 1 — 4, it holds for all ¢ € [T] that

. d\ + to 2
16, — 0% [lv, < B = 2V/A + W log(4£2/3) - dlog = Tin,

Proof. The proof follows from the standard analysis of OFUL (Abbasi-Yadkori et al., 2011 with
variance-weighted updates.

We have
16, — 6%[[3, = (6, — 0*)TVt(9t —-07)

T t ¢
= <Z o 2a,r, — Zasf?ataje* - )\0*> v, vyt <Z o 2a,r, — Zos’zataz—B* - )\0*)
s=1 s=1 s=1 s=1
t t
- <Z o 2agns — AB*) V! (Z o 2agns — /\0*>
s=1

s=1

t T t
< 207077, +2 (Z a;2asns) Vi (Z a;Qasns) (B.1)
) s=1 s=1

Io,t

where the second equality follows from the definition of 0;, the third equality follows from the
definition of r¢ and 7, the inequality follows from Young’s inequality. To further bound I ;, we
introduce the following notation:

t
dy=0, d;= ZUS_QaSnS,

ai + samm

It :1(O§s§t710,8 SWS)? ,YS = 6410g(482/6)d d)\

Decomposing Iy ; into a martingale difference sequence, we have

los = d/_1V; 'y + 20, 22/ Vi My +op tfa)l Vi
<Ipt-1+ 20;277,5212—\/; d;_; +Jt_477t2a:Vt a; . (B.2)

Il,t I2,t
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From the matrix inversion lemma (Lemma[B.I), we have

-2
o, Vi 1atatVt 1>dt .
1+Ut A Vt—l t

Il,t:at Nty (Vt 1

0t2||at||%/t—_113tv;:l1dt1)

-2 -1
=0 a; V., d;_ 4 —
t m<tt1 T o ad?
t—1

—" aV,_1di
1+oy 2||af||v—1

Based on our assumpition on the noise 7;, I ; - Z; is also a sub-Gaussian random variable with
variance proxy bounded by

2 2
Ml i

O

1 -2 2 2
10 Tl

Adding I ;- Zs up to t and using Lemma we have with probability at least 1 — §/2,

Xt: Zt: ||aS||2 71 ”ds—lHQ—l
Ls -Zs < |2log(2/6) 52 Vici i
s=1 ) s=1 (1+0s 2||3€HV—1 )2
< \210g 2/9) Zmln{l llos as||2 } Ve
s=1
d\+1
<4/ 27¢log(2/6) - 2d1og &
dX
1 d\+to 2
<= 8log(2/9) - dlog ———==2 B3
Cllasli?,
where the second inequality follows from the definition of Z; and the fact that —————==1— <1,

(1+o Sz\lasllz -1 )2 =

the third inequality follows from Lemma[B.2] and the last inequality follows from Young S 1nequal-
ity.
Using union bound over all ¢ > 1, we have with probability at least 1 — §/2,

; -2
E i 1 d\+t

L I < v+ 810g(4t2/5) -dlo ﬂ
s=1 4 dA

forallt > 1.

For the second term I 4, it follows from the matrix inversion lemma (Lemma [B.1)) that

-2
o 2V la,al Vo
4 2 T -1 t tltt t—1
Iy, =0y "nfa, (Vt_l— )at

Ty -1
L+o;%al Vi

el el
= 0. a. _ _—
it T+ o7 el )

lall?, -

e Vi
"1 +o, 2||3‘1t||
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Using union bound over ¢ > 1, we have with probability at least 1 — §/2,

192 log (412 /6) ”atH%/*l
I, < o, "of log(4t —_—
I+o; QHat”%/t—_ll

forallt > 1.
Thus, forany ¢ > 1,

[N

t t )
I, < 2log 452 /) ———==1
Z 27 g / )1+0'92Has||

t
< log(4t*/6) > min{1, |lo; a7 . }
s—1

s=1
)
< 2log(4£2/5) - dlog %, (B.4)

where the last inequality follows from Lemma [B.2]

Substituting (B-3) and (B.4) into (B:2), and using induction on ¢, we have with probability at least

dr+t
To: <y = 641og(4t?/5) - dlo ﬂ7
’ dA
which further implies that
) - S, 9 dx + tamm
160 = 6713, < 2216713+ + 2Lo < 27+ 25610g(41>/5) - d log —=—mn.
O
Lemma B.4. If we follow [Algorithm I|to choose the action a;, then it holds for any ¢ € [T that
t)—k+1
||at||V_1 < min {z%= L(t)i+ [o (z)] is the i-th smallest element in {02} _, |
1<k<t+1 Z,_k %)
= o)
ve oo},
—2
where ((t) = 2d 10g(%).
Proof. Whenz € [0,1], x < 2 log(l + x), which further indicates that
Z mln{ ||aT|| } <2 Z log(l + = o2 ||aT|| )
TEt] TE[t]
det(V;)
<21
=27 Get(Vo)
d+ > 072
< 2dlog(zd€[t]). (B.5)

Let

d+> ey 072)

W(t) == 2d10g< pi

Note that for 7 < ¢,
lally-s < lladly - < adllys
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due to the fact that V;_; > V;_; and the definition of a; in Therefore, following
inequality (B.3), we obtain that

. 1 9 . 1 9
> minf1, 73”5‘”'%:1} <> min{1, (Tg”aTHV:JI} < (). (B.6)

TE[t] TE[t]

As LHS of (B.6) is strictly increasing with respect to Hat||V711 as long as ¢(t) < t, we can derive a
o
bound for ||at||V711 by solving
o

Z min {1, 012x2} = (t). (B.7)

TE[t]
To solve (B.7), we define a sorted sequence of {o; }!_; in increasing order, denoted as
0,51) < O't(z) <. < ogt).

(k=1) (0]

Let at(o) := 0. Suppose that = € [0, for some k € [t]. Then for i < k, we have

. 1,
min < 1, —x° » =1;
o2

for i > k, we have

After rewriting the LHS of the above equality, we have

—1+Z o

i=k Ut
We can then rearrange the above inequality to obtain

||atH%/t111 S (EZ,

where
t)—k+1 _ k+1
z?:= min {L(t) —1'_ [ng 1)} 7( ) = <[o t(k)}Q}.
Iskst+1 Zi:k [Jii)]z Z (1)
This completes the proof. O

Remark B.5. In the previous proof, 2 is the solution for the implicit equation (B.7). We can also
rewrite it as

t
2 _
o Z max(o?,x2) «e),

i=1
which implies that

2 L(t)
=
2im1 max(o?a?)

‘We further have

— t
2 < u(t) < u(t) _ L) (22 + 7Y 0F)
e TS i .
= T s !

Rearranging the above inequality, we obtain

W)l _jo? < dYL o2
I i

)
when ¢t = Q(d).
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Theorem B.6 (Simple Regret of VAEE, restatement of Theorem [A.1)). If we set A\ = 1 and f; =
—2

2VA + 16\/10g(4t2/(5) -dlog % in |Algorithm 1} then with probability at least 1 — 0, the

simple regret of is bounded as

(T)—k+1

)
i=k [O_gf)]Q

(@)

[07]? is the i-th smallest element in {2 }%.

=1

SR(T) = O(Vd) ,min {x =

T € [agpk_l),a;k)}},

—2
where ((T) = 2d10g(d+zf+l"f)_

Proof. By Lemma [B.3] with probability at least 1 — 4, it holds for all ¢ € [T'] that 8* € C, := {0 €
R?: (|6, — ||y, < B;}. In the following, we condition on the event that 8* € C; for all t € [T7.
With the conditioned event, we can show by induction that for any ¢ € [T], a* € Ay:

* > * * > * > :
HLEX, (O] 2 020 = g (0T ) = g i, (0@

where the first inequality follows from the fact that 8* € C;_1, the second inequality follows from
the definition of a*, and the last inequality follows from the definition of A;_;.

Let a* = argmax,¢ 4(0*, a) be the optimal action. By the definition of simple regret, we have
SR(T) = (0*,a* — ar)
< max max (0,a) — (0", ar)

acAr 0eCr_1
< £i§<éT717a> + Brlarlly- — (Or-1,ar) + Briar|y-

where the first inequality follows from the event that 8* € C; for all ¢ € [T, and the fact that
a* € Ar, the second inequality follows from the definition of Cr_; and the definition of ar in
Algorithm 1

Then it suffices to bound maxae 4, (éT_l, a) — (éT_l, ar). Since ar € Arp, it is guaranteed that
there exists 8/ € Cp_1 such that

{67, ar) — max min (6,a) >0,

which further implies that
;161?4>;<9T—17a> —(O7_1,ar) = ;Ié?f;(éT—l, a) — (0, ar) + (0 — 6r_1,ar)
< ;161%(%,1, a) — (07,ar) + Brllar|y,.
< 3fr ;Ieli); ||"=1||VT*_11 = 35T||aT||VT*_117

where the last inequality holds because maxac.4, (O7_1,a) — maxac.4, mingee,_, (0,a) <
237 maxXac A, ||al|y,-: based on the definition of Cr_; and the last equality follows from the action
T—1

selection rule in

Hence, the simple regret of [Algorithm 1{is bounded as
SR(T) < 5frlar(ly -

T)=k+1] (). . .
i L(T)ij— [ai(p)]2 is the i-th smallest element in {o2}7_,
1<k<T+1 ST FoE

SO(\/&) min {x:

ve [a&’“‘”w%’“’]},

where the last inequality follows from the choice of S and the result in the previous lemma. O
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C PROOF OF THEOREM

The proofs of our lower bound require the following Lemmas, which is standard technique used for
lower bound.

Lemma C.1 (Le Cam two-point method (Le Cam, |1986))). Let P and () be probability measures on
the same measurable space, and let ¢ : @ — {0, 1} be any (possibly randomized) test. Then

S(P=1+0=0)) > L (1-5r(P,Q),
where oy (P, Q) = sup, |P(A) — Q(A)] is total variation distance. Moreover, by Pinsker’s in-
equality,
orv(P,Q) < /5 KL(P|Q).

Hence the average error of any test is bounded below by

1
S(Plo=11+Qo=0}) = 3(1-\/1KLPIQ).
Lemma C.2 (Pinsker’s inequality (Pinsker, [1964)). For any probability measures P, @,

sv(P,Q) < /2 KL(P||Q).

Lemma C.3 (Yao’s minimax principle (Yao, [1977)). Let II be the set of deterministic algorithms
(measurable decision rules), P a family of instances with loss L(7, 8) and let D be distributions
over P. Then

inf sup Eg[L(m,0)] > sup inf Eg.,E¢[L(m,0)].

mell gep peD TE

In other words, the worst-case risk of the best deterministic algorithm is at least the Bayes risk under
any prior f.

Now, we are ready to prove our lower bound.

Proof of Theorem[6.1] Step 1 (per-coordinate two-point divergence). Let action set A =
{—1,1}%. The unknown parameter belongs to

O = {—c¢,+c}? forsome ¢ > 0.

The optimal arm for 8 is a*(0) = sign(@). Since each coordinate mistake costs 2c, the simple regret
is
SR(T) = Eq[(6, a(0)) — (8, ar)] = 2¢ - Eq [Ham(dT, sign(O))} :
where
Ham(u,v) Z]l{uj # v}
Jj=1

LetS = Zthl o; 2 denote the total precision. Fix j € [d] and consider neighboring parameters that
differ only on coordinate j:

0V =4, 097 =—c, 97T =007 € (e} (k#)).

Let IP’SZ) = Pgi.+) and ]P’(j) = Pg(,—) be the laws of the full transcript under these two instances.
By the chain rule for KL and the fact that a; = m;(H;_1) contributes to KL,

KL(EY|PY) ZEKL u DN (o)),

where 1{""*) = (00 a,). The means differ only on coordinate 7, so p{" ) — ™) = (4¢ —

(—¢))as,j = 2cat ; and thus
G+) ()2 2ca; )2 922
KL(/\/(/L?JF o2) HN( (4:— ) t)) _ (pe p ) _ (2cayy) _

2 2
207 20} o;
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since at = 1. Summing over ¢ yields the instance divergence

(1)) ~ 1 2
KL(PY|[pY Zﬁ—zcs.
—1 0%

Step 2 (Le Cam + Pinsker = per-coordinate average error). Apply Lemma [C.]| with the test
¢ = 1{3; = +1} between P and P, and bound the TV distance by Lemma|(C.2] We get

1 P N 1 ; ; 1
5 (P13, # 41} + PU{3; # -1)) > 5(1f\/5 KL(PY ||P£J>)) = 5(17(;\/5).
Choose ¢ = +.571/2 to obtain the uniform per-coordinate bound

(Pj_j){éj #+1} erij){gj 71}) > - forall j € [d].

|~

Step 3 (aggregate to d coordinates under Hamming loss). This part requires the following lemma.
The proof of this Lemma is defer to Appendix

Lemma C.4 (From two-point bounds to a d-dimensional Hamming-risk lower bound). Let © =
{#£c}? and put the uniform prior on ©. Let Hy denote the full transcript and let § = §(H7p) €
{+1} be any estimator of sign(8). For each coordinate j € [d], fix two instances §U:+) §U:—) ¢ ©
that differ only in coordinatej (ie., 0§]’+) = +¢, 9](4’7) = —cand GI(CJ’J“) = 0,(63’7) for all k # 7).
Denote by PJ(FJ ) and PEJ ) the corresponding laws of Hp under these two instances. Assume that for
every j,

%(Pf){gj £ +1} + PY{s; # 71}) > 5, forsomen € (0,1/2]. C.1)
Then the Bayes Hamming risk under the uniform prior satisfies
Eg Eg [Ham(é,sign(@))} > nd, (C2)
and, consequently, by Yao’s minimax principle,
iI;f Slelg Eg [Ham(s,sign(0))] > nd. (C3)

Invoke Lemma with n = % to conclude that the Bayes Hamming risk under the uniform prior
on O satisfies

Eg E¢ [Ham(8,sign())] > gd.

By Lemma|[C.3](Yao’s principle), this also lower-bounds the minimax Hamming risk:

3
inf sup Eg [Ham($,sign(6))] > —d.
T 6co 8

Step 4 (convert Hamming loss to simple regret). In © = {4c}?, each coordinate mistake costs
exactly 2c in value. Therefore

inf sup Eg[SR(7,6,T)] > 9-2d = 3cd = idS*W,
T 6co 8 4 16

where we used ¢ = $571/2, O

C.1 ProOOF OoF LEMMAI[C 4]

Proof of Lemma By definition of Hamming distance,

d
Ham(8, sign(6)) = > _ 1{3; # sign(6;)}.

j=1
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Taking expectation under the model instance @ and then averaging over the uniform prior on ©, the
Bayes Hamming risk equals

d
R B [Ham (3, sign(6))] = > EgPe{3; # sign(6;)}. (C.4)
j=1

Fix a coordinate j € [d]. Write @ = (6;,60_,), and condition on #_,;. Under the uniform prior on
O, we have P{0; = +c | 6_;} = P{6; = —c| 6_;} = 1. Hence, conditionally on 6_j, the law of
the transcript Hyp is the equal mixture

My = 5PP 4+ LPY), (C.5)

where Pj_j ) and Pij ) are the endpoint laws that differ only in coordinate j (with 8_; held fixed).

Identify the conditional Bayes error for coordinate j with the average two-point error. Consider
the indicator loss for estimating sign(f;) by the (measurable) decision rule §;(Hy) € {£1}. The
conditional Bayes error probability for coordinate j, given 6_;, is

Errj(0-;) £ By vo |3 18;(Hr) # +1} + 5 1{3;(Hr) # —1} ]
Using (C.3), this equals the average of the two endpoint errors:
Err;(0_;) = L PV {5 # +1} + 1 PY{5; # -1}, (C.6)
By the assumption (C.I), we have, for every 6_;,
Err;(6_;) > n. (C.7)
Average over 6_; and sum over j. By the tower property (law of total expectation),
EoPo{s; # sign(6;)} = Eo_, [ Brr;(0-,) |.
Combining with (C.7)) yields
EgPo{3; #sign(6;)} > n  forevery j € [d]. (C.8)

Summing (C3) over j = 1, ..., d and using (C.4) gives
d
Eg Eg [Ham(8, sign(0))] = > EoPo{3; # sign(6;)} > nd,
j=1

which is (C2).
From Bayes to Minimax. By Yao’s minimax principle (Lemma [C.3), the Bayes risk under the
uniform prior lower-bounds the minimax (worst-case) risk over © of any deterministic policy:

inf sup Eg [Ham(&sign(B))] > EgEg [Ham(é,sign(@))] > nd,
T 6e€o

which is (C3). This completes the proof. O

D PROOF OF THEOREM

Lemma D.1. If we follow |Algorithm 2|to choose the action a;.7, and compute éT and V7, then it
holds that

1 [supp(7)| 1
Vr = — — ; V(TF)
{Z of Z o)
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Proof. Consider the action a,,, € Asuch thatm(a,,) >0and " 7
straightforward to see that

VTEZ

acA

—L__ is minimized. It is
o2-m(a)

> W]w(a)aa—'—: > ﬁ(am)v(ﬁ)' (D.1)

TGTT(am) TGTT(am) T

Then it suffices to lower bound >

1
TeTT(aﬂl) 0'72,'7'((3771) :
We consider the arms in supp(w)\{a,,}. For the round ¢(a) when the arm a is pulled and
Y oreTi(a) 5T 2 2oreTr(am) sTA(any: it is guaranteed by the selection rule that a will not

be pulled in the subsequent rounds. We denote by o (a) the last variance observed when pulling the
arm a. Then we have

1 1 1
Yoo w@) Y mg > ”(a)[ > gz~7r(am)+[0(a)]2~7r(a)

acsupp(m)\{am} TE€Tr(a) T acsupp(m)\{am } TETT(am)
1 1
<|1-— m —_
BRI Do RSP P 7y
T€Tr (am) aesupp(m)\{am}
1 [supp(7)|—1 1

< [1 = 7(am)] —_+ —,
A X o
(D.2)

where the first inequality is due to the definition of o(a) and the last inequality follows from the fact
that {o'(a) }acsupp(r)\{a,.} are the variance signals observed at distinct rounds.

Rearranging (D.2)), we obtain that

1 [supp(7r)|—1 1

— < — . D3

Z m(a) Z o2 w(a) = Z o2 (am) + Z 002 (D-3)
a€supp() TETT(a) TETT(am) i=1 T

Note that LHS of (D3) is exactly 3,_, <, which further indicates that

[supp(7)|—1 1

1
Z o2 7T(a’m ZUTQ_ ;

T€Tr(am) t=1

As a result, we have
[supp(7)|—1 1
—= V(™)

5
Y
(]
Q=
|
]

following (D-I). O
Lemma D.2. In[Algorithm 2] for any arm a € A, with probability at least 1 — ¢, we have

(0 — 6%,2)| < ||ally,+ /21og(2[A]/)
[supp(

T
< llallve)-+ | 21024/ [ 25 - Z }

t=1

Proof. From the definition of 67 and Vr, it is straightforward to obtain the following inequality:

T
(00 — 0%,a)| = (Vi ' > oy ray — Vi 'V - 07, a)

T
—1 -2
Vp Z oy “agn;, a)
t=1
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T
- ’ > or e, Vi ta)|. (D.4)
=1

Applying Lemma|D.3|to (D-4), we have that with probability at least 1 — 4,

(67 — 67, a)| < \ QZO‘t a;, Vi ta)2log(2/0)

IN

22 al?log(2/0)

T
= 2ZaTVT_lat_latot_la:VT_la10g(2/5)
t=1

< \/ZaTV{lalog(Q/é),

where the last inequality is due to the fact that Zthl o, 2aa] = V.
By Lemma|D.T] we further have
(07 — 67, a)| < la]ly,1/210g(2/6)
T bswee™ly
< llallvny-14 | 21082/0)/[ 3 = Y —a= ]
o , 2
t=1 1 -1 o]
from which the desired result follows by taking a union bound over all a € A. O

Lemma D.3 (Hoeffding’s inequality). Let {x;}" ; be a stochastic process, {G; }; be a filtration so
that for all ¢ € [n], x; is G;-measurable, while E[z;|G;_1] = 0 and ;|G;_; is a o;-sub-Gaussian
random variable. Then, for any ¢ > 0, with probability at least 1 — ¢, it holds that

i: i < |2 z": o?log(1/6).
i=1 i=1

Theorem D.4 (Simple Regret of Algorithm [2| restatement of Theoremﬂ Suppose that A C R?
is compact and span(.A) = R9. If we follow |Algorithm 2} then it holds that with probability at least

1-46,
T 1 4dloglog d+16 1
(0%,a%) — (8%, ar41) < 2, | dlog(|A]/8)/ [ZT -y -~
o ; 2
t=1 1 i=1 [o7']
Proof. From the definition of ar 1, we have
(6*,a%) — (0%, ary1) = (Br — 0", ar,1) + (0" — Or,a%) + (O7,a" — ary1)
< [(Or — 0", ari1)| + [(0r — 67, a")]
T 4 [supp(7)| 1
< (larsillve s +lla*llve ) | 2log(lAl/8)/ [ D — = Y
t=1 1 i=1

4dloglog d+16 1

>

i=1 T

T
<2, |dlog(2]4]/8)/ [Z

t=1

ﬁm\ —

where the first inequality follows from the definition of a1, the second inequality is due to Lemma
and the last inequality is due to Theorem|[5.2] O
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Algorithm 3 Variance-Aware Exploration with Elimination (VAEE for heavy-tailed noise)
Require: A C R4, 6.
1: Initialize Vi < Ay, 69 < 0, A; <+ A.
2: fort=1,...,7do
3:  Pull the action a;  maxXec 4, ||e||v_1l.
t,

The agent receives the reward r; and the variance o;.
Calculate V; < V,_; + o, 2a,a/ .
Calculate

AN

~ A i i — <ai 0>
0, + argmin Z[|0]3 + > ¢, ()
I0]lz<1 2 = i

3
1+‘7i HazH2 —1
i—1
where 7, = 70 * ,1—1
' g; Hail‘vfll
i

7. Set confidence set as follows

Ci+ {00~ ét“%/fl < B}

8:  Eliminate low rewarding arms: A;;; < {a € Ay : maxeca, mingee,(0,€) <
maxgec, (0, ) }.
9: end for

E EXTENSION TO HEAVY-TAILED NOISE

In this section, we extend our results to the setting where the noise is heavy-tailed. Specifically, we
consider the following assumption on the noise.

Assumption E.1. For any round ¢ (¢t > 1), the noise 7 satisfies that

E[nelate, me—1] =0, Enflaie, nie—1] < of.

This assumption is more general than the sub-Gaussian assumption on the noise, which only requires
the second moment of the noise to be bounded.

To handle the heavy-tailed noise, we consider the following adaptive pseudo-Huber regression esti-
mator (Ruppert, 2004; [Sun, |2021; [Li & Sunl 2024):

L(x):=1- (\/72—1—952—7'), (E.1)

where 7 > 0 is a robustification parameter. The pseudo-Huber loss behaves like the squared loss
when |z| is small, and behaves like the absolute loss when |z| is large, which is firstly applied by |Li
& Sun| (2024) into the heteroscedastic linear bandit setting.

Lemma E.2 (Theorem 2.1, |Li & Sun/2024). Let x = d - log(1 + T/do2..). If we set 79 >

min

max{v/2x,2v/d} /+/log(2T2/4), then with probability at least 1 — 44, it holds for all ¢ € [T'] that

. / 212 2t?
0

Theorem E.3 (Simple Regret of Algorithm [3). Consider the linear bandit problem with heavy-
tailed noise satisfying Assumption If we set 7o = ©(v/d) and A = 1 in|Algorithm 3| then with

probability at least 1 — 44, it holds that

T)—k+1
D) —k+1| s

SR(T) = O(\/&) - min T = = N
=k R

1<k<T+1

o ? i . .
where ((T) = 2dlog(%>. Recall that {U(T)};f’;l is the sorted sequence of {0}, in

the ascending order.
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Proof. The proof follows the same line as the proof of Theorem4.1] with the only difference being

the confidence radius 3;. By setting 79 = ©(v/d), we have 3; = O(+/d). Following the same
analysis as in Theorem [4.1], we can obtain the desired result. O
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