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ABSTRACT
Objective Develop a machine learning-based model to predict
IDH using pre-dialysis features. And to continuously predict
IDH within the next hour during the dialysis session by
incorporating real-time monitoring data. This approach helps in
timely intervention, potentially reducing IDH rates and
improving clinical outcomes for patients.

Methods Collected maintenance hemodialysis (MHD) patients
from October 1, 2021, to July 31, 2022, and divide them into
development and validation datasets based on the treatment time
point of May 1, 2022. IDH is defined as follows: (1) Nadir90:
intradialytic systolic blood pressure (SBP) < 90 mmHg; (2)
Fall20Nadir90: intradialytic SBP < 90 mmHg and a drop of ≥ 20
mmHg from pre-dialysis SBP. Analyzed the model’s predictive
performance trained with various machine learning (ML)
classification algorithms using k-fold cross-validation, evaluated
by plotting the receiver operating characteristic curve (ROC) and
precision-recall curve (PRC), calculating the area under the ROC
(AUROC) and PRC (AUPRC), and computing the true positive
rate (TPR), and true negative rate (TNR).The XGBoost algorithm
was used to identify the important features required for the
warning models.

Results Data from 644 patients were analyzed, contributing
61,823 HD sessions with 302,942 intradialytic SBP measurements.
IDH occurred in 2,659 (4.3%) HD sessions (Nadir90), in 1,706

(2.76%) sessions (Fall20Nadir90). Among various models
compared, XGBoost achieved the best performance for
predicting IDH before HD session (TPR: 0.6, TNR: 0.99, AUROC:
0.955, AUPRC: 0.686). Key predictive features included historical
minimum SBP, average of historical minimum SBP, current SBP,
diastolic blood pressure (DBP), IDH incidence rate, interdialytic
weight change rate, prescribed dialysis duration, and dialysis
vintage. The real-time model for predicting IDH within the next
hour showed a TPR of 0.89, TNR of 0.92, AUROC of 0.959, and
AUPRC of 0.38, with additional important features being mean
arterial pressure (MAP), dialysis time, and ultrafiltration (UF)
changes.

Conclusion The XGBoost model has a high predictive capability
for IDH during an ongoing HD session, assisting healthcare
providers in assessing IDH risk and making timely decisions.1

KEYWORDS
Hemodialysis, intradialytic hypotension, machine learning,
predicting model, XGBoost

1 INTRODUCTION
Intradyalytic hypotension (IDH) is a common and serious
complication during hemodialysis (HD), with significant risk
implications. IDH not only affects the quality of life of patients
but can also lead to severe cardiovascular complications and
even death[1][2]. According to a study on the mechanisms of
IDH[3], the prevalence of IDH during hemodialysis is
approximately 10-12%. Additionally, a recent comparative
study[4] on the correlation between IDH and increased mortality
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evaluated different definitions of IDH and found its incidence
11.19% - 21.7% of the sessions, and 32.39% - 56.34% of the patients.
Traditionally, methods to prevent and treat IDH have been
varied[5][6], such as reducing the ultrafiltration (UF) rate,
avoiding significant interdialytic weight gain, increasing weekly
treatment time, adjusting the soac output, impaired vascular
resistance, and physiological parameters during HD. However,
the rapid advancement of artificial intelligence (AI) and machine
learning (ML) in recent years has intdium concentration and
temperature of the dialysate, and avoiding food intake during
dialysis. These methods mainly rely on manual intervention by
healthcare professionals. This approach is not only time-
consuming and labor-intensive but may also lead to suboptimal
treatment outcomes due to untimely or inappropriate
interventions[7]. Therefore, developing accurate and real-time
IDH prediction models is of great significance for improving the
prognosis of HD patients.

The influencing factors of IDH include blood pressure, weight,
hemoglobin level, blood glucose level, excessive UF, reduced
cardiroduced new prospects for IDH research[8][9], and achieving
more accurate and real-time IDH prediction[10][11][12].

Lee[7] et al. developed a deep learning model using pre-dialysis
clinical variables to predict IDH. Allinovi[13] et al. emphasized
the assessment of patients' fluid status before dialysis, using non-
invasive imaging techniques to provide crucial predictive
information. Zhang[14] et al. focused on utilizing real-time intra-
dialysis data, employing ML algorithms to analyze real-time
blood pressure and other dynamic variables during the dialysis
process, achieving high predictive accuracy. Li[15] et al. used the
dynamic changes in intra-dialysis data, employing advanced
optimization algorithms and ML models for real-time prediction.
Kim[16] et al. utilized deep learning techniques to perform high-
precision analysis on real-time data, with particular attention to
processing time-series data. Our experiments have demonstrated
that both pre-dialysis information and intra-dialysis data hold
significant value in predicting IDH.

In this study, we developed an early warning model using pre-
dialysis information and incorporated intra-dialysis data to
enhance prediction accuracy. And we simplified the model while
maintaining predictive accuracy. This approach not only
improved the model performance but also ensured real-time
prediction capability.

2 MATERIALS AND METHODS

2.1 Study Population
We conducted a retrospective study on HD patients at the
Second Affiliated Hospital of Nanjing Medical University from
October 1, 2021, to July 31, 2022. The data from 71,664 HD
sessions if 1,274 HD patients. The exclusion criteria for HD
patients were: (1) Age < 18 years; (2) Insufficient basic
information and clinical history; (3) HD treatment duration less

than three months. Exclusion criteria for HD sessions were: (1)
No laboratory test data available in the past 3 months; (2) Blood
pressure monitoring intervals during dialysis exceeding 1.5
hours; (3) Pre-dialysis blood pressure not recorded (Figure 1).

Figure 1. Data Screening and Dataset Partitioning. Screening
involves filtering patients and dialysis records, and the dataset is
partitioned based on time.

In the end, we included data from 49,891 HD sessions of 644
patients. Since this project was conducted as an internal quality
improvement initiative for the HD system, it did not undergo
institutional review board (IRB) review. We divided the dataset
based on the dialysis treatment timestamp on May 1, 2022. The
data before this date were used for training and testing the
model, while the remaining data were used for validating the
model performance. The training and testing sets were randomly
split in an 8:2 ratio, and a 5-fold cross-validation was applied.

2.2  Hemodialysis Sessions
The monitored data of each HD session is automatically saved to
the HD system database. Apart from the initial HD script setup,
monitored data are collected every 20 seconds from the HD
machines, including arterial line pressure (AP), venous line
pressure (VP), blood flow rate, dialysate flow rate, UF rate, total
UF volume, dialysate temperature, and conductivity. Vital signs,
including SBP, DBP, MAP, and pulse rate, are recorded by default
every hour and aligned with the time points of SBP
measurements from the HD machine. Additional blood pressure
measurements are taken when patients complain of any
symptoms related to blood pressure abnormalities.

2.3  Study Outcomes
We defined IDH events: (1) Nadir90: intra-dialysis SBP < 90
mmHg; (2) Fall20Nadir90: intra-dialysis SBP < 90 mmHg, a
decrease in SBP ≥ 20 mmHg compared to pre-dialysis SBP. Each
IDH definition was treated as a separate binary outcome.

2.4  Study Variables and Data Processing
The dataset for this study comprises any data recorded by the
HD system during the HD treatment process (Supplementary
data, Table S1). It includes clinical baseline information, medical
history, historical HD sessions, current pre-dialysis examinations,
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laboratory test results (of each HD treatment in the past three
months.), and pre-dialysis vital signs, a total of 120 features.

Additionally, we constructed new features from the data,
including changes in monitoring data during the last HD session,
statistics of IDH events and changes in monitoring data over the
past week and the past month, changes in monitoring data
during the current HD session, and the relationship between UF
volume and body weight and dry weight. Specifically, The
additional features and their construction methods are shown in
Supplementary (Supplementary data, table S2)

2.5  Model Development and Validation
The SBP monitoring frequency during HD sessions is once per
hour, allowing us to calculate the risk of IDH in the next hour in
real-time.

Using both training and testing datasets, we trained and tested
models using Multilayer Perceptron (MLP)[17], K-Nearest
Neighbors (KNN), Support Vector Machine (SVM), Random
Forest (RF), and XGBoost algorithms. To ensure the robustness
of model performance, we employed 5-fold cross-validation to
analyze and compare the predictive performance of models on
the testing dataset. We selected the algorithms with better
performance and comprehensively evaluated and analyzed the
predictive performance of the models on the validation dataset.

The model evaluation metrics include: positive predictive value,
negative predictive value, true positive rate (TPR), true negative
rate (TNR), F1 score, AUPRC, and AUROC. Additionally, we
plotted ROC and PRC (Table 1).

Table 1: Average Metrics of Predictive Models
Evaluation Metrics Computational Methods Elucidation 

Positive Predict Value / ( )PPV TP TP FP   The probability that an individual who tests 
positive is truly at risk for IDH. 

Negative Predict 
Value 

/ ( )NPV TN FN TN   The probability that an individual who tests 
negative is truly not at risk for IDH. 

True Positive Rate / ( )Se TP TP FN   The probability that an individual who is actually 
at risk is diagnosed as at risk by the test. 

True Negative Rate  /Sp TN TN FP   The probability that an individual who is actually 
not at risk is diagnosed as not at risk by the test . 

Youden Index   1YI Se Sp    The accuracy index. 
F1    2* * /PPV Se PPV Se  The harmonic mean of the positive predictive 

value and the true positive rate. 

 

2.6  Model Interpretation
We employ Shapley Additive exPlanation (SHAP)[18] to assess
the impact of the model on predicting IDH. This is done to gain a
deeper understanding of each variable's contribution to the
prediction results. SHAP, as a highly interpretable tool, provides
an accurate and transparent method to clearly illustrate the
effect of each feature on the predictions across different samples.
Through SHAP, we can gain a deeper insight into the logic
behind the model's decisions, thereby more accurately predicting
the risk of IDH.

3 RESULTS

3.1  Characteristics of Hemodialysis Sessions
We conducted our study analysis on data from 49,891 HD
sessions of 644 patients, with a total of 302,942 intra-dialysis SBP.
The demographic statistics are summarized in Table 2, with
patients having a mean age of 58 ± 13 years and a mean dialysis
vintage of 93.4 ± 84.6 months. The majority of patients were
male (62.9%), and most had comorbidities such as hypertension
(72.5%) and diabetes (31.4%). The primary causes of chronic
kidney disease (CKD) were hypertensive nephropathy (32.6%),
glomerulonephritis (28.7%), and diabetes nephropathy (25.9%).
Among the 644 patients, 43.5% experienced at least one episode
of IDH, with at least 4.3% of HD sessions resulting in an IDH
event. (Supplementary data, table S3)

Table 2 Basic Information Statistics of Included Patients

Statistical Project Statistics
Results Statistical Project Statistics

Results

Age, years [mean (SD)] 58.0(13.0) Medical History [n
(%)]

Dialysis age, months
[mean (SD)]

93.4(84.6) Hypertension 467(72.5)

Male [n (%)] 405(62.9) Diabetes 202(31.4)

Primary Disease [n (%)] Parathyroidectomy 117(18.2)
Hypertensive Kidney

Damage
210(32.6)

Cardiovascular
Disease

61(9.5)

Glomerulonephritis 185(28.7) Cerebrovascular
Disease

38(5.9)

Diabetes
Nephropathy

167(25.9) Cerebral Infarction 19(3)

Autosomal
Dominant Polycystic
Kidney Disease

25(3.9)
Type of Vascular
Access [n (%)]

Other 29(4.2) TCC 76(11.8)

Unknown Primary
Disease

66(10.2) AVF 491(76.2)

Infection [n (%)] AVG 62(9.6)

Hepatitis C 120(18.6) NTC 15(2.4)

Hepatitis B 78(12.1)

Syphilis 36(5.6)

TCC: Tunneled Cuffed Central Venous Catheter; AVF: Autogenous
Arteriovenous Fistula; AVG: Arteriovenous Graft; NTC: Non-tunneled Non-
cuffed Catheter;

We divided 61,823 HD sessions based on the treatment time
point of May 1, 2022. The training and testing dataset: 42,096 HD
sessions from 641 patients, the validation dataset: 19,727 dialysis
records from 639 patients.

3.2  Model Performance
Pre-dialysis IDH prediction

The XGBoost model outperformed other algorithm models in
terms of AUROC (Nadir90: 0.939, Fall20Nadir90: 0.924) (Table 3
and Supplementary data, figure S1). Finally, this model was
selected for statistical analysis of its predictive performance on
the validation set.

Table 3 the comparative results of 5-fold cross-validation for
multiple algorithm models.
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model

Nadir90 Fall20Nadir90

AUROC AUPRC AUROC AUPRC

MLP
0.733

(0.662-0.847)
0.554

(0.396-0.741)
0.612

(0.522-0.686)
0.442

(0.34-0.548)

KNN
0.686

(0.569-0.781)
0.511

(0.287-0.694)
0.600

(0.552-0.647)
0.361

(0.258-0.454)

SVM
0.631

(0.520-0.743)
0.528

(0.334-0.717)
0.500

(0.500-0.500)
0.514

(0.506-0.520)

RF
0.907

(0.867-0.943)
0.573

(0.356-0.787)
0.906

(0.858-0.934)
0.385

(0.205-0.532)

XGBoost
0.939

(0.905-0.967)
0.563

(0.313-0.799)
0.924

(0.885-0.946)
0.392

(0.173-0.523)

The model performance on the validation set: (1) Nadir90: an
AUROC of 0.955 [95% CI 0.947-0.962] (Figure 2A), with an
AUPRC of 0.686 (Supplementary data, figure S2A); (2)
Fall20Nadir90: an AUROC of 0.933 [95% CI 0.922-0.945] (Figure
2B), with an AUPRC of 0.440 (Supplementary data, figure S2B).

For Nadir90, Following discussions with healthcare professionals,
a 10% false positive rate is considered acceptable[7]. Therefore,
we selected the threshold of 0.05, corresponding to a TNR of 0.9,
as the classifying threshold for IDH probabilities. This threshold
corresponds to the maximum Youden’s index, and both TPR and
TNR reach 0.90 (Supplementary data, table S4). The threshold
corresponding to the maximum F1 score for classifying IDH
probabilities is 0.48, with TPR and TNR of 0.60 and 0.99,
respectively.(Supplementary data, figure S3A)

Similarly, for the Fal20lNadir90, the performance analysis of the
prediction model at each threshold is shown in Table S5 and
Supplementary data, figure S3B.

Figure 2. The red and blue dots on the ROC and PRC curves
respectively represent the threshold points corresponding to the
maximum Youden's index and maximum F1 value.

Intra-dialysis IDH prediction

For Nadir90, an AUROC of 0.963 [95% CI 0.956-0.970]
(Supplementary data, figure S4A), with an AUPRC of 0.389
(Supplementary data, figure S4B). We selected the threshold of
0.02, corresponding to a TNR of 0.89 and TPR of 0.93, as the
classifying threshold for IDH probabilities. While, we selected
the threshold of 0.27, corresponding to a TNR of 0.99, as the
classifying threshold for IDH probabilities, meeting the
requirement that the FPR is less than 10%. This threshold

corresponds to the maximum F1-score. (Supplementary data,
table S6 and Supplementary data, figure S5)

3.3 Variable Importance
Supplementary data, figure 6 illustrates the importance of each
variable in the pre-dialysis IDH prediction model, plotted as a
bar graph based on the average SHAP values. The results
indicate that the monthly minimum SBP, monthly average low
SBP, weekly average SBP, and weekly minimum SBP have the
greatest impact on the model predictions. Monitored SBP, DBP,
the incidence rate of IDH events, dialysis duration, and dialysis
vintage also significantly affect the prediction results, suggesting
their relevance to IDH.

Figure 3. The XGBoost model predicts the top 10 important
features of the intra-dialysis IDH (Nadir90)

In addition, the important characteristics of the intra-dialysis
IDH prediction model are：Monitored monthly minimum SBP,
map, SBP, weekly average low SBP, monthly average low SBP,
weekly low SBP, yearly low SBP, difference between the UF,
dialysis time, the incidence rate of IDH events.

4 DISCUSSION
The definition of IDH typically involves the nadir SBP and its
decrease from pre-dialysis SBP. Considering the association
between different definitions of IDH and mortality risk[2], this
study defines IDH as Nadir90 and Fall20Nadir90.

In this study, we utilized both pre-dialysis and intra-dialysis data
to train a lightweight predictive model, achieving accurate
prediction of IDH. By comprehensively leveraging pre-dialysis
clinical variables and real-time dynamic data during dialysis, we
significantly improved the model's predictive performance using
XGBoost algorithm. Our model was developed and validated on
a diverse patient cohort comprising 61,823 HD sessions. The pre-
dialysis model's performance for Nadir90 achieved an AUROC of
0.955 and an AUPRC of 0.686, while for Fall20Nadir90, it
achieved an AUROC of 0.933 and an AUPRC of 0.440. The intra-
dialysis warning for Nadir90 had an AUROC of 0.959 and an
AUPRC of 0.38. The FPR corresponding to the maximum
Youden's index and maximum F1 score were both less than 10%.
Compared to models using only a single type of data, our
approach can more comprehensively capture patients' health
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status and physiological changes, thereby improving prediction
accuracy and reliability. Additionally, our model predicts two
different definitions of IDH events, providing crucial support for
personalized prediction and intervention.

We divided the sample data based on specified dialysis
treatment time points. This approach simulates the IDH warning
system's real-world performance. In contrast, a validation set
created by randomly splitting the sample data would share the
same distribution as the development and testing sets, making
the validation results less representative of real-world usage.

ML methods, by leveraging various types of data, can more
comprehensively capture these complex factors, thereby
achieving more accurate predictions. We compared the models
performance of several algorithmic models, including MLP, KNN,
SVM, RF, and XGBoost. Among these, the model trained with the
XGBoost algorithm exhibited the best performance, and
supported the calculation of risk probabilities even in the
presence of missing feature values. Currently, many studies use
ML methods to predict IDH, but most rely solely on either pre-
dialysis or intra-dialysis data[7][10]. Our research distinguishes
themself by integrating pre-dialysis and intra-dialysis data,
achieving superior predictive performance.

Pre-dialysis data (such as the patient's baseline health status and
initial physiological parameters) provide an assessment of the
patient's initial health condition and potential risks. Intra-
dialysis data (such as real-time blood pressure and other
dynamic physiological variables during the dialysis process)
reflect the patient's dynamic physiological changes during
dialysis. Considering the need for real-time predictions, we have
streamlined the model. This improvement ensures not only high
prediction accuracy but also the model's real-time capabilities.

One notable limitation of our data is the lack of records on oral
medications taken during dialysis treatment, which prevents us
from fully accounting for individual medication regimens when
predicting the risk of IDH. Additionally, since our data are from
a single center, we cannot perform multi-center validation,
thereby limiting our ability to verify the generalizability of the
IDH prediction model.Finally, our model shares a common
drawback with many ML models: it is challenging to interpret
how the model arrives at its predictions or how individual
factors influence the outcomes[19].

In summary, ML algorithm-based models can predict the risk of
IDH occurrence both before and during dialysis. Further
prospective studies are needed to evaluate whether this
predictive information helps healthcare professionals intervene
early and prevent IDH events, as well as to assess the
improvement in IDH event rates and patient outcomes.
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Supplementary data

Table S1: Data Collection Categories and Specific Features

Note:nPCR = (Pre dialysis Blood Urea Nitrogen - Post dialysis Blood Urea Nitrogen) × (0.045/2 Days between two blood samples)

Category Feature
Demographic Characteristics Age、Gender、Ethnicity;
Basic Information Height、Blood Type、Duration of Dialysis、Vascular Access and Type、Age at First Dialysis;
Medical History Information Primary Disease、Infection History、Significant Medical History;
Laboratory and Examination
Information

Hemoglobin 、 Mean Corpuscular Hemoglobin Concentration (MCHC) 、 Mean Corpuscular

Hemoglobin (MCH) 、 Platelet Count 、 White Blood Cell Count 、 Red Blood Cell Count 、
Hematocrit、Mean Corpuscular Volume (MCV)、 Creatinine、Urea、Uric Acid、Albumin、Total

Protein 、 Prealbumin 、 Glucose 、 Sodium 、 Potassium 、 Calcium 、 Phosphorus 、 Chloride 、
Bicarbonate、 Plasma Fibrinogen、 Fibrin(ogen) Degradation Products (FDP)、 Plasma D-Dimer、
Serum Cardiac Troponin I、 Serum Cardiac Troponin T、Myoglobin、 Serum Iron、Total Iron-

Binding Capacity (TIBC)、Serum Ferritin、Parathyroid Hormone (PTH)、Urine Occult Blood、Urine

Protein、Normalized Protein Catabolic Rate (nPCR)、Kt/V、URR；
Medical Record Information Comorbidities (Outpatient Diagnosis、Discharge Diagnosis) (mainly including Anemia、Cancer、

Arrhythmia 、 Cerebrovascular Disease 、 Chronic Obstructive Pulmonary Disease 、 Diabetes 、
Gastrointestinal Bleedin 、 Hyperparathyroidism 、 Infection During Treatment 、 Cardiovascular

Disease、Peripheral Vascular Disease、Hypertension);
Historical Dialysis Plans Dialyzer Type、Dialysis Mode、Replacement Method、Dialysis Time、 Ultrafiltration Volume、

Anticoagulant Category、Anticoagulant Dosage、 EPO Dosage、Calcium Supplement Dosage、
Dialysate Temperature、Dialysate Electrolyte Concentration (Ca、K、Na)、Conductivity、Blood

Flow Rate、Last Dialysis Machine Weight；
Historical Pre-dialysis Physical
Examination Information

Dry Weight 、 Pre-dialysis Weight 、 Pre-dialysis Systolic Blood Pressure 、 Pre-dialysis Diastolic

Blood Pressure、Mean Arterial Pressure、Pre-dialysis Heart Rate、Pre-dialysis Body Temperature;

Historical Intra-dialysis
Monitoring Information

Intradialytic Monitoring ID、Intradialytic Monitoring Time、Intradialytic Systolic Blood Pressure、
Intradialytic Diastolic Blood Pressure 、 Mean Arterial Pressure 、 Intradialytic Heart Rate 、
Intradialytic Body Temperature 、 Ultrafiltration Achieved 、 Venous Pressure 、 Transmembrane

Pressure、Blood Flow Rate；
Historical Post-dialysis
Summary

Post-dialysis Systolic Blood Pressure 、 Post-dialysis Diastolic Blood Pressure 、 Mean Arterial

Pressure、Post-dialysis Heart Rate、Post-dialysis Body Temperature、Post-dialysis Ultrafiltration、
Coagulation Status、Hematoma Situation、Occurrence of IDH (Intradialytic Hypotension)、Other
Symptoms During Dialysis;

Current Dialysis Plan Dialysis Record ID、Dialyzer Type、Dialysis Mode、 Replacement Method、 Dialysis Time、
Ultrafiltration Volume、Anticoagulant Category、 Anticoagulant Dosage、EPO Dosage、Zocor、
Calcium Supplement Dosage、 Other Medications、Dialysate Temperature、Dialysate Electrolyte

Concentration (Ca、K、Na)、Conductivity、Blood Flow Rate、Previous Post-dialysis Weight；
Current Pre-dialysis Physical
Examination Information

Dry Weight 、 Pre-dialysis Weight 、 Pre-dialysis Systolic Blood Pressure 、 Pre-dialysis Diastolic

Blood Pressure、Mean Arterial Pressure、Pre-dialysis Heart Rate、Pre-dialysis Body Temperature、
BMI;

Current Intra-dialysis
Monitoring Information

Intradialytic Monitoring ID、Intradialytic Monitoring Time、Intradialytic Systolic Blood Pressure、
Intradialytic Diastolic Blood Pressure 、 Mean Arterial Pressure 、 Intradialytic Heart Rate 、
Intradialytic Body Temperature 、 Ultrafiltration Achieved 、 Venous Pressure 、 Transmembrane

Pressure、Blood Flow Rate、Dialysate Temperature;
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Table S2 The additional features and their construction methods

The formulas for calculating the UF target rate and DF target is as follows:

UF target rate =
pre − dialysis weight kg − dry weight kg
treatment time hour × dry weight kg

UF rate =
ultrafiltration volume L

treatment time(hour) × dry weight kg

Table S3 Dialysis Records and IDH Statistics of Included Patients

Statistical Project Overall Training and Testing Set Validation Set

Number of patients 644 641 639

Number of people who have experienced IDH-Nadir90 (n,%) 280(43.48) 244(38.07) 156(24.41)

Number of people who have experienced IDH-Fall20Nadir90 (n,%) 256(39.75) 224(34.95) 139(21.75)

Number of dialysis treatments 61,823 42,096 19,727
Number of dialysis treatments with IDH_1adir90 occurrence (n,%) 2,659(4.3) 1,859(4.42) 800(4.06)
Number of dialysis treatments with IDH-Fall20Nadir90 occurrence (n,%) 1,706(2.76) 1,242(2.95) 464(2.35)

Number of times blood pressure is monitored during dialysis 302,942 206,273 96669

Table S4 the performance analysis of the pre-dialysis IDH prediction model at each threshold (Nadir90)

thresholds recall fpr specificity precision F1-score Youden’s index

0.00 1.00 0.95 0.05 0.04 0.08 0.05

0.01 0.96 0.26 0.74 0.12 0.22 0.69

0.05 0.90 0.10 0.90 0.26 0.40 0.80

0.10 0.85 0.06 0.94 0.34 0.48 0.78

0.20 0.76 0.04 0.96 0.45 0.56 0.72

0.30 0.70 0.02 0.98 0.53 0.60 0.67

0.40 0.64 0.02 0.98 0.60 0.62 0.62

0.48 0.60 0.01 0.99 0.66 0.63 0.59

No. Features construction methods
1 For the monitoring data from the last dialysis session, we calculated the minimum and average values of systolic blood

pressure (SBP), diastolic blood pressure (DBP), and heart rate. Additionally, for the dialysis data from the past week and the
past month, we calculated the number of dialysis sessions, dialysis frequency, number of IDH events, frequency of IDH
events, as well as the minimum SBP during dialysis, and the minimum and average values of SBP, DBP, mean arterial pressure
(MAP), and heart rate.

2 During intra-dialytic predictive modeling, new features were constructed using monitoring data. These included systolic
blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), heart rate, UF volume, monitoring time
(used to calculate dialysis duration), dialysate temperature, and blood flow rate. For these indicators, we calculated the
difference from pre-dialysis values, the difference between consecutive monitoring data points, the rate of change, and the
difference in the rate of change, to represent the changes in these indicators.

3 Additionally, we calculated the weight change during the interdialytic period ((current pre-dialysis weight - dry weight) and
(current pre-dialysis weight - last post-dialysis weight)), interdialytic weight change rate ((current pre-dialysis weight - last
post-dialysis weight) / dry weight), current prescribed dehydration volume / dry weight, UF target rate (UF target rate), and
UF rate as new features. The UF rate is calculated as UF volume (ml) / dialysis time (h) / dry weight (kg).



Insert Your Title Here WOODSTOCK’18, June, 2018, El Paso, Texas USA

0.50 0.58 0.01 0.99 0.68 0.62 0.57

0.60 0.51 0.01 0.99 0.74 0.61 0.51

0.70 0.46 0.00 1.00 0.82 0.59 0.46

0.80 0.39 0.00 1.00 0.87 0.54 0.39

0.90 0.31 0.00 1.00 0.94 0.47 0.31

Table S5 the performance analysis of the pre-dialysis IDH prediction model at each threshold (Fall20Nadir90)

thresholds recall fpr specificity precision F1-score Youden’s index

0 1 0.95 0.05 0.02 0.04 0.05

0.01 0.92 0.23 0.77 0.08 0.15 0.69

0.03 0.84 0.1 0.9 0.16 0.26 0.74

0.1 0.7 0.04 0.96 0.27 0.39 0.66

0.2 0.53 0.02 0.98 0.39 0.45 0.51

0.23 0.49 0.01 0.99 0.43 0.46 0.47

0.3 0.39 0.01 0.99 0.51 0.44 0.39

0.4 0.29 0 1 0.57 0.39 0.29

0.5 0.22 0 1 0.64 0.32 0.21

0.6 0.16 0 1 0.74 0.26 0.16

0.71 0.1 0 1 0.83 0.18 0.1

0.8 0.07 0 1 0.95 0.13 0.07

0.94 0 0 1 1 0 0

Table S6 the performance analysis of the intra-dialysis IDH prediction model at each threshold (Nadir90)

thresholds recall fpr specificity precision F1-score Youden’s index

0.95 0.00 0.00 1.00 1.00 0.00 0.00

0.80 0.05 0.00 1.00 0.83 0.09 0.05

0.70 0.10 0.00 1.00 0.79 0.18 0.10

0.60 0.17 0.00 1.00 0.67 0.27 0.17

0.50 0.24 0.00 1.00 0.59 0.34 0.24

0.40 0.31 0.00 1.00 0.52 0.39 0.31

0.30 0.40 0.00 1.00 0.44 0.42 0.40

0.27 0.43 0.01 0.99 0.42 0.42 0.42

0.20 0.51 0.01 0.99 0.33 0.40 0.50

0.10 0.66 0.02 0.98 0.23 0.34 0.64

0.02 0.89 0.07 0.93 0.10 0.18 0.81

0.01 0.93 0.11 0.89 0.07 0.13 0.82
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0.00 0.95 0.14 0.86 0.06 0.11 0.81

Figure S1 left:A Different models of ROC before dialysis; right:B PRC of different models before dialysis

Figure S2 left:A PRC for Nadir90; right:B PRC for Fall20Nadir90

(The red and blue dots on the ROC and PRC curves respectively represent the threshold points corresponding to the maximum Youden
index and maximum F1 value.)



Insert Your Title Here WOODSTOCK’18, June, 2018, El Paso, Texas USA

Figure S3 the performance analysis of the pre-dialysis IDH prediction model at each threshold (left:A Nadir90;right:B Fall20Nadir90)

Figure S4 left:A ROC for Nadir90; right:B PRC for Nadir90

Figure S5 the performance analysis of the intra-dialysis prediction model at each threshold (Nadir90)
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Figure S6 The XGBoost model predicts the top 20 important features of the pre-dialysis (Nadir90)

Figure S7 The XGBoost model predicts the top 10 important features of the intra-dialysis (Nadir90)


