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ABSTRACT

Physical simulations that accurately model reality are crucial for many engineer-
ing disciplines such as mechanical engineering and robotic motion planning. In
recent years, learned Graph Network Simulators produced accurate mesh-based
simulations while requiring only a fraction of the computational cost of traditional
simulators. As these predictors have to simulate complex physical systems from
only an initial state, they exhibit a high error accumulation for long-term predic-
tions. In this work, we integrate sensory information to ground Graph Network
Simulators on real world observations in the form of point clouds. The result-
ing model allows for accurate predictions over longer time horizons, even under
uncertainties in the simulation, such as unknown material properties.

1 INTRODUCTION

Mesh-based simulation of complex physical systems lies at the heart of many fields in numerical
science and engineering (Rao, 2017; Sabat & Kundu, 2021). Applications include structural mechan-
ics (Zienkiewicz & Taylor, 2005; Stanova et al., 2015), electromagnetics (Jin, 2015; Xiao et al., 2022)
and fluid dynamics (Zawawi et al., 2018; Long et al., 2021). Recent advances in deep learning have
led to a number of learned methods for use in physics. These include Physical Reasoning (Battaglia
et al., 2016; Mrowca et al., 2018) and learned simulators using data from a ground truth simulator.
There are Convoluational Neural Network (CNN)-based methods, e.g. for fluid flow (Tompson
et al., 2017; Chu & Thuerey, 2017; Ummenhofer et al., 2020; Kim et al., 2019; Xie et al., 2018) or
aerodynamic flow (Guo et al., 2016; Zhang et al., 2018; Bhatnagar et al., 2019). Graph Network Sim-
ulators (GNSs) (Sanchez-Gonzalez et al., 2018; 2020; Pfaff et al., 2021) use Graph Neural Networks
(GNNs) (Scarselli et al., 2009) to learn the dynamics of a system from raw data by encoding the
system state as a graph. They are widely used in particle-based (Li et al., 2019; Sanchez-Gonzalez
et al., 2020) and mesh-based simulations (Weng et al., 2021; Han et al., 2022; Fortunato et al., 2022;
Allen et al., 2022). Yet, they assume perfect knowledge of the initial system state, making them
ill-suited for model-based control (Camacho & Alba, 2013; Schwenzer et al., 2021) and model-based
reinforcement learning (Polydoros & Nalpantidis, 2017; Moerland et al., 2020). Simulation from
observation comes with the benefit of requiring less expert knowledge for the design of the simulator
and better applicability to real-world scenarios. Here, often point clouds are used (Watters et al.,
2017; Wang et al., 2019; Gomes et al., 2021; Park et al., 2021; Sundaresan et al., 2022).

In this work, we present Grounding Graph Network Simulators (GGNSs), a new class of GNS that
can process sensory information as input to ground predictions in the observations of the scene. As
the sensory information is not always available, our architecture is trained with imputed point cloud
data. For inference, the model is used iteratively to predict the next system state, using point clouds
whenever available. As a practical example, consider a robot grasping a deformable object. For
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Figure 1: A robot’s end-effector (grey, red) grasps a 3d deformable cavity. The robot maintains an
internal simulated prediction of the cavity (orange) for two consecutive time steps (left, right). The
true cavity state can infrequently be observed from point cloud data (blue), which the model can use
to correct its prediction. We repeat the point cloud from the earlier step in both images for clarity.

optimal planning of the grasp, the robot needs to model the state of the deformable object over time
and predict the influence of interactions between object and gripper. Once the robot starts deforming
the object, it may easily observe the deformations, e.g. as point clouds, which then are integrated into
the state prediction. An example is given in Figure 1.

We evaluate GGNS on a suite of 2d and 3d deformation prediction tasks created in the Simulation
Open Framework Architecture (SOFA) (Faure et al., 2012). Comparing our approach to an existing
GNS (Pfaff et al., 2021), we find that adding sensory information in the form of point clouds to our
model greatly improves the simulation quality for all tasks. Datasets and code can be found under
https://github.com/jlinki/GGNS.

2 GROUNDING GRAPH NETWORK SIMULATOR

Let G = (V,E,XV,XE) be a directed graph with nodes V, edges E ⊆ V × V, node features
XV : V → RdV of dimension dV and edge features XE : E → RdE of dimension dE. A Message
Passing Network (MPN) (Gilmer et al., 2017; Battaglia et al., 2018) is a GNN consisting of L
Message Passing Blocks that receives a graph G as input and outputs a learned representation for
nodes and edges. Each block l computes updated features for all nodes v ∈ V and edges e ∈ E as

xl+1
e = f l

E(x
l
v, xlu, xl

e), with e = (u, v) and xl+1
v = f l

V(xlv,
⊕

{e=(v,u)∈E}
xl+1
e ),

where x0
v and x0

e are embeddings of the node and edge features of G, ⊕ is a permutation-invariant
aggregation function and each f l

· is a learned function, e.g., a Multilayer Perceptron (MLP).

Graph Network Simulators. GNSs first encode the system state S in a graph G. For mesh-based
simulations, the graph is naturally given by the mesh M. For the features, it has been shown that
encoding purely relative properties such as relative distances and velocities per edge instead of
absolute positions per node greatly improves generalization (Sanchez-Gonzalez et al., 2020). The
encoded graph G is then used as input for a learned MPN, which computes latent representations xL

v
for each node v ∈ V. These latent representations are then interpreted as derivatives of dynamic
quantities, which are used by a forward Euler integrator to compute the updated system state S ′.
GNSs are trained on a node-wise next-step Mean Squared Error (MSE) objective, i.e., they minimize
the 1-step error of predicted system state to a given ground truth. During inference, full rollouts can
be generated by iteratively repeating the above-mentioned steps, using the updated dynamics of one
step as the input for the next. Here, the model does not predict the movement of fixed entities such
as a collider, which is instead assumed to be known. Due to this iterative dependence on previous
outputs, the model is prone to error accumulation. To alleviate this problem, noise is applied to the
dynamic variables of the system for each training step (Pfaff et al., 2021).

Grounding Graph Network Simulators. Our approach extends the existing GNS framework to
naturally and efficiently integrate auxiliary point cloud data whenever available. This auxiliary
information grounds the predictions of the model in an observation of the true system state. Figure 2
illustrates an overview of our approach. More details on the GNN part of our method is found in
Appendix A. To utilize point-based data in addition to meshes we have to transfer both into a common
graph. Following previous work (Sanchez-Gonzalez et al., 2020), we achieve this by creating a
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Figure 2: Schematic of GGNS . Given a system state St (red), boundary conditions (gray) and optional
point cloud observations (dashed box), a GNN (orange) predicts how the system St+1 will look like
at the next step (blue). When provided, the point cloud (green) is transformed into a neighborhood
graph (yellow) in the same coordinate system as the mesh, connecting each point in the point cloud
to the nearest mesh nodes. During inference, the model iteratively predicts updates from a potentially
incomplete initial system state (purple), using point cloud information when available.

neighborhood graph based on spatial proximity. The different node and edge types are one-hot
encoded into their respective features to allow the model to distinguish between them.

For most realistic applications, point clouds are usually available at a much lower frequency than
the simulation. We adapt our model to this constraint using an imputation-based training scheme,
i.e., for each time step, the model receives point clouds only with probability p = 0.5. Intuitively,
this allows each system node v ∈ V to utilize the additional information of close-by points of a
point cloud when available, while forcing it to still make meaningful predictions when no additional
information is available. An example can be seen in Figure 1. Here, S consists of a predicted mesh
and a gripper. The mismatch between the predicted mesh and the point cloud of the true object
indicates the prediction error, which the model uses correct the current state estimate.

3 EXPERIMENTS

We evaluate GGNS on complex 2d and 3d object deformation prediction tasks, where the true system
state is given by a triangular surface mesh of a deformable object with rigid boundary conditions
and a triangular surface mesh of a rigid collider. The point clouds are generated by raycasting using
virtual cameras arranged around the scene. For more details, see the Appendix B. We assume that,
while the initial mesh of the object is known, its material properties are not. As unknown property we
use the Poisson’s ratio (Lim, 2015) −1 < ν < 0.5, which is a scalar value describing the ratio of
contraction (ν < 0) or expansion (ν > 0) under compression (Mazaev et al., 2020). An overview of
the training and network hyperparameters can be found in Appendix E.

Figure 3: Test trajectory of the Tissue Manipulation task at
time step t = 70 for GGNS (left), the ground truth simulation
(middle) and MeshGraphNet (MGN) (right). While MGN
exhibits a large prediction error, GGNS is able to utilize the
point cloud information to stay close to the ground truth.

Evaluation Metrics. We evaluate
the performance of all trained models
on 10 different seeds per experiment.
We report the means and standard de-
viations of the runs, averaging the
results for each run over all available
steps in a trajectory and over all tra-
jectories in the test set. In all experi-
ments, we report the full rollout loss,
where the model starts with the ini-
tial state S0 and predicts states up to
a final state ST . We provide a point
cloud to the model every k ≥ 1 steps
and resort to mesh-only prediction
otherwise.

Baselines. We compare to MGN, a state-of-the-art GNS, which uses additional world edges between
close-by mesh nodes, but no point cloud information. We adopt this explicit representation of edge
types for the MGN baseline and experiment with it in Appendix D. We also evaluate a variant of MGN
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Figure 4: a Rollout MSE of GGNS, GGNS+LSTM and MGN baselines evaluated on the Deformable
Plate test set using point clouds every k-th time step. In (b) the initial mesh is created from the
initial the point cloud. The achieved Intersection over Unions (IoUs) are lower compared to using the
ground truth mesh, but GGNS (k ≤ 2) still outperforms all baselines. (c) Normalized benefit of using
a point cloud every k-th time step for all three tasks. MGN performance corresponds to 0.0.

that has access to the underlying Poisson’s ratio v, called MGN (M). This additional information
leads to a deterministic ground truth simulation w.r.t. the initial system state, and upper bounds
the performance of MGN. We also compare to GGNS+LSTM, which uses an LSTM (Hochreiter &
Schmidhuber, 1997) layer on the node output features of the GNN to explicitly include recurrency.

Datasets. For the Deformable Plate dataset, we consider a family of 2d trapezoids that are deformed
by a circular collider with varying size and starting position and constant velocity. We use a total of
675/135/135 trajectories for our training, validation and test sets. Each trajectory consist of T = 50
time steps. For the Tissue Manipulation task, we simulate a robot-assisted surgery scenario where
a piece of tissue is deformed by a solid gripper. We vary the direction of the gripper’s motion and
its gripping position on the tissue. In the Cavity Grasping dataset, a simulated robot gripper grasps
and deforms cone-shaped cavities with random radii from different positions. For both 3d tasks,
600/120/120 trajectories are used, each of which is rolled out for T = 100 time steps.

4 RESULTS

For all tasks, we find that GGNS can use the point cloud information to produce high quality rollouts
that closely match the true system states. Figure 3 shows a qualitative example, more examples can be
found in Appendix C. The performance of GGNS for different hyperparameters, as well as for noisy
and partially observable point clouds is shown in Appendix D. Similar to MGN, GGNS is robust to
most parameter choices. For the Deformable Plate task, we also compare our imputation model to
the GGNS+LSTM approach, which can use the recurrence to pass information over time. Figure 4a
shows that GGNS outperforms this approach for each k. Also, GGNS trains significantly faster,
likely due to the additional complexity of training the recurrent model. Using the IoU metric, we can
compare objects across different mesh representations. Figure 4b shows that GGNS still produces
accurate rollouts for similar-sized meshes that are directly generated from the initial point cloud. In
this case, the method avoids the dependence on any simulation data, which marks an important step
towards using GNSs on real world data. Figure 4c shows the normalized performance of GGNS for
grounding frequencies k ∈ {1..10} across all three tasks. Here, 1.0 corresponds to the performance
for k = 1, and 0.0 to the performance of MGN. For all tasks there is a clear advantage in utilizing the
point cloud information, and performance increases with the point cloud frequency.

5 CONCLUSION

We propose Grounding Graph Network Simulators (GGNSs), an extension of the Graph Network
Simulator framework that can utilize auxiliary observations to accurately simulate complex dynamics
from incomplete initial system states. Utilizing a neighborhood graph from point cloud information
and an imputation-based training scheme, our model is able to ground its prediction in observations of
the true system state. We show experimentally that this leads to high quality simulations in complex
2d and 3d deformation tasks, outperforming existing approaches. In future work, we will extend
GGNSs to explicitly model uncertainty and maintain a belief over the latent variables of the system,
e.g., by employing a Kalman filter in a learned latent space (Becker et al., 2019). Finally, we will
employ our model for Model Predictive Control and Model-based Reinforcement Learning.
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Figure 5: A detailed view of the GNN part of GGNS . Given a graph G′, the node and edge features
XV′ and XE′ are linearly embedded into a latent space and then updated with L Message Passing
Blocks. The resulting predictions are interpreted as dynamic quantities that are used to update the
system.

A MODEL DETAILS

The Message Passing Network employed by GGNS is displayed in 5. As node-wise predictions we
use velocities, which are Euler-integrated once to update the positions of the mesh of the deformable
object.

B ENVIRONMENT DETAILS

Here, we describe all key aspects, which are valid for all three environments. All datasets are
simulated using SOFA and include different material properties. Therefore, we choose discrete
Poisson’s ratios from ν ∈ {−0.9, 0.0, 0.49} for one-third of all simulated trajectories each. Other
material parameters are kept constant, e.g., for the mass we choose large values for the solid object
and smaller values for the deformable to ensure sufficient deformation. The chosen parameters do
not represent the full reality, as there are other material parameters that could be varied. However, as
we want to showcase the capabilities of our method, we selected these parameters as they displayed
the biggest impact on the deformation behavior.

B.1 POINT CLOUD GENERATION

The required point clouds are not directly available in SOFA, but instead rendered from the scene of
the meshes using Raycasting from Open3D (Zhou et al., 2018). We therefore place virtual cameras
around and on top of the scene to generate partial point clouds from different directions. For the
Deformable Plate dataset one camera is sufficient, while the other two tasks rely on four cameras
around and one camera on top of the scene. This results in a good, but not complete coverage of the
entire surface with points of the point cloud. Even though there are five cameras around the scene,
there are areas that are not covered: For the tissue, the parts that are occluded by the red liver, and
for the cavity, parts of the inner surface depending on how the upper and lower radii deviates from
one another. Also, as there can be no camera from below, there are naturally no points on the lower
surface for both datasets. In Appendix D we additionally provide results for less cameras on the
cavity dataset, leading to only partially observable point clouds. If more than one point cloud camera
is used, the resulting point clouds are fused and subsampled accordingly to achieve a processable
number of points. We voxel subsample in world space, so the points do not belong to any specific
part of the mesh, but can rather be seen as some “interpolation” between mesh vertexes. The main
challenge is that there are no point correspondences and that the model needs to figure out which
point of the point cloud belongs to which vertex in the mesh to do the correction of the mesh nodes
for grounding the simulation. Still, voxel subsampling leads to the most structured results compared
to other subsampling techniques, which helps the model to account for correspondences between
points over time.
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B.2 INPUT FEATURES

In addition to encoding the node or edge type as one-hot features, we add an encoding to static nodes
and encode the velocity of the collider in its node features. We encode the positions in space as
relative features in the edges instead of absolute encodings in the node features following previous
work (Sanchez-Gonzalez et al., 2020). All edges thus receive their relative world coordinates, while
mesh edges additionally contain relative coordinates in mesh space.

B.3 COLLISION HANDLING

SOFA as the ground truth simulator handles collision between objects using triangular surface meshes
of all objects involved to detect collisions. The detection is implemented using the LocalMinDistance
method and detected collisions are included in the constraints of the system. Using Lagrangian
multipliers, the constraints are then processed together with the other forces from the deformation to
solve the complete FEM system (Faure et al., 2012). In contrast to that, GGNS uses one-hot encoded
edges between the rigid and the soft body that are used by the model to compute the dynamics.
There is no explicit handling of collisions, the network learns to avoid them and adapts the mesh
accordingly.

B.4 DEFORMABLE PLATE

For this environment, we simulate a family of 2-dimensional trapezoids deformed by a circular
collider with constant velocity. We vary the size of the collider by sampling from a triangular
distribution between 15 and 60 % of the edge length of the deformable object. For the collider start
position we sample from a uniform distribution between the left and right corner of deformable object.
We record 50 time steps per trajectory and 945 trajectories in total, which are split in 675/135/135
trajectories per train, evaluation and test set. A single data sample contains approx. 700 nodes: 57
nodes for the collider, 81 nodes for the mesh oft the deformable object and around 600 points in the
subsampled point cloud. The mesh itself consists of 416 edges, the total number of edges is about 3
K depending on the deformation in the according time step. In contrast to the Poisson’s ratio, the
other adjustable material parameter in SOFA, the Young’s modulus is kept constant for all samples
at E = 5000Pa. It describes the compressive stiffness when a force is applied lengthwise. The
different material properties together with the different trapezoidal shapes introduce uncertainty in
the form of multi-modality into the data. The reason for this is that different deformations result
in states that cannot be clearly assigned to a single trapez-material combination. We construct this
dataset because it comes with lower computational cost due to the restriction to 2d, but already allows
for more general statements due to the non-trivial deformations and the multi-modality. Therefore, it
is especially suitable as a proof-of-concept and for ablations.

B.5 TISSUE MANIPULATION

Here, a piece of tissue is deformed by a rigid gripper which could be part of a robot-assisted surgery
scenario. To generate diversity, we generate random motions in a 2d plane and sample a random
gripping point from the 19 top mesh points. We record 100 time steps per trajectory and 840
trajectories in total, which we split in 600/120/120 trajectories per train, evaluation and test set. A
single data sample consists of approx. 1 200 nodes: 361 for the mesh, one for the gripper and about
850 for the point cloud. The mesh consists of 2 154 edges, which leads to a total number of about
3 800 edges depending on the time step. To ensure physically plausible deformation, each Poisson’s
ratio is assigned its specific Young’s modulus from E ∈ {10 000, 80 000, 30 000}Pa. If instead it
were kept the same for each Poisson’s ratio, the gripper could penetrate the deformable object or pull
it without touching it. The uncertainty in this dataset is mainly in the initial state, which can result in
different deformations depending on the material from the same initial state.

B.6 CAVITY GRASPING

We randomly generate cone-shaped cavities with radii between 87.5% and 50% of the maximum
possible gripping width. The cone shape helps to increase uncertainty in the form of multi-modality
in the data, because the states resulting from deformation cannot be clearly assigned to a single
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cone-material combination. The deformable cavities are deformed by a simulated Panda 1 robot
gripper located at random positions in space. The positions are sampled form a hexahedron around
the geometrical center of the cavity ensuring collision free starting positions. For the grasping, the
gripper moves as quickly as it is allowed to the gripping position and then closes its fingers with
constant velocity. We record 100 time steps per trajectory and 840 trajectories in total, which are
split in 600/120/120 trajectories per train, evaluation and test set. A single data sample consists of
approx. 2.4 K nodes: 750 for the mesh, 636 for the gripper and about 1 K for the point cloud. The
mesh consists of 4 500 edges, the overall number of edges in the graph is about 8.5 K depending on
the exact time step. The motivation for the creation of this environment is that a successful use of our
method in this setting is an important step on the way to a real-world application.

1FRANKA EMIKA GmbH, Munich, Germany
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Figure 6: Visualization of a test trajectory of the Tissue Manipulation dataset from three different
viewing angles (rows) at time step t = 70 for GGNS (left), the ground truth simulation (middle) and
MGN (right).

C QUALITATIVE RESULTS

In addition to the qualitative illustrations in the main paper, we also provide further views and
examples here: Figure 6 shows the same trajectory as Figure 3 but from three additional viewing
angles. Figure 8 and Figure 9 show an overlay of the point cloud on the deformable object during the
time step where the simulation is grounded by the point cloud. This representation is comparable
to Figure 1 for the Cavity Grasping dataset. Furthermore, we provide example visualizations for a
test rollout over time for the Deformable Plate task in Figure 10, for the Tissue Manipulation task in
Figure 11, and for the Cavity Grasping in Figure 12. Throughout all tasks, GGNS closely matches the
ground truth simulation for the complete rollout, achieving close to optimal results when provided
with frequent point cloud information (k = 2). Opposed to this, MGN sometimes fails to predict the
correct material, leading to poor predictions over time and large mismatches in the final system states.
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Figure 7: Final simulated meshes (t = 50) for GGNS (k = 5) (left), the ground truth simulation
(middle) and MGN (right) for two test rollouts with different material properties for the Deformable
Plate task. Our model closely matches the ground truth simulations for both materials, while MGN
predicts the same material every time.

Figure 8: Overlay of the point cloud and the predicted mesh for two consecutive time steps t = [10, 11]
in the Deformable Plate dataset. We repeat the point cloud from the earlier simulation step in both
images for clarity. The illustration shows the correction behavior of GGNS by including the point
cloud to ground the mesh based simulation in this time step. This can be observed particularly well
in the upper left and right corners of the plate.

Figure 9: Overlay of the point cloud and the predicted mesh for two consecutive time steps t = [70, 71]
in the Tissue Manipulation dataset. We repeat the point cloud from the earlier simulation step in both
images for clarity. The illustration shows the correction behavior of GGNS by including the point
cloud to ground the mesh based simulation in the time step.
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Figure 10: Test rollout visualization for the Deformable Plate task. The last column depicts a close-up
of the final time step, which is shown in full in the previous column. Here, we additionally show
qualitative results for the GGNS+LSTM model. We can see that for k = 2 it matches the ground
truth quite well, while for k = 5 a large error occurs due to a prediction of the wrong material.
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Figure 11: Test rollout visualization for the Tissue Manipulation task. The last column depicts a
close-up of the final time step, which is shown in full in the previous column.

Figure 12: Test rollout visualization for the Cavity Grasping task. The last column depicts a close-up
of the final time step, which is shown in full in the previous column.
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Figure 13: Performance for different changes in hyperparameter choices (grey) on the Deformable
Plate dataset in comparison to our default model (blue) with k = 1. Error bars indicate one standard
deviation. The top row shows the error for the next-step prediction, the bottom row that of full rollouts.
We find that a suitable noise scale is crucial for stable rollouts, and that more information in the
form of additional edges between the different types of graph nodes generally improves performance.
Given enough Message Passing (MP) blocks, further increases in model capacity only lead to modest
improvements.

D ABLATIONS

D.1 HYPERPARAMETER CHOICES

Figure 13 compares the performance of GGNS for different hyperparameter choices. We find that the
most importance parameters are the number of Message Passing (MP) blocks and the scale of the
noise used in training. Both are crucial to achieve a good performance over multi-step rollouts. In
terms of training noise, there is a 1-step/multi-step loss trade-off. Other than that, our approach is
robust to variations of the different hyperparameters. In terms of graph connectivity, it can be seen
that all settings achieve similar performance. Additional information in the form of more local edges
helps slightly, while larger connectivity radii do not do much. A detailed listing of the used edge radii
is display in Table 1. In particular, the use of significantly more edges in the Equal Radii setting does
not provide a significant advantage, which is why we use weaker connectivity Full Graph that saves
computation time. The results for the Reduced Graph settings show that edges within the point cloud
are not mandatory. For this reason, we omit these edges in the more complex 3d tasks in favor of
shorter computation time.

D.2 NOISY POINT CLOUDS

Besides the ablations on our hyperparameter choices, we present further ablations on more realistic
point cloud data. For this purpose, we use point clouds with additional noise and only partial
observability to get closer to real world point clouds. Figure 14 shows the results for additional
ablations on different scales of noise on the point cloud data of the Deformable Plate dataset. We
add noise to the point cloud positions during training, evaluation and testing. This makes it more
difficult to infer the correct behavior from the point cloud, but provides a more realistic scenario for,
because real world point clouds often exhibit large noise. The results show the robustness of our
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Table 1: Edge radii for the connectivities between point clouds P and meshes M on the 2D
Deformable Plate Dataset.

Setting P − P M−P World

Full Graph 0.1 0.08 -
Equal Radii 0.2 0.2 -
Reduced Graph 0.0 0.08 -
MGN 0.0 0.0 0.35
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Figure 14: Additional ablations for more realistic point cloud data on two datasets. Here, four
different noise levels on the point cloud are evaluated on the Deformable Plate datset. Different
grounding frequencies of k = 1 in (a), k = 2 in (b) and k = 5 in (c). GGNS performs better than the
baseline even when noise in the scale of the training noise of σ = 0.01 is applied to the point cloud.

method: Even when a noise level of σ = 0.01 is applied to the point cloud during testing, it clearly
outperforms the baseline. This noise level corresponds to the amount of noise used on the mesh
during training.

D.3 PARTIAL OBSERVABLE POINT CLOUDS

For the ablations on the partial observability, we use the Cavity Grasping dataset. We generate the
partial point clouds by using only one, two or five virtual point cloud cameras when using raycasting.
The resulting point clouds are visualized for better clarity in Figure 16 for an example test trajectory
at time step t = 0. One camera results in a coverage from only one half of the outer surface of the
cavity and two cameras cover almost the complete outer hull but not the inner surface. With five
cameras, the point cloud covers almost the entire mesh completely, except for the inside and bottom.
The resulting point clouds have a very different number of points: About 400 for one camera, about
600 for two cameras, and about 1000 for five cameras compared to 750 mesh nodes for the cavity.
The results in Figure 15 show that even with these much less complete point clouds, GGNS still
outperforms the baseline. For k ≤ 5 this is the case even if the baseline has access to the full initial
state, which GGNS has not.
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Figure 15: Additional ablations for more realistic point cloud data on the Cavity Grasping dataset. For
this purpose, different numbers of cameras are used when generating the point cloud using raycasting.
Comparison for three different grounding frequencies:k = 2 in (a), k = 5 in (b) and k = 10 in (c).
GGNS outperforms the baseline for all camera settings and grounding frequencies k.

Figure 16: Visualization of the point clouds using one, two or five cameras for the raycasting and the
corresponding mesh for reference. It is clearly visible how better coverage of the object is achieved
as the number of cameras increases.
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Figure 17: (a) Rollout IoU for the Deformable Plate dataset for GGNS and the MGN baseline. The
main findings here are similiar to the MSE results. Rollout Mean Squared Error of GGNS and MGN
baselines evaluated on the test set of the Tissue Manipulation dataset b and Cavity Grasping dataset c.
We report the results for GGNS using point clouds in every k-th time step. MGN(M) indicates the
baseline method of MGN that uses the ground truth material as input feature. GGNS outperforms the
MGN baseline in all settings and in most cases even if it has access to the complete initial state.
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Figure 18: Exemplary learning curves for the Cavity Grasping task. The light shaded area indicates
one standard deviation. Both GGNS and the baselines learn the task pretty similarly in terms of
1-step predictions. Our model is only evaluated for the k = 2 and k = 5 variant during full rollout
evaluation. Here, we can clearly see the advantage of using the point cloud information.
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Figure 19: Comparison of the MGN baseline with a version using the one-hot encoded edge types
instead of an explicit edge type partitioning indicated by MGN (1H). Both are compared for all
three tasks and no significant advantage of the explicit edges partitioning could be found. For this
reason, GGNS uses the one-hot encoding, because it is both conceptually simpler and requires less
computational power. The MGN baseline still uses explicit edge type partitioning throughout this
work, following Pfaff et al. (2021).
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Table 2: Configuration of the hyperparameters and key information of the training of our model for
all experiments.

Parameter Value

Batch Size 32
Optimizer Adam
Learning Rate 5× 10−4

Activation Function LeakyReLU
Aggregation Function Mean
Encoder Linear Layer
MP-Blocks 5
MLP Layers 1
Latent Dimension 128
Decoder 1-layer MLP
Residuals Connections Around each MP block
Training Noise Std 0.01

Table 3: Task specific configuration and hyperparameters for our experiments. We vary the graph
connectivity and the number of training epochs for different tasks to control the total training time of
our method.

Parameter Plate Tissue Cavity

Connectivity Setting Full Graph Reduced Reduced
Number of Epochs 1000 800 400
Approx. Training Time 21 : 00 h 40 : 00 h 38 : 00 h

E HYPERPARAMETERS

We train all models on all tasks using the Adam optimizer (Kingma & Ba, 2015) with a learning
rate of 5× 10−4 and a batch size of 32, using early stopping on a held-out validation set to save the
best model iteration for each setting. The models use a LeakyReLU activation function, 5 message
passing blocks with 1-layer MLPs and a latent dimension of 128 for node and edge updates. We use
a mean aggregation for the edge features and a training noise of 0.01. All tasks use a normalized task
space of [−1, 1]d. For all models and tasks, we normalize the task space to [−1, 1]d and add a training
noise of 0.01. All experiments are repeated for 10 random seeds unless otherwise noted, and we
report the mean and standard deviation of the results. Table 2 gives an overview of hyperparameters
shared across tasks. Since GNS are generally robust to the choice of hyperparameters (c.f. D), we
use the same hyperparameters for all task and for both, GGNS and MGN for simplicity. The only
hyperparameters that vary over tasks are the graph connectivity and the number of training epochs, as
shown in Table 3. We adapt these parameters to control for the total training time on a single GPU.
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