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Abstract

Despite the successes of recent developments in visual Al different shortcomings still exist;
from missing exact logical reasoning, to abstract generalization abilities, to understanding
complex and noisy scenes. Unfortunately, existing benchmarks, were not designed to cap-
ture more than a few of these aspects. Whereas deep learning datasets focus on visually
complex data but simple visual reasoning tasks, inductive logic datasets involve complex
logical learning tasks, however, lack the visual component. To address this, we propose
the diagnostic visual logical learning dataset, V-LoL, that seamlessly combines visual and
logical challenges. Notably, we introduce the first instantiation of V-LoL, V-LoL@=), — a
visual rendition of a classic benchmark in symbolic AI, the Michalski train problem. By
incorporating intricate visual scenes and flexible logical reasoning tasks within a versatile
framework, V-LoLE=) provides a platform for investigating a wide range of visual logical
learning challenges. We evaluate a variety of Al systems including traditional symbolic
AT neural Al, as well as neuro-symbolic Al. Our evaluations demonstrate that even SOTA
AT faces difficulties in dealing with visual logical learning challenges, highlighting unique
advantages and limitations of each methodology. Overall, V-LoL opens up new avenues for
understanding and enhancing current abilities in visual logical learning for Al systems. All
code and data is available at https://sites.google.com/view/v-1lol.
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1 Introduction

As humans, we effortlessly integrate visual perception with logical reasoning to make sense
of the world around us, answering questions both in daily and complex situations. Whether
it’s astronomers deciphering the cosmos, medical scientists analyzing scans, or car drivers
navigating the roads, individuals synthesize logical concepts with visual observations to
make informed decisions and execute actions. Achieving such a seamless integration between
vision and logical reasoning remains a longstanding goal in the realm of visual Al. Several
works attempt to tackle this issue by separating the perceptual and logical processing from
another e.g., via neural image encoders that perform accurate multi-label prediction followed
by (exact) logical inference methods (Shindo et al., 2023; Mao et al., 2019; Vedantam et al.,
2019). Other approaches, on the other hand, focus on joint representations from the start
e.g., via large multi-modal models in which perception and logical reasoning is intertwined
within one large model (Rose et al., 2023; Chen et al., 2023; Zhang et al., 2023). Which of
these directions will prevail in the long run is still very much an open question. Regardless
of the direction, however, the process of developing Al models that can handle visual logical
learning and the multitude of its subproblems requires extensive diagnostic tests to analyze
progress and discover individual shortcomings.

While related deep learning (DL) datasets predominantly address visual perception chal-
lenges (Lin et al., 2014; Cordts et al., 2016; Karazija et al., 2021; Schuhmann et al., 2022),
there is a burgeoning interest in higher-level reasoning tasks (Antol et al., 2015; Johnson
et al., 2017; Hong et al., 2021; Zellers et al., 2019; Hudson and Manning, 2019) such as scene
understanding or visual question answering (VQA). Yet, most of these require only simple
reasoning abilities. On the other hand, traditional inductive logic programming benchmarks
(Michalski, 1980; Michie et al., 1994; Dua and Graff, 2017) aim to tackle more complex rea-
soning abilities but neglect the visual component that is required for Al models to interact
in our complex visual surroundings. More recent datasets have begun introducing more so-
phisticated reasoning problems into visual datasets, e.g., logical concept learning (Vedantam
et al., 2021) and analogical visual reasoning (Zhang et al., 2019). While this development
marks a positive direction, these benchmark datasets, however, often consist of fixed sam-
ple sets and are designed to cover only limited areas within the domain of visual logical
learning. Moreover, they lack a versatile framework that allows researchers to design and
generate custom-tailored problem sets to diagnose models over a broad range of challenges.

In this paper, we therefore introduce the Visual Logical Learning diagnostic dataset
(V-LoL). Due to its flexibility and easy, modular generation V-LoL specifically allows to
study the ability of visual Al models in a wide-range and individual visual-logical learning
aspects. The fundamental idea of V-LoL remains to integrate the explicit logical learning
tasks of classic symbolic AI benchmarks into visually complex scenes, creating a unique
visual input that retains the challenges and versatility of explicit logic. By doing so, V-LoL
bridges the gap between symbolic Al challenges and contemporary deep learning datasets
offering various visual logical learning tasks, which allow for extensive evaluations of Al
models across a wide spectrum of Al research.

We specifically introduce the V-LoL@=y dataset, which comprises two distinct instantia-
tions of V-LoL: V-LoL-Trains (V-LoLE&=) and V-LoL-Blocks (V-LoLJ). Both are conceived
as image classification datasets using the symbolic representations of the Michalski train
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Figure 1: V-LoL: a diagnostic dataset that allows to test a variety of visual logical learning
challenges. (I) The modular generation process of V-LoLE= consists of sampling symbolic
train representations (i.e., train cars and their attributes) from a pre-defined distribution.
Via a logical class rule the class affiliation of each train sample is determined. The 3D visual
representations are selected and finally rendered. The flexibility and versatility of V-LoL
allows that the logic component (II) as well as the visual component (III) can easily be
exchanged. This way one can perform different visual-logical learning tests e.g., concerning
abstract generalization abilities (IV), targeted test-time interventions (V) or evaluations on
varying dataset sizes (VI).

problem (Michalski, 1980) which are rendered in a CLEVR-like fashion (Johnson et al.,
2017). Hereby, in contrast to the relatively straightforward visual reasoning task offered
by CLEVR, V-LoL@= leverages the logical foundation of the Michalski train problem to
establish more intricate visual logical learning problems. The V-LoLE=) generator seam-
lessly integrates any provided logic rule into appealing, yet complex images (cf. Fig. 1 (I)),
enabling precise control over the visual and logical task difficulty. The generated tasks can
encompass a wide range of challenges, including object recognition, counting, interpretation
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of spatial arrangements, comprehension of arithmetic and logical operators, and identifying
and decoding intricate, chained reasoning patterns (cf. Fig. 1). In our evaluations we show
V-Lol.’s flexibility and versatility in generating several of such challenges and are able to
reveal benefits and shortcomings arising from different symbolic, neural and neuro-symbolic
AT approaches.

Overall, we make several important contributions: (i) We introduce the Visual Logical
Learning diagnostic dataset (V-LoL) that brings logic-based ILP benchmarks into the realm
of deep learning. (ii) We present V-LoL@=3, an initial instantiation of V-LoL that builds
upon the logical foundation of the Michalski train problem and the immersive environment of
CLEVR to establish a modern Al dataset that is relevant across the spectrum of Al research.
(iii) The provided V-LoLE=3 generator offers great flexibility within the visual and logical
components, allowing to seamlessly integrate any arbitrary logic program into a new visually
complex dataset. (iv) We provide a flexible and user-friendly framework, allowing for a
straightforward generation of large-scale visual datasets with rich scene information. (v)
By evaluating various symbolic, neural, and neuro-symbolic AT models on several possible
V-LoLeg challenges, we offer insights into their visual logical learning abilities, exemplifying
the value of V-LoL for investigating shortcomings and thereby helping improve AI models.

2 V-LoL: Merging Logic and Vision

Overall, the V-LoL diagnostic dataset unites the challenges of logical reasoning with the
complexity of visual perception. In spirit of the never-ending language learning frame-
work (NELL) proposed by Carlson et al. (2010), V-LoL serves as an overarching framework
for datasets that lift classical logic learning problems (e.g., Inductive Logic Programming
(ILP)) into a detailed visual environment. In an ILP problem a logic rule is learned given
a set of positive and negative examples as well as background knowledge, where the ex-
amples and knowledge are represented as logical formulae (Muggleton, 1991; Cropper and
Dumancié¢, 2022). V-LoL’s unique datasets facilitate the evaluation and development of Al
models, particularly focusing on their ability to perform logical inferences within a visual
environment. Thus, by merging logic and vision, V-LoL allows to simultaneously evaluate
and diagnose both the visual perception and logical reasoning abilities of Al systems.

V-LoL-Trains (V-LoLE=3) presents a first instantiation of V-LoL by merging the logical
foundation of the Michalski train problems (Michalski, 1980) into 3D visual representations
via CLEVR-like (Johnson et al., 2017) rendering processes. Introduced by Michalski (1980),
the original Michalski train problem represents a classic ILP task. It consists of two sets
of five train examples where these trains are composed of a wide variety of properties, and
are labelled into two categories: eastbound or westbound (cf. Fig. 5 in the supplementary
material (supp.)). The objective is to discern relational patterns within the trains’ properties
and conjecture a hypothesis that perfectly separates the eastbound from the westbound
trains. We will provide details on the exact composition and properties of V-LoLE=3 in the
following sections.

2.1 V-LoL@Z=% Generation

Generating a V-LoLE=) image is performed in a six-step generation process. This process
is outlined in pseudo-code in Alg. 1 and is aligned with the steps sketched in Fig. 1 (top).
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Algorithm 1 V-LoL train generation for a single image.

1. distr < SELECT_DIST() // User selects attribute distribution

2. symb_train < SAMPLE_SYMB_TRAIN(distr) // Sample symbolic train representations
3. logic_program <— DEFINE_LoGIC() // User defines rule as logic program
4. class + EVAL(symb_train, logic_program) // Evaluate class affinity based on logic program
5. visuals < SELECT_VISUALS() // User selects background and object visuals
6. v_lol_train < GENERATE(symb_train,class,visuals) // Create scene and render image
V-LoLe
Car Car Car Car Car Car | Load Load
Position Colour Length Wall Roof Axles | Num. Shape
’.-'“-'---“"5-“1_"'-A 1 Yellow Short Full None 2 0 Blue Box
ST = 2 Green Long | Railing | Frame 3 1 Golden Vase
3 Grey Flat 2 Barrel
4 Red Bars 3 Diamond
Blue Peaked Metal Pot
Oval Vase
None
V-LolLO
Car Car Car Black Car Black | Load Load
Position | Colour Length | Top Shape Bottom | Num. | Shape
1 Yellow Short True Cube True 0 Sphere
2 Green Long False Cylinder False 1 Pyramid
3 Grey Hemisphere 2 Cube
4 Red Frustum 3 Cylinder
Blue Hex. Prism Cone
Torus
None

Figure 2: Right: a detailed overview of the train (top) and block (bottom) representations.
Left: illustrations of the visual representations of individual objects and attributes used for
rendering the symbolic representations into images.

Briefly, one first selects a distribution for the train attributes including the length of the
train. Second, a valid symbolic representation of a train composition (symbolic train) is
randomly sampled from this distribution. Third, one defines an underlying logic rule which
the train within the image should depict. This logic rule, represented as a logic program, is
based on the composition and relation of the train’s parts. Fourth, via the the logic program
the class label is derived for the sampled symbolic train. Fifth, one selects the desired vi-
sual representations of the image, e.g., the background scene and the object visualizations.
Finally, the 3-D V-LoLE=h image is generated based on the sampled symbolic train and
selected visual representations. We will discuss these steps in detail in the following.

Symbolic trains (steps 1 and 2 of Alg. 1). The symbolic train of the V-LoL&E= generation
process is based on objects and relationships that are semantically similar to those of the
prolog representation of Muggleton (Muggleton, 1998) (cf. Tab. 2 of supp.). Accordingly,
while the trains have different attributes and associated allocations, the overall composi-
tion, number of attributes, and number of corresponding allocations (groundings), remain
identical (cf. Fig. 2 (top) for more detailed information on the individual attributes). To
generate symbolic trains, V-LoLE&= allows sampling from two different attribute distribu-
tions (cf. step 1 of Alg. 1), namely the Michalski train and the random train (i.e., uniform)
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distribution. With the Michalski train distribution, V-LoL@E= aims to preserve statistical
coherence to the original Michalski trains (Michalski, 1980). To do so, we integrate the
prolog train-generator from Muggleton (1998), which incorporates assumptions regarding
the value distribution of the train attributes and follows the constraints outlined in the
supplement (cf. Sec. A.2). In contrast, the random trains distribution does not impose any
assumptions regarding the distribution of train attributes and only apply attribute con-
straints necessary for visualization (e.g., a short car cannot accommodate more than two
payloads). Independent of the distribution, the user can specify a fixed length or a length
interval from which the train length is randomly selected. Upon selection of the desired
attribute distribution in step 1, a symbolic train is randomly sampled from the chosen dis-
tribution in step 2 of Alg. 1.

Programmable logic (steps 3 and 4 of Alg. 1). Programmable logic, in this work, refers
to a framework that allows to define and modify logical rules, and to perform computations
and operations based on these. It is an integral component of V-LoL&Z= that enables the
implementation of logic programs (cf. step 3 of Alg. 1) and their integration into the dataset
generation process (cf. step 4 of Alg. 1). In step 3 of Alg. 1, users are provided with a
predefined vocabulary of Prolog predicates for constructing individual logic programs (users
further have the option to expand this vocabulary via self-defined predicates). Based on
these predicates users define a logic rule (which the trains of their dataset should depict)
in the form of a logic program. V-LoL next evaluates the class affinity for the previously
sampled symbolic train (cf. step 4 of Alg. 1) given this logic program. Hereby, a train
sample is considered to be “eastbound” if the configuration of its parts is in accordance
with the defined logic rule. If this is not so, the train is considered to be “westbound”
(¢f. Fig. 1 (top)).

Overall, by defining various logic rules, users can create a wide range of distinct prob-
lems to evaluate Al models regarding their capabilities in visual logical learning. For our
experimental evaluations, we have designed a diverse set of logical challenges to analyze and
evaluate the limitations of current AI models. The logic rules employed in these challenges
are defined below. The corresponding Prolog and first-order logic (FOL) formulations, along
with further details regarding the underlying properties of each rule, can be found in Section
B.3 and Table 3 (of the supp.), respectively.

(i) Theory X: The train has either a short, closed car or a car with a barrel load is
somewhere behind a car with a golden vase load. This rule was originally introduced as
"Theory X” in the new East-West Challenge (Bloedorn et al., 1995). We provide the First
Order Logic (FOL) and Prolog definitions below:

FOL: Prolog:
eastbound(Train) = 3Cary, Cars,

has-car(Train, Cary) A has-car(Train, Carg)

A ((short(Cary) A closed(Cary)) ?:iz};zlzgii)[cal;ig:z:](é;)) .

(has_load0(Car,golden-vase),
A has-load(Cars, barrel) has_loadl(Cars,barrel));
A somewhere-behind(T'rain, Cars, Cary))) eastbound(Cars) .

V (has-load(Cary, golden-vase)
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Varying Background Scenes Rich Scene Information

Figure 3: Different background scenes and rich scene information provided with each V-
LoL= sample. The four background options consist of (left): a base, desert, desert with
sky, and fisheye scene. The scene information (right) provided with each sample contains:
the original image sample, object bounding boxes, pixel-level object segmentation maps and
a corresponding depth map.

(ii) Numerical rule: The train has a car where its car position equals its number of
payloads which equals its number of wheel axles.

(iii) Complex rule: Either, there is a car with a car number which is smaller than its
number of wheel axles count and smaller than the number of loads, or there is a short and
a long car with the same colour where the position number of the short car is smaller than
the number of wheel axles of the long car, or the train has three differently coloured cars.

Generating images from symbolic trains (steps 5 and 6 of Alg. 1). A main com-
ponent for bringing classic, symbolic AI benchmarks into the realm of deep learning is to
convert the initially purely symbolic representations into complex visual scenes. To do so
V-LoLiE= proceeds with the following two steps. In step 5 of Alg. 1, users have the option
to select from different visual representations. Specifically, V-LoL& offers two distinct
types. On one hand, V-LoLE=, which comprises images depicting detailed trains that are
reminiscent of model trains. On the other hand, V-LoL-Blocks (V-LoL), draws inspiration
from the minimalist aesthetics of the CLEVR dataset (Johnson et al., 2017) and presents
a simpler visual style resembling children’s building blocks. Fig. 2 provides an overview of
both options, displaying their respective attributes in tables (right) and illustrating these
through images (left). Notably, the number of objects, attributes, and logical versatility
remains identical between both, what varies is the complexity of the visual representations.
Additionally, the generation process offers four background scenes that are compatible with
both the trains and blocks representations (cf. step 5 of Alg. 1). These scenes include a
basic scene, a desert scene, a desert scene with sky, and a fisheye background, each featuring
different levels of texture, distortions, and noise. We refer to Fig. 1 and 3 (left) for their
visualizations.

In step 6 of Alg. 1, the sampled symbolic trains are rendered into a CLEVR-based (John-
son et al., 2017) environment. During this process, individual trains are constructed accord-
ing to the previously selected object representations. Subsequently, they are placed in the
foreground of the chosen background scene and rendered using the Blender engine (cf. Sec. E
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Table 1: A comparison between V-LoL=) and other visual reasoning datasets. We here
differentiate between: 3D visualization, compositional objects (objects that consist of other
objects), rich scene information (e.g., depth maps, pixel-wise segmentations, etc.), variable
number of test objects (in comparison to training set), inclusion of programmable logic
(PL), reasoning about relations, arithmetics, and analogies, and ILP problem.

Dataset 3D COOI;I;) IIEZ?H?;;IQE \’Jézzltaglgjz% Diagnostic PL Relation Arithmetic Analogy ILP
VQA o/ X X X X 4 X X X
CLEVR v o X X (V) v X 4 X X X
CLEVR-Hans3 | v X X ) X X v X X X
CURI v X X (V) X X 4 X v X
ACRE v o X v (V) v X v X v X
PTR o/ v X 4 X 4 v 4 X
Bongard-LOGO| X X X X X X v X v X
Kandinsky X X X ) X X v X v X
RAVEN X v X X 4 X 4 v v X
V-LoL&=3 v  / v v v v v v v v

in the supplements for details). This results in a v_1ol train sample which consists of the
rendered image and its corresponding class label (c¢f. Fig. 1 (top)). Furthermore, aach im-
age of V-LoLE=) comes with rich ground-truth object information. Specifically, for each
train car attribute, we provide comprehensive information including: the position within
the scene determined by the centre of the three dimensional object, a binary pixel-wise
mask emphasizing the pixels correlated with the train attribute, and its two-dimensional
bounding box that encloses the mask. The depth information for each image are addition-
ally stored. Fig. 3 (right) depicts annotations for an example image.

Generating a set of images. Finally, to generate a set of V-LoLi=) images that contain
an equal ratio of east- and westbound trains, V-LoL employs rejection sampling over steps
2 and 4. Ie., we sample symbolic trains from the selected distribution in step 2 based on
the class affinities as identified in step 4 until we have reached the desired balance between
east- and westbound samples. This additional loop over step 2 and 4 is employed before
the images are generated.

2.2 V-LoL and Related Datasets

V-LoL= not only combines high visual complexity with intricate logical challenges but also
introduces a flexible framework that offers precise control over both components. Specifi-
cally, unlike other datasets that are often constrained to fixed sets of challenges, our frame-
work utilizes varying visual representations with programmable logic (PL) that allows ex-
perimentalists to design and generate custom sets of visual logical learning problems. These
can thus be tailored to the experimentalist’s specific requirements and thereby facilitate ex-
tensive and targeted diagnostic evaluations, e.g., on specific aspects of relational, arithmetic
or analogical reasoning. Additional noteworthy properties of V-LoLE=) are that the images
comprise hierarchical objects (objects composed of “sub-objects”) and that the flexibility of
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the framework allows for a user to specify different training and test settings, e.g., the test
set can contain a greatly different amount of objects than occur within the training set.

Over the full set of properties, V-LoLE=) thus offers several advantages over previous re-
lated datasets. Accordingly (cf. Tab. 1), classic visual question answering datasets, whether
based on natural images (VQA (Antol et al., 2015)) or synthetic images (CLEVR, (Johnson
et al., 2017)), may focus on complex visual representations, but focus on a more narrow
set of logical problems than V-LoL@=. The same holds for CLEVR-Hans (Stammer et al.,
2021), a confounded classification dataset that is based on CLEVR visuals. While the afore-
mentioned datasets primarily focus on straightforward reasoning tasks, others like CURI
(Vedantam et al., 2021), ACRE (Zhang et al., 2021), and PTR (Hong et al., 2021), intro-
duce more sophisticated reasoning tasks involving analogical or even arithmetical reasoning.
These datasets follow the CLEVR-like approach in image generation, featuring simple geo-
metric structures that, however, feature less visually complex scenes.

Additionally, the images of these datasets encompass a much smaller combinatorial
complexity than V-LoL@= images. F.g., ACRE consists of 48 object permutations, where
a V-LoL= image carrying just one car already encompasses 22000 combinations. This
further grows exponentially with increasing train lengths. On another end of the spectrum,
Bongard-LOGO (Nie et al., 2020), Kandinsky patterns (Holzinger et al., 2019, 2021), and
RAVEN (Zhang et al., 2019) are even more centered on complex reasoning challenges, yet
largly neglect visual complexity, i.e., featuring only elementary two-dimensional objects.
Lastly and arguably more importantly, unlike the majority of previously mentioned, datasets
that focus only on a fixed subset of visual logical learning challenges, V-LoL represents
a valuable diagnostic tool for probing the full depths of visual and logical learning in a
controlled, yet versatile environment.

3 Experiments: AI Systems on the V-LoL challenges

In our experimental evaluations we showcase V-LoL’s versatility for providing diagnostic
tests for visual logical learning abilities. Specifically, we generate datasets via V-LoL@=3 for
different tasks within visual logical learning and evaluate several Al approaches on these.
Before we dive into the specific evaluations on these challenges, we first give an overview
on the experimental setup as well as investigated models.

AI Models. We evaluate Al models from neural, symbolic, and neuro-symbolic Al where
we have deliberately chosen methods that encompass a wide range of Al approaches, aiming
to gain comprehensive insights into their capabilities and to explore the advantages and
disadvantages arising from their different methodologies.

Al approaches that fall under the term Neural AI perform inference on an implicit,
subsymbolic-level knowledge representation and have become the prevailing paradigm in
recent years, particularly in visual Al. However, despite their promising predictive perfor-
mances these approaches have also been shown to be strongly influenced e.g., by shortcut
behaviour (Schramowski et al., 2020) and biases (Bender et al., 2021), and the degree
to which they perform logical reasoning is still an open research topic (Wei et al., 2022;
Creswell et al., 2022; Saparov and He, 2022). In our evaluations we specifically assess
the abilities of ResNet18 (He et al., 2016), EfficientNet (Tan and Le, 2021), and Vision
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Transformer (Dosovitskiy et al., 2021) (ViT') in handling visual logical learning challenges.
We perform additional experiments on large language models (LLMs) including Llama2
(Touvron et al., 2023) and ChatGPT (OpenAl, 2023).

Symbolic AT approaches (aka Good Old-Fashioned Al (GOFAI) (Russell and Norvig,
2020)) perform inference on explicit, high-level symbol-based knowledge representations
making them well-suited for tasks that require logical reasoning and rule-based decision-
making, but ill-suited for inference on low-level data such as raw images. We specifically in-
vestigate the abilities of the classical ILP approach, Aleph (Srinivasan, 2001) (Aleph (GT)),
and more recent approach, Popper (Cropper and Morel, 2020) (Popper (GT)) by evaluating
their induced programs on the ground-truth symbolic representations of the dataset. These
evaluations act as a form of ablation given the presence of an omniscient perception model.

Neuro-Symbolic AI encompasses a wide range of approaches that follow the idea of
combining neural (subsymbolic) with symbolic computations. The motivation behind this
is to combine the strengths of both approaches and as such mitigate the shortcomings of the
individual methods. The neuro-symbolic models in our evaluations can be categorized into
two subcategories (following the categorization of (Kautz, 2022)): Neuro|Symbolic (RCNN-
Popper and RCNN-Aleph) and Neuro:Symbolic—Neuro (a/LP (Shindo et al., 2023)). Where
alILP utilizes gradients to learn logic rules, i.e., differentiable ILP framework, RCNN-Aleph
and RCNN-Popper combine their base ILP approach with a Mask-RCNN model (He et al.,
2017) that is pretrained on randomly distributed train images for object identification and
attribute prediction. In this way, the Mask-RCNN model infers the symbolic representa-
tion from an image, that serves as the symbolic input for both ILP approaches. Thus, in
comparison to Aleph (GT) and Popper (GT), RCNN-Aleph and RCNN-Popper can contain
possible perception errors stemming from the Mask-RCNN module.

Experimental setup. Unless stated otherwise the problem setup in our evaluations is a
classification setup consisting of a training dataset and held-out test set of images belong-
ing to one of two classes (eastbound and westbound). Furthermore, unless stated otherwise
the training set includes 1k images. All models are trained on specified training splits and
evaluated by performing stratified 5-fold cross-validation on a held-out test set, containing
2k images. Quantitative results (unless noted otherwise) correspond to the test set classi-
fication accuracy. The hyperparameters for each model are the same over all challenges.
Details on these can be found in the supplement (¢f. Sec. D). Unless specified otherwise,
the evaluation datasets were sampled from the Michalski distribution. Finally, runs aborted
due to code instabilities, memory overflows, or infinite loops are marked with x*.

3.1 V-LoL Challenges

Challenge 1: Visual Perception. In the first challenge, we investigate the robustness
of AI models to the visual perceptual challenges posed by V-LoLi:= and V-LoLl. Here,
we create two datasets based on the Theory X class rule on both visual representations,
namely the train and the block representation. Fig. 4 presents the final test set accuracies
of all AI models on both visualization types. It is evident that the evaluated models exhibit
a remarkably similar level of performance on both.

10
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Models: EfficientNet (Neural) ¢ ResNet18 (Neural) ¢ ViT (Neural)
RCNN-Aleph (NeSy) ¢ RCNN-Popper (NeSy) ¢ alLP (NeSy)
Aleph (Sym w/ GT) ¢ Popper (Sym w/ GT)
Visualization: v/} Michalski Y Block

Figure 4: Visual Perception (Challenge 1). In this challenge, we compare the performance
of various symbolic, neural, and neuro-symbolic AI models on different visual represen-
tations, i.e., the V-LoLE= and the V-LoLO datasets. Each bar depicts the average test
accuracy along with a 95% confidence interval derived from a 5-fold cross-validation. We
do not observe a strong influence of the different visual representations on the model’s
performances.

Alongside the different visual representations, V-LoLI= allows us to explore scene in-
variance. In Section C of the suppl., we conduct evaluations of the neural models across
different background scenes. Throughout these evaluations (Fig. 11 and Tab. 4 and 5
(suppl.)) we can observe a modest decrease in accuracy as we transition from the base
scene to more challenging scenes, such as desert, desert with sky, and finally, the fisheye
scene. Furthermore, Tab. 5 (suppl.) in Sec. B.3 reveals that the neural models fail to
generalize to unseen scenes. Specifically, across all three neural models, when tested on
images from previously unencountered scenes, performance plummets to levels akin to ran-
dom guessing. For the sake of brevity, all further experiments focus exclusively on the more
train images set in the base scene.

Challenge 2: Logical Reasoning. In the second challenge, we specifically assess the
models’ performances in logical reasoning tasks. For this we create datasets of each of the
logic rules described in Sec. 2.1. Fig. 5 presents the final results on each rule separately
(additional results via LLM few-shot prompting can be found in Tab. 6 (suppl.)). It be-
comes evident that the nature of the logical problems has a pronounced impact on the
performance of the models, leading to strong variations in their ability to handle the differ-
ent logical class rules. While the neural approaches demonstrate a decent performance on
Theory X, when confronted with the numerical and complex problems they are subject to a
severe degradation in performance. This suggests that while these models can identify the
attributes of objects, they struggle to understand and reason about numerical information,
i.e. making arithmetic comparisons between different concepts, and performing long chains
of non-trivial reasoning. Interestingly, aILP delivered the best performance on Theory X;
however, when facing the numeric and complex problems the performance plummeted. In
contrast, the Neuro|Symbolic Al systems, RCNN-Popper and RCNN-Aleph, demonstrate
much greater abilities in dealing with the numerical problem. Although the purely symbolic
AT methods perform even better, they are not truly comparable to the others, as they lack
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Figure 5: Logical Reasoning (Challenge 2). In this challenge, we compare the performance
of various symbolic, neural, and neuro-symbolic AI models on the different ” Theoryx”, ” Nu-
merical”, and ” Complex” logic rules. Each bar depicts the average test accuracy along with
a 95% confidence interval derived from a 5-fold cross-validation. Failed runs are denoted
by an *. As the complexity of the logic rules increases (from the left to the right plot), a
discernible decline in performance across all evaluated methods is observed.

the ability to handle the visual component of V-LoLZ= in the first place. In this regard, the
Neuro|Symbolic AT methods show a relatively robust behaviour with minor losses in perfor-
mance over the different logical rules. However, RCNN-Popper failed to learn the complex
problem due to endless loops and code instabilities during execution. Since Popper was
able to fit on the symbolic ground truth of the dataset, this issue is probably caused by the
combination of the rule complexity and perception noise caused by the RCNN module.

We provide further experiments in this context on the logical learning abilities of LLMs
via zero-shot prompting in Sec. B.5 and Tab. 6 of the supplement. We observe that although
the models, Llama2 and ChatGPT, successfully generate syntactically and semantically
correct Prolog rules, both fail to learn logical features inherent in the input data.

In general, all models face their greatest challenge when dealing with the complex rule,
emphasising the rule’s intricacy and the advanced level of reasoning required to solve the
task. Despite not being able to fully solve the individual logic task, RCNN-Aleph exhibits
the best performance in inducing fairly reliable decision models across the logical problems.
Remarkably, this mixed model that is in part based on a GOFAI system, Aleph, manages
to outshine modern architectures such as the Vision Transformer and oILP in performance.
However, in practice it suffers from poor optimization, resulting in prolonged runtimes and
substantial memory usage.

Challenge 3: Generalization. One would assume that models that have truly solved the
logical learning problems should be able to demonstrate this ability even on train composi-
tions not seen during training.

In challenge 3 we assess models trained on V-LoLE= images encompassing up to four
cars, using a test set featuring trains carrying 7 cars. The results in Fig. 6 expose limitations
in the models’ generalization abilities. Despite promising performances in the previous
challenges, almost all models struggle to generalize effectively to longer train scenarios.
This suggests a limited ability to adapt their reasoning capabilities to challenging, unseen
inputs. Instead of comprehending the underlying problem and performing appropriate
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Figure 6: Generalization (Challenge 3). In this challenge, we investigate the generalization
capabilities of symbolic, neural, and neuro-symbolic Al models when facing OOD V-LoL&=
images that depict trains consisting of 7 cars. Each bar depicts the average test accuracy
along with a 95% confidence interval derived from a 5-fold cross-validation. Failed runs are
denoted by an *. We observe, that comparing the shorter train (2-4 cars) vs the longer
train evaluations (7 cars) reveals strong performance degradations hinting at problems in
terms of generalization over all models.

reasoning, the models tend to approximate the data distribution of the training set, leading
to suboptimal generalization.

To test whether the neural models learn disentangled attribute representations, we con-
ducted an additional evaluation using a test set in which train attributes were uniformly
distributed, contrasting the Michalski distribution employed during training. The results
of Fig. 12 in the supp. indicate that the neural models learn strong correlations between
the attributes and lack the ability to generalize to out-of-distribution inputs. Specifically
over all three models, when evaluated on images that stem from the uniformly distributed
attribute distribution we observed a performance drop to close to random guessing.

Challenge 4: Test-Time Interventions. In challenge 4, we leverage the versatility pro-
vided by V-LoLE= that allows for performing test-time interventions on the composition
of individual trains. We conduct two interventions on images of the Theory X challenge,
providing us valuable insights into the model’s reasoning process. Specifically, we investi-
gate the models’ class predictions of 2000 test images before and after performing the two
different attribute interventions. We recall, Theory X trains have either a short, closed car,
or a car with a barrel load is somewhere behind a car with a golden vase load. The first
intervention, depicted in Fig. 7 (top left), assesses to which degree the models do learn the
underlying spacial relationships. We initially evaluate the models on westbound trains that
are carrying a barrel in front of a golden vase. Subsequently, we intervene by swapping
barrel and golden vase payloads. This effectively alters the train’s direction from west- to
eastbound. Our second intervention explores the impact of redundant and class-irrelevant
artefacts. We initially evaluate the models on eastbound trains that are carrying a golden
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Westbound Eastbound

V-LoL&= Swap Remove
Interventions | Pre-Swap — Post-Swap Pre-Remove — Post-Remove
ResNet18 85.41+4.9 — 30.02+9.33 99.35+0.42 — 29.43+11.85
EfficientNet 84.1+7.16 — 45.894+24.08  99.67+0.31 — 49.36+24.3
ViT 79.42+4.28 — 49.47+13.21  98.9140.7 — 51.09+7.38
RCNN-Aleph | 99.83+0.38 — 98.01+3.20  99.82+0.13 — 100+0
RCNN-Popper | 90.5+2.26 — 10.98+2.97 99.64+0.15 — 54.88+14.68
aolLP 100+0 — 100+0 99.75+0 — 100+0

Aleph (GT) | 99.99+0.02 — 98.21+3.4 1000 — 100+0
Popper (GT) | 95.72+1.87 — 3.56+1.77 1000 — 36.14+0.75

Figure 7: Interventions (challenge 4). In this challenge, we analyze the impact of test-time
interventions on the classification performance of symbolic, neural, and neuro-symbolic Al
models. The first intervention involves swapping payloads (left, top). The second involves
removing roofs (left, bottom). The table (right) provides insights into each models’ perfor-
mance before and after intervention. These results indicate that while neural models exhibit
challenges in adapting to the intervention, symbol-based Al demonstrate greater resilience
under these test-time modifications.

vase in front of a barrel, with both of the cars having a closed roof. Subsequently, we inter-
vene by removing all roofs from the trains, as illustrated in Fig. 7 (bottom left). The table
in Fig. 7 (right) displays the models’ classification accuracy before and after the interven-
tions. While most models exhibit a decent performance on the original (pre-intervention)
images, their accuracy significantly diminishes on the intervened images. Notably, neural
models are easily fooled by the interventions. This suggests that they do not fully capture
the underlying logical learning problem, either failing to grasp key special relationships or
being swayed by redundant and class-irrelevant artefacts. In contrast, the neuro-symbolic
models, RCNN-Aleph and aILP, appear to be less affected by these interventions.

Challenge 5: Data-Efficiency. Challenge 5 investigates the data efficiency of the in-
dividual models by assessing their performances across different training set sizes. The
evaluation is conducted using varying numbers of training samples, namely 100, 1k, and
10k. As depicted in Fig. 8 in the small data regime, we observe notable variations in per-
formances among the models. While the neural models are subject to severe performance
degradation, the neuro-symbolic approaches showcase their ability to learn effectively also
from small amounts of data. In particular, it can be observed that aILP achieves best per-
formances on both Theory X and complex problems for 100 training samples. Intriguingly,
these performances even surpass those achieved with 1k samples. Turning our attention
to the large data regime (10k training samples), we note substantial performance improve-
ments for neural approaches. On the other hand, the neuro-symbolic Al systems encounter
challenges in effectively scaling their performances as aILP and Popper exhibit declines in
performance. Popper additionally runs into endless loops and code instabilities during exe-
cution. Aleph, on the other hand, suffers from poor optimization. In our detailed runtime
analysis of Aleph in Sec. B.6 of the suppl. we observe that an increase in the amount of data
leads to an exponential training runtime and memory consumption. Notably, alLP con-
sistently performs poorly on the numerical problem. This could potentially be attributed
to issues with mode declaration and hyperparameter tuning. Comparing the individual
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Figure 8: Data-Efficiency (Challenge 5). In this challenge, we evaluate the data-efficiency of
various symbolic, neural, and neuro-symbolic Al models using V-LoL@=. Each bar depicts
the average test accuracy along with a 95% confidence interval derived from a 5-fold cross-
validation. Failed runs are denoted by an %. While the neural models exhibit significant
performance improvements with the access to large amounts of data, the NeSy methods face
challenges with performance fluctuations and failed runs (e.g., due to exponential runtimes
and code instabilities).

Theoryx
99 100
52 88 90 78 89
S 7 -3l \EN
_ Numerical
3 96 100 100
2100 8o o6 80 . 78
Q 60 B> 62 60
§ o DR AN Hleas | PRrTe| th W
Complex
99
100
71 73 75 s, T4 7 70 &
o P35 55 % D5 s 7@% AN,
Models: EfficientNet (Neural) ¢ ResNet18 (Neural) ¢ ViT (Neural)
RCNN-Aleph (NeSy) ¢ RCNN-Popper (NeSy) ¢ alLP (NeSy)
Aleph (Sym w/ GT) ¢ Popper (Sym w/ GT)
Label Noise: /7 0% Y 10% R 30%

Figure 9: Label Noise (Challenge 6). In this challenge, we evaluate the robustness of
the investigated AI models to varying degrees of label perturbations. Each bar depicts
the average test accuracy along with a 95% confidence interval derived from a 5-fold cross-
validation. Failed runs are denoted by an *. Especially, the ILP-based models, RCNN-Aleph
and RCNN-Popper, struggle to cope with noise leading to severe performance losses and
failed runs (e.g. due to prolonged run times, and code instabilities.

rules across the training size, it becomes evident that the complex rule generally poses the
greatest challenge.
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Challenge 6: Label Noise. In the final challenge, we investigate the robustness of the Al
models to label noise. For this purpose, the respective Al systems are trained on datasets
with specific amounts of perturbed labels (flipped labels). In Fig. 9, we compare the model’s
performances for different degrees of label perturbation. In general, all AI models have dif-
ficulties coping with the noise. In this experiment alLLP seems to be least affected given
the Theory X rule. On numerical and complex problems the ILP system Aleph maintains
its lead position, although it also has to cope with large performance losses. Popper, how-
ever, is subject to strong turmoil that results in a performance close to random guessing
and a multitude of failed runs. The investigated neural approaches all show a very sim-
ilar level of degradation and are slightly less affected by the noise compared to the ILP ones.

3.2 Discussion

In our analysis we have evaluated and compared a range of Al architectures, and revealed
several key shortcomings via learning challenges generated via V-LoL@=.

Neural AI. The investigated neural AI models show largely similar performances amongst
themselves across the different challenges. While they can identify the attributes of objects,
they struggle to reason about numerical information, e.g. making arithmetic comparisons
between different concepts, as well as performing long chains of intricate reasoning (cf. chal-
lenge 2). These models tend to acquire pronounced biases from the training data, leading
to challenges in overcoming these biases when confronted with data outside the training dis-
tribution (c¢f. challenge 3). The utilization of distinct data distributions during training and
testing reveals a deficiency in achieving a proper disentanglement of object attributes in the
learned representations of the neural models (cf. challenge 3). Challenge 4 particularly re-
veals that these models tend to be susceptible to small changes in input, being easily fooled
by significant or insignificant perturbations in train compositions. Additionally, training on
different dataset sizes exposes their reliance on a large training set size (cf. challenge 5).

Symbolic AI. While the symbolic Al models demonstrate strong performances across dif-
ferent visual logical learning problems (e.g., challenge 2), it must be noted that they make a
practically unrealistic assumption of omniscient perception. Furthermore, they are subject
to certain challenges requiring excessive tuning of hyperparameters and priors (language
biases), where even minor changes can lead to significant performance fluctuations in prac-
tice. Lastly, the application faces limitations that are particularly pronounced when dealing
with noise or larger training samples (challenge 5 and 6) such as code instabilities, endless
loops or excessive memory usage.

Neuro-symbolic AI. While neural Al struggles to perform visual logical reasoning, and
symbolic Al lacks the ability to perceive and interact within a visual environment, neuro-
symbolic Al emerges as a promising tool in the realm of visual logical learning. In the V-
LoL-Challenges we can observe that neuro-symbolic Al predominantly outperforms purely
neural Al in complex reasoning tasks, yet it is more susceptible to strong performance
fluctuations. Although RCNN-Aleph is also not able to fully solve each individual V-
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LoL-Challenges, it demonstrates the best overall performance, inducing the most reliable
decision models across the different V-LolL.-Challenges. Nonetheless, these models are not
without limitations. Firstly, akin to the symbolic models, the neuro-symbolic models re-
quire significant tuning of hyperparameters and priors (language biases), where even minor
changes can lead to strong performance fluctuations. Secondly, the noise arising from the
perception module exacerbates the previously discussed optimization problems. Lastly, the
translation process from visual input to a symbolic representation is inherently ambiguous.
Accordingly, neuro-symbolic Al demands a stronger inductive bias, requiring additional
background knowledge on the learning problem to mitigate the problem of ambiguity. For
instance, one might view the train as a single entity or consider not only the number of
wagons, payloads, and axles but also details like wheels, wooden bars, screws, and reflec-
tions or even their materials, positions, orientations, and relationships. In this context,
additional background knowledge is needed to distill the relevant image features that align
with the core aspects of the underlying learning problem. This, however, comes with both
advantages and disadvantages. On the one hand, neuro-symbolic Al offers a more com-
prehensible decision-making process, granting the user insights and control over the image
features used during learning. On the other hand, in cases where this background knowl-
edge, i.e. the underlying learning problem, is unavailable or the link between classification
and image content is unclear, defining an appropriate inductive bias becomes challenging.
Despite these limitations, their abilities to flexibly handle the visual and logical reasoning
components of the challenges makes them attractive approaches that lie between the purely
neural and symbolic models.

Key Takeaways. The main goal of our evaluations was to illustrate the variety of chal-
lenges that can be instantiated via V-LoL and then utilized for identifying potentials and
shortcomings of an Al approach. Despite the potential abilities of specific models for specific
challenges, our findings reveal that all investigated approaches struggle to cope with the full
set of the illustrated challenges. Intriguingly, RCNN-Aleph, an Al system rooted in the GO-
FAT principles, is able to outshine SOTA architectures such as alLP and Vision Transformer
(cf. also preliminary LLM results in Sec. B.5). This surprising outcome sparks a discussion
on the potential relevance and application of traditional Al systems in contemporary Al.
Moreover, while existing datasets adhere to predetermined challenges for exploring different
visual reasoning abilities — e.g., Clevr-Hans (Stammer et al., 2021) addresses confounding
data, PTR (Hong et al., 2021) focuses on relational learning in compositional objects —
V-LoLi=, in contrast, offers a framework with a visual logical interface. This unique fea-
ture allows users to define their own visual logical learning challenges and create a dataset
that enables the evaluation on self-defined problems beyond the ones of our evaluations. In
comparison to existing datasets or subsets thereof V-LoL thus allows to iteratively establish
and investigate multiple specifically tailored challenges while preserving easy comparabil-
ity among these. In our experiments, we have lead the way and provided examples of such
challenges, encompassing various complex visual and logical challenges, from test-time inter-
ventions to generalization challenges. These experiments not only enable us to compare Al
approaches across the different AI methodologies — neural, symbolic, and neuro-symbolic
AT — but also offer insights into respective methodologies thereby revealing both shortcom-
ings and benefits that are inherent to these methodologies. V-LoL thus serves as a valuable
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tool that grants Al researchers diagnostic insights into the visual logical reasoning processes
of Al methods, and allows to suggest new avenues for exploration in future research.

Limitations. A primary limitation of our work lies in the synthetic nature of our dataset,
which contrasts with the visual complexity of natural images. Future instantiations should
investigate incorporating more naturally complex visual representations. However, this
synthetic character allows for great versatility and generation power in terms of developing
diagnostic challenges, e.g., the direct access to the data generation process allows for easily
performing test-time interventions. This represents an important property for developing
targeted evaluations of Al models’ visual logical learning abilities. A further limitation
is that the current translation from visual to symbolic representations in V-LolL-Trains is
unambiguous in the sense e.g., that lighting conditions and occlusion can make it hard
to identify objects and properties in real-world settings. Future instantiations should thus
also explore visual scenes that reflect such natural uncertainties found in real-world settings.
Lastly, care should be taken when developing datasets via the V-LoL framework in terms
of potential dataset biases. Particularly, when investigating very complex logic rules it
can occur that generated images contain unintended spurious correlations due to a reduced
space of possible scene configurations. If these go unchecked it can be difficult to draw
useful conclusions on a model’s visual logical learning abilities.

4 Impact

The V-LoL dataset is related to datasets on visual reasoning from the field of DL, but also
to symbolic Al benchmarks. Importantly, it has an impact on various subfields of Al

Visual (reasoning) datasets. The transition from purely visual perception tasks to vi-
sual reasoning has led to the development of specialized datasets that challenge AI models
to perform different reasoning tasks based on visual information. These datasets incorpo-
rate tasks such as spatial, relational, temporal, analogical and causal reasoning, providing a
more comprehensive evaluation of Al systems’ cognitive abilities beyond simple perception
tasks. Notable examples include VQA (Antol et al., 2015; Wu et al., 2017; Krishna et al.,
2017; Johnson et al., 2017), QAR by Huang et al. (2021), CLEVRER by Yi et al. (2020),
CLEVR-Hans by Stammer et al. (2021), MNIST-Addition by Manhaeve et al. (2018), GQA
dataset by Hudson and Manning (2019). Also more cognitively inspired datasets such as the
PTR dataset by Hong et al. (2021), the RAVEN dataset by Carpenter et al. (1990) or the
datasets of Webb et al. (2021) and Kerg et al. (2022). Lastly, datasets of Gopnik and Sobel
(2000) and Zhang et al. (2021), focusing on causal-based visual reasoning, and game-based
datasets for concept learning by Bramley et al. (2018). All of these have paved the way
for advancing visual reasoning research in the field of computer vision. A comparison of a
selection of datasets, their features and learning tasks can be found in Tab. 1. While most
of these tasks assume pre-defined programs to compute answers, V-LoL takes a different
approach by requiring agents to learn abstract logic programs for classification, adding a
unique dimension to the field of visual reasoning.
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Classical ILP benchmarks. ILP benchmarks have been an integral part of the Al field
since its inception to evaluate Al systems’ performance in logical learning and knowledge
representation. These benchmarks involve learning logical rules or programs from examples
and background knowledge, encompassing challenges such as logical inference, relational
reasoning, and generalization from limited examples. Examples of popular ILP benchmarks
include the Michalski train problem (Michalski, 1980; Michie et al., 1994), Bongard Prob-
lems (Bongard, 1968), Kinship (Dua and Graff, 2017), Mutagenesis (Debnath et al., 1991),
and Bongard-LOGO (Nie et al., 2020).

Al systems. V-LoL has the distinct advantage of allowing evaluation and comparison of
Al systems from the domains of symbolic, neural, and neuro-symbolic Al. Symbolic Al,
utilizing representations like First-Order Logic (FOL), provides essential knowledge repre-
sentation and reasoning capabilities (Baral, 2010; Brachman and Levesque, 2004; Nickel
et al., 2015). ILP has been established as a technique to learn generalized rules using FOL
as its language (Muggleton, 1995; Nienhuys-Cheng et al., 1997; De Raedt and Kersting,
2008; Cropper et al., 2020), offering advantages such as learning explicit programs and
learning from small data. Deep Learning, a prominent technique in neural Al, has shown
significant achievements in various Al tasks (LeCun et al., 2015; Silver et al., 2016; Jumper
et al., 2021), although lacking interpretable and explainable reasoning steps. The emerging
field of neuro-symbolic Al integrates symbolic computations and neural networks (Garcez
and Lamb, 2023), enabling efficient parameter estimation (e.g., DeepProbLog (Manhaeve
et al., 2018), NeurASP (Yang et al., 2020), SLASH (Skryagin et al., 2022), NS-CL (Mao
et al., 2019), and differentiable theorem provers (Rocktéschel and Riedel, 2017)) and ex-
plicit logic program learning from raw data (e.g., OILP (Evans and Grefenstette, 2018),
oILP (Shindo et al., 2023), and FFNSL (Cunnington et al., 2023)). V-LoL serves as a
diagnostic benchmark for evaluating and advancing Al systems across all of these different
domains.

5 Conclusion

We have introduced V-LoL, a dataset specifically designed for the diagnostic evaluation
of visual logical learning in Al models. Specifically, V-LoLE=, an initial instantiation of
V-LoL, provides a versatile generator that allows to generate custom datasets for detailed
investigations of the capabilities and limitations of current and future ATl models. In this way
it is possible to investigate various learning abilities of Al models, ranging from perception
and relational reasoning to arithmetic reasoning and test-set generalization. V-LoL&=h thus
offers the ability to finely adjust the learning task, enabling a comprehensive diagnostic anal-
ysis of various Al models for visual logical learning that goes beyond benchmark datasets,
but also previous diagnostic datasets. Specifically, we provide diagnostic evaluations of
several symbolic, neural, and neuro-symbolic models and could identify key shortcomings
and benefits arising from the individual methodologies. One finding from this is that mod-
els based on classical Al approaches (e.g., Aleph), overall show promising properties over
SOTA models, though requiring a stronger inductive bias in form of background knowledge.
Overall, by merging logic and vision, V-LoL ultimately poses an attractive tool for ongoing
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research efforts aimed at enhancing the performance and capabilities of Al models, and
further driving progress in developing models with capabilities for visual logical learning.

Future evaluations include assessing the visual logical learning capabilities of large-
scale vision-language. Investigating the models’ generalization across different background
scenes can provide crucial information on their robustness to out-of-distribution data. Fur-
thermore, conducting extensive human evaluations will provide unique perspectives on the
challenges posed by V-LoL. Finally, extending V-LoL to include other ILP problems (e.g.,
Bongard Bongard (1968), RoboCup Kitano et al. (1997), Poker Blockeel et al. (1999) or
MutaGenisis Srinivasan et al. (1996)), but also moving to the domain of 3D image sequences
are important directions for future research.

Ethical Statement. The V-LoL dataset is a diagnostic dataset aimed at explicitly inves-
tigating various challenges of visual logical learning and in this way is designed to identify
the capabilities and potential shortcomings of AI models. It can, however, also serve as a
benchmark for improving AI models in general. Therefore, although it is not its primary
intention, providing such a benchmark can also have the effect e.g., of improving models
that are to be used in a harmful way. Overall, the deployment of visual logical AT mod-
els particularly in high stakes scenarios such as autonomous driving or medical diagnosis
should be carefully checked to avoid potentially fatal predictions. However, the particular
goal of V-LoL is to be able to identify any model shortcomings based on specifically tailored
evaluations and analyses. Lastly, as the introduced datasets are synthetically generated no
harm was done in the generation of the dataset.

Acknowledgments

The authors thank the reviewers and action editor for their valuable feedback and guidance,
which helped improve the quality of this paper. This work has benefited from the HMWK
project ”The Third Wave of Artificial Intelligence - 3AI”, Hessian.Al, and the Hessian re-
search priority program LOEWE within the project ”WhiteBox”. Further, we acknowledge
support of the hessian.AISC Service Center (funded by the Federal Ministry of Education
and Research, BMBF, grant No 011S22091), and the EU ICT-48 Network of AI Research
Excellence Center "TAILOR” (EU Horizon 2020, GA No 952215). The Eindhoven Uni-
versity of Technology authors received support from their Department of Mathematics and
Computer Science and the Eindhoven Artificial Intelligence Systems Institute.

References

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra,
C. Lawrence Zitnick, and Devi Parikh. VQA: visual question answering. In Interna-
tional Conference on Computer Vision (ICCV), pages 2425-2433. IEEE Computer Soci-
ety, 2015.

Chitta Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, 2010.

20



V-LoL

Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell.
On the dangers of stochastic parrots: Can language models be too big? In Conference
on Fairness, Accountability, and Transparency (FAccT), pages 610-623. ACM, 2021.

Hendrik Blockeel, Luc De Raedt, Nico Jacobs, and Bart Demoen. Scaling up inductive logic
programming by learning from interpretations. Data Mining and Knowledge Discovery,
3(1):59-93, 1999.

Eric Bloedorn, Ibrahim F Imam, Kenneth A Kaufman, Marcus A Maloof, Ryszard S Michal-
ski, and Janusz Wnek. How did aq face the east-west challenge? an analysis of the aq
family’s performance in the 2nd international competition of machine learning programs.
Technical report, 1995.

Mikhail Moiseevich Bongard. The recognition problem. Technical report, Foreign Technol-
ogy Div Wright-Patterson AFB Ohio, 1968.

Ronald Brachman and Hector Levesque. Knowledge representation and reasoning. Elsevier,
2004.

Neil Bramley, Anselm Rothe, Josh Tenenbaum, Fei Xu, and Todd Gureckis. Grounding
compositional hypothesis generation in specific instances. In Annual Conference of the
Cognitive Science Society, 2018.

Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam Hruschka, and Tom
Mitchell. Toward an architecture for never-ending language learning. In Conference on
Artificial Intelligence (AAAI), volume 24, pages 1306-1313, 2010.

Patricia Carpenter, Marcel Just, and Peter Shell. What one intelligence test measures: A
theoretical account of the processing in the raven progressive matrices test. Psychological
Review, 97:404-31, 08 1990.

Liangyu Chen, Bo Li, Sheng Shen, Jingkang Yang, Chunyuan Li, Kurt Keutzer, Trevor
Darrell, and Ziwei Liu. Language models are visual reasoning coordinators. In ICLR
2023 Workshop on Mathematical and Empirical Understanding of Foundation Models,
2023.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler,
Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset
for semantic urban scene understanding. In Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3213-3223. IEEE Computer Society, 2016.

Antonia Creswell, Murray Shanahan, and Irina Higgins. Selection-inference: Exploiting
large language models for interpretable logical reasoning. CoRR, abs/2205.09712, 2022.

Andrew Cropper and Sebastijan Dumanci¢. Inductive logic programming at 30: A new
introduction. J. Artif. Int. Res., 74, 2022.

Andrew Cropper and Rolf Morel. Learning programs by learning from failures, 2020.

21



HELFF, STAMMER, SHINDO, DHAMI, AND KERSTING

Andrew Cropper, Sebastijan Dumancic, and Stephen H. Muggleton. Turning 30: New
ideas in inductive logic programming. In International Joint Conference on Artificial
Intelligence (IJCAI), pages 4833-4839, 2020.

Daniel Cunnington, Mark Law, Jorge Lobo, and Alessandra Russo. FFNSL: feed-forward
neural-symbolic learner. Machine Learning, 112(2):515-569, 2023.

Luc De Raedt and Kristian Kersting. Probabilistic Inductive Logic Programming, pages
1-27. Springer Berlin Heidelberg, 2008.

A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A. J. Shusterman, and C. Han-
sch. Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro
compounds. Correlation with molecular orbital energies and hydrophobicity. Journal
of medicinal chemistry, 34(2):786-797, 1991.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhali,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain
Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers
for image recognition at scale. In International Conference on Learning Representations

(ICLR), 2021.
Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

Richard Evans and Edward Grefenstette. Learning explanatory rules from noisy data.
Journal of Artificial Intelligence Research, 61:1-64, 2018.

Artur Garcez and Luis Lamb. Neurosymbolic ai: the 3rd wave. Artificial Intelligence
Review, pages 1-20, 03 2023.

Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan,
Hanna M. Wallach, Hal Daumé III, and Kate Crawford. Datasheets for datasets. Com-
munications of the ACM, 64(12):86-92, 2021.

Alison Gopnik and David M Sobel. Detecting blickets: How young children use information
about novel causal powers in categorization and induction. Child development, 71(5):
1205-1222, 2000.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Conference on Computer Vision and Pattern Recognition (CVPR), pages
770-778. IEEE Computer Society, 2016.

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross B. Girshick. Mask R-CNN. In
International Conference on Computer Vision (ICCV), pages 2980-2988. IEEE Computer
Society, 2017.

Andreas Holzinger, Michael D. Kickmeier-Rust, and Heimo Miiller. KANDINSKY patterns
as ig-test for machine learning. In Andreas Holzinger, Peter Kieseberg, A Min Tjoa, and
Edgar R. Weippl, editors, International Cross-Domain Conference Machine Learning and
Knowledge Eztraction (CD-MAKE), volume 11713, pages 1-14. Springer, 2019.

22



V-LoL

Andreas Holzinger, Anna Saranti, and Heimo Mueller. Kandinskypatterns—an experimental
exploration environment for pattern analysis and machine intelligence. CoRR, 2021.

Yining Hong, Li Yi, Josh Tenenbaum, Antonio Torralba, and Chuang Gan. PTR: A bench-
mark for part-based conceptual, relational, and physical reasoning. In Conference on
Neural Information Processing Systems (NeurIPS), pages 17427-17440, 2021.

Jiani Huang, Ziyang Li, Binghong Chen, Karan Samel, Mayur Naik, Le Song, and Xujie Si.
Scallop: From probabilistic deductive databases to scalable differentiable reasoning. In
Conference on Neural Information Processing (NeurIPS), pages 25134-25145, 2021.

Drew A. Hudson and Christopher D. Manning. GQA: A new dataset for real-world visual
reasoning and compositional question answering. In Conference on Computer Vision and
Pattern Recognition (CVPR), pages 6700-6709. Computer Vision Foundation / IEEE,
2019.

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C. Lawrence Zit-
nick, and Ross B. Girshick. CLEVR: A diagnostic dataset for compositional language and
elementary visual reasoning. In Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1988-1997. IEEE Computer Society, 2017.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Zidek, Anna Potapenko,
Alex Bridgland, Clemens Meyer, Simon A A Kohl, Andrew J Ballard, Andrew Cowie,
Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor
Back, Stig Petersen, David Reiman, Ellen Clancy, Michal Zielinski, Martin Steineg-
ger, Michalina Pacholska, Tamas Berghammer, Sebastian Bodenstein, David Silver, Oriol
Vinyals, Andrew W Senior, Koray Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis.
Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873):583-589,
2021.

Laurynas Karazija, Iro Laina, and Christian Rupprecht. Clevrtex: A texture-rich bench-
mark for unsupervised multi-object segmentation. In Conference on Neural Information
Processing Systems (NeurIPS), NeurIPS Datasets and Benchmarks, 2021.

Henry Kautz. The third ai summer: Aaai robert s. engelmore memorial lecture. AI Maga-
zine, 43(1):105-125, Mar. 2022. doi: 10.1002/aaai.12036. URL https://ojs.aaai.org/

aimagazine/index.php/aimagazine/article/view/19122.

Giancarlo Kerg, Sarthak Mittal, David Rolnick, Yoshua Bengio, Blake A. Richards, and
Guillaume Lajoie. On neural architecture inductive biases for relational tasks. CoRR,
abs/2206.05056, 2022.

Hiroaki Kitano, Milind Tambe, Peter Stone, Manuela M. Veloso, Silvia Coradeschi, Eiichi
Osawa, Hitoshi Matsubara, Itsuki Noda, and Minoru Asada. The robocup synthetic agent

challenge 97. In International Joint Conference on Artificial Intelligence (IJCAI), pages
24-30. Morgan Kaufmann, 1997.

23


https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/19122
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/19122

HELFF, STAMMER, SHINDO, DHAMI, AND KERSTING

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz,
Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A. Shamma, Michael S. Bernstein,
and Li Fei-Fei. Visual genome: Connecting language and vision using crowdsourced dense
image annotations. International Journal of Computer Vision, 123(1):32-73, 2017.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436,
2015.

Yanghao Li, Saining Xie, Xinlei Chen, Piotr Dollar, Kaiming He, and Ross B. Gir-
shick. Benchmarking detection transfer learning with vision transformers. CoRR,
abs/2111.11429, 2021.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ra-
manan, Piotr Dollar, and C. Lawrence Zitnick. Microsoft COCO: common objects in
context. In European Conference on Computer Vision (ECCYV), volume 8693, pages
740-755. Springer, 2014.

Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc De
Raedt. Deepproblog: Neural probabilistic logic programming. In Conference on Neural
Information Processing Systems (NeurIPS), pages 3753-3763, 2018.

Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B. Tenenbaum, and Jiajun Wu. The
neuro-symbolic concept learner: Interpreting scenes, words, and sentences from natural
supervision. In International Conference on Learning Representations (ICLR), 2019.

Ryszard S. Michalski. Pattern recognition as rule-guided inductive inference. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, PAMI-2(4):349-361, 1980. doi:
10.1109/TPAMI.1980.4767034.

Donald Michie, Stephen Muggleton, David L. Page, and Ashwin Srinivasan. To the inter-
national computing community: A new east-west challenge. 1994.

Stephen Muggleton. Inductive logic programming. New Gen. Comput., 8(4):295-318, 1991.

Stephen Muggleton. Random train generator, 1998. URL https://www.doc.ic.ac.uk/
~shm/Software/GenerateTrains/.

Stephen H. Muggleton. Inverse entailment and progol. New Generation Computing, 13
(3&4):245-286, 1995.

Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. A review of
relational machine learning for knowledge graphs. Proceedings of the IEEE, 104(1):11-
33, 2015.

Weili Nie, Zhiding Yu, Lei Mao, Ankit B. Patel, Yuke Zhu, and Anima Anandkumar.
Bongard-logo: A new benchmark for human-level concept learning and reasoning. In
Conference on Neural Information Processing Systems (NeurIPS), 2020.

Shan-Hwei Nienhuys-Cheng, Ronald de Wolf, J. Siekmann, and J. G. Carbonell. Founda-
tions of Inductive Logic Programming. Springer-Verlag, 1997.

24


https://www.doc.ic.ac.uk/~shm/Software/GenerateTrains/
https://www.doc.ic.ac.uk/~shm/Software/GenerateTrains/

V-LoL

OpenAl. Chatgpt, 2023. URL https://openai.com/chatgpt/.

Tim Rocktéschel and Sebastian Riedel. End-to-end Differentiable Proving. In Conference
on Neural Information Processing (NeurIPS), pages 3788-3800, 2017.

Daniel Rose, Vaishnavi Himakunthala, Andy Ouyang, Ryan He, Alex Mei, Yujie Lu, Michael
Saxon, Chinmay Sonar, Diba Mirza, and William Yang Wang. Visual chain of thought:
Bridging logical gaps with multimodal infillings. CoRR, abs/2305.02317, 2023.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (4th Edition).
Pearson, 2020.

Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal
analysis of chain-of-thought. CoRR, abs/2210.01240, 2022.

Patrick Schramowski, Wolfgang Stammer, Stefano Teso, Anna Brugger, Franziska Herbert,
Xiaoting Shao, Hans-Georg Luigs, Anne-Katrin Mahlein, and Kristian Kersting. Mak-
ing deep neural networks right for the right scientific reasons by interacting with their
explanations. Nature Machine Intelligence, 2(8):476-486, 2020.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wight-
man, Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman,
Patrick Schramowski, Srivatsa Kundurthy, Katherine Crowson, Ludwig Schmidt, Robert
Kaczmarczyk, and Jenia Jitsev. LAION-5B: an open large-scale dataset for training next

generation image-text models. In Conference on Neural Information Processing Systems
(NeurIPS), 2022.

Hikaru Shindo, Viktor Pfanschilling, Devendra Singh Dhami, and Kristian Kersting. ailp:
thinking visual scenes as differentiable logic programs. Machine Learning, 112(5):1465—
1497, May 2023. ISSN 1573-0565. doi: 10.1007/s10994-023-06320-1. URL https://doi.
org/10.1007/s10994-023-06320-1.

David Silver, Aja Huang, Christopher J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, lIoannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya
Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and
Demis Hassabis. Mastering the game of go with deep neural networks and tree search.
Nature, 529:484-503, 2016.

Arseny Skryagin, Wolfgang Stammer, Daniel Ochs, Devendra Singh Dhami, and Kristian
Kersting. Neural-probabilistic answer set programming. In Gabriele Kern-Isberner, Ger-
hard Lakemeyer, and Thomas Meyer, editors, International Conference on Principles of
Knowledge Representation and Reasoning (KR), 2022.

A. Srinivasan. The Aleph Manual, 2001.

Ashwin Srinivasan, Stephen H. Muggleton, Michael J. E. Sternberg, and Ross D. King.
Theories for mutagenicity: A study in first-order and feature-based induction. Artificial
Intelligence, 85(1-2):277-299, 1996.

25


https://openai.com/chatgpt/
https://doi.org/10.1007/s10994-023-06320-1
https://doi.org/10.1007/s10994-023-06320-1

HELFF, STAMMER, SHINDO, DHAMI, AND KERSTING

Wolfgang Stammer, Patrick Schramowski, and Kristian Kersting. Right for the right con-
cept: Revising neuro-symbolic concepts by interacting with their explanations. In Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 3619-3629. Computer
Vision Foundation / IEEE, 2021.

Mingxing Tan and Quoc V. Le. Efficientnetv2: Smaller models and faster training. In
International Conference on Machine Learning (ICML), volume 139 of Proceedings of
Machine Learning Research, pages 10096-10106. PMLR, 2021.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine
Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan
Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David
Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj
Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan,
Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev,
Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich,
Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen
Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan,
lliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aure-
lien Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open
foundation and fine-tuned chat models, 2023.

Ramakrishna Vedantam, Karan Desai, Stefan Lee, Marcus Rohrbach, Dhruv Batra, and
Devi Parikh. Probabilistic neural symbolic models for interpretable visual question an-
swering. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the
36th International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 6428-6437. PMLR, 06 2019. doi: 10.48550/ARXIV.1902.07864.

Ramakrishna Vedantam, Arthur Szlam, Maximilian Nickel, Ari Morcos, and Brenden M.
Lake. CURI: A benchmark for productive concept learning under uncertainty. In Interna-
tional Conference on Machine Learning (ICML), volume 139 of Proceedings of Machine
Learning Research, pages 10519-10529. PMLR, 2021.

Taylor Whittington Webb, Ishan Sinha, and Jonathan D. Cohen. Emergent symbols through
binding in external memory. In International Conference on Learning Representations
(ICLR). OpenReview.net, 2021.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H.
Chi, Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large
language models. In Conference on Neural Information Processing (NeurIPS), 2022.

Qi Wu, Damien Teney, Peng Wang, Chunhua Shen, Anthony Dick, and Anton Van Den Hen-
gel. Visual question answering: A survey of methods and datasets. Computer Vision and
Image Understanding, 163:21-40, 2017.

26



V-LoL

Zhun Yang, Adam Ishay, and Joohyung Lee. Neurasp: Embracing neural networks into
answer set programming. In International Joint Conference on Artificial Intelligence

(IJCAI), pages 1755-1762, 2020.

Kexin Yi, Chuang Gan, Yunzhu Li, Pushmeet Kohli, Jiajun Wu, Antonio Torralba, and
Joshua B. Tenenbaum. Clevrer: Collision events for video representation and reasoning.
In International Conference on Learning Representations (ICLR), 2020.

Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin Choi. From recognition to cogni-
tion: Visual commonsense reasoning. In Conference on Computer Vision and Pattern
Recognition (CVPR), pages 6720-6731. Computer Vision Foundation / IEEE, 2019.

Chi Zhang, Feng Gao, Baoxiong Jia, Yixin Zhu, and Song-Chun Zhu. RAVEN: A dataset
for relational and analogical visual reasoning. In Conference on Computer Vision and
Pattern Recognition (CVPR), pages 5317-5327. Computer Vision Foundation / IEEE,
2019.

Chi Zhang, Baoxiong Jia, Mark Edmonds, Song-Chun Zhu, and Yixin Zhu. ACRE: abstract
causal reasoning beyond covariation. In Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10643-10653. Computer Vision Foundation / IEEE, 2021.

Zhuosheng Zhang, Aston Zhang, Mu Li, Hai Zhao, George Karypis, and Alex Smola. Mul-
timodal chain-of-thought reasoning in language models. CoRR, abs/2302.00923, 2023.

27



HELFF, STAMMER, SHINDO, DHAMI, AND KERSTING

Supplemental Materials
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Figure 10: Michalski’s original set of trains Michalski (1980)

A.1 Details on Michalski Train Semantics

E. Bloedorn et al.Bloedorn et al. (1995) state, that Muggleton’s Prolog representation shows
subtle differences to the original representation from Michalski such that artefacts are cre-
ated which are not present in Michalski’s original work. These artefacts result from an
ambiguous definition of the individual descriptors. Consequently, depicted cars without a
load must be assigned a description of the load shape, even though the number of loads
remains zero. In this sense, any load shape can be assigned to a car without visually affect-
ing the depicted car. This is an inconsistency that is not present in the original Michalski
trains. However, as the images contain unambiguous information about the train, it is not
present in the visual V-LoL@E=) classification task. Nevertheless, it is beneficial to remove
this inconsistency in the background knowledge of the dataset. In V-LoLE= we circumvent
this problem by introducing the value "none” for the load shape descriptor.

Trains sampled from the random distribution can be generated in one of 23.4 trillion
combinations, assuming a train length of 2 - 4 cars. This number of permutations grows
exponentially with every additional car.

A.2 Attribute Constraints

In the following we list the attribute constraints that are enforced via Muggleton’s Muggle-
ton (1998) Prolog train generator:

1. A train has two, three or four cars, each of which can either be long or short.
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Table 2: Attributes of Michalski’s original train attributes. The Table gives an overview of
the original assignable values of each descriptor. For the respective descriptors, the above-
mentioned interrelationships must be taken into account such that some attributes might
be mutually exclusive.

Car Car Car Car Car | Wheels | Load Load
Position Shape Length | Wall Roof Num. | Num. Shape
1 Rectangle | Short Single None 2 0 Rectangle
2 Bucket Long Double Arc 3 1 Triangle
3 Ellipse Flat 2 Circle
4 Hexagon Jagged 3 Diamond
U shaped Peaked Hexagon
U-triangle

(\V)

A long car can have either two or three axles.

A short car can be rectangular, u-shaped, bucket-shaped, hexagonal, or elliptical,
while a long car must be rectangular.

4. A hexagonal or elliptical car is necessarily closed, while any other car can be either
open or closed.

5. The roof of a long-closed car can be either flat or jagged.

6. The roof of a hexagonal car is necessarily flat, while the roof of an elliptical car is
necessarily an arc. Any other short closed car can have either a flat or a peaked roof.

7. If a short car is rectangular then it can also be double-sided.

8. A long car can be empty or it can contain one, two or three replicas of one of the
following kinds of load: circle, inverted-triangle, hexagon, or rectangle.

9. A short car contains either one or two replicas of the following kinds of load: circle,
triangle, rectangle, or diamond.

10. No sub-distinctions are drawn among rectangular loads, even though some are drawn
square and others more or less oblong. The presumption is that they are drawn just
as oblong as they need to be in each case to fill the available container space.

11. In Michalski’s original version a possible distinction between hollow and solid wheels
was ignored, as also here.

A.3 Prolog and FOL Notation of the Classification rules

In the following we provide the Prolog and first-order-logic (FOL) representations of the
Theory X, Numerical and Complex logic rules that were used in our evaluations.
Theory X is defined as follows:

eastbound(Train) = 3Cary, Cars,
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has-car(Train, Cary) A has-car(Train, Carg)
A ((short(Cary) A closed(Cary))

V (has-load(Cary, golden-vase)

A has-load(Carsy, barrel)

A somewhere-behind(Train, Cars, Cary)))

Prolog:

eastbound([Car|Cars]):- (short(Car), closed(Car));
(has_load0(Car,triangle) ,has_loadl(Cars,circle));
eastbound(Cars) .

The numerical rule is defined as follows:

eastbound(Train) = 3Cary has-car(Train, Cary) A load-num(Cary, N)
A car-num(Cary, N) A has-wheel(Cary, N)

Prolog;:

eastbound(Train) : - has_car(Train,Car),load_num(Car,N), car_num(Car,N),
has_wheelO(Car,N).

The complex rule is defined as follows:

eastbound(Train) = 3Cary, Cary, Cars
has-car(Train,Cary) A (has-car(Train, Cary) A has-car(Train, Cars)A
(load-num(Cary, N1) A car-num(Cary, N2)A
has-wheel0(Cary, N3) A (N2 < N1) A (N2 < N3))
V (short(Cary) Along(Carz) A car-num(Cary, N1) A car-color(Cary, A)A
car-color(Cara, A) N\ has-wheel(Carg, N2) A (N1 < N2))
V (car-color(Cary, X) A car-color(Carg,Y') A car-color(Carsg A Z)A\
A X=Y)A=Y =2)N~(Z =X))

Prolog;:

eastbound(Train) : -

has_car(Train,Carl) ,has_car(Train,Car2), has_car(Train,Car3),
(load_num(Car1,N1), car_num(Car1,N2),has_wheelO(Carl,N3), N2 < N1, N2 < N3;
short(Carl), long(Car2),car_num(Carl,N1), car_color(Carl, A4),
car_color(Car2, A),has_wheelO(Car2,N2), N1 < N2;

car_color(Car1,X), car_color(Car2,Y),car_color(Car3,Z),X/=Y, Y/=Z, Z/=X).

A.4 Reasoning Properties for Logic Rules

Successfully solving the individual V-LoL challenges requires a set of learning and reasoning
abilities, including;:
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Object recognition is a crucial component of visual reasoning and involves identi-
fying and categorizing objects based on their physical attributes.

Counting is also an essential skill in the domain of visual reasoning, which involves
determining and understanding the number of objects or occurrences of a particular
feature. In the case of V-LoLE=) it is required to accurately count the number of
occurrences of objects and concepts such as the number of cars, payloads or car axles.

Relational reasoning is another essential type of reasoning which involves under-
standing and drawing conclusions based on relationships between multiple objects and
concepts. For example, understanding that a barrel load is always located in a car in
front of a car with a golden vase load.

Spatial reasoning involves drawing conclusions based on the spatial information of
individual objects within a scene. E.g. in V-LoLE=) it is required to understand and
conclude which car is in front of another in the direction of travel, i.e. in the direction
of the locomotive.

Arithmetic reasoning involves reasoning based on numerical information. There-
fore, it involves understanding arithmetic operators and comparisons such as (<, >, #
,==). For example, it is important to understand whether one car has less payloads
than another.

Analogical reasoning involves drawing conclusions based on analoguos relation-
ships between components of individual objects. In V-LoLm=, it is required to find
analogical relationships in the attributes of the individual cars. E.g. all yellow cars
have the same payload.

Abstract reasoning is the ability to draw conclusions based on abstract ideas, con-
cepts, and patterns that are not concretely tied to specific objects (immediately ap-
parent). For example, drawing conclusions by comparing the number of axles with
the position of a car or the number of payloads requires abstract reasoning skills.

Exact logical reasoning is the ability to understand and reason based on logi-
cal relations which involves understanding and concluding based on logical operators
(e.g. =,A,V,). Logical reasoning is essential for V-LoLE= since it involves solving
complex reasoning problems that constitute multiple logical operators.

An overview on which class rule (Theory X, Numerical and Complex) addresses which of

the visual logical abilities can be found in Tab. 3 showing that each rule allows to investigate
a different subset of V-LoL abilities.

A.5 Details on V-LoL Train Semantics

Specifically, the trains of V-LoL@= consist of a fixed locomotive object pulling a variable
number of train cars. Each car is assigned one of five colours: yellow, green, grey, red, or
blue. Moreover, cars exhibit different roof styles, including a empty roof frame, a flat roof,
a barred roof, a peaked roof, or no roof at all. The walls of a car can feature either a solid
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Table 3: The V-LoL-Trains problems and the visual logical learning challenges that they
address individually. We here categorize based on object recognition and counting abilities
and relational, spatial, analogical, arithmetic, abstract and exact logical reasoning. For
each of our three V-LoL-Trains classification challenges, “Theory X”, “Numerical”, and
“Complex” we indicate which of these reasoning skills are required to solve the tasks.

V-LoL&=1 | Object . . . . . . Exact
-y Counting Relational Spatial Analogical Arithmetic Abstract .
challenges |recognition Logic
Theory X v X 4 v v X X v
Numerical v v v 4 X 4 v v
Complex v v v v v v v v
10 Lo
e
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Figure 11: 5-fold cross-validation on the perceptual performance of the ResNet-18 (left)
and Mask-RCNN (right) models. The models are evaluated across the four different scenes
from the V-LoL@=3 dataset and varying quantities of training images. For each validation, a
separate set of 2,000 images, excluded from training, is used. The displayed graphs highlight
the average accuracy for detecting the train’s attributes, complemented by their respective
confidence intervals (CI).

wall or railings. Additionally, each car can either be long or short, equipped with either
two or three axles, and capable of carrying a minimum of zero and a maximum of three
loads. The available load types include blue boxes, golden vases, barrels, diamonds, metal
pots, and oval vases.

B Additional experiments
B.1 Neural Perceptual Performance Across Different Scenes

In this experiment, we explore the impact of various background scenes provided by the
V-LoL@= dataset on the perceptual performance of neural networks. To achieve this, we
conduct evaluations using both a ResNet-18 and a Mask-RCNN model to predict individual
attributes of the V-LoL@=) within the images. The models are trained and evaluated on the
same background scenes. The performance results, depicted in Fig. 11, portray the outcomes
of the ResNet-18 (left) and Mask-RCNN (right) models across the different scenes. Across
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Table 4: Average test accuracy and the respective standard deviation on the V-LoL@=

challenge.
training set sizes.

The neural models are trained on different background scenes with varying

ResNet

100 images | 1000 images | 8000 images
Base scene 75,15 £+ 3,04 | 87,32 + 1,62 99,63 £+ 0,14
Desert scene | 76,66 £ 1,76 | 88,58 + 1,22 99,32 £+ 0,19
Sky scene 76,78 + 3,11 | 87,86 £ 0,87 | 98,77 + 0,71
Fisheye scene | 74,21 + 4,4 | 85,93 + 1,34 98,96 + 0,32

EfficientNet

100 images | 1000 images | 8000 images
Base scene 74,41 + 3,83 | 90,43 + 1,83 99,86 + 0,08
Desert scene | 73,20 + 1,88 | 90,14 + 1,84 99,66 &+ 0,12
Sky scene 72,70 £ 2,74 | 91,45 £ 0,85 | 99,52 + 0,15
Fisheye scene | 70,36 + 2,17 | 88,33 + 0,91 | 99,47 4+ 0,21

Vision Transformer

100 images | 1000 images | 8000 images
Base scene 63,11 & 7,28 | 84,40 & 2,65 | 97,17 + 0,36
Desert scene | 62,81 4+ 8,24 | 71,26 + 4,39 92,40 + 3,71
Sky scene 60,01 £+ 4,29 | 81,97 + 2,83 93,03 £+ 4,12
Fisheye scene | 64,58 + 3,30 | 75,88 + 3,47 92,74 £ 2,39

both models, we discern a decline in accuracy as we transition from the base scene to more
challenging scenes, such as desert, desert with sky, and finally, the fisheye background.
We also show how varying the sample sizes available during training (i.e., 100, 1000, and
8000 samples) affect the models’ accuracy. We observe that with smaller sample sizes (100
and 1000), the models’ performance remains unsatisfactory. With an expanded training
set comprising 8000 samples, there is a notable enhancement in perceptual performance;
nevertheless, perfect perception is still not attained, especially in the case of more intricate
scenes. These findings underscore the models’ sensitivity to scene complexity and available
training data.

B.2 Neural Classification Performance Across Different Scenes

In this evaluation we scrutinize the classification performance of neural networks across the
different background scenes provided by V-LoL@E=. We employ the three nerual models,
namely the ResNet18, EfficientNet, and the Vision Transformer on the V-LoL@= TheoryX
challenge. Our approach involves training these models with various sample sizes and
evaluating their performance on a distinct holdout test set corresponding to the same scene.
The results are summarized in Tab. 4. We can indeed observe differences in performances
across the three models, with a decrease in accuracies from the base scene, through desert
and desert with sky, culminating in the fisheye scenario which mostly yields the lowest
accuracy.
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Table 5: Average test accuracy and the respective standard deviation of the neural models
evaluated on OOD scenes. The models are trained on the base scene with varying training
set sizes. The evaluation is performed on 10.000 images of the other scenes. The baseline
represents the initial validation performance of the models averaged across the three different

Vision Transformer

scenes.
ResNet

100 images | 1000 images | 8000 images

baseline 75,88 + 3,09 | 87,46 £ 1,14 99,02 + 0,41
desert scene 69,85 + 6,84 | 68,84 4+ 11,81 83,13 £+ 3,06
sky scene 67,82 = 7,39 | 72,04 £+ 8,05 83,14 4+ 2,47
fisheye scene | 63,97 £+ 7,07 65,64 £+ 7,09 76,88 £+ 0,80

EfficientNet

100 images | 1000 images | 8000 images

baseline 72,09 + 227 | 89,97 + 1,20 99,55 + 0,16
desert scene | 52,13 + 285 | 52,72 + 5,60 60,88 + 8,29
sky scene 54,20 £ 0,72 50,71 £ 2,71 55,92 + 6,02
fisheye scene | 53,67 + 0,30 | 50,54 + 3,52 56,29 + 4,58

100 images | 1000 images | 8000 images
baseline 62,47 + 5,28 | 76,37 £+ 3,56 92,72 + 3,40
desert scene | 60,34 4+ 10,96 | 72,85 £ 5,26 89,70 + 0,99
sky scene 62,36 + 11,69 | 67,71 + 5,04 80,04 + 2,89
fisheye scene | 59,90 &+ 8,53 | 67,52 £+ 5,22 73,54 + 3,31

B.3 Out-of-Distribution: Classification Performance Across Different Scenes

In this section, we delve into the classification performance of neural models across the
different background scenes provided by the V-LoLiZ=) dataset. However, unlike the previous
experiment, we focus on handling the challenge of OOD input. This is achieved by training
the models on the base scene and evaluating their performance on the previously unobserved
scenes of V-LoL=h. The findings presented in Table 5 illustrate the significant decline in
model performance when subjected to OOD scenarios. This discernible lack of robustness
in the face of inconsequential variations in the background suggests that the model struggles
to generalize beyond the confines of the training distribution.

B.4 Out-of-Distribution: Different Attribute Distributions

In this evaluation we investigate the effect of performing inference on V-LoLiZ=) images with
an attribute distribution that is different from that observed during training. Specifically, we
investigate the three neural models that were trained on the Michalski attribute distribution,
but evaluated on the randomly distributed attributes. The images were generated with the
Theory X rule.

Fig. 12 presents the results, where we provide the accuracies of the three models that
were trained on 100 (small data regime), 1000 (medium data regime) and 10000 images
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Figure 12: Out-of-Distribution Evaluation. Models were trained on images that were gen-
erated with the Michalski attribute distribution and evaluated on two test sets: one also
generated via the Michalski distribution and one generated via the random (uniform) at-
tribute distribution. We also provide results here for three training set sizes: 100 (small
data regime), 1000 (medium data regime) and 10 000 training images (large data regime).

Table 6: Performance Metrics of LLMs on the logical learning challenges of V-LoL&=h. The
table presents the test accuracy and standard deviation from 5-fold cross-validation across
the three logical learning challenges: TheoryX, Numerical, and Complex. The number
of samples represent the number of train samples provided in each prompt. Entries
marked with a ’-’ indicate that all runs are unsuccessful, while entries marked with "*’
indicates single runs that failed. These failures were due to induced prolog rules that were
syntactically or semantically invalid or because the input exceeded the model’s maximum
input length.

Challenges TheoryX Numerical Complex

= Samples 8 /20 8 /20 8 /20
Llama2-13b 49.07 +1.86 / — 49.99 +o0.01 / — 49.61 % +1.34 / —
Llama2-70b 50.0 +0.0 /— 50.0 +0.01 / — 50.0 +0.0 / —
ChatGPT-3.5 | 52.09 +3.62 / 50.73 +3.14 50.0 +0.01 / 51.47 +2.21  50.22 +0.35 / 51.42 +2.04
ChatGPT-4 50.78 +1.25 /| — 51.02 +2.47 / — 50.44 +o0.88 / —

(large data regime) and tested on the test set that was generated with the Michalski at-
tribute distribution as well as on the test set that was generated with the random attribute
distribution. We can observe a strong decrease in model performance when evaluated with
the out-of-distribution test set. This decrease can be observed in all data size regimes, but
becomes even larger the larger the training set size becomes. These results suggest that all
three investigated neural models tend to overfit to the training distribution for solving the
reasoning tasks.

B.5 Zero-shot Prompting with Large Language Models

In this section we evaluate LLMs on the V-LoL@=) challenge using zero shot prompting. In
the individual prompts the LLM are provided with a number of ground truth descriptions
of set of labeled trains and tasked to induce a decision hypothesis in the prolog description
language that is able to separate the provided trains. The number of provided train samples
was chosen depending on the maximum input length the individual models can handle with.
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Figure 13: Runtime metrics for Aleph collected in Challenge 5: Data Efficieny. Moving
from small to larger amounts of data we can observe an exponential increase in memory
and time consumption.

Adding further samples have shown to result in a semantic and syntactic degradation of the
induced decision rules.

Here we investigate the three different logical challenges, namely TheoryX, Numeri-
cal, and Complex. Over all experiments the LLMs are only able to achieve a accuracy
of around 50% which is equivalent to random guessing. However most of the induced de-
cision hypothesis, while not being logically correct, they at least where semantically and
syntactically correct. The results indicate that SOTA LLMs still have strong difficulties
recognising patterns in the input prompts, finding combinatorial relations and performing
logical reasoning.

B.6 Runtime analysis of Aleph on Challenge 5: Data Efficieny

In this section we provide a further analysis of runtime metrics, specifically focusing on the
memory and time consumption that is required by Aleph in the context of Challenge 5:
Data Efficiency. Fig 13 reveals an exponential growth in both runtime and memory as the
scale of training data increases.

C Implementation details

For Popper we set the hyperparameters to allow for a maximum of 10 rules each allowing
a maximum of 6 variables and 6 literals in its body. Predicate finding and recursion are
turned off, as we could not observe any performance improvement. For ALEPH we use the
following hyperparameters: clauselength = 10, minacc = 0.6, minscore = 3, minpos = 3,
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nodes = 5000, explore = true, mazr_features = 10. Both ILP systems are trained and
evaluated on the a symbolic ground-truths instead of the visual images.

Our subsymbolic models, namely the ResNet, EfficientNet, and Vision Transformer are
initialized with the weights of the pre-trained foundation models which was trained on the
1000-class ImageNet dataset. The last fully-connected layer is replaced to fit the two-class
classification task of westbound and eastbound trains. Subsequently, the models are transfer
trained on the respective datasets for 25 epochs using a batch size of 50 and starting with a
learning rate of 0.001 (0.0001 for the Vision Transformer), which decreases by 20% every five
epochs. The Adam optimizer is used for updating the models’ weights and the cross-entropy
loss function for calculating the loss.

For the perceptions modules of the Neuro-Symbolic Al systems, we modify the improved
mask-RCNN (v2 version) Li et al. (2021) to allow for multi-label instance segmentation.
For more in depth implementation details please refer to our code. We initialize our model
with pre-trained weights for MaskRCNN + ResNet50 + FPN using the v2 variant with
post-paper optimizations. We transfer train our model on 10k V-LoLZ=) dataset containing
random trains. For training we use the AdamW optimizer and cross-entropy loss. After
inferring the segmented masked using mask-RCNN we post process these using a mask
matching algorithm to assemble a symbolic scene representations. We achieve nearly 100%
validation accuracy on the random V-LoLE= and 99% test accuracy on the Michalski V-
LoLm=h. Subsequently, we fit the ILP approaches using the same hyperparameters as in the
run of the purely symbolic Al systems. For beam search of oILLP we choose a beam size of
70 with a beam depth of 5. We select a maximum of 1000 clauses after search on which
we then perform learning for 100 epochs. For TheoryX and the numerical rule we learn a
logic program consisting of two rules while for the complex rule we learn 4 rules. For more
in depth information on the mode declaration and hyper parameters of alLLP, Popper, and
Aleph please refer to our code.

All code was run on multiple NVIDIA A100-SXM4-40GB gpus.

D Dataset and Code Availability and License

Access to the data set, data generator and experimental code for reproducing the results
are bundled on our website: https://sites.google.com/view/v-1ol. All data is released
under the Creative Commons CC BY 4.0 license. All code is released under the MIT license.

E Dataset Documentation: Datasheets for Datasets

Here we answer the questions outlined in the datasheets for datasets paper by Gebru et
al.Gebru et al. (2021).

E.1 Motivation

For what purpose was the dataset created? V-LoLI= was created to serve as a chal-
lenging benchmark for visual logical learning. By incorporating intricate visual scenes and
flexible logical reasoning tasks within a versatilel1 framework, V-LoL. provides a platform
for investigating a wide range of visual logical learning challenges.
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Who created the dataset (e.g., which team, research group) and on behalf of
which entity (e.g., company, institution, organisation)? The dataset has been cre-
ated by the research group “Artificial Intelligence and Machine Learning” at the Computer
Science Department, Technical University of Darmstadt.

Who funded the creation of the dataset? The dataset is created for research
purposes at AIML. This work was supported by the AI lighthouse project “SPAICER”
(01MK20015E), the EU ICT-48 Network of AI Research Excellence Center “TAILOR” (EU
Horizon 2020, GA No 952215), and the Collaboration Lab “Al in Construction” (AICO).
The work has also benefited from the Hessian Ministry of Higher Education, Research,
Science and the Arts (HMWK) cluster projects “The Third Wave of AI” and “The Adaptive
Mind”, the Hessian Centre for Artificial Intelligence overall, the Hessian research priority
program LOEWE within the project WhiteBox, and from the German Center for Artificial
Intelligence (DFKI) project ‘SAINT".

E.2 Composition

What do the instances that comprise the dataset represent (e.g., documents,
photos, people, countries)? The dataset consists of synthetically generated images
featuring simulated scenes and segmentation, depth, and metadata detailing scene com-
position. How many instances are there in total (of each type, if appropriate)? We have
generated a total of 11 V-LoL datasets. 8 of which consists 12000 instances respectively,
while the remaining 3 are used solely for out-of-distribution (OOD) testing and consist of
2,000 samples each. Does the dataset contain all possible instances or is it a sample (not
necessarily random) of instances from a larger set? The datasets represent samples of an
infinite set of possible arrangements. One single car sampled from the random distribution
has a total of 2200 different permutations. When considering datasets consisting of trains
with lengths between 2 and 4, the total number of different car samples is 23.4 trillion. As
the number of cars increases, the number of possible samples grows exponentially. For a
detailed description of the V-LoLI3=h generation process, please refer to Section 3.2.

What data does each instance consist of? Alongside the visually appealing train
images, each dataset samples is annotated with detailed scene information including the
individual train attributes, object masks, bounding boxes, 3D scene locations, depth infor-
mation, and symbolically derived ground truth labels.

To render the V-LoL&=l images, we utilize Python 3.10.2 and the Blender Python module
version 3.3. The V-LoL&=3 3D representation incorporates the steam locomotive ROCKET
by Branislav Kubecka (blenderkit) which is under RF license (This license protects the work
in the way that it allows commercial use without mentioning the author, but doesn’t allow
for re-sale of the asset in the same form eg. a 3D model sold as a 3D model or part of
assetpack or game level on a marketplace).

Is there a label or target associated with each instance? The labels for each
instance are symbolically derived from the underlying decision rule of the dataset.

Is any information missing from individual instances? No.

Are relationships between individual instances made explicit (e.g., users’
movie ratings, social network links)? No, there are no relationships between different
instances.
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Are there recommended data splits (e.g., training, development/validation,
testing)? Yes, we split 20% 80% test/train splits for the datasets, with the exception of
OOD variant, which is used for evaluation only. We use stratified 5 fold cross-validation.

Are there any errors, sources of noise, or redundancies in the dataset? No.

Is the dataset self-contained, or does it link to or otherwise rely on external
resources (e.g.,websites, tweets, other datasets)? The dataset is self-contained.

Does the dataset contain data that might be considered confidential (e.g.,
data that is protected by legal privilege or by doctor-patient confidentiality,
data that includes the content of individuals’ non-public communications)? No.

Does the dataset contain data that, if viewed directly, might be offensive,
insulting, threatening, or might otherwise cause anxiety? No.

Does the dataset relate to people? If not, you may skip the remaining
questions in this section. No.

Does the dataset identify any subpopulations (e.g., by age, gender)? NA

Is it possible to identify individuals (i.e., one or more natural persons), either
directly or indirectly (i.e., in combination with other data) from the dataset?
NA

Does the dataset contain data that might be considered sensitive in any way
(e.g., data that reveals racial or ethnic origins, sexual orientations, religious
beliefs, political opinions or union memberships, or locations; financial or health
data; biometric or genetic data; forms of government identification, such as
social security numbers; criminal history)? NA

E.3 Collection Process

How was the data associated with each instance acquired? The data was generated.
What mechanisms or procedures were used to collect the data (e.g., hardware
apparatus or sensor, manual human curation, software program, software API)?
The images were rendered using Blender 3.3 software on generic systems and Python 3.10.2.
If the dataset is a sample from a larger set, what was the sampling strategy
(e.g., deterministic, probabilistic with specific sampling probabilities)? See the
similar question in the Composition section.

Who was involved in the data collection process (e.g., students, crowdwork-
ers, contractors) and how were they compensated (e.g., how much were crowd-
workers paid)? The authors were involved in the process of generating this dataset.

Over what timeframe was the data collected? The datasets were rendered over a
period of several weeks.

Were any ethical review processes conducted (e.g., by an institutional review
board)? No.

Does the dataset relate to people? If not, you may skip the remainder of
the questions in this section. No.

E.4 Preprocessing/Cleaning/Labeling

Was any preprocessing/cleaning/labeling of the data done (e.g., discretization
or bucketing, tokenization, part-of-speech tagging, SIFT feature extraction, re-
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moval of instances, processing of missing values)? No, the dataset was generated
together with labels.

Was the “raw” data saved in addition to the preprocessed/cleaned/labeled
data (e.g., to support unanticipated future uses)? NA

Is the software used to preprocess/clean/label the instances available? NA

E.5 Uses

Has the dataset been used for any tasks already? In the paper we show and bench-
mark the intended use of this dataset for visual logical learning, specifcally evaluating on
several challenges of visual logical learning.

Is there a repository that links to any or all papers or systems that use the
dataset? No.

What (other) tasks could the dataset be used for? We include additional infor-
mation maps when generating this dataset, which could be used for object discovery from
3D scenes. In addition the logical structure of the train representations can be converted
to natural language questions for QA tasks.

Is there anything about the composition of the dataset or the way it was
collected and prepro- cessed/cleaned/labeled that might impact future uses?
No.

Are there tasks for which the dataset should not be used? This dataset is
meant for research purposes only.

E.6 Distribution

Will the dataset be distributed to third parties outside of the entity (e.g., com-
pany, institution, organization) on behalf of which the dataset was created?
No.

How will the dataset will be distributed (e.g., tarball on website, API,
GitHub)? The dataset and related evaluation code is available on the website https:
//sites.google.com/view/v-1ol allowing users to download and read-in the data.

When will the dataset be distributed? The dataset is available now.

Will the dataset be distributed under a copyright or other intellectual prop-
erty (IP) license, and/or under applicable terms of use (ToU)? Creative Commons
CC BY 4.0 license.

Have any third parties imposed IP-based or other restrictions on the data
associated with the instances? The V-LoL 3D representation incorporates the steam
locomotive ROCKET by Branislav Kubecka (blenderkit) which is under RF license (This
license protects the work in the way that it allows commercial use without mentioning the
author, but doesn’t allow for re-sale of the asset in the same form (eg. a 3D model sold as
a 3D model or part of assetpack or game level on a marketplace). The dataset instances
themselves do not have IP-based restrictions.

Do any export controls or other regulatory restrictions apply to the dataset
or to individual instances? Not that we are are of.
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E.7 Maintenance

Who is supporting/hosting/maintaining the dataset? The dataset is supported
by the authors and by the AIML research group. We commit to providing the necessary
maintenance for the dataset to ensure the sustained integrity, quality, and accessibility of
the dataset, thereby supporting continued scientific research and analysis.

How can the owner/curator/manager of the dataset be contacted (e.g.,
email address)? The authors of this dataset can be reached at their e-mail addresses:
lukas_henrik.helff@tu-darmstadt.de and wolfgang.stammer@cs.tu-darmstadt.de .

Is there an erratum? If errors are found and erratum will be added to the website.

Will the dataset be updated (e.g., to correct labeling errors, add new in-
stances, delete in- stances)? Any potential future updates or extension will be commu-
nicated via the website. The dataset will be versioned.

If the dataset relates to people, are there applicable limits on the retention of
the data associ- ated with the instances (e.g., were individuals in question told
that their data would be retained for a fixed period of time and then deleted)?
NA

Will older versions of the dataset continue to be supported/hosted/main-
tained? We plan to continue hosting older versions of the dataset.

If others want to extend/augment/build on/contribute to the dataset, is
there a mechanism for them to do so? Yes, we make the dataset generation code
available.

E.8 Other Questions
Is your dataset free of biases? Yes.

Can you guarantee compliance to GDPR? No, we are unable to comment on legal
issues.

E.9 Author Statement of Responsibility

The authors confirm all responsibility in case of violation of rights and confirm the licence
associated with the dataset and its images.
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