
Large Language Model Compression with Neural
Architecture Search

Rhea Sanjay Sukthanker1 Benedikt Staffler3 Frank Hutter1,2 Aaron Klein4

1University of Freiburg 2ELLIS Institute Tübingen 3BCAI 4ScaDS.AI

Abstract

Large language models (LLMs) exhibit remarkable reasoning abilities, allowing
them to generalize across a wide range of downstream tasks, such as commonsense
reasoning or instruction following. However, as LLMs scale, inference costs
become increasingly prohibitive, accumulating significantly over their life cycle.
This poses the question: Can we compress pre-trained LLMs to meet diverse
size and latency requirements? We leverage Neural Architecture Search (NAS) to
compress LLMs by pruning structural components, such as attention heads, neurons,
and layers, aiming to achieve a Pareto-optimal balance between performance and
efficiency. While NAS already achieved promising results on small language
models in previous work, in this paper we propose various extensions that allow us
to scale to LLMs. Compared to structural pruning baselines, we show that NAS
improves performance up to 3.4% on MMLU with an on-device latency speedup.

1 Introduction
Large language models (LLMs) represent a significant advancement in artificial intelligence and are
increasingly deployed in products such as chatbots and coding assistants. However, their substantial
parameter count leads to high latency and significant computational demands during inference. This
renders deployment in time-sensitive or resource-constrained settings, such as embedded systems,
often impractical, or results in elevated costs per user query, for example in web services.

LLM providers typically offer various-sized models, such as LLama-2 with 7B, 13B, 34B and 70B
parameters [Touvron et al., 2023], enabling users to balance performance against costs. While the
training cost scales with model size, the pre-training process is so computationally intensive that
even smaller models incur substantial costs; for instance, while Llama 2 70B model required up to
1720320 GPU hours, the 13B model still required 368640 GPU hours for pre-training.

A more efficient alternative is to compress large models while striving to maintain its performance.
Distillation techniques [Hinton et al., 2015] train a smaller student model to replicate the predictions
of a larger teacher model. Although this still requires training a model from scratch, it generally con-
verges faster than traditional pre-training. Pruning methods [Frantar and Alistarh, 2023a, Ashkboos
et al., 2024] remove components from the network that do not contribute to the overall performance.
A primary challenge for both pruning and distillation is determining the extent to which model
capacity can be reduced without causing a substantial decline in performance.

Neural architecture search (NAS) proved to be an efficient method for compressing neural networks
[Klein et al., 2024, Muralidharan et al., 2024] by identifying sparse sub-networks that optimally
trade-off between downstream performance and efficiency. Specifically, two-stage NAS [Yu et al.,
2020], treats the pre-trained network as a super-network composed of a finite number of sub-networks.
By modifying the training strategy to update only sub-networks at each step, we avoid co-adaptation,
enhancing their performance when extracted from the super-network. After fine-tuning, any black-box
optimization method can be employed to select the optimal set of sub-networks that achieve the
desired balance of performance and efficiency. Unlike other methods, NAS approximates the Pareto
set of sub-networks, capturing the non-linear relationship between sparsity and performance.
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Figure 1: Comparison of Accuracy v/s Latency and Parameter Pareto-Fronts for NAS and pruning
baselines on Hellaswag for Llama-3.1-8B

Although two-stage NAS is effective in compressing smaller encoder-only transformer models [Klein
et al., 2024], its scalability to larger models poses a challenge. In this paper, we identify gaps in the
applicability of NAS for pruning and propose extensions to address these issues:

• Efficient super-network training: The total number of sub-networks increases exponen-
tially with the size of the super-network. Standard super-network training strategies, such
as the sandwich rule [Yu et al., 2020, 2019], sample sub-networks uniformly at random
from the search space. However, this oversamples tiny models that are unlikely to learn
effectively due to gradient conflicts [Xu et al., 2022]. We propose a novel sampling strategy
to allocate more compute to promising sub-networks.

• Parameter-efficient fine-tuning: Fine-tuning LLMs with more than 7B parameters require
access to large-scale compute. Building on previous work [Munoz et al., 2024], we empiri-
cally investigate the combination of two-stage NAS with state-of-the-art parameter-efficient
fine-tuning methods, such as LoRA [Hu et al., 2021], to scale to larger models.

• On Device Latency Speedups: We show that weight-sharing based NAS allows us to obtain
a Pareto optimal set of architectures with varying latency trade-offs as depicted in Figure 1,
that are able to maintain higher downstream performance than models pruned by structural
pruning approaches across typical benchmarks for commonsense reasoning.

Section 2 provides an overview of related work on compressing LLMs based on distillation, structural
pruning, as well as NAS. Section 3 introduces two stage NAS, and Section 4 provides an overview of
our approach to scale weight-sharing based NAS to LLMs. We provide an empirical analysis of our
approach across baseline methods from the structural pruning literature and an in-depth analysis of
our approach in Section 5.

2 Related Work
Pruning removes neurons or weights of a trained neural networks while maintaining its predictive
power. We distinguish between unstructured pruning, which removes individual weights [Sun et al.,
2024, Han et al., 2015a, Frantar and Alistarh, 2023b], and structured pruning, which eliminates
groups of weights, such as layers or attention heads [Cai et al., Ashkboos et al., 2024]. A popular
unstructured pruning approach is weight magnitude pruning, which masks individual weights by
their magnitude [Han et al., 2015a]. Structured pruning, in contrast, targets specific components,
such as the embedding dimension [Ashkboos et al., 2024], heads or layers [Muralidharan et al.,
2024]. While unstructured pruning often preserves performance at high sparsities, compared to
structured approaches, it leads to sparse weight matrices which do not improve on-device latency.
Semi-structured N:M pruning [Zhou et al.] aims to combine both methods, offering latency gains,
such as 2:4 sparsity on NVIDIA Ampere architectures. In this work, we focus on structured pruning,
aiming to identify optimal sparsity blocks for inference improvements.

Neural Architecture Search (NAS) automates the design of deep neural networks in a data-driven
manner [Elsken et al., 2019b, White et al., 2023], often optimizing multiple objectives jointly, such
as hardware efficiency and predictive performance [Muralidharan et al., 2024, Cai et al., 2020, Wang
et al., 2020, Sukthanker et al., 2024b,a, Cai et al.]. Two-stage NAS [Yu et al., 2020] trains a single
super-network composing of a finite number of sub-networks. We can consider two-stage NAS
as a structural pruning method that identifies sparse sub-parts of the network to balance between
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efficiency and performance. For example, Klein et al. [2024] demonstrated its potential to outperform
standard structured pruning baselines on small-scale encoder models. Recently, Flextron [Cai et al.,
Muralidharan et al., 2024] applied NAS to design Pareto-optimal, low-latency architectures by
learning routing mechanisms in Llama-2-7b. Similarly, Minitron [Muralidharan et al., 2024] utilized
NAS along with importance computation and knowledge distillation to develop smaller, efficient
versions of Llama-3.1-8b. However, as the fine-tuning pipelines and datasets used in these works are
not publicly available, our study compares against established structured pruning baselines.

3 Background and Notations
This section defines the notations and terminologies used throughout the paper. We begin with an
overview of the modular components in transformers in 3.1, followed by an introduction to the
various building blocks for NAS in 3.2.

3.1 Transformer Architecture
The transformer architecture [Vaswani et al., 2017] underpins many leading LLMs. We focus on
decoder-only architectures [Radford et al., 2019], prevalent in state-of-the-art models. A transformer
comprises of an embedding layer followed by L blocks, each containing a self-attention and a
fully connected layer, with layer normalization [Ba et al., 2016] or RMS normalization [Zhang and
Sennrich, 2019] between layers. We delineate the key components for our search space in Section 4.

Embedding Layer: Each input token is mapped to a Rdmodel vector using an embedding matrix
Wemb ∈ RV×dmodel , which is defined by the vocabulary size V and the embedding dimension
dmodel. This results in an input sequence X ∈ RN×dmodel of length N . Without loss of generality
we assume that the weights of the embedding layer and the prediction head are shared by weight-tying
[Press and Wolf, 2016].

Attention Layer: Multi-head attention consists of H heads, where each head i ∈ [0, H − 1] has
key, query, and value matrices W

(i)
K ,W

(i)
Q ,W

(i)
V ∈ Rdhead×dmodel . The head computes Xi =

Att(W
(i)
Q ,W

(i)
K ,W

(i)
V ,X), leading to the final output X = Concat(X0, . . . , XH−1) ·WO, where

WO ∈ RHdhead×dmodel .

Fully Connected Layer: The FFN layer is defined as FFN(X) = Wfc1σ(Wfc0X), with Wfc0 ∈
RU×dmodel , Wfc1 ∈ Rdmodel×U , and U = r ·dmodel. σ(·) represents a non-linear activation function.

3.2 Neural Architecture Search
Given a search space Θ composed of architectural design choices, for example the number of
heads or layers, NAS (see Elsken et al. [2019b] for an overview) finds the optimal architecture
θ⋆ ∈ argminθ∈Θf(θ) that minimizes some error metric f(θ), such as the validation error f(θ) =
Lvalid(θ, w

⋆
θ) after training the network w⋆

θ = argminLtrain(wθ) with a set of weights wθ ∈
Rn. The search space Θ is usually large but finite. We can extend this to multiple objectives
minθ∈Θ {f0(θ), ..., fk(θ)}, such as for example validation error, inference latency or parameter
count. In the multi-objective setting we do not have a single solution θ⋆ that simultaneously optimizes
all objectives. Instead, we try to approximate the Pareto Set: Pf = {θ ∈ Θ|∄θ′ ∈ Θ : θ′ ≻ θ} of
points that dominate all other points in the search space in at least one objective, where we define
θ ≻ θ′ iff fi(θ) ≤ fi(θ

′),∀i ∈ [k] and ∃i ∈ [k] : fi(θ) < fi(θ
′).

Two-stage NAS. Classical NAS approaches propose evolutionary algorithms [Real et al., 2019] or
reinforcement learning methods [Zoph and Le, 2017] to tackle this optimization problem. However,
since every evaluation of f(θ) involves training and validating a neural network model, these methods
consume a substantial amount of compute making them infeasible in practical settings. Two-stage
NAS [Yu et al., 2020] trains a super-network w⋆

Θ = argminLtrain(wΘ) with a single set of weights
wΘ ⊂ Rd The super-network is defined such that it contains all possible networks θ ∈ Θ in the search
space. After training the super-network, we can compute the validation error f(θ) = Lvalid(θ, ŵθ)
of an architecture θ by a subset of the weights of the super-network ŵθ ⊆ wΘ, reducing the overall
compute by orders of magnitude. We refer to a network described by θ that uses a subset of the
super-network weights as sub-network.

Super-network Training. To train a neural network, we iteratively update the current weight vector
wt+1 = wt + λδt, where λ represents the learning rate by the gradient δt = ∇wt

Ltrain of the
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Figure 2: Parameter count of sub-networks sampled from Llama 3.1-8B model. a) Uniform random
sampling from Θ, which oversamples tiny models and b) Grid sampling, which samples more
uniformly from Θ
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Figure 3: c) Calibration procedure based on architecture magnitude for subnetworks, and d) sub-
network perplexities before and after applying importance sorting to the model.

training loss with respect to all weights. However, if we treat our network as a super-network, we
need to ensure that sub-networks should still perform well in isolation. To avoid co-adaptation of
sub-networks, the sandwich rule [Yu et al., 2019] uses the following weight update:

δt = ∇wLtrain(wΘ) +

k∑
i=1

∇wLtrain(wθi) +∇wLtrain(wθmin) (1)

Here θmin represents the smallest sub-network in the search space, and θi ∼ Θ is sampled uniformly
at random from the search space. Intuitively, the sandwich rule ensures that the same amount of
computation is spend to larger and smaller models in the search space.

4 Model Compression via Neural Architecture Search
Inspired by previous work [Klein et al., 2024] for smaller encoder-only networks, we treat the
pre-trained LLM as super-network with weights wΘ and fine-tuned on some dataset using causal
language modelling cross-entropy loss. Afterwards, we slice off sub-networks to balance between
latency or parameter count and down-stream performance.

Following Sukthanker et al. [2024a], we factorize our search space Θ as Θd × ΘH × Θr × ΘL,
where Θd = [1, dmodel] controls the embedding dimension, ΘH = [1, H] the number of heads for all
attention layers, the ratio r to compute the FFN hidden dimension, Θr = [1, r] and ΘL = [0, L] the
total number of transformer blocks. Here, H , r, dmodel, and L represent the number of heads, the
MLP ratio, the embedding dimension, and the number of layers of the pre-trained model, respectively.

4.1 Sampling Distribution
The sandwich rule (see Section 3.2) samples sub-networks uniformly at random from the search space
in each update step. This results in a highly skewed distribution towards tiny model for the search
space Θ described above, and we allocate too many updates to sub-networks that are not able to learn
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effectively. Figure 2a illustrates this for a Llama-3.1-8B model. Reducing Θ is not straightforward,
as it introduces bias into the search-space design process and presents an explore-exploit tradeoff.
This becomes worse with larger models which contain much more sub-networks.

To better exploit our computational budget, we aim to allocate more update steps to promising
sub-networks with uniformly distributed parameter counts. Let θmin and θmax represent the small-
est and largest sub-network in Θ, and their corresponding parameter counts by paramsmin =
params(θmin) and paramsmax = params(θmax). We discretize the range of parameters, and
define a equally sized grid G = {paramsmin, ..., paramsmax} with K bins. We use a rejecting
sampling based approach to create a discreet set of sub-networks. More specifically, for each bin
gi ∈ G, we sample a set of of M sub-networks Si = {θ1, ...θM} such that for each θ ∈ Si we have
gi−1 ≤ params(θ) ≤ gi. Now let mag(θ) = ∥wθ∥ denote the weight magnitude of all weights of
the sub-network described by θ. We select for each bin gi the sub-networks with the highest weight
magnitude θ̂i = argminθ∈Si mag(θ) from the set Si and form our sampling grid Q = {θ̂0, ..., θ̂K}.
Now, in each update step of the sandwich rule, we sample θi ∈ Q to compute Equation 1.

4.2 Importance scoring
If we select sub-networks from the super-network we always select the first few neorons or layers.
For example, remember that Θ = Θd × ΘH × Θr × ΘL, for θ = [768, 8, 2, 9] we select the first
dmodel = 768 entries of the embedding vector, the first H = 8 heads of the multi-head attention
layers, the first U = dmodel ∗ 2 units in the FFN layer and the first L = 9 layers. This convention
ensures a bijective mapping from Θ to sub-networks [Klein et al., 2024], however it reduces the
flexibility of selecting sub-networks.

Transformers are invariant to a fixed permutation of neurons throughout the network. Leveraging this,
we rearrange the different components of the pre-trained super-network based on their importance
score. Following [Muralidharan et al., 2024], we compute for each component the feature importance
score on a small calibration dataset, for example Wikitext-2 test set. Figure 3b show how this
simple permutation significantly reduces subnetwork perplexity, leading to better initialization for
super-network training (Section 3.2).

4.3 Parameter Efficient Fine-Tuning for Two-stage NAS
Full-Fine-Tuning (FFT) of LLMs is often prohibitevly expensive, both in terms of compute costs
and GPU memory consumption. For example we can go up to only a model size of 3B parameters
with FFT on a single A100 GPU. To scale to larger models we adopt parameter-efficient-fine-tuning
(PEFT) to fine-tune larger model sizes. Specifically we adopt LoNAS[Munoz et al., 2024], with two
major changes. Firstly, we apply LoRA to all weight matrices in a transformer i.e., the prediction
head, attention layers, FFN layers and the language model heads, in contrast to LoNAS which focuses
only on attention and FFN layers. Secondly, since we also select the total number of blocks, we
dynamically drop obsolete LoRA models. Compared to LoNAS, this allows us to also prune the
embedding dimension and entire transformer blocks, to further reduce latency.

5 Experiments
For the empirical evaluation of our model we consider Pythia-410M, Pythia-1B, and Pythia-2.8B
from the Pythia family [Biderman et al., 2023], LLaMA-2-7B from the LLaMA-2 family [Touvron
et al., 2023], along with the newly introduced LLaMA-3.1-8B as well as Phi-2 and Phi-3 [Abdin
et al., 2024]. We evaluate sub-networks on five commonsense reasoning tasks in a zero-shot manner
using LM-Eval-Harness [Gao et al., 2024]. We fine-tune super-networks (see Section 4.2) on the
Alpaca [Taori et al., 2023] dataset.

5.1 Comparison to Structural Pruning Baselines
We compare against the following structural pruning baselines on the Phi-2, Phi-3, Llama-2-7B and
the Llama-3.1-8B model: SliceGPT [Ashkboos et al., 2024] is a post-training structural pruning
technique based on Principal Component Analysis that reduces embedding dimensions by removing
rows and columns from weight matrices. N:M [Zhou et al.] prunes N out of every M consecutive
weights based on their magnitude. SparseGPT [Frantar and Alistarh, 2023b] prunes weights
iteratively to a target sparsity by using a pre-computed Hessian to quantify the sensitivity of each
neuron. Wanda [Sun et al., 2024] similar to SparseGPT but uses a simpler pruning metric based on
weight magnitude and input activation norms.
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Dataset Metric Magnitude SparseGPT Wanda SliceGPT Ours
Sparsity Latency Accuracy Sparsity Latency Accuracy Sparsity Latency Accuracy Sparsity Latency Accuracy Sparsity Latency Accuracy

phi-2
Winogrande Accuracy

2:4 243.357

62.43

50% (2:4) 269.99

68.03

2:4 254.45

68.11

15.00% 228.80

69.38

15.90% 216.81

70.48
ARC Challenge Accuracy (norm) 35.41 34.55 37.372 40.44 49.23
MMLU Accuracy 23.64 28.12 25.402 26.03 33.45
Hellaswag Accuracy (norm) 54.07 54.74 50.77 62.44 65.11
TruthfulQA mc2 43.54 43.211 41.47 42.89 42.04

phi-3
Winogrande Accuracy

2:4 298.71

54.14

2:4 339.53

62.90

2:4 335.73

63.61

10.00% 319.83

65.900

10.12% 398.0301

69.29
ARC Challenge Accuracy (norm) 32.93 33.36 35.83 47.01 47.70
MMLU Accuracy 28.01 31.93 33.91 49.68 52.21
Hellaswag Accuracy (norm) 35.95 53.11 49.81 68.03 70.72
TruthfulQA mc2 51.68 46.64 46.24 50.02 54.88

Llama-2-7B
Winogrande Accuracy

2:4 459.21

58.64

2:4 530.32

64.01

2:4 529.82

62.27

10.00% 508.12

65.82

10.44 % 496.63

65.51
ARC Challenge Accuracy (norm) 29.35 30.29 31.1433 38.40 42.15
MMLU Accuracy 23.89 25.55 25.14 30.94 34.82
Hellaswag Accuracy (norm) 52.73 57.38 55.51 68.33 73.47
TruthfulQA mc2 47.94 37.18 38.73 37.82 45.29

Llama-3.1-8B
Winogrande Accuracy

2:4 493.54

53.75

2:4 596.23

63.77

2:4 592.91

61.09

10% 502.76

65.98

10.36% 409.88

66.61
ARC Challenge Accuracy (norm) 31.23 29.35 29.44 39.08 45.563
MMLU Accuracy 23.73 27.04 27.02 43.15 50.750
Hellaswag Accuracy (norm) 39.29 52.18 48.516 65.58 74.45
TruthfulQA mc2 46.61 43.36 41.46 40.65 54.15

Table 1: Zero-Shot Evaluation on Downstream Tasks. We compute all latencies on a single A100
GPU with batch size of 2 and 512 as block size N . Note for N:M semi-structured baselines we use
2:4 sparsity as only that leads to on-device speedups in practice. Latencies reported are in ms.
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Figure 4: Comparison of different sampling schemes on Pythia-410m, Pythia-1b and Pythia-2.8b

Table 1 shows the comparison of pruning baselines to our NAS method. We use the 2:4 sparsity
of semi-structured baselines to yield on-device speedup. Using NAS we obtain sub-networks that
outperform or perform competitively to these baselines across a wide variety of datasets. Moreover,
the sub-networks found by NAS achieve lower latency (see Figure 1 for a comparison on Llama 3.1).

5.2 Ablation of Sampling Scemes
We perform an ablation study of our sampling strategy by comparing against the following alternatives:
Standard fine-tuning which updates all weights of the network. Random samples a single sub-
network uniformly at random in each update step. Grid-params uses the binning strategy as
described in Section 4 but samples a random sub-network from each bin. Importance-random,
Importance-grid-params and Importance-calibrate-mag combines importance scoring to reorder
the sub-networks with random sampling, our binning strategy either selecting sub-network per bin at
random or based on their weight magnitude, respectively.

Figure 4 shows results for Pythia 410m, Pythia 1b and Pythia2.8b using full fine-tuning instead of
PEFT. Standard fine-tuning leads to a sharp drop in accuracy with increasing sparsity levels. On the
other hand, super-network, and more specifically the importance-calibrated-mag scheme makes the
network more amenable to pruning leading to better performing sub-networks.

6 Discussion and Conclusion
We investigate two-stage NAS for model compression and scale it up to LLMs. We adapt the sampling
procedure during super-network training to allocate more update steps to promising sub-networks,
in an equi-spaced parameter grid. Given the implicit constraint given by the search space to always
select the first components, we propose to re-shuffle entries based on their importance score.

Compared to classical structural pruning approaches, NAS provides a Pareto set of sub-networks to
allow practitioners to select the optimal sub-network matching their constraints. However, compared
to some structural pruning methods, NAS requires an additional fine-tuning step to account for
training the super-network.

In future work, we plan to extend our setting to dynamic benchmarks. Also we plan to incorporate
techniques from the distillation literature to improve sub-network performance.
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A Extended Related Work

Model compression reduces the size or computational complexity of a neural network model while
minimizing loss in performance. It involves techniques such as quantization (reducing the precision
of weights and activations), pruning (removing neurons or connections from a model), knowledge
distillation (transferring knowledge from a large to a small network e.g. in the form of representations
or outputs), low-rank factorization, efficient model design and NAS (see e.g. Zhu et al. [2023] for an
overview). In the following, we focus on pruning and NAS.

Pruning removes weights and connections of a network to reduce the number of parameters and
accelerate inference. Unstructured pruning removes arbitrary weights while structural pruning
considers entire groups of parameters such as attention heads Michel et al. [2019] or layers [Sajjad
et al., 2023] for removal which is better suited for model acceleration on hardware optimized for
dense computation [Mishra et al., 2021]. Pruning and in particular structured pruning approaches
can result in a loss of accuracy and most pruning methods include a retraining phase to recover as
much accuracy as possible. Recent work focused on pruning LLMs to tackle the particular challenges
that come with their large number of parameters, the high computational complexity, and the often
limited availability of data for retraining. Methods such as ShortGPT [Men et al., 2024] and LaCo
[Yang et al., 2024] use importance scores to prune or merge layers of LLMs. SparseGPT [Frantar
and Alistarh, 2023a] approximates the optimal weights in a pruning mask using a row-wise iterative
update scheme to do unstructured and semi-structure pruning of generative pretrained transformers.
Wanda [Sun et al., 2024] extends magnitude pruning [Han et al., 2015b] by including the activation
values on a small calibration set to do unstructured and N:M structured pruning. Flextron [Cai et al.,
2024] propose a procedure that allows to extract models for different deployment scenarios by first
making by combining an elastic model (cf. Cai et al. [2020]) with methods from mixture of experts
(see e.g. Fedus et al. [2022] for a recent review). The router networks can take static information
such as a target latency into account but also input-adaptive routing. Probably the closest work to
our approach is Minitron [Muralidharan et al., 2024], which uses activation-based importance scores
to prune models and knowledge distillation from an uncompressed teacher for retraining. However,
they need to considerably reduce the number of architectures that are compared to reduce training
time. In our work, we consider much larger search spaces and leverage one-shot NAS for efficient
training including knowledge distillation and incorporate importance scores during the architecture
sampling procedure. This allows us to combine everything into a single one-step training procedure
and calculate the full Pareto front instead of single architectures.

Neural Architecture Search automates the design of deep neural networks in a data-driven manner
(see e.g. Elsken et al. [2019b], White et al. [2023] for an overview). NAS has been extended to a
multi-optimization problem taking also efficiency on a target hardware platform into account such
as latency or energy consumption [Elsken et al., 2019a, Cai et al., 2020, Wang et al., 2020] making
it closely related to model compression. To tackle the enormous computational cost of early NAS
methods [Zoph and Le, 2017, Real et al., 2019], weight-sharing based NAS [Saxena and Verbeek,
2016, Bender et al., 2018] trains a single super-network from which the weights can be inherited to
all architectures in a search space for performance evaluation without further training. A particularly
prominent approach to use NAS for model compression is two-stage NAS, which has a dedicated
super-network training and multi-objective search stage [Bender et al., 2018, Guo et al., 2020, Cai
et al., 2020]. Most two-stage methods use the notation of elastic layers [Cai et al., 2020] that can
dynamically adjust its size (e.g. width) during training. The training of the supermodel is typically
done as proposed in Yu and Huang [2019] using the sandwich rule, which aggregates the gradients
of multiple sub-networks from the super-network, as well as in-place distillation, which uses the
outputs of the largest network in a super-network as targets for smaller ones. Furthermore, Tang et al.
[2023] and Wang et al. [2021] proposed different strategies how to sample models from supermodel
to better cover the Pareto front. A detailed study of NAS for structural pruning has been conducted
in Klein et al. [2024] that shows that NAS is a competitive technique to other pruning approaches
and highlights in particular the increased flexibility and automation potential of NAS methods that
allow to estimate the full Pareto front [Cai et al., 2020, Sukthanker et al., 2024b] instead of having
to set a single threshold for pruning. However, even two-stage NAS methods still have a large
computational overhead compared to regular model training. To further reduce the computational
complexity of NAS, several works proposes to leverage pretrained weights as well as parameter
efficient fine-tuning methods. InstaTune [Sridhar et al., 2023] uses a pretrained model to initialize
and train a super-network on a fine-tuning task. LoNAS [Munoz et al., 2024] freezes the weights
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of a pretrained backbone and introduces elastic LoRA adapters [Hu et al., 2021]. Similarly, Shears
[Muñoz et al., 2024] combines unstructured pruning of a pretrained model with NAS to search for
elastic LoRA adapters to mitigate the performance loss of pruning.

B Experimental details

In this section we provide details on the hyperparameters, search spaces and datasets used for fine-
tuning different pretrained models studied in the paper. Our hyperparameter settings largely follow
litgpt configs 1.

B.1 Fine-tuning Dataset

We fine-tune all models with the Alpaca[Taori et al., 2023] dataset, which contains 51,759 instruction
pairs. Alpaca dataset is generated instruction-following demonstrations by building upon the self-
instruct method, which uses an existing strong language model to automatically generate instruction
data.

B.2 Pythia

Hyperparameters. We use a learning rate of 2e-5 for all pythia models and sampling schemes.
Furthermore we use a batch size of 4 for pythia-410m and pythia-1b and a batch size of 1 for full
fine-tuning of pythia-2.8b. We use the AdamW optimizer with 300 warmup steps and cosine annealing
of the learning rate for all models. We fine-tune all the models for 5 epochs.

Search Space. We define range of choices for search space of pythia models in Table 2,
where model_embedding_dim corresponds to the embedding dimension of the pretrained model,
the model_number_of_heads corresponds to the number of heads in the pretrained model and
model_num_layers corresponds to number of layers in the pretrained model. All other architecture
dimensions are same as the respective pretrained models.

Table 2: Configuration Search Space Parameters for Pythia Models
Parameter Type Choice Range [max, min]
embed_dim Logarithmic [1,model_embedding_dim]
num_heads Random Integer [1,model_number_of_heads]
mlp_expansion_ratio Random Integer [1, 4]
depth Random Integer [1,model_num_layers]

B.3 Llama

Hyperparameters. We use a learning rate of 0.0002 for all llama models and sampling schemes.
Furthermore we use a batch size of 8 for Llama-3.1-8B and 16 for Llama-2-7B and use the AdamW
optimizer with 10 warmup steps with cosine annealing of the learning rate. We fine-tune all the
models for 5 epochs. We set the LoRA rank to 32, the LoRA alpha to 16 and the dropout to 0.05.
Furthermore, we add LoRA layers to all attention layers, mlp layers and the prediction head.

Search Space. We define range of choices for search space of Llama-3.1-8B models in Table 3 and
for Llama-2-7B in Table 4, where model_embedding_dim corresponds to the embedding dimension
of the pretrained model, and model_num_layers corresponds to number of layers in the pretrained
model. All other architecture dimensions (including number of heads) are same as the respective
pretrained models.

1litgpt config hub
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Table 3: Configuration Search Space Parameters for Llama-3.1-8B
Parameter Type Choice Range [max, min]
embed_dim Logarithmic Integer [1,model_embedding_dim]
mlp_expansion_ratio Random Choice {1.0, 2.0, 3.0, 3.5}
depth Random Integer [1,model_num_layers]

Table 4: Configuration Search Space Parameters for Llama-2-7B
Parameter Type Choice Range [max, min]
embed_dim Logarithmic Integer [1,model_embedding_dim]
mlp_expansion_ratio Random Choice {1.0, 2.0, 2.5, 2.6875}
depth Random Integer [1,model_num_layers]

B.4 Phi

Hyperparameters. We use a learning rate of 0.0002 for all phi models and sampling schemes.
Furthermore we use a batch size of 32 and use the AdamW optimizer with 10 warmup steps with
cosine annealing of the learning rate. We fine-tune all the models for 1 epoch. We set the LoRA rank
to 8, the LoRA alpha to 16 and the dropout to 0.05. Furthermore, we add LoRA layers to all attention
layers, mlp layers and the prediction head.

B.5 Search Space.

We define the search space for Phi-2 in a manner similar to Pythia models, Table 2 and define the
search space for Phi-3 in Table 5, where model_embedding_dim corresponds to the embedding
dimension of the pretrained model, and model_num_layers corresponds to number of layers in the
pretrained model. All other architecture dimensions (including number of heads for Phi-3) are same
as the respective pretrained models.

Table 5: Configuration Search Space Parameters for Phi-3
Parameter Type Choice Range [max, min]
embed_dim Logarithmic [1,model_embedding_dim]
mlp_expansion_ratio Random Choice {1.0, 2.0, 2.5, 2.6666666666666665}
depth Random Integer [1,model_num_layers]

B.6 Grid Sampling Scheme

We use uniform size of 22 for the architecture grid for Grid-params, Importance-grid-params and
Importance-calibrate-mag schemes as defined in 5.2. Furthermore when doing rejection sampling
based on parameter count to obtain architectures in different parameter bins, we allow for at most
1000 architecture sampling trials.
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