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Abstract
Large vision-language models (LVLMs) have sig-
nificantly advanced numerous fields. In this work,
we explore how to harness their potential to ad-
dress 3D scene understanding tasks, using 3D
question answering (3D-QA) as a representative
example. Due to the limited training data in 3D,
we do not train LVLMs but infer in a zero-shot
manner. Specifically, we sample 2D views from a
3D point cloud and feed them into 2D models to
answer a given question. When the 2D model is
chosen, e.g., LLAVA-OV, the quality of sampled
views matters the most. We propose cdViews, a
novel approach to automatically selecting critical
and diverse Views for 3D-QA. cdViews con-
sists of two key components: viewSelector
prioritizing critical views based on their poten-
tial to provide answer-specific information, and
viewNMS enhancing diversity by removing re-
dundant views based on spatial overlap. We eval-
uate cdViews on the widely-used ScanQA and
SQA benchmarks, demonstrating that it achieves
state-of-the-art performance in 3D-QA while re-
lying solely on 2D models without fine-tuning.
These findings support our belief that 2D LVLMs
are currently the most effective alternative (of
the resource-intensive 3D LVLMs) for address-
ing 3D tasks. The code is available at https:
//github.com/fereenwong/cdViews.

1. Introduction
The advancement of large vision-language models (LVLMs)
has transformed the vision-language domain by jointly pro-
cessing huge sets of vision and text training data, leading to
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Figure 1: Comparison of 3D Question Answering meth-
ods. (a): a1 for 3D-based methods; a2 and a3 for hybrid
(2D+3D) methods. All of these methods require computa-
tionally intensive 3D-language alignment using point cloud
data for spatial reasoning. a4 is our method that leverages
pre-trained LVLMs operating solely on 2D views. The well-
aligned features between 2D visual features and language in
2D LVLMs enable zero-shot 3D-QA. (b): Model compari-
son on the test set (with objects) of ScanQA. The upper-right
corner indicates the best performance. The circle area rep-
resents the size of training data required for aligning 3D
and language. The “✕” denotes zero-shot 3D-QA using 2D
model LLAVA-OV (Li et al., 2024a). We respectively use ①
uniform sampling, ② image retrieval, and ③ our cdViews,
to select views as input to LLAVA-OV.

significant breakthroughs in addressing 2D visual question
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answering (2D-VQA) (Shao et al., 2023; Guo et al., 2023;
Lu et al., 2023). However, extending these capabilities to 3D
question answering (3D-QA) has unique challenges. Unlike
2D tasks, which benefit from abundant paired training data,
the 3D domain lacks large-scale datasets to learn the align-
ment between 3D (such as point clouds) and language (such
as text descriptions of 3D scenes). Existing 3D-language
models still fall short of serving as robust counterparts to the
widely used 2D-language models such as LLaMA-3 (Dubey
et al., 2024). Therefore, current 3D-QA methods often have
to train from scratch on small-scale 3D datasets, resulting
in poor model performance. In contrast, hybrid approaches
leverage additional 2D information. One solution (Hong
et al., 2023) is to reconstruct 3D features from the features
of multiple 2D views (Figure 1 (a2)), but its performance
is poor due to the technical challenge of 3D reconstruction.
Another solution (Mo & Liu, 2024) is to combine 2D and
3D features as input into the model (Figure 1 (a3)). 2D fea-
tures extracted from LVLMs are already well-aligned with
language, but further alignment with 3D features requires
careful model design and advanced training techniques. Fig-
ure 1(b) shows that hybrid methods also require extensive
amounts of training data (indicated by the large circle area),
which are not always available.

In this paper, we take a completely different approach by
avoiding direct alignment between 3D and language. In-
stead, we rely solely on 2D views and pre-trained LVLMs
for understanding 3D scenes. For implementation, we first
select a limited number of 2D views, and then take them as
the only visual input to LVLMs to answer the input question.

During our preliminary trials, we identified several chal-
lenges. First, all LVLMs have a token limit, restricting
the number of 2D views they can process at once. This
constraint makes it crucial to carefully select the most in-
formative views. Second, given a fixed number of views,
the quality of the selected views plays a critical role. Ex-
isting methods for view selection fall into two categories:
uniform sampling, which randomly selects views, and im-
age retrieval, which selects views based on question-based
retrieval (Li et al., 2022). However, both approaches have
significant limitations, either being inefficient or failing to
capture critical views. Specifically, as shown in Figure 2,
image retrieval outperforms uniform sampling but has two
major limitations. First, it prioritizes question-related views
over truly essential ones for answering the question. For
example, when asked “What is the black couch facing?”,
the model retrieves images of the “couch” but overlooks
the “coffee table”, which is the answer-related object but
in the opposite view of “couch”. Second, it often selects
redundant or overlapping views, causing inefficiency.

To tackle the challenges, we introduce a new frame-
work cdViews to select critical and diverse Views

<Question>: What is the black couch facing?
<Answer>: Coffee table

Ours – “the black couch facing a coffee table” is included

Uniform Sampling -- ignores question context

Image Retrieval – overlooks answer-related information

Figure 2: Comparison of view selection methods.

(cdViews) and then use them to perform LVLMs-based
3D-QA in a zero-shot manner. cdViews is designed
on two key principles. (1) Prioritize Critical Views:
We aim for views that contain information crucial for an-
swering questions, rather than merely finding views that
match question texts. Thus, we develop a lightweight
viewSelector module that prioritizes views most likely
to contain answer-related information. To train this module,
we design a viewAnnotator that automatically gener-
ates training data in two steps. viewAnnotator firstly
converts question-answer pairs into descriptive captions. It
then leverages a pre-trained LVLM to identify the most in-
formative views that match these captions. (2) Enhance
View Diversity: The aim is to improve spatial diversity
and minimize redundancy for the selected views. To this
end, we develop a view Non-Maximum Suppression method
dubbed as viewNMS. This method uses camera parameters,
including position and orientation, to filter out overlapping
views while preserving spatial views as diverse as possi-
ble. When viewSelector and viewNMS are ready, they
will be plugged into a pre-trained 2D LVLM for zero-shot
3D-QA in the inference stage.

We evaluate the proposed cdViews on two widely used
benchmarks of 3D-QA: ScanQA (Azuma et al., 2022) and
SQA (Ma et al., 2022). Our experimental results demon-
strate that cdViews’s view selection significantly outper-
forms conventional approaches such as uniform sampling
and image-text retrieval. Notably, cdViews achieves supe-
rior performance compared to models using 3D or hybrid
input data. In summary, our contributions are three-fold.
(1) We explore the use of 2D-only LVLM to address 3D-
QA in a zero-shot manner, analyzing various view selec-
tion methods. (2) We introduce cdViews that integrates a
viewSelector with a viewNMS to capture critical and
diverse views. We design a viewAnnotator to generate
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training data for viewSelector automatically. (3) Our
experiment results demonstrate that cdViews achieves
state-of-the-art performance on two 3D-QA benchmarks,
even surpassing the 3D or hybrid models.

2. Related Works
Existing approaches to 3D-QA can be categorized into three
folds based on the format of visual inputs: 3D-based, 2D-
based, and hybrid (combining 3D and 2D).

3D-based Methods. The 3D-based methods (Man et al.,
2024a) use 3D point clouds as visual input, allowing direct
processing of point cloud data to understand 3D environ-
ments. However, these methods face two challenges. First,
the scarcity of 3D-language training data limits its scala-
bility. Efforts such as 3D-VLP (Yang et al., 2024) attempt
to mitigate this issue by leveraging large-scale synthetic
datasets, and recent works (Zhang et al., 2024; Jin et al.,
2023b; Hong et al., 2023; Zhu et al., 2023; Chen et al.,
2024b) aim to unify multiple 3D tasks, such as caption-
ing, question answering, and grounding, under a single
framework. Second, using an entire 3D scene as input in-
troduces unnecessary information for QA, distracting the
model and reducing efficiency. To address this, methods
such as SIG3D (Man et al., 2024a) incorporate situational
awareness to focus on only relevant 3D regions guided by
the language prompts (e.g., the input situation). Overall, 3D-
based methods have constraints due to the lack of large-scale
3D language pretraining data. The resulting 3D-language
alignment in the feature space is thus suboptimal. Besides,
using entire scenes as input to answer local questions is
costly and inefficient.

2D-based Methods. Recent 2D-based methods use uni-
formly sampled 2D views as input to 2D LVLMs (Singh
et al., 2024; Zheng et al., 2024; Liu et al., 2024b), primar-
ily focusing on evaluating the performance of 2D LVLMs
on 3D-QA. They focus more on evaluating pretrained 2D
LVLMs on 3D-QA tasks, rather than developing approaches
to adapt and improve their performance for spatial reason-
ing. Some more recent works have attempted to utilize
2D views more effectively. OpenEQA (Majumdar et al.,
2024), transforms visual information into textual context,
such as frame-level or scene-graph captions, and then lever-
ages LLMs to answer questions. This approach depends on
whether the generated text description can accurately cap-
ture the critical visual details, which may lead to incomplete
or inaccurate information.

Compared to the above methods, we make two key contri-
butions. First, we are the first to leverage 2D LVLMs via
zero-shot inference (or by plugging a lightweight module)
to address 3D-QA tasks. Second, we identify view selection
as a critical factor in zero-shot 3D-QA, for which there is a

lack of an efficient solution in prior works. To tackle this,
we propose a simple yet effective strategy for selecting criti-
cal and diverse views (i.e., cdViews), thereby enhancing
the utility of readily-trained 2D LVLMs for 3D-QA.

Hybrid Methods. Hybrid methods (Huang et al., 2024;
Mo & Liu, 2024; Huang et al., 2023; Hong et al., 2023;
Man et al., 2024b; Fu et al., 2024) leverage pre-trained 2D
LVLMs to address 3D vision-language tasks in two main
ways. The first approach involves mapping multi-view 2D
image features (which are well-aligned with language due
to 2D LVLMs) into the 3D feature space (Zhu et al., 2025;
Hong et al., 2023). These mapped features can either replace
original 3D features (Hong et al., 2023) or serve as comple-
mentary inputs to enhance the alignment between language
and hybrid (2D+3D) features (Zhu et al., 2025). The sec-
ond approach processes 2D images and 3D point clouds
as parallel inputs (Mo & Liu, 2024), using complementary
strengths: 2D views provide fine-grained semantic details,
while 3D point clouds capture spatial awareness. Although
these methods improve 3D-QA performance, they rely on
explicit 3D reconstruction, needing additional models and
causing more processing steps. In contrast, our method uses
2D views and feeds them into a unified 2D LVLM, which
makes a simpler pipeline.

Different from these hybrid methods, our approach relies
solely on 2D views as input, without the need for map-
ping between 3D and 2D. Our technical contribution is
an efficient view selection strategy, cdViews. Among
the hybrid methods, the work most closely related to ours
is BridgeQA (Mo & Liu, 2024), which selects views by
first retrieving the top-1 question-related view and then
combining it with 3D point clouds as input for a hybrid
model. However, BridgeQA depends on 3D point clouds
to extract spatial information for QA, requiring complex
3D→2D→language alignment. Additionally, its retrieval-
based approach risks overlooking critical views (which we
will show in the experimental sections). In contrast, our
method leverages multiple 2D views to understand 3D,
meanwhile utilizing the strong language alignment already
achieved by pre-trained 2D LVLMs.

3. Preliminaries
Leveraging pre-trained 2D LVLMs in a zero-shot manner
for 3D-QA tasks is promising yet underexplored. Since
2D LVLMs are fundamentally designed to process 2D im-
ages as input, we propose cdViews to efficiently select the
most informative 2D views of 3D scenes. To understand
the complexities in view selection, we conduct a prelimi-
nary study using intuitive view selection methods, taking
LLAVA-OV (Li et al., 2024a) as the backbone and using the
validation set of the ScanQA dataset (Azuma et al., 2022).
Note that it requires no training data due to the zero-shot
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Figure 3: The pipeline of zero-shot 3D-QA using three different view selection methods: uniform sampling (option ①),
image retrieval (option ②), and our cdViews (option ③). The views marked with ★ are selected ones. As for inference,
our cdViews has two modules to run: the viewSelector identifies critical views, and the viewNMS enhances view
diversity and minimizes redundancy. The viewSelector is trained using automatically generated labels from the
viewAnnotator module, which is detailed in Figure 5.
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Figure 4: Performance comparison of view selection
methods on the validation set of ScanQA (Azuma et al.,
2022). It can be observed that: 1) performance improves
with an increasing number of views, peaks at a certain point,
and finally declines; and 2) noticeable performance gaps
arise from different view selection methods, highlighting
the importance of effective view selection. An earlier peak
(30.1) appears in cdViews thanks to viewNMS.

approach. In the following, we first present a problem for-
mulation for zero-shot 3D-QA, followed by experiments
using two intuitive view selection methods: uniform sam-
pling and image retrieval.

Problem Formulation. Given a question Q and a 3D scene
represented by a set of 2D views M = {V1, V2, . . . , VN},
each associated with a camera matrix containing the position
and orientation. The view selection identifies a subset of k
views (that are useful to answer Q), denoted as M′:

M′ = F(M, Q, k) = {Vi1 , Vi2 , . . . , Vik}, (1)

where k ≤ N , F is a view selection function, which can

either be question-dependent (denoted as F(M, Q, k)), or
not (denoted as F(M, k)). Then, M′ and the question Q
are input into the model to produce the answer A:

A = LVLM(M′, Q). (2)

The same zero-shot inference process is applied throughout
all experiments in this work, with variations only in two key
aspects: the view selection function F and the number of
selected views k that determine the final set of views M′.

Uniform Sampling vs. Image Retrieval. We show the zero-
shot experimental results of these two methods in Figure 4.
We also include the results of our cdViews for comparison.

1) Uniform sampling randomly selects 2D views without
considering the context of the question Q (option ① in Fig-
ure 3), formulated as:

Funiform(M, k) = {Vij}kj=1, ij ∼ Uniform(1, N). (3)

Uniform sampling is the most straightforward way to select
2D views as input into 2D LVLMs for 3D-QA, and the best
achieved metric score of EM@1 is 28.3%.

2) Image retrieval has been used in BridgeQA (Mo & Liu,
2024). Following (Mo & Liu, 2024), we use the BLIP’s
image-text retrieval model (Li et al., 2022) to select views
that best match the question Q (option ② in Figure 3). This
process can be represented as:

Fretrieval(M, Q, k) = {Vij | ij ∈ Top-k(IR(Q,M))}. (4)

where IR(Q,M) denotes the semantic similarity scores be-
tween Q and every view in M, i.e., identifying the views

4



3D Question Answering via only 2D Vision-Language Models

< >: You are a helpful assistant. For each QA pair, generate a caption that describes the visual scene, 
fully incorporating relevant information from the question and answer.
𝑃𝑟𝑜𝑚𝑝𝑡!

<Question>: What is in the right corner of room by curtains? <Answer>: brown cabinet with tv sitting in it

a brown cabinet with a television inside is located in the right corner of the room, near the curtains.

Positive |
Negative

𝑃𝑟𝑜𝑚𝑝𝑡"< >: You are given an image and a caption describing the visual content. Determine if the image 
matches the caption, and respond with one of the following options:
A. Yes, fully matches. B. No, does not match. C. Uncertain, insufficient or unclear information.

Step 1: Caption Generation

Step 2: View Matching

Figure 5: Our viewAnnotator module operates in two steps: Caption Generation and View Matching (illustrated by
light green boxes indicating outputs at each step). In Step 1, LVLMs processes question-answer pairs to produce detailed
descriptive captions. In Step 2, these captions are compared against sampled views to assess their relevance in answering the
corresponding questions. For clarity, the figure depicts only positive (A) and negative (B) view matches, excluding uncertain
(C) ones.

semantically aligned with the question. As shown in Fig-
ure 4, the best EM@1 score that this approach achieves is
29.1%, slightly outperforming uniform sampling.

Analysis. Overall, image retrieval shows modest improve-
ments over uniform sampling. It relies on the semantic
similarity between questions and views, which introduces
two key limitations: 1) Missing Critical Views. While it ef-
fectively identifies views containing objects explicitly men-
tioned in the question, it frequently overlooks relational cues
essential for answering the question. This limitation stems
from the fundamental difference between object identifica-
tion and relationship comprehension, and the latter requiring
stronger understanding capabilities. 2) Redundancy. Our
analysis shows that views from adjacent viewpoints typi-
cally receive similar semantic similarity scores, resulting in
the selection of overlapping views. This redundancy limits
the diversity of visual information captured across multi-
ple views, reducing the overall effectiveness of the image
retrieval approach.

4. cdViews: Critical and Diverse Views
Based on the above analysis, we argue that effective
zero-shot 3D-QA requires identifying views that are both
critical to represent the key information in the scene
and sufficiently diverse to cover the scene. To this
end, we introduce cdViews, i.e., the option ③ in Fig-
ure 3. In the inference stage of 3D-QA, cdViews loads
two modules, viewSelector and viewNMS. The train-
ing of viewSelector contains two steps: data anno-
tation and model training. First, we propose an auto

viewAnnotator to label views as positive, negative, or
uncertain based on their matching scores with the descrip-
tive captions (generated from question-answer pairs). Then,
we train viewSelector with these labels in a supervised
manner. For the selected views, we introduce viewNMS to
remove redundant ones and improve the view diversity.

4.1. viewAnnotator

The implementation of viewAnnotator has two steps:
caption generation and view matching, as shown in Figure 5.
Both steps use the same LVLM as in the zero-shot 3D-QA
(i.e., the final inference model). This process aims to identify
the critical views that match mostly the content of both input
questions and the corresponding answers. Please note that
these data are all from the training set where the answers
are available for use.

Caption Generation. It begins by feeding a question-
answer pair (Q,A) and a rephrasing prompt (PromptR)
into the LVLM, as in Step 1 of Figure 5. This prompt is
fixed for every question-answer pair and instructs the model
to rephrase the pair into an image caption C which abridges
the reasoning between the question and answer:

C = LVLM(Q,A, PromptR). (5)

Please note that caption generation is a crucial prior step of
view matching. Directly using the (Q,A) pair for matching
causes the model to focus on answering the question rather
than labeling the views. In other words, it encourages the
model to take a shortcut by simply copying the answer A.

View Matching. For each view Vi in a set of 2D views
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M, we evaluate its information relevance to the generated
caption using LVLM. Specifically, we prompt the caption C
and a matching prompt PromptM , as in Step 2 of Figure 5,
to LVLM. LVLM classifies Vi into one of three categories,
“positive”, “negative”, or “uncertain”, respectively corre-
sponding to the options A, B, and C in PromptM .

Si = LVLM(C, Vi, P romptM ), (6)

where Si ∈ {0, 1} is the classification label of the view Vi.
For example, in Figure 5, a view is classified as “positive”
(Si =1) because it contains the correct objects with spec-
ified attributes and spatial relationships, such as a “brown
cabinet” with a “television” inside and “curtains” nearby.
Otherwise, views are labeled as “negative” (Si=0). Views
are classified as “uncertain” when the model chooses the
option of “Uncertain, insufficient or unclear information”
or outputs none of the given options, and these views are
excluded from training.

4.2. viewSelector

As shown in Figure 3, viewSelector is plugged be-
tween the visual encoder and LVLM to select “views” in the
feature space. It takes the question embedding Q and the
visual embedding set {Vi}Ni=1 as input and outputs a binary
label Ŝi (0 or 1) for each visual embedding. Then, Ŝi is
compared to the corresponding view label generated by the
viewAnnotator. The mismatch loss is used to optimize
the parameters of viewSelector.

Specifically, the question embedding Q is first passed
through a linear layer. followed by a two-layer Transformer
block, and a pooling layer. The output can be regarded as
a compact summary of the question, producing a question
vector q. Similarly, for visual inputs, each visual embedding
Vi is processed through the same modules. We apply cross-
attention in each transformer layer between the question
embedding Q and the visual embeddings {Vi}Ni=1, in order
to enhance the model’s ability to identify views containing
critical content for QA. After pooling, the resulting set of
vectors {vi}Ni=1 serve as compact summaries of question-
aligned visual embeddings.

Finally, the outputs q and {vi}Ni=1 are used to measure the
criticality between the question and each view by cosine
similarity:

Ŝi =
q · vi

||q||||vi||
. (7)

The score Ŝi is supervised with the corresponding label Si

by binary cross-entropy loss:

LBCE = − 1

N ′

N ′∑
i=1

(
Ŝi log(Si) + (1− Ŝi) log(1− Si)

)
(8)

where N ′ ≤ N is the number of views labeled as 1 (“posi-
tive”) or 0 (“negative”).

During inference, viewSelector acts as a scoring func-
tion to evaluate each input view: a higher score Ŝi indicates
higher criticality of Vi.

4.3. viewNMS

The views selected by viewSelector may introduce re-
dundancy: overlapping views might all get high scores—
similar to the problem of image-retrieval-based methods.
We propose viewNMS to filter out redundant views. We
leverage camera parameters, i.e., position and orientation,
calculate distances between selected views, and discard
views less distant than a predefined distance threshold.

Specifically, viewNMS operates in three steps: 1) Ranking
views sorts all views {Vi}Ni=1 by their scores {Ŝi}Ni=1 in
descending order, resulting in {Vik}Nk=1, where Ii1 is the
highest-scoring view. 2) Initializing candidate views se-
lects the highest-scoring view as the initial set M′ = {Vi1}.
3) Adding diverse views sequentially processes the remain-
ing views in sorted order, adding a view Vik to the set if its
distance from previously selected views exceeds a threshold
T , formulated as:

M′ = Vik ∪M′, if D(Vik , Vj) > T, ∀Vj ∈ M′. (9)

Finally, viewNMS outputs a new set of selected views M′,
which are both critical and spatially diverse. After that, M′

and Q are fed into the 2D LVLM to generate an answer
which is the final output of zero-shot 3D-QA.

View Distance Calculation. The core of viewNMS lies
in the calculation of the view distance, i.e., D(Vi, Vj),
measuring the cameras’ position and orientation distance
between Vi and Vj . For each view, the camera parame-
ters [R|t] (we omit the subscript for simplicity) consist
of a camera orientation R ∈ R3×3 and a camera position
t ∈ R3×1. The distance is calculated by combining both
the orientation distance and position distance. For the orien-
tation R, we first convert it into a quaternion representation
p = [px, py, pz, pw] for more efficient distance calculations.
Then, the orientation distance Dori(Vi, Vj) is calculated by

Dori(Vi, Vj) = 2 · arccos(|pi · pj |), (10)

where arccos represents the inverse cosine function. This
formula gives the angular distance in radians between the
orientations of two views. Since arccos(|pi ·pj |) yields half
the angle, the factor of 2 restores the full angle difference.

The position distance Dpos(Vi, Vj) between views Vi and
Vj is calculated using the Euclidean distance between their
camera positions ti and tj :

Dpos(Vi, Vj) = ||ti − tj ||, (11)
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Method Type ScanQA SQA
EM@1 BLEU-1 ROUGE CIDEr EM@1

ScanQA (Azuma et al., 2022) 3D 23.5 / 20.9 31.6 / 30.7 34.3 / 31.1 67.3 / 60.2 45.3
SQA3D (Ma et al., 2022) 3D - - - - 47.2

3D-LLM (Hong et al., 2023) 3D 19.1 / - 38.3 / - 35.3 / - 69.6 / - 48.1
3D-VLP (Jin et al., 2023a) 3D 24.6 / 21.6 33.2 / 31.5 36.0 / 31.8 70.2 / 63.4 -

3D-VisTA (Zhu et al., 2023) 3D 27.0 / 23.0 - 38.6 / 32.8 76.6 / 62.6 48.5
SIG3D (Man et al., 2024a) 3D - - - - 52.6

SynFormer3D (Yang et al., 2024) 3D 27.6 / 24.1 - 39.2 / 33.3 76.2 / 62.7 -

LL3DA (Chen et al., 2024a) 3D+2D - - 38.2 / 35.2 78.2 / 70.3 -
PQ3D (Zhu et al., 2025) 3D+2D 26.1 / 20.0 43.0 / 36.1 - 87.8 / 65.2 47.1

BridgeQA (Mo & Liu, 2024) 3D+2D 31.3 / 30.8 34.5 / 34.4 43.3 / 41.2 83.8 / 79.3 52.9

LLAVA-OV + Funiform 2D 33.1 / 33.5 43.2 / 44.2 46.9 / 46.6 95.8 / 93.3 53.5
LLAVA-OV + Fretrieval 2D 33.9 / 34.6 44.8 / 46.1 48.3 / 48.7 98.8 / 97.7 55.0

LLAVA-OV + FcdViews 2D 35.0 / 35.6 46.1 / 47.2 49.7 / 49.5 102.8 / 100.4 56.9
margin over the compared best - 3.7 ↑ / 4.8 ↑ 3.1 ↑ / 9.1 ↑ 6.4 ↑ / 8.3 ↑ 15.0 ↑ / 21.1 ↑ 3.9 ↑

Table 1: Performance comparisons with the state-of-the-art methods on the test set of ScanQA (Azuma et al., 2022) and
SQA (Ma et al., 2022). For ScanQA, scores are presented in the format “with object test set” / “without object test set”.
The best and second best results are in bold and underlined, and the last row shows the performance margins between
LLAVA-OV + FcdViews and the top-performing related methods.

where || · || is the Euclidean norm.

The final camera distance D(Vi, Vj) is a sum of the position
and orientation distances,

D(Vi, Vj) = Dpos(Vi, Vj) +Dori(Vi, Vj). (12)

Combining the camera’s position and orientation, the dis-
tance estimates the spatial overlap between the regions cap-
tured by two views, with smaller values indicating greater
overlap. An ablation study on threshold selection is pro-
vided in the experimental section.

5. Experiments
Datasets. We use ScanQA (Azuma et al., 2022) and
SQA (Ma et al., 2022) in our experiments, both constructed
from ScanNet dataset (Dai et al., 2017). ScanQA contains
over 41K question-answer annotations across 800 indoor
3D scenes, which are divided into train, val, and test sets
(with or without objects). SQA contains over 33K question-
answer pairs derived from 650 indoor scenes. It encom-
passes a diverse range of question types, including object
identification, spatial relationships, scene-level understand-
ing, and general reasoning.

Evaluation Metrics. We adopt Exact Match (EM@1) for
both datasets. EM@1 measures the proportion of cases
where the top-1 predicted answers match any of the ground-
truth answers. Furthermore, since the answers in ScanQA
are often free-form, we use standard text similarity metrics,
including BLEU-1 (Papineni et al., 2002), ROUGE-L (Lin,
2004), and CIDEr (Vedantam et al., 2015) to assess the
quality of generated answers.

Implementation Details. We utilize a recent state-of-the-
art LVLM, i.e., LLAVA-OV-7B (Li et al., 2024a), as the 2D
LVLM for all experiments, including viewAnnotator
and 3D-QA. The model remains frozen throughout all
experiments. Analysis on more LVLM backbones is
shown in Appendix C. The only trainable component is
viewSelector, a lightweight module with a total of
5.9M parameters. Training of the viewSelector is con-
ducted with a learning rate of 5× 10−5 and a batch size of
8. Each training iteration samples 5 positive and 5 negative
views per instance generated by viewAnnotator. Here
the number of views, e.g., k=9 for cdViews, is selected
on the validation set (Figure 4).

5.1. Comparisons with the State-of-the-Arts

Table 1 presents the quantitative results comparing 2D-
only methods (uniform sampling, image retrieval, and
cdViews) with other LLAVA-OV (Li et al., 2024a) with
state-of-the-art 3D and hybrid methods. First, it is ob-
served that 2D-only methods achieve superior performance,
showing the advantage of applying 2D pre-trained models
for 3D tasks. For example, compared to BridgeQA (Mo
& Liu, 2024), our FcdViews achieves significant improve-
ments of 15.0% and 21.1% CIDEr on the two test sets of
ScanQA. Second, among the 2D-only methods, cdViews
outperforms the others. For example, FcdViews outper-
forms Fretrieval by 4.0% and 2.7% CIDEr on both test sets of
ScanQA. The reason is that the uniform sampling method ig-
nores the question and the image retrieval method often fails
to capture critical views or introduces redundancy views. In
contrast, cdViews effectively identifies critical and diverse
views for efficient 3D-QA. The qualitative comparison of
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<Question >: What is on a table next to a bed? <Answer >: fan
BridgeQA: lamp | LLAVA-OV + ℱ!"#!$"%&': pillow | LLAVA-OV + ℱ()*$"+ : fan

<Question >: What is to the right of the chair? <Answer >: desk
BridgeQA: ottoman | LLAVA-OV + ℱ!"#!$"%&': couch | LLAVA-OV + ℱ()*$"+ : desk

Figure 6: Qualitative results for BridgeQA (Mo & Liu, 2024), LLAVA-OV + Fretrieval, and our final model LLAVA-OV +
FcdViews. The marks , , and represents the selected views respectively by three methods. We can see that cdViews
captures the most critical and diverse views to answer the questions.

LLAVA-OV view
Selector

view
NMS

Best
EM@1

Optimal
k

+ Funiform - - 28.3 17
+ Fretrieval - - 29.1 17
+ Fretrieval - ✓ 29.2 9
+ FcdViews ✓ - 29.7 17
+ FcdViews ✓ ✓ 30.1 9

Table 2: An ablation study performed on ScanQA. We show
the best EM@1 scores with the corresponding (optimal) k.

selected views is shown in Figure 2 and Figure 6. More
comparisons are provided in the Appendix Section B.

5.2. Ablation Study

In this section, we conduct an ablation study on the valida-
tion set of ScanQA (Azuma et al., 2022), following (Mo &
Liu, 2024). We study the impact of cdViews components
and viewNMS thresholds. In addition, we particularly com-
pare ours with the most related work: image-retrieval-based
3D-QA (Mo & Liu, 2024). More ablation studies are in
Section C of the Appendix.

cdViews Components. The experimental results are sum-
marized in Table 2. The first row shows the baseline per-
formance using randomly sampled 2D views as input, i.e.
Funiform, achieving the best result of 28.3% EM@1 with
17 views. The second and third rows present results using
the image retrieval baseline. Compared to uniform sam-
pling, retrieval provides better views and improves EM@1
to 29.1% (with 17 views). When combined with viewNMS,
the number of input views is reduced to 9, and performance
slightly improves to 29.2%. The fourth row presents the
performance of FcdViews with the viewSelector alone,
which achieves 29.7% EM@1 with 17 views, improving
by 1.4%. This validates that the viewSelector effec-
tively prioritizes critical views. The last row reports the full

29.7

(k=17)

29.9
(k=11)

30.1

29.6

29.3 (k=7)

29

29.2

29.4

29.6

29.8

30

30.2

0 0.25 0.5 0.75 1

best k

29.4

29.7

29.2

k=9

EM@1

𝑻

Figure 7: The results of EM@1 using two configurations:
optimal k (blue) vs. fixed k=9 (green). X-axis is the thresh-
old T of viewNMS. T =0 means disabling viewNMS.

implementation of FcdViews, where viewNMS reduces the
input to just 9 views—almost half the visual token length—
without reducing the performance, but further boosting
EM@1 by 0.4%. This is due to the reduced redundancy
allowing the model to focus more on critical views. A com-
parison between the third and last rows shows that our full
pipeline FcdViews outperforms the retrieval + viewNMS
baseline by 0.9% EM@1 (30.1% vs. 29.2%), using the
same number of input views. Even after redundancy re-
moval via viewNMS, the retrieval-based approach remains
constrained by its initial candidate views, which are selected
based on question–view semantic similarity rather than their
criticality to question answering. This further highlights the
strength of our learned viewSelector, which explicitly
identifies views that are critical for question answering.

viewNMS Thresholds. We evaluate the effect of different
viewNMS thresholds (0, 0.25, 0.5, 0.75, and 1.0) in Fig-
ure 7. As the threshold increases, the optimal number of
input views decreases from 17 to 9, demonstrating the effec-
tiveness of viewNMS in reducing redundancy. The highest
accuracy is achieved at a threshold of 0.5, with only 9 views
input. When the number of views is fixed at 9, performance
improves with increasing thresholds, peaking at 0.5 before
declining. It indicates that excessively high thresholds may
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Method Fretrieval FcdViews

Model BLIPViT-L (retrieval) cdViews
Parameters 644M 5.9M (−99.1%)

FLOPs 593.6T 294.5T (−50.4%)
Inference Time 2.8s 1.2s (−57.1%)

Table 3: Computational performance comparison between
image retrieval and cdViews for zero-shot 3D-QA.

loss spatially close views, and thus miss critical information.

cdViews’s Efficiency. We compare the efficiency of im-
age retrieval and our proposed cdViews in Table 3. As a
lightweight plug-in module to LVLMs, FcdViews only in-
troduces 5.9M parameters, while the parameters of Fretrieval
is 100 times as FcdViews. Furthermore, FcdViews reduces
FLOPs by half and cuts inference time by more than 50%
compared to Fretrieval. These results demonstrate the effec-
tiveness of cdViews in improving accuracy, streamlining
inference, and reducing computation.

6. Conclusions
In this work, we leverage 2D LVLMs in a zero-shot manner
(or plugging a lightweight module) to address 3D-QA and
identify view selection as a critical factor affecting perfor-
mance. Our preliminary study reveals that effective view
selection must ensure both critical and diversity. To this end,
we propose cdViews, a view selection framework compris-
ing viewSelector, which prioritizes critical views, and
viewNMS, which enhances spatial diversity by removing
redundant views. Extensive experiments on the ScanQA and
SQA datasets demonstrate that cdViews achieves state-of-
the-art performance.
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This supplementary includes the details of view matching in viewAnnotation (Sec. A), more comparisons with the
State-of-the-Arts (Section B), more ablation studies (Section C), including ablation of view selection methods with different
2D LVLM, effectiveness of caption generation in viewAnnotator, and more case studies (Section D).

A. More Details in View Matching
This supplementary is for Sec. 4.1 of the main paper. In our viewAnnotator, view matching classifies views as
positive, negative, or uncertain. However, directly using a 2D LVLM with the prompt PromptM as an instruction is
unreliable, as the model lacks an explicit judgment criterion. To address this, we leverage its strong in-context learning
ability (Zhou et al., 2024) by providing a textual context example that guides the model through a structured reasoning
process. Specifically, we incorporate a step-by-step system prompt in the View Matching process. As shown in Figure S1,
the system prompt ensures that all key objects, attributes, and spatial relationships in the caption align with the image,
reducing ambiguity and improving consistency. Uncertain views are explicitly excluded, enhancing the robustness of the
annotation process. Additional examples of positive and negative views are shown in Figure S2.

𝑃𝑟𝑜𝑚𝑝𝑡!< >: You are given an image and a caption describing the visual content. Determine if the image 
matches the caption, and respond with one of the following options:
A. Yes, fully matches. B. No, does not match. C. Uncertain, insufficient or unclear information.

𝑆𝑦𝑠𝑡𝑒𝑚	𝑃𝑟𝑜𝑚𝑝𝑡

Negative
views

Positive
views

< >:an orange storage bin is placed on top of a white cabinet.Caption

< >: Consider the following example to guide your responses:
Caption: “A brown cabinet with a television inside is located in the right corner of the room, near the curtains. ”
In this example, following the steps:
1. List all objects or elements mentioned in the caption:

- Brown cabinet - Television inside the cabinet   - Curtains nearby
2. Check if all objects from the caption are present in the image:

- Yes, if all objects from the caption (brown cabinet, television, and curtains) are present in the image, proceed 
to step 3.

- No, answer with option B.
3. Verify if the objects' attributes and relative positions match the caption:

- Yes, the cabinet is brown, the television is inside the cabinet, it is positioned in the right corner, and it is near 
the curtains.

- If any attributes or positions do not match the caption, answer with option B.
- If the image contains partial but unclear information, answer with option C.

Figure S1: Illustration of how context guides the view matching process. In the view matching process of
viewAnnotator, the model follows a structured reasoning approach, using a textual example to classify views as
positive, negative, or uncertain.

To further validate the reliability of the positive views, we conducted a human evaluation: We randomly selected 50 QA pairs
with their associated positive views. Three human evaluators assessed whether each view could answer the question. Their
accuracy rates were 96.72%, 94.28%, and 97.56%, confirming that the quality of positive views is sufficient for training.

B. More Comparisons with the State-of-the-Art Methods
This supplementary is for Section 5.1 of the main paper. Table S1 presents the quantitative results comparing LLAVA-
OV (Li et al., 2024a) with different view selection methods, including uniform sampling, image retrieval, and our cdViews,
against state-of-the-art methods on the validation set of ScanQA. As shown, LLAVA-OV + FcdViews outperforms these
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Negative
views

Positive
views

< >:the wall with pictures is on the right side of the door.Caption

Positive
views

< >:the microwave is placed on top of a storage box.Caption

Negative
views

Negative
views

Positive
views

< >: a cabinet is located in the room to the left of a table.Caption

Figure S2: Examples of automatically annotated positive and negative views. Each case shows a caption along with its
corresponding positive and negative views. Positive views closely match the caption in terms of key objects, attributes, and
spatial relations, while negative views lack full correspondence.

Method Type EM@1 BLEU-1 ROUGE CIDEr

ScanQA (Azuma et al., 2022) 3D 20.3 29.5 32.4 61.7
3D-LLM (Hong et al., 2023) 3D 20.5 39.3 35.7 69.4
3D-VLP (Jin et al., 2023a) 3D 21.7 30.5 34.5 67.0

LL3DA (Chen et al., 2024a) 3D+2D - - 37.3 76.8
BridgeQA (Mo & Liu, 2024) 3D+2D 27.0 - - -

GPT-4O+CC (Liu et al., 2024a) 2D - 35.4 42.6 87.0
LLAVA-OV + Funiform 2D 28.3 40.2 44.5 88.0
LLAVA-OV + Fretrieval 2D 29.1 41.5 45.8 91.6
LLAVA-OV + FcdViews 2D 30.1 42.6 46.8 94.0

margin over the compared best 3.1 ↑ 3.3 ↑ 4.2 ↑ 7.0 ↑

Table S1: Result comparisons with the state-of-the-art methods on the validation set of ScanQA (Azuma et al., 2022). The
best and second best results are in bold and underlined.

methods by clear margins. The last row of Table 1 highlights the performance gap between LLAVA-OV + FcdViews and the
best-performing baselines. Even compared to GPT-4O+CC (Liu et al., 2024a), which leverages the powerful capabilities of
GPT-4O (OpenAI, 2024), LLAVA-OV + FcdViews surpasses it by 7.0% CIDEr. GPT-4O+CC improves spatial understanding
by adding object markers to track correspondences across uniformly sampled views. However, it overlooks the relevance
between the selected views and the input question, limiting its effectiveness in 3D-QA.

Table S2 presents the quantitative results on SQA (Ma et al., 2022), detailing performance across different question types:
“What”, “Is”, “How”, “Can”, “Which”, and “Other”. Compared to state-of-the-art methods, LLAVA-OV + FcdViews achieves
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the best performance on “What”, “How”, “Which”, and “Other” questions but shows a decline of 2.8% and 10.2% on “Is”
and “Can” questions, respectively. This decline may be attributed to the zero-shot nature of LLAVA-OV (Li et al., 2024a),
which maintains balanced performance across all question types. In contrast, other methods exhibit uneven performance,
excelling in Is” and Can” questions due to dataset-specific adaptation while potentially underperforming in other categories.
Furthermore, based on the same 2D LVLM, LLAVA-OV, cdViews consistently outperforms uniform sampling and image
retrieval across all question types, demonstrating its effectiveness in selecting critical views for 3D-QA.

Method Input
Question Breakdown

Overall
What Is How Can Which Other

GPT-3 (Brown et al., 2020) 3D 39.7 46.0 40.5 45.6 36.1 38.4 41.0
ScanQA (Azuma et al., 2022) 3D 28.6 65.0 47.3 66.3 43.9 42.9 45.3

SQA3D (Ma et al., 2022) 3D 33.5 66.1 42.4 69.5 43.0 46.4 47.2
3D-LLM (Hong et al., 2023) 3D 36.5 65.6 47.2 68.8 48.0 46.3 48.1
3D-VisTA (Zhu et al., 2023) 3D 34.8 63.3 45.4 69.8 47.2 48.1 48.5
SIG3D (Man et al., 2024a) 3D 35.6 67.2 48.5 71.4 49.1 45.8 52.6

PQ3D (Zhu et al., 2025) 3D+2D 37.1 61.3 44.5 60.9 47.0 45.1 47.1
BridgeQA (Mo & Liu, 2024) 3D+2D - - - - - - 52.9

LLAVA-OV + Funiform 2D 51.4 60.7 49.6 56.2 51.6 51.9 53.5
LLAVA-OV + Fretrieval 2D 54.8 62.4 50.3 56.5 49.3 53.2 55.0

LLAVA-OV + FcdViews 2D 55.0 64.4 54.0 61.2 51.6 54.4 56.8
margin over the compared best 15.3 ↑ −2.8 ↓ 5.5 ↑ −10.2 ↓ 2.5 ↑ 6.3 ↑ 3.9 ↑

Table S2: Result comparisons with the state-of-the-art methods on the test set of the SQA (Ma et al., 2022). The best
and second-best results are in bold and underlined. The decline in the “Is” and “Can” problems for LLAVA-OV with
different view selections is attributed to the zero-shot nature of LLAVA-OV, which ensures balanced performance across all
question types. In contrast, the compared methods exhibit uneven performance, excelling in “Is” and “Can” questions due to
dataset-specific adaptation while potentially underperforming in other categories.

C. More Ablation Studies
This supplementary is for Section 5.2 of the main paper. The ablation studies are conducted on the validation set
of ScanQA (Azuma et al., 2022), we evaluate the impact of different backbones, the effect of caption generation in
viewAnnotator, and visualize the views within different distance thresholds, and visually compare the results of
BridgeQA, LLAVA-OV + Fretrieval, and LLAVA-OV + FcdViews.

Ablation with Different Backbones. We evaluate the impact of different backbones by comparing LLAVA-NEXT (Li
et al., 2024b) and LLAVA-OV (Li et al., 2024a), with results presented in Table S3. The results reveal two key insights:
1) View selection plays a crucial role in enhancing performance across models. Replacing uniform sampling with image
retrieval improves performance by 1.1% on LLAVA-NEXT and 0.8% on LLAVA-OV, underscoring the importance of
selecting informative views for 3D-QA. Our cdViews further amplifies these gains, achieving improvements of 3.6% and
1.8%, respectively, by effectively identifying more critical views. 2) cdViews demonstrates robustness and adaptability,
consistently outperforming both baselines and delivering the highest performance gains across all evaluation metrics.

Effectiveness of Caption Generation in viewAnnotator. To assess the necessity of caption generation for view
matching, we conduct an ablation study by removing the caption generation step in viewAnnotator. Instead of using
the generated caption C, the question-answer pair (Q,A) is directly used as input for view matching. To better isolate the
impact of caption generation, this ablation study is conducted without applying viewNMS. Specifically, Eq. 6 is modified as:

S̄i = LVLM(Q,A, Vi, P rompt′M ), (13)

where Prompt′M is an adapted version of PromptM , with the term “caption” replaced by “question-answer pair.” The
textual context example is preserved to guide the view labeling step-by-step. The results, presented in Table S4, show
that removing the caption generation step leads to a 1.8% drop in CIDEr for LLAVA-OV + FcdViews. This highlights the
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Backbone View Selection EM@1 BLEU-1 ROUGE CIDEr

LLAVA-Next
+ Funiform 21.0 30.0 42.1 85.3
+ Fretrieval 22.1 1.1↑ 35.2 5.2↑ 42.3 0.2↑ 87.0 1.7↑

+ FcdViews 24.6 3.6↑ 39.6 9.6↑ 44.9 2.8↑ 93.7 8.4↑

LLAVA-OV
+ Funiform 28.3 40.2 44.5 88.0
+ Fretrieval 29.1 0.8↑ 41.5 1.3↑ 45.8 1.3↑ 91.6 3.6↑

+ FcdViews 30.1 1.8↑ 42.6 2.4↑ 46.8 2.3↑ 94.0 6.0↑

Table S3: Ablation study results with different backbone models, LLAVA-Next (Li et al., 2024b) and LLAVA-OV (Li et al.,
2024a). The best results are in bold. Subscripts indicate the relative improvement over the corresponding baseline, i.e., the
2D LVLM with uniform sampling.

Method View Matching with Input Tuple EM@1 BLEU-1 ROUGE CIDEr

LLAVA-OV + FcdViews
(Q,A, Vi, P rompt′M ) 29.5 41.4 45.9 91.4
(C, Vi, P romptM ) 29.7 42.2 46.4 93.2

Table S4: Ablation study on the necessity of caption generation for view matching. The key difference lies in whether the
viewSelector is trained with view labels generated using the caption C or the (Q,A) pair as input.

importance of generating a reformulated caption, which helps the model more effectively identify critical views compared to
directly using the (Q,A) pair.

Effect of Finetuning LLaVA-OV in a Hybrid Method. To assess the feasibility and effectiveness of incorporating LLAVA-
OV into a hybrid method, we implement a variant of BridgeQA—the strongest hybrid baseline in our main comparisons.
Specifically, we retain the original BridgeQA architecture but replace its 2D vision-language module (BLIP (Li et al., 2022))
with LLAVA-OV. For a fair comparison, we also replace its top-1 image input with 9 views selected by our cdViews
strategy, while keeping the full-scene point cloud features extracted by VoteNet (Qi et al., 2019).

During training, we adopt parameter-efficient tuning by updating only the last 2 of the 28 transformer layers in LLAVA-OV
using LoRA (Hu et al., 2022). As shown in Table S5, the finetuned variant (BridgeQALLAVA-OV) achieves a +1.4% EM@1
improvement over the original BridgeQA baseline (28.4% vs. 27.0%), confirming the benefit of using a stronger 2D LVLM.
Nonetheless, it still underperforms our cdViews, which achieves 30.1% EM@1. This experiment demonstrates that
while hybrid pipelines can benefit from stronger LVLMs, they rely on complex architectures, 3D-specific modules, and
computationally expensive fine-tuning. In contrast, our framework achieves superior performance by using a 2D-only LVLM
in a zero-shot inference manner.

Method Input 2D LVLM EM@1 BLEU-1 ROUGE CIDEr

BridgeQA 3D+2D BLIP 27.0 - - -
BridgeQALLAV A−OV 3D+2D LLAVA-OV 28.4 37.3 42.7 84.0

cdViews 2D LLAVA-OV 30.1 42.6 46.8 94.0

Table S5: Comparison between zero-shot cdViews and fine-tuned hybrid BridgeQA using LLaVA-OV. We compare the
performance of the original BridgeQA, its fine-tuned variant with LLaVA-OV, and our zero-shot cdViews. While the
hybrid variant benefits from a stronger LVLM, our approach outperforms it with a 2D-only LVLM in a zero-shot inference
manner.

D. More Case Studies
Visualize Comparison of Different Methods and Their Visual Inputs. Figure S3 presents a visual comparison of the
predicted answers and visual inputs of BridgeQA (Mo & Liu, 2024), LLAVA-OV + Fretrieval, and LLAVA-OV + FcdViews.
BridgeQA relies on the top-1 image retrieval view combined with point clouds as input. However, relying on point clouds to
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provide the whole scene often results in answers that miss critical details. For instance, in the 4th row, while the model
correctly mentions the trash can on the floor, it overlooks surrounding objects like the toilet, which is crucial for providing
a more informative answer. For LLAVA-OV + Fretrieval, image retrieval-based view selection may miss the critical views
required for accurate answers. As shown in the 3rd rows, the retrieved views tend to be redundant or incomplete. In the
3rd row, the selected views focus on the cabinet beneath the window but omit the view displaying books on top, which
is essential for correctly answering the question. In contrast, LLAVA-OV + FcdViews selects critical and diverse views,
capturing essential context and delivering accurate, informative answers.

<Question >: What is the object that has a lamp resting on it? <Answer >: nightstand
BridgeQA: bed | LLAVA-OV + ℱ!"#!$"%&': desk | LLAVA-OV + ℱ()*$"+ : nightstand

<Question >: What is next to the brown rectangular shelf? <Answer >: black filing cabinet
BridgeQA: desk | LLAVA-OV + ℱ!"#!$"%&': door | LLAVA-OV + ℱ()*$"+ : black file cabinet

<Question >: The small cabinet sits underneath the window with what on top of it? <Answer >: book
BridgeQA: yes | LLAVA-OV + ℱ!"#!$"%&': box | LLAVA-OV + ℱ()*$"+ : books

<Question >: What does the trash can set? <Answer >: next to toilet
BridgeQA: on floor |  LLAVA-OV + ℱ!"#!$"%&': under counter | LLAVA-OV + ℱ()*$"+ : next to toilet

Figure S3: More Qualitative results for BridgeQA (Mo & Liu, 2024), LLAVA-OV + Fretrieval, and our final model LLAVA-
OV + FcdViews. Small marks , , and represents the selected views by each method. We can see that cdViews can
capture critical and diverse views to answer the questions.
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