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ABSTRACT

In information retrieval system, the initial passage retrieval results may be un-
satisfactory, which can be refined by a reranking scheme. Existing solutions to
passage reranking focus on enriching the interaction between query and each pas-
sage separately, neglecting the context among the top-ranked passages in the initial
retrieval list. To tackle this problem, we propose a Hybrid and Collaborative Pas-
sage Reranking (HybRank) method, which leverages the substantial similarity
measurements of upstream retrievers for passage collaboration and incorporates
the lexical and semantic properties of sparse and dense retrievers for reranking.
Besides, built on off-the-shelf retriever features, the flexible plug-in HybRank is
capable of enhancing arbitrary passage list even from other rerankers. Extensive
experiments demonstrate the stable improvements of performance over prevalent
retrieval and reranking methods, and verify the effectiveness of the core compo-
nents of HybRank.1

1 INTRODUCTION

Information retrieval is a fundamental component within the field of natural language process-
ing (Chen et al., 2017). Retrieval aims to search a set of candidate documents from a large-scale
corpus, and thus high recall retrieval with efficiency is required to cover more relevant documents
as far as possible. Traditionally, retrieval has been dominated by sparse methods like TF-IDF and
BM25 (Robertson & Zaragoza, 2009), which treat queries and documents as sparse bag-of-words
vectors and match them in token-level. Recently, neural networks have become prevalent to deal
with information retrieval, where queries and documents are encoded into dense contextualized vec-
tors (Huang et al., 2020; Karpukhin et al., 2020; Ren et al., 2021a; Zhang et al., 2022), and then
retrieval is performed with highly optimized vector search algorithms (Johnson et al., 2021).

Although numerous efforts have been dedicated to retrieval, the inherent efficiency requirement re-
strict the interaction between query and passage to a shallow level, leading to unsatisfactory retrieval
results. Thus, in typical reranking (Nogueira & Cho, 2020; Sun et al., 2021), query and passage
are concatenated and fed into a Transformer (Vaswani et al., 2017) pre-trained on large corpus, to
estimate a more fine-grained relevance score and further enhance the retrieval results with richer
interaction. These methods consider each passage in isolation, ignoring the context of the retrieved
passage list. Some learning to rank (Rahimi et al., 2016; Xia et al., 2008) and pseudo-relevance
feedback (Zamani et al., 2016; Zhai & Lafferty, 2001) methods utilize the ordinal relationship or
listwise context of retrieved documents to further refine the retrieval. Moreover, the necessity of
integrating listwise context is confirmed in multi-stage recommendation systems (Liu et al., 2022).

Inspired by the success of listwise modeling and collaborative filtering (Goldberg et al., 1992) in
recommendation systems, we find that collaboration also exists among the passages in the retrieval
list and has not been fully exploited. Intuitively, for a specific query, relevant passages tend to
describe the same entities, events and relations (Lee et al., 2019), while the irrelevant ones involve
multifarious objects. Therefore, a passage is more likely to be relevant with the query if most of
other passages share similar content with it. Similarities between passages can be naturally derived
from retrievers, like BM25 scores in sparse retrievers and dot product in dense retrievers.

In addition, the sparse and dense retrieval methods emphasize distinct linguistic aspects. Sparse
retrieval relies on lexical overlap while dense retrieval focuses on semantic and contextual relevance.

1We will put an anonymous link to our code in the discussion forum, and will release our code once this
work is accepted.
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Several researchers have attempted to integrate the merits of these two types of methods. Karpukhin
et al. (2020), Lin et al. (2020) and Luan et al. (2021) exploit the linear combination of these two
types of retrieval scores. Seo et al. (2019), Khattab & Zaharia (2020) and Santhanam et al. (2022)
index smaller units in sentence, i.e., words or phrases, to obtain fine-grained similarity. Gao et al.
(2021a) and Yang et al. (2021) retrains dense retriever from scratch with the supervision of sparse
signals. Nevertheless, the linear score combination lacks sufficient interaction, indexing smaller
units sacrifices retrieval efficiency due to tremendous amount of embeddings, while rebuilding of
retrievers discards their origin ranking capability.

To fully exploit the context of retrieved passages list and explore more sufficient ensemble of hetero-
geneous retriever, we propose a Hybrid and Collaborative Passage Reranking (HybRank) method,
which leverages the collaboration within retrieved passages and incorporates diverse properties of
retrievers for reranking. Our method is a flexible plug-in reranker ready to be applied upon arbitrary
passage list, even those reranked by other methods. In this work, without loss of generality, we em-
ploy the two most representative types of retrievers: sparse and dense retriever. Given a query and
an initial retrieval list, we first extract similarities between them and a set of anchor texts via both
the sparse and dense retrievers. We project and group them to form a set of hybrid and collaborative
sequences, each corresponding to a query or passage. Afterwards, the relevance scores between the
query and these passages are evaluated in the light of these sequences.

Extensive experiments demonstrate the consistent performance improvement brought by HybRank
over passage lists from prevalent retrievers and strong rerankers. We elaborate ablation studies on
the collaborative information, feature hybrid, anchor-wise interaction and the number of anchor
passages, verifying the impact and indispensability of these components in HybRank.

2 PRELIMINARIES

In this section, we briefly describe the sparse and dense retrieval approaches.

2.1 SPARSE RETRIEVAL

Traditionally, text retrieval is dominated by token-matching, where texts are encoded into high-
dimensional sparse vectors using the statistic information of tokens. The most commonly-used
sparse retrieval methods include TF-IDF, BM25 and so forth. We adopt BM25 score as the similarity
metric of sparse retrieval due to its robustness and popularity.

Specifically, given the query q and the document d, the BM25 score is obtained by summing the
BM25 weights over the terms co-occurred in q and d:

fs(q, d) = BM25(q, d) =
∑

t∈q∩d

wRSJ
t

ct,d

k1((1− b) + b |d|l ) + ct,d
, (1)

where t is a term, wRSJ
t is t’s Robertson-Spärck Jones weight, ct,d is the frequency of t in d, |d|

is the document length and l is the average length of all documents in the collection. k1 and b are
tunable parameters. Refer to Robertson & Zaragoza (2009) for more details about BM25.

2.2 DENSE RETRIEVAL

Owning to the flexibility for a task-specific representation provided by learnable parameters, recent
works leverage neural networks to encode text into dense vectors, and search similar documents for
queries in vector space. Typically, the query and document are encoded separately, and the relevance
score is measured by the similarity of their embeddings. Any neural architectures capable of encod-
ing text into a single fixed-length vector are suitable for dense retrieval. We use the predominant
Transformer (Vaswani et al., 2017) encoder and dot product similarity, formulated as

fd(q, d) = Tq(q)
⊤Td(d), (2)

where Tq(·) and Td(·) are Transformer encoders for queries and documents. Dot product similarity
permits offline pre-encoding of large corpus and efficient retrieval using highly optimized vector
nearest neighbor searching library (Johnson et al., 2021).
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Figure 1: Illustration of HybRank pipeline. For a specific query, the passage list is initialized by an
arbitrary retriever or reranker. We display a 5-passage list as an example. First, similarities between
query, passages and anchors are derived from sparse and dense retrievers. Then, these similarities
are converted to hybrid and collaborative sequences as the representations of query and passages.
Finally, these sequences are encoded into dense vectors via interaction and aggregation, and the
reranking scores are obtained by dot product of vectors.

3 METHOD

In mainstream information retrieval systems. the first-stage retrieval is designed to fetch a coarse
candidate list from a large corpus C. Inevitably, false positives, i.e., irrelevant passages in the re-
trieval list, are returned in the first-stage retrieval. To improve the precision of retrieval systems, the
follow-up procedure reranking aims to distinguish the relevant passages from others in the retrieval
list. This paper focuses on the reranking stage.

Formally, given a query q and an initial passage list P = [p1, p2, . . . , pN ] from upstream retriever,
the reranking task is to reorder the passage list by reassigning scores S = [s1, s2, . . . , sN ] for each
of these passages. We denote positive passages in the list as P+ and negative ones as P−. In this
section, we will present the details of HybRank. The pipeline are illustrated in Figure 1.

3.1 HYBRID AND COLLABORATIVE SEQUENCE

For a specific query, relevant passages tend to describe the same entities, events and relations from
the query (Lee et al., 2019). In other words, most passages in the retrieval list would resemble to
the true positive ones. Inspired by the success of collaborative filtering (Goldberg et al., 1992) in
recommendation systems, we utilize the similarities between passages to distinguish the positive
passages in the retrieval list.

Collaborative Sequence Similarity measurements can be naturally derived from retrievers, e.g.,
BM25 score in sparse retriever and dot product in dense retriever, as discussed in Section 2. We
compute the similarity between each passages and a set of anchors, which are the top-L passages of
the retrieval list in this work and will collaborate to distinguish the positive passages. These sim-
ilarity scores between passages can be pre-computed, as HybRank utilizes off-the-shelf retrievers.
Denoting similarity score between passage pi and pj as fij ∈ R, the passage pi can be represented
as a sequence of similarity scalars xpi

= [fi1, fi2, . . . , fiL] ∈ RL.

Nevertheless, according to our observation, the similarity scalars within a retrieval list tend to con-
centrate on a small range. This is a reasonable phenomenon for that retrievers fetch relatively similar
passages from the large corpus. To obtain more distinctive features, we employ a temperature soft-
max to stretch the distribution of similarities. After that, a min-max normalization is applied to scale
them into range [−1, 1]. These two transforms are formulated as

x = softmax(x/t),

x = 2 · x−min(x)

max(x)−min(x)
− 1,

(3)

where t is the temperature. Subscripts are omitted for brevity.
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Feature Hybrid Similarity metrics of sparse and dense retrievers concentrate on lexical overlap
and semantic relevance, respectively. To combine the lexical and semantic properties embedded in
sparse and dense retrievers, we mix their similarity scores2 by stacking them in a channel manner.
Formally, we substitute the similarity scalar fij in xpi

with a vector xij = [fs
ij , f

d
ij ] ∈ R2, where

fs
ij is the sparse similarity computed as Eqn. 1 and fd

ij is the dense similarity computed as Eqn. 2.
After that, the representation of passage pi is turned into a sequence of similarity vectors Xpi =
[xi1,xi2, . . . ,xiL] ∈ RL×2. Additionally, we map these similarity vectors in the sequence to D
dimensions with a trainable linear projection:

eij = xijW , (4)

where W ∈ R2×D is a learnable parameter and eij ∈ RD are embedded similarities. There-
after, the passage pi’s representation becomes a sequence of similarity embeddings Epi

=
[ei1, ei2, . . . , eiL] ∈ RL×D, which comprises the similarity information between pi and anchor
passages originating from both sparse and dense retrievers. These similarities deliver substantial
information for the collaboration of passages and hold both the lexical and semantic properties from
retrievers. With the same procedure, we compute the similarities between query and anchors, and
derive the query representation Eq = [eq1, eq2, . . . , eqL] ∈ RL×D. Noted that the similarities
from sparse and dense retriever are stretched and normalized individually before linear projection,
as described in Eqn. 3.

Consequently, we obtain N + 1 collaborative sequences in total, each representing a passage or a
query and consisting of their embedded similarities with L anchor passages.

3.2 INTERACTION AND AGGREGATION

Following the prevalent sequence similarity learning paradigm in the field of natural language pro-
cessing (Reimers & Gurevych, 2019; Gao et al., 2021b), we measure the relevance between the
collaborative sequences of query and passages in vector space. The vector representations are ob-
tained by an anchor-wise interaction and a sequence aggregation in HybRank.

Anchor-wise Interaction The j-th elements e∗j in these collaborative sequences E∗ indicate the
similarities between retrieved passages and the j-th anchor passage. The importance of these an-
chors varies since they are picked with a single strategy. Specifically, an anchor is worthy of more
consideration if showing strong correlation with a majority of retrieved passages, and vice versa.

To assess the quality of anchor passages, we conduct anchor-wise interaction. Concretely, for each
position j, we collect the j-th similarity embedding e∗j from query sequence and every passage
sequences, and feed them into a Transformer encoder, denoted as

e′qj , e
′
1j , e

′
2j , . . . , e

′
Nj = Transinter(eqj ; e1j ; e2j ; . . . ; eNj), (5)

where e′∗j ∈ RD. Position embeddings are added to e∗j according to its rank “∗” for retaining the
passage rank information. Subsequently, the similarity embedding sequences E∗ are converted to
E′

∗ = [e′∗1, e
′
∗2, . . . , e

′
∗L] and enhanced with the importance information of anchor passages.

Sequence Aggregation We encode these sequences into dense vectors by aggregating the en-
hanced similarity embeddings. To be specific, we prepend a [CLS] embedding to the collaborative
sequence, feed the extended sequence into another Transformer encoder and use the output of [CLS]
as the representation of pi, formulated as

hpi = Transaggr([CLS]⊕E′
pi
)[CLS], (6)

where [CLS] ∈ R1×D, E′
pi

∈ RL×D and ⊕ denotes the concatenation of two sequences. hpi
∈ RD

is the vector representation of passage pi. The query representation hq ∈ RD is derived analogously.
Global receptive field is provided by the anchor-wise interaction and sequence aggregation. We
discuss more about the receptive field in Section A.

2In this paper, we refer to similarity score from sparse and dense retrievers as sparse similarity and dense
similarity, respectively.
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3.3 RERANKING AND TRAINING

Reranking Considering that query and passages have been converted into dense vectors encoded
with collaborative information, we have several alternatives to judge the vector similarity as the
relevance between query and passages. We use dot product in this work and thus the relevance
between query q and pi is computed by

si = h⊤
q hpi . (7)

Then the passages are sorted in descending order of their relevance si with query.

Training In order to assign high scores to relevant passages and low scores to irrelevant ones,
HybRank needs to pull together the representation of relevant passages and query, while push the
representation of irrelevant ones as apart from the query as possible. As there may exists more than
one positive passage in the list, vanilla softmax loss fails to be directly applied to HybRank. We
adopt the supervised contrastive loss (Khosla et al., 2020) to cope with multiple positives, which
performs summation over positives outside the log function in softmax. The loss is formulated as

L(q,P) = − 1

|P+|
∑

pi∈P+

log
exp(si/τ)∑

pj∈P exp(sj/τ)
, (8)

where |P+| is the number of positive passages in the retrieval list, and τ is the tunable temperature.

4 EXPERIMENTS

4.1 DATASETS

Natural Questions (Kwiatkowski et al., 2019) consists of real questions from Google search engine
with golden passages from Wikipedia pages and answer span annotations. Following the settings
from Karpukhin et al. (2020), we report the test set top-k accuracy (R@k), which evaluates the
percentage of queries whose top-k retrieved passages contain the answers.

MS MARCO (Bajaj et al., 2018) collects queries from Bing search logs and was originally designed
for machine reading comprehension. Following previous works (Qu et al., 2021; Ren et al., 2021b),
we evaluate the dev set R@k as well as Mean Reciprocal Rank (MRR), which means the average
reciprocal of the first retrieved relevant passage rank.

4.2 IMPLEMENTATION DETAILS

HybRank is a flexible plug-in reranker, which can be applied on arbitrary passage list even these
reranked by other methods. We adopt the dense retrievers, which outperform sparse ones after
elaborated pre-training (Chang et al., 2020; Gao & Callan, 2021; 2022) and fine-tuning (Sachan
et al., 2021), as well as strong cross-encoder based rerankers, to initialize the passage list. We
simply select all of the passages in the initial list as anchors. The impact of anchor passages will
be discussed in Section 4.4. These methods are implemented using RocketQA toolkit3 and Pyserini
toolkit (Lin et al., 2021a) which is built on Lucene4 and FAISS (Johnson et al., 2021).

The hyper-parameters in HybRank are as follows. The temperature t in the feature normaliza-
tion is set to 100 and 10 for sparse and dense similarity, respectively. We randomly initialize a
2-layer Transformer encoder for Transinter and 1-layer for Transaggr using Huggingface Trans-
formers (Wolf et al., 2020). The embedding dimension, MLP inner-layer dimension and number of
heads are 64, 256 and 8, respectively. The temperature τ in the loss function is 0.07. We adopt the
Adam optimizer with an initial learning rate 1 × 10−3 with the warm-up ratio 0.1, followed by a
cosine learning rate decay. We use gradient clipping of 2 and weight decay of 1× 10−6. We train
the model for 100 epochs with batch size 32, which takes about 13 hours on Natural Questions and
4 days on MS MARCO. All experiments are conducted on a single NVIDIA RTX 3090 GPU.
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Table 1: The reranking performance of HybRank on Natural Questions. We build HybRank upon
DPR (Karpukhin et al., 2020), DKRR (Izacard & Grave, 2021), ANCE (Xiong et al., 2021), Rock-
etQA (Qu et al., 2021) and RocketQAv2 (Ren et al., 2021b). The performance of these baselines
and HybRank built upon them are on the side of arrows. Improvements brought by HybRank are
highlighted in bold.

Methods R@1 R@5 R@20

DPR-Multi + HybRank 45.82 → 51.99 (+6.17) 68.12 → 72.71 (+4.59) 80.30 → 83.24 (+2.94)

DPR-Single + HybRank 47.95 → 53.13 (+5.18) 69.39 → 73.05 (+3.66) 80.97 → 82.99 (+2.02)

DKRR + HybRank 50.36 → 52.85 (+2.49) 74.10 → 74.46 (+0.36) 84.27 → 84.49 (+0.22)

ANCE + HybRank 52.66 → 53.63 (+0.97) 72.66 → 73.57 (+0.91) 83.05 → 83.88 (+0.83)

RocketQA-retriever + HybRank 51.75 → 56.07 (+4.32) 74.02 → 77.04 (+3.02) 83.99 → 85.68 (+1.69)

RocketQA-reranker + HybRank 54.60 → 59.83 (+5.23) 76.59 → 78.73 (+2.14) 85.01 → 86.40 (+1.39)

RocketQAv2-retriever + HybRank 55.57 → 56.98 (+1.41) 75.98 → 76.65 (+0.67) 84.46 → 85.76 (+1.30)

RocketQAv2-reranker + HybRank 57.17 → 59.50 (+2.33) 75.98 → 78.34 (+2.36) 84.71 → 86.26 (+1.55)

Table 2: The reranking performance of HybRank on MS MARCO. We built HybRank upon
DistilBERT-KD (Hofstätter et al., 2021a), ANCE (Xiong et al., 2021), TCT-ColBERT-v1 (Lin et al.,
2020), TAS-B (Hofstätter et al., 2021b), TCT-ColBERT-v2 (Lin et al., 2021b), RocketQA (Qu et al.,
2021) and RocketQAv2 (Ren et al., 2021b). The performance of these baselines and HybRank built
upon them are on the side of arrows. Improvements brought by HybRank are highlighted in bold.

Methods MRR@10 R@10 R@50

DistilBERT-KD + HybRank 32.50 → 36.24 (+3.74) 58.77 → 64.40 (+5.63) 79.24 → 82.02 (+2.78)

ANCE + HybRank 33.01 → 36.44 (+3.43) 59.44 → 64.63 (+5.19) 80.10 → 82.79 (+2.69)

TCT-ColBERT-v1 + HybRank 33.49 → 36.23 (+2.74) 60.46 → 64.96 (+4.50) 80.67 → 83.44 (+2.77)

TAS-B + HybRank 34.44 → 36.38 (+1.94) 62.94 → 65.77 (+2.83) 83.44 → 84.71 (+1.27)

TCT-ColBERT-v2 + HybRank 35.85 → 37.55 (+1.70) 63.64 → 66.39 (+2.75) 83.31 → 84.97 (+1.66)

RocketQA-retriever + HybRank 35.76 → 37.96 (+2.20) 64.01 → 67.12 (+3.11) 83.41 → 85.59 (+2.18)

RocketQA-reranker + HybRank 40.50 → 40.98 (+0.48) 69.81 → 70.40 (+0.59) 86.46 → 86.55 (+0.09)

RocketQAv2-retriever + HybRank 37.28 → 38.69 (+1.41) 65.72 → 67.92 (+2.20) 84.04 → 85.70 (+1.66)

RocketQAv2-reranker + HybRank 41.15 → 41.40 (+0.25) 69.99 → 70.37 (+0.38) 86.55 → 86.68 (+0.13)

4.3 RESULTS

Table 1 and Table 2 summarize the performance of HybRank and baselines on the Natural Questions
and MS MARCO datasets. More detailed evaluation results are listed in Section C. Some of these re-
trievers involve both sparse and dense similarity from different perspectives. DPR (Karpukhin et al.,
2020) selects hard negative samples from passages returned by BM25; DKRR (Izacard & Grave,
2021) starts its iterative training with passages retrieved using BM25; TCT-ColBERT-v1 (Lin et al.,
2020) proposes an alternative approximation for linear combination of dense and sparse retrieval;
TCT-ColBERT-v2 (Lin et al., 2021b) further studies the dense-sparse hybrid in terms of quality, time
and space. Besides, ANCE (Xiong et al., 2021) discovers new negatives via nearest neighbor search-
ing during model training; TAS-B (Hofstätter et al., 2021b) proposes balanced sampling strategies
to compose informative training batches; DistilBERT-KD (Hofstätter et al., 2021a) leverages cross-
architecture knowledge distillation for model-agnostic training.

From the results we can observe that HybRank shows a consistent improvements over upstream
retrievers and even rerankers. In general, HybRank based on stronger baselines can produce bet-
ter reranking results. Specifically, HybRank built upon the retriever of RocketQA outperforms the
reranker of RocketQA on Natural Questions, and the same phenomenon can be observed on Rock-
etQAv2 in most evaluation metrics. Additionally, HybRank built opon their rerankers further im-

3https://github.com/PaddlePaddle/RocketQA.
4https://lucene.apache.org.
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Table 3: The results of ablation study for col-
laborative features, anchor-wise interaction
and anchor passages. Query-passage similari-
ties, anchor-wise interaction and collaborative
features are omitted in “w/o q-p”, “w/o inter”
and “w/o collab”, respectively. Anchors are
randomly selected in “r/d anchor”.

R@1 R@5 R@10 R@20 R@50

retriever 45.82 68.12 75.24 80.30 84.57
r/d anchor 46.18 68.84 75.43 80.91 85.01
w/o q-p 47.12 69.17 75.54 80.47 85.07
w/o inter 49.92 69.61 76.32 81.02 84.99

w/o collab 50.78 72.91 79.28 83.10 85.79
HybRank 51.99 72.71 79.03 83.24 85.93

Table 4: The results of ablation study for feature
hybrid. “list” specifies what type of retriever is
used when initializing passage list. “feature” in-
dicates the input feature and “none” stands for the
assessment of initial passage list.

list feature R@1 R@5 R@10 R@20 R@50

sparse

none 23.82 45.18 55.54 63.93 73.55
sparse 30.50 50.39 59.00 67.26 75.24
dense 47.01 64.68 70.39 74.49 77.81
hybrid 47.15 64.82 69.78 74.32 77.65

dense

none 45.82 68.12 75.24 80.30 84.57
dense 46.70 68.45 75.04 80.19 84.88
sparse 50.89 71.86 78.98 83.16 85.90
hybrid 51.99 72.71 79.03 83.24 85.93

proves the performance on both datasets. These results prove the advantage of reranking based on
arbitrary off-the-shelf retrievers and even other reranked results, which distinguishes HybRank from
other reranking methods.

The most surprising aspect of these results is that, in spite of inferior reranking results, weak retriev-
ers gain more relative improvements from HybRank than strong ones. This result may be explained
by the fact that HybRank relies heavily on the complementary information provide by sparse similar-
ity. Weak retrievers receive relatively more valuable information from sparse similarity than strong
retrievers, and accordingly improve more performance over upstream retrievers. We will discuss
more on sparse-dense hybrid in Section 4.4.

4.4 ANALYSIS

In this section, we conduct ablation studies and discuss the impact of the core components of Hyb-
Rank: the hybrid and collaborative features, the anchor-wise interaction and the number of anchor
passages. All experiments are performed on Natural Questions dataset with DPR-Multi retriever.

Collaborative Feature The main difference between HybRank and other works is, it leverages
the collaborative information between retrieved passages. To verify the impact of passage collabo-
ration on reranking, we omit the collaborative feature in “w/o collab” by substituting query-passage
similarities for collaborative sequences, i.e., representing each passage as a one-token sequence ac-
cording to its similarities with query. Besides, we exclude the query-passage similarity in “w/o
q-p” by representing query via a learnable token rather than aggregated collaborative sequence. The
results are presented in Table 3, where “retriever” denotes the assessment of initial passage list.

Table 3 indicates that “w/o collab” shows an appreciable gain over “retriever”, demonstrating that
query-passage similarity is an essential and indispensable feature for HybRank. The most remark-
able phenomenon is, “w/o q-p” surpasses “retriever” by a large margin, despite the fact that “w/o
q-p” is completely unaware of the query. Namely, HybRank has the ability to distinguish the positive
even only with the collaborative information among passages. Furthermore, standing on the shoul-
der of query-passage similarity, HybRank achieves even better results than “w/o collab”, which
sufficiently substantiates the reranking capability of collaborative information.

Anchor-wise Interaction Apart from the collaborative sequence itself, anchor-wise interaction
provides extra collaboration between sequences. We eliminate the Transinter and directly aggregate
the linear projected collaborative sequence to study the effectiveness of anchor-wise interaction.

Table 3 shows that there is a noticeable drop of performance with anchor-wise interaction removed.
The discrepancy could be attributed to the restricted receptive field. “w/o inter” individually encodes
each collaborative sequences of query and passages into dense vectors without anchor-wise interac-
tion. In this manner, the relevance of these sequences is evaluated only in vector space where se-
quence information are severely compressed and not expressive enough. In contrast, equipped with
anchor-wise interaction, HybRank is capable of obtaining a global receptive field. Each elements in
these sequences captures the context of elements in all sequences, enabling more informative vector
representation and fine-grained relevance estimation.
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Figure 2: Impact of the number of anchor passages. We conduct experiments with anchor number
5, 20, 40, 60, 80, 100. The metric of anchor number 0 denotes the assessment of initial retrieval list.

Feature Hybrid Despite the fact that the similarities of sparse and dense retriever reflect different
aspect of linguistics, i.e., lexical overlap and semantic relevance, both of them tend to have col-
laborative property. Hence, it is more nature and easier to mix sparse and dense retrieval from the
the perspective of collaboration. To illustrate the complementarity of sparse and dense features and
the necessity of feature hybrid in HybRank, we separately validate the effect of the two individual
features and their hybrid. The ablations are conducted not only on initial passage list retrieved by
dense retriever, but also list retrieved by sparse retriever for integrity and comparison.

Identical trends can be observed from the two set of experiments in Table 4. There are limited
performance gains when retrievers used for passage retrieval and similarity computation are same,
but dramatically increases when they are different. Furthermore, slight additional improvements can
be seen with the hybrid of the two features on both settings. These phenomena reveal that the main
performance gains originate from the retriever different with that in retrieval stage, while the same
type only plays an auxiliary role. Consequently, we draw the credible conclusion that different types
of similarities provide additional complementary information over the initial passage list.

Moreover, regardless of feature used, HybRank achieves better results on initial passage list retrieved
by dense retriever than sparse one, as more positives are contained in the dense retrieved list. This
also corroborates the findings of Section 4.3 that superior initial passage list leads to better reranking
results with HybRank.

Number of Anchor Passages We evaluate the performance of HybRank under different number
of anchors to study its impact. What can be clearly seen in Figure 2 is a consistent growth of
performance as the anchor number L increases. The underlying philosophy is that with more anchor
passages, the passage list can derive more agreement to facilitate the collaboration between passages
and alleviate the effect of noisy ones. The positive correlation between the performance and anchor
number indicates the effect of collaborative information in the retrieval list.

Despite the consistent growth with anchor number, the rate of performance increase begins to slow
down when the number of anchors is greater than 60. Anchor passages are used for deriving collabo-
rative information, and thus with more diverse anchors we can obtain more distinctive collaborative
features. As the anchor number approaches to 100, the diversity of passages levels off, leading to
stable performance with larger anchor numbers.

As L increase to a very large number, the average relevance of anchors will degrade to a low level. A
legitimate concern may be that poor quality anchor set would pollute the collaborative aspect. Due
to the O(L2) computational complexity of sequence aggregation in HybRank, it is hard to directly
perform experiments on large L. But we simulate the poor quality anchor set by randomly selecting
anchor passages from corpus C. “r/d anchor” in Table 3 indicates that random anchors slightly
improves the performance but still lags far behind the relevant anchors, demonstrating the benefits
of collaborative information and the predominance of the anchor quality.

Nevertheless, the selection of anchor passages is flexible. Ideally, more elaborated anchor passage
selection would further enhance the performance of HybRank. We leave the exploration of other
anchor selecting strategy as a future work.
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5 RELATED WORK

5.1 TEXT RETRIEVAL

Retrieval is the first stage of information retrieval which requires high recall to cover more relevant
document in the retrieval list. Traditional sparse approaches like TF-IDF and BM25 (Robertson &
Zaragoza, 2009) rely on lexical overlap between query and documents. Although having dominated
the field of text retrieval for a long time, these sparse methods suffer from lexical gap (Berger
et al., 2000), namely, the synonymy problem. To tackle this issue, earlier techniques (Nogueira
et al., 2019; Dai & Callan, 2020) adopt neural networks to reinforce the sparse methods. Recently
proposed dense retrieval approaches (Karpukhin et al., 2020; Xiong et al., 2021) directly encode
the query and passages into dense vectors via dual-encoder, which captures semantic in text and are
capable of low-latency search via highly optimized algorithms, e.g., FAISS (Johnson et al., 2021).

These two types of methods are not mutually exclusive and one’s weakness is the other’s strength.
Some researchers combine the sparse and dense methods by score ensemble, improved training or
trade-off model between sparse and dense retriever. Karpukhin et al. (2020) samples hard negatives
from sparse retriever for the training of dense retriever. Seo et al. (2019), Khattab & Zaharia (2020)
and Santhanam et al. (2022) index terms or phrases instead of documents for more fine-grained
similarity and higher efficiency. Lin et al. (2020) and Luan et al. (2021) explore the linear sparse-
dense score combination and its alternatives. Gao et al. (2021a) and Yang et al. (2021) leverages the
lexical matching or token-level interaction signals to train the dense retriever.

However, among these methods, score ensemble lacks sufficient interaction of sparse and dense
methods, smaller units indexing sacrifices efficiency, and retraining one type of retrieval method
with the help of the other discards its origin ranking capability. In contrast, our method can be
applied to arbitrary passage list, incorporating the lexical and semantic properties of off-the-shelf
retrievers and meanwhile ensuring the generality and flexibility.

5.2 TEXT RERANKING

The second stage reranking is based on the results of retrieval system and aims to create a more fine-
grained comparison within retrieval list. Typically, cross-encoder is utilized to capture the interac-
tions between query and passage in token-level. Nogueira & Cho (2020) and Sun et al. (2021) adopts
BERT (Devlin et al., 2019) to achieve token-level interactions with attention mechanism (Vaswani
et al., 2017). To reduce the massive computation overhead (Reimers & Gurevych, 2019), Khattab
& Zaharia (2020) and Gao et al. (2020) propose a lightweight interaction on dense representations
from retrievers. While based on first-stage retrieval, these methods individually compute the rel-
evance for each retrieved passage, omitting the extra information implied by the whole list and
requiring multiple runs.

Several pseudo-relevance feedback approaches (He & Ounis, 2009; Zamani & Croft, 2016; Zamani
et al., 2016) aim to refine the query model with the top-retrieved documents. Listwise context is
also well explored in multi-stage recommendation systems (Liu et al., 2022), such as PRM (Pei
et al., 2019), which regards each item as a token, learns the mutual influence between items using
self-attention and reranks all items altogether. Different from prior studies, our method extracts the
collaborative feature from retrieval list, represents the query and each passages as hybrid and collab-
orative sequences, and measures the relevance between query and passages using these sequences.

6 CONCLUSION

We introduce HybRank, a hybrid and collaborative passage reranking method. HybRank extracts
the similarities between texts via off-the-shelf retrievers, to form hybrid and collaborative sequences
as the representations of query and passages. Efficient reranking is based on these sequences incor-
porating the lexical and semantic properties of sparse and dense retrievers. Extensive experiments
confirm the effectiveness of HybRank built upon arbitrary initial passage list. Elaborated ablation
studies investigate the impact of core components in HybRank. We hope our work could provide
inspiration for researchers in the field of information retrieval, and steer more exploration on collab-
oration and correlation between texts.
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A RECEPTIVE FIELD AND COMPLEXITY

Interestingly, from another perspective, the anchor-wise interaction plus sequence aggregation
equals to a column-wise and a row-wise attention applied on the matrix formulated by similarities
of query, passages and anchors. Global receptive field is provided by these two axial-wise atten-
tion (Ho et al., 2019). Consequently, similarity vector xij perceives with each other, and the vector
representations of query and passages are aware of the collaborative information among others.

A more direct approach to obtain global receptive field is element-wise interaction. Concretely, we
can feed the concatenation of all sequences E into a single Transformer encoder, and output rep-
resentations for each passage and query via multiple separate [CLS] tokens. However, due to the
self-attention operation in Transformer, the computational complexity of element-wise interaction
achieves O(N2L2). In contrast, our method reduce the complexity to O(N2L+NL2), by decom-
posing the element-wise attention upon the matrix composed of similarity sequences into axial-wise.

B DATASETS DETAILS

Table 5: Statistics of Natural Questions and MS MARCO datasets. Q and P are abbreviations for
query and passage, respectively.

Datasets #Q in Train #Q in Dev #Q in Test #P Avg. Q Length Avg. P Length

Natural Questions 58,812 - 3,610 21,015,324 9.20 100.0

MS MARCO 502,939 6,980 6,837 8,841,823 5.97 56.58
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C FULL EVALUATION RESULTS

We present the full evaluation results on Natural Questions and MS MARCO in Table 6 and 7.

Table 6: The reranking performance of HybRank on Natural Questions. We build HybRank upon
DPR-Multi (Karpukhin et al., 2020), DPR-Single (Karpukhin et al., 2020), DKRR (Izacard & Grave,
2021), ANCE (Xiong et al., 2021), the retriever and reranker of RocketQA (Qu et al., 2021) and
RocketQAv2 (Ren et al., 2021b). Improvements brought by HybRank are highlighted in bold.

Methods R@1 R@5 R@10 R@20 R@50

DPR-Multi 45.82 68.12 75.24 80.30 84.57
DPR-Multi + HybRank 51.99 (+6.17) 72.71 (+4.59) 79.03 (+3.79) 83.24 (+2.94) 85.93 (+1.36)

DPR-Single 47.95 69.39 75.93 80.97 84.90
DPR-Single + HybRank 53.13 (+5.18) 73.05 (+3.66) 78.84 (+2.91) 82.99 (+2.02) 85.93 (+1.03)

DKRR 50.36 74.10 79.78 84.27 87.89
DKRR + HybRank 52.85 (+2.49) 74.46 (+0.36) 80.50 (+0.72) 84.49 (+0.22) 88.06 (+0.17)

ANCE 52.66 72.66 78.70 83.05 86.29
ANCE + HybRank 53.63 (+0.97) 73.57 (+0.91) 79.28 (+0.58) 83.88 (+0.83) 87.12 (+0.83)

RocketQA-retriever 51.75 74.02 80.00 83.99 87.34
RocketQA-retriever + HybRank 56.07 (+4.32) 77.04 (+3.02) 82.30 (+2.30) 85.68 (+1.69) 88.17 (+0.83)

RocketQA-reranker 54.60 76.59 81.44 85.01 88.17
RocketQA-reranker + HybRank 59.83 (+5.23) 78.73 (+2.14) 82.83 (+1.39) 86.40 (+1.39) 88.42 (+0.25)

RocketQAv2-retriever 55.57 75.98 81.08 84.46 87.92
RocketQAv2-retriever + HybRank 56.98 (+1.41) 76.65 (+0.67) 81.94 (+0.86) 85.76 (+1.30) 88.61 (+0.69)

RocketQAv2-reranker 57.17 75.98 81.00 84.71 87.92
RocketQAv2-reranker + HybRank 59.50 (+2.33) 78.34 (+2.36) 83.24 (+2.24) 86.26 (+1.55) 88.75 (+0.83)

Table 7: The reranking performance of HybRank on MS MARCO. We built HybRank upon
DistilBERT-KD (Hofstätter et al., 2021a), ANCE (Xiong et al., 2021), TCT-ColBERT-v1 (Lin et al.,
2020), TAS-B (Hofstätter et al., 2021b), TCT-ColBERT-v2 (Lin et al., 2021b), the retriever and
reranker of RocketQA (Qu et al., 2021) and RocketQAv2 (Ren et al., 2021b). Improvements brought
by HybRank are highlighted in bold.

Methods MRR@10 MRR@100 R@1 R@10 R@50

DistilBERT-KD 32.50 33.61 21.23 58.77 79.24
DistilBERT-KD + HybRank 36.24 (+3.74) 37.21 (+3.60) 23.98 (+2.75) 64.40 (+5.63) 82.02 (+2.78)

ANCE 33.01 34.16 21.55 59.44 80.10
ANCE + HybRank 36.44 (+3.43) 37.45 (+3.29) 24.23 (+2.68) 64.63 (+5.19) 82.79 (+2.69)

TCT-ColBERT-v1 33.49 34.62 21.92 60.46 80.67
TCT-ColBERT-v1 + HybRank 36.23 (+2.74) 37.25 (+2.63) 23.48 (+1.56) 64.96 (+4.50) 83.44 (+2.77)

TAS-B 34.44 35.58 22.06 62.94 83.44
TAS-B + HybRank 36.38 (+1.94) 37.41 (+1.83) 23.75 (+1.69) 65.77 (+2.83) 84.71 (+1.27)

TCT-ColBERT-v2 35.85 36.95 23.64 63.64 83.31
TCT-ColBERT-v2 + HybRank 37.55 (+1.70) 38.58 (+1.63) 24.87 (+1.23) 66.39 (+2.75) 84.97 (+1.66)

RocketQA-retriever 35.76 36.84 23.70 64.01 83.41
RocketQA-retriever + HybRank 37.96 (+2.20) 38.98 (+2.14) 25.21 (+1.51) 67.12 (+3.11) 85.59 (+2.18)

RocketQA-reranker 40.50 41.43 27.22 69.81 86.46
RocketQA-reranker + HybRank 40.98 (+0.48) 41.89 (+0.46) 27.62 (+0.40) 70.40 (+0.59) 86.55 (+0.09)

RocketQAv2-retriever 37.28 38.29 24.90 65.72 84.04
RocketQAv2-retriever + HybRank 38.69 (+1.41) 39.67 (+1.38) 25.95 (+1.05) 67.92 (+2.20) 85.70 (+1.66)

RocketQAv2-reranker 41.15 42.08 27.81 69.99 86.55
RocketQAv2-reranker + HybRank 41.40 (+0.25) 42.32 (+0.24) 28.08 (+0.27) 70.37 (+0.38) 86.68 (+0.13)
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D RERANKING CASES

We present reranking cases in Figure 3 and Figure 4. The first line in the figure is the query sentence.
We illustrate the distribution of positives in the passage list before and after reranking. Blue squares
indicate positive passages while white squares stand for negative passages in the retrieval list. We
only show top-50 out of 100 passages in these lists due to the space limitation. Following the
positive distribution, we list several raw texts of reranked passages for the question. The titles of
each passages and the answers for each questions are bold and blue, respectively.

Observed from the distribution visualization and rank changes of passages, the positive distributions
shift toward the front of the lists as the quantitative analysis in Section 4.3. Ranks of many positive
passages are raised by a large margin. Besides, it is apparent that positive passages tend to describe
the same entities, events and relations as discussed in Section 1. Case 1 in Figure 4 involves “the
king of England” while case 2 in Figure 4 is about “Where’s Waldo”.
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Query: Who was the king of England in 1756?
Positive Distribution of Initial Retrieval List

1 6 11 16 21 26 31 36 41 46 50

Positive Distribution of Reranked Retrieval List

Positive Passages Rank Changes

George II of Great Britain. George II of Great Britain George II (George
Augustus; ; 30 October / 9 November 1683 – 25 October 1760) was King of
Great Britain and Ireland, Duke of Brunswick-Lüneburg (Hanover) and a
prince-elector of the Holy Roman Empire from 11 June 1727 (O.S.) until his
death in 1760. George was the last British monarch born outside Great
Britain: he was born and brought up in northern Germany. His grandmother,
Sophia of Hanover, became second in line to the British throne after about 50
Catholics higher in line were excluded by the Act of Settlement 1701 and the
Acts of

15 → 4 (11 ↑)

George II of Great Britain. by his grandson, George III. For two centuries
after George II’s death, history tended to view him with disdain,
concentrating on his mistresses, short temper, and boorishness. Since then,
most scholars have reassessed his legacy and conclude that he held and
exercised influence in foreign policy and military appointments. George was
born in the city of Hanover in Germany, and was the son of George Louis,
Hereditary Prince of Brunswick-Lüneburg (later King George I of Great
Britain), and his wife, Sophia Dorothea of Celle. His sister, Sophia Dorothea,
was born when he was three years old. Both of George’s parents

74 → 8 (66 ↑)

Monarchy of the United Kingdom. Britain was now in personal union.
Power shifted towards George’s ministers, especially to Sir Robert Walpole,
who is often considered the first British prime minister, although the title was
not then in use. The next monarch, George II, witnessed the final end of the
Jacobite threat in 1746, when the Catholic Stuarts were completely defeated.
During the long reign of his grandson, George III, Britain’s American
colonies were lost, the former colonies having formed the United States of
America, but British influence elsewhere in the world continued to grow, and
the United Kingdom of Great Britain and Ireland was created

17 → 10 (7 ↑)

Duke of Cumberland. of Wales, the eldest son and heir apparent of King
George II and the father of King George III. He died without legitimate
issue, when the dukedom again became extinct. This double dukedom, in the
Peerage of Great Britain, was bestowed on Prince Ernest Augustus
(1771–1851) (later King of Hanover), the fifth son and eighth child of King
George III of the United Kingdom and King of Hanover. In 1919 it was
suspended under the Titles Deprivation Act 1917 and has not been restored to
its titular heir. A historic fixed bridge hand is known as the Duke of
Cumberland

67 → 18 (49 ↑)

George II of Great Britain. the Hanoverian quarter differenced overall by a
label of three points argent. The crest included the single arched coronet of
his rank. As king, he used the royal arms as used by his father undifferenced.
Caroline’s ten pregnancies resulted in eight live births. One of their children
died in infancy, and seven lived to adulthood. George II of Great Britain
George II (George Augustus; ; 30 October / 9 November 1683 – 25 October
1760) was King of Great Britain and Ireland, Duke of Brunswick-Lüneburg
(Hanover) and a prince-elector of the Holy Roman Empire from 11 June
1727 (O.S.) until

13 → 19 (6 ↓)

Figure 3: Reranking case 1. Blue squares indicate positive passages and white squares stand for
negative passages. The titles of passages are bold and put in front of passages. These blue texts are
the answers for the question.
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Query: What kind of book is Where’s Waldo?
Positive Distribution of Initial Retrieval List

1 6 11 16 21 26 31 36 41 46 50

Positive Distribution of Reranked Retrieval List

Positive Passages Rank Changes

Where’s Waldo? (video game). Where’s Waldo? (video game) Where’s
Waldo? (Where’s Wally? in the UK, Australia and South America) is a
puzzle game developed by Bethesda Softworks and published in 1991 by
THQ for the Nintendo Entertainment System. It was the first video game
loosely based on Martin Handford’s book of the “same name”. Mostly
similar to the books, players must help Waldo get to the moon by finding him
in each of the eight levels in the game. The game was panned by critics, who
criticized the game for its graphics, which made it more difficult to find
Waldo in each of the

24 → 1 (23 ↑)

Where’s Waldo? (video game). takes advantage of superior pointer-based
motion controls to easily locate search targets and supports versus
multiplayer. Where’s Waldo? (video game) Where’s Waldo? (Where’s
Wally? in the UK, Australia and South America) is a puzzle game developed
by Bethesda Softworks and published in 1991 by THQ for the Nintendo
Entertainment System. It was the first video game loosely based on Martin
Handford’s book of the “same name”. Mostly similar to the books, players
must help Waldo get to the moon by finding him in each of the eight levels in
the game. The game was panned by critics, who criticized the

31 → 5 (26 ↑)

Activity book. and does not fall neatly into one of these more specific
categories. Activity books are typically centred around a particular theme.
This may be a generic theme, e.g. dinosaurs, or based on a toy, television
show, book, or game. For example, the Where’s Wally? series of books
(known as Where’s Waldo? in the USA) by Martin Handford consists of both
puzzle books, wherein the reader must search for characters hidden in
pictures, and activity books such as “”, which include a wider range of games
and activities as well as puzzles. In 2018, Nintendo announced its intention
to publish activity

28 → 6 (22 ↑)

Where’s Waldo? The Fantastic Journey (video game). Where’s Waldo?
The Fantastic Journey (video game) Where’s Waldo? The Fantastic Journey
is a video game published by Ubisoft and developed by Ludia based on the
book of the same name. It is a puzzle adventure game released for the
Nintendo DS, Wii, Microsoft Windows, and the iPhone, and is also a remake
of “The Great Waldo Search”, released in 1992. Like the other games in the
series, the object of the game is to search for hidden characters and items
within a time limit. Hints are awarded to the player through Woof, Waldo’s
pet dog. Woof alerts the players

7 → 8 (1 ↓)

Where’s Wally? was turned into a Sunday newspaper comic/puzzle,
distributed by King Features Syndicate. The comics were also released in
book form in the US, using the regional name ‘Waldo’. In the early 1990s
Quaker Life Cereal in the US carried various “Where’s Wally?” scenes on the
back of the boxes along with collector’s cards, toys and send-away prizes.
This was shown in “The Simpsons” episode “Hello Gutter, Hello Fadder”
where Homer shouts “WALDO, WHERE ARE YOU?!” after looking at the
scene on the cereal box as Waldo walks by the kitchen window. On 1 April
2018 Google Maps added a minigame

61 → 23 (38 ↑)

Figure 4: Reranking case 2.
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