
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LLM-ASSISTED REINFORCEMENT LEARNING FOR
DISTRIBUTED SCHEDULING

Anonymous authors
Paper under double-blind review

ABSTRACT

The distributed flexible job-shop scheduling problem (DFJSP) involves coordinat-
ing job execution across distributed factories to achieve production goals. While
existing reinforcement learning (RL)-based scheduling methods have shown
promise in learning adaptive scheduling polices, they often rely on shallow net-
works and simple handcrafted rewards. These designs limit global state rea-
soning and accurate credit assignment under sparse rewards, thereby hindering
the ultimately balanced workload distribution and efficient policy learning. To
address these limitations, we propose a Large Language Model (LLM)-assisted
RL algorithm tailored for DFJSP by leveraging the contextual reasoning and
prior knowledge of LLM. Specifically, we propose an LLM-driven factory as-
signment mechanism that encodes global factory states and job features into
structured queries, enabling context-aware and effective coordination among fac-
tories. Furthermore, we design an LLM-informed reward model that encodes
scheduling-aware semantics into multi-dimensional proxy rewards for precise
credit assignment during training. Theoretically, we provide a bound on the re-
ward approximation error and prove that the proposed assignment strategy ef-
fectively reduces global workload variance. Extensive experiments conducted
on public benchmarks (i.e., Hurink and Brandimarte) and multiple simulated
DFJSP instances of varying scales demonstrate that our algorithm consistently
outperforms RL-based scheduling methods, achieving the average makespan im-
provement ranging from 0.61% up to 25.78%. Our source code is available at
https://anonymous.4open.science/r/LaRL-407B.

1 INTRODUCTION

Scheduling is a fundamental process that involves managing, coordinating, and optimizing the ex-
ecution of jobs and workload in a manufacturing system (Li et al., 2024). Among various schedul-
ing problems, the distributed flexible job-shop scheduling problem (DFJSP) has attracted signif-
icant attention because it supports geographically distributed production, aligning with modern
trends (Huang et al., 2024a). In DFJSP, a set of jobs is assigned to multiple factories to optimize
the desired objective (such as makespan or tardiness), after which each job is processed on a group
of machines within the assigned factory based on the predefined operation sequence (Zhang et al.,
2024). In practice, DFJSP is often subject to unexpected disturbances, especially in custom manu-
facturing companies, where flexible order placement leads to frequent new job arrivals (Huang et al.,
2024b). Therefore, it is critical for these companies to develop effective scheduling algorithms to
ensure production efficiency in uncertain environments.

Existing scheduling algorithms can generally be divided into three categories: metaheuristics,
heuristics, and reinforcement learning (RL)-based. Metaheuristics (Wang et al., 2025a) explore
approximate solutions by iteratively evolving a population of solutions. Heuristics (Ito et al., 2022)
obtain feasible solutions by assigning priorities to jobs and factories based on specific criteria. Al-
though the above algorithms can provide reasonable solutions, they typically rely on handcrafted
rules and struggle to generalize across different scenarios. Recently, reinforcement learning (RL)
has shown strong potential in eliminating handcrafted heuristics and enhancing adaptability in di-
verse scheduling scenarios (Zhang et al., 2020). RL-based scheduling algorithms can automatically
learn a scheduling policy from experience to optimize long-term performance (Lei et al., 2023). One
popular line is RL-based heuristic selection (Lei et al., 2024), which leverages RL to select among

1

https://anonymous.4open.science/r/LaRL-407B

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

predefined heuristics based on states. Another line adopts end-to-end learning (Huang et al., 2024a),
where the policy is directly learned from raw features without relying on handcrafted heuristics.

While these RL-based algorithms demonstrate promising results, they still face critical challenges
in global coordination and reward design for solving DFJSP. First, how to enable global coordi-
nation under limited state reasoning? Most RL-based scheduling algorithms assume that factory
assignment is handled by shallow policy networks (Huang et al., 2024b) or simple heuristics (e.g.,
earliest available time and minimum transfer time) (Lei et al., 2024). These approaches lack suf-
ficient state reasoning capacity to capture the global relationships between factories, resulting in
poor coordination and load imbalance. Second, how to achieve effective credit assignment under
spare reward? Existing algorithms often manually design scalar rewards based on the scheduling
objectives (Hameed & Schwung, 2023; Lei et al., 2024). However, since these objectives typically
depend on a complete scheduling cycle, most intermediate actions receive no meaningful feedback
during execution. This leads to ambiguous credit assignment, making it difficult for the agent to
distinguish beneficial actions and hindering overall learning efficiency (Qu et al., 2025).

LLMs have shown strong capabilities in capturing global context and reasoning over structured in-
puts (Achiam et al., 2023), making them well-suited for effectively addressing the challenges of
coordination and credit assignment in complex scheduling tasks. Motivated by these, we propose an
LLM-assisted RL algorithm, LaRL, to facilitate global coordination among factories and adaptive
reward design for solving the DFJSP with new job arrivals. Our main contributions can be summa-
rized as follows: 1) We propose an LLM-driven factory assignment mechanism that leverages the
contextual reasoning of LLMs to dynamically allocate new jobs based on global factory workload
and job characteristics. This facilitates better global coordination and a more balanced workload of
factories compared to shallow networks and heuristics. 2) We propose an LLM-informed reward
model that exploits the prior knowledge of LLM to generate multifaceted proxy rewards for each
action. This allows timely and informative feedback during execution, enabling more precise credit
assignment under sparse reward compared to manual scalar rewards for scheduling. 3) We evaluate
LaRL on 167 DFJSP instances with six scales. The extensive experimental results demonstrate that
LaRL significantly outperforms state-of-the-art metaheuristics, heuristics, and RL algorithms, and
shows promising generalization to instances that are much larger than those used in training.

2 RELATED WORK

Scheduling algorithms for DFJSP. Exist scheduling algorithms for DFJSP include metaheuris-
tics, heuristics, and RL-based algorithms. Among them, metaheuristics, such as the memetic algo-
rithm (Zhu et al., 2024), search for high-quality schedules by balancing global exploration and local
exploitation. Over the last few years, various heuristics have been designed for DFJSP. For example,
random search (Zabinsky et al., 2009) explores the solution space by uniformly sampling feasible
solutions. Iterated greedy (Zhao et al., 2025) improves initial solutions through iterative destruction
and reconstruction mechanisms. Dispatching rules (Huang et al., 2024b) prioritize operations or
machines based on predefined rules. However, these methods often rely on handcrafted rules and
lack adaptability in dynamic environments. With the development of RL, researchers have shifted to
RL-based algorithms. Lei et al. (Lei et al., 2024) proposed a heuristic selection framework to choose
among predefined heuristics based on the current state. Wang et al. (Wang et al., 2025b) introduced
an end-to-end policy learning approach that directly maps raw environment features to scheduling
actions. However, these RL-based algorithms still face challenges in achieving global coordination
across factories and in credit assignment under sparse rewards. This paper addresses the challenges
via an end-to-end algorithm integrating global assignment and enhanced reward modeling.
LLMs-assisted decision-making. LLMs have recently emerged as powerful tools for com-
plex decision-making tasks because of their advanced reasoning abilities and rich prior knowl-
edge (Achiam et al., 2023). In particular, some recent studies have applied LLMs as planners to
make decisions through APIs or predefined skills (Wang et al., 2024; Zhang et al., 2023a). For
example, Liu et al. (Liu et al., 2023) encode problem descriptions into a formal prompt to achieve
long-horizon planning. Valmeekam et al. (Valmeekam et al., 2023) highlight the potential of LLMs
in structured planning tasks. Beyond their planning capabilities, LLMs possess remarkable code
generation ability that facilitates the automation of function design and decision (Jiang et al., 2024).
Recent works have shown that LLMs can generate, debug, and optimize code snippets, significantly
accelerating development cycles (Zhong et al., 2024). Inspired by these promising works, we pro-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

pose leveraging the dual strengths of LLMs in planning and code generation to assist RL in solving
DFJSP, aiming to improve effectiveness and learning efficiency in dynamic environments.

3 PROBLEM DEFINITION

In DFJSP with new job arrivals, there are n successively arriving jobs to be processed on l distributed
factories, to optimize a scheduling objective (e.g., makespan in this paper). Each factory Ff (0 ≤
f < l) is equipped with Mf machines, and each job Ji(1 ≤ i ≤ n) has a sequence of k operations.
Each operation Oij(1 ≤ j ≤ k) is assigned to one of its candidate machines, with its processing
time (pij) depending on the selected machine. Solving DFJSP involves three key tasks: 1) assigning
each new job to a specific factory; 2) selecting a machine for each operation within the assigned
factory; and 3) determining the processing sequence of operations on each machine. After the above
tasks, we can derive a schedule, i.e., the start times (Sij) of each operation and their corresponding
machine assignments, such that the makespan Cmax = maxij{Cij = Sij + pij} is minimized
subject to all constraints. In line with prior work (Lei et al., 2024), some assumptions are adopted
as follows: 1) The transfer time of jobs is neglected. 2) All factories and machines are available at
time zero. 3) Each machine can only process one operation at a time. 4) Each operation must be
processed without interruption. 5) Each operation cannot be started until its previous operation is
completed. In summary, DFJSP aims to assign new jobs to distributed factories and schedule their
operations on machines to minimize makespan. The dynamic and sequential nature of DFJSP makes
it well-suited for RL frameworks, which motivates our formalization as a Markov decision process.

4 PROPOSED ALGORITHM

This section presents the proposed LLM-assisted RL algorithm, LaRL, for DFJSP with new job
arrivals. We begin with an overview of LaRL, followed by its three components: LLM-driven
factory assignment, multi-agent collaborative scheduling, and LLM-informed reward model.

LLM-Driven
Factory Assignment

LLM-Informed
Reward Model

Multi-Agent
Collaborative Scheduling

Environment prompt

<Analyze> Given the significant imbalance

in current factory load (i.e.,

𝐹1: 212, 𝐹2: 1327), assigning the newly …

<Answer> Factory ID: 1

Factory Assignment

Role instruction
Generate evaluation function

Surrogate model for proxy rewards

Factory agent 1 Factory agent 2

Surrogate
model 𝑓𝜙

：

：

𝜑(𝑠𝑡, 𝑎𝑡)

Proxy
Reward

ෝ𝑟𝑡

You are an intelligent planner …

New job attributes
The new job has the following attributes…

Response JSON format

{Analyze: (think step by step and analyze…)

Factory ID: (an integer representing …)}

Factors

ෝ𝑟𝑡

…

Policy 𝜋𝜃1 Policy 𝜋𝜃2

2 RL Centralized Training

1 Local Observations (𝑠𝑡)

…

4 Collect Trajectory

3 Execute Actions (𝑎𝑡)

Candidate response 𝜉𝑖:
{Understand: The problem involves a …

Analyze: To evaluate the actions of …

Functions: Function 𝜑𝑖 in Python}

timesc
h

ed
u

le

(𝑠1, 𝑎1) (𝑠2, 𝑎2)
(𝑠𝑡 , 𝑎𝑡)

Error

check

Evolved response 𝜉:
{Understand: The problem…

Analyze: To evaluate the …

Functions: Function 𝜑 }

Use to train
𝜙 by ℒϕ

tardiness weights

workload makespan

G
lo

b
al

S
ta

te
o
f

F
ac

to
ri

es
A

tt
ri

b
u
ti

o
n

o
f

N
ew

Jo
b

Global state of Factories
The 1-th factory has the following attributes…

The 2-th factory has the following attributes…

Figure 1: Overview of LaRL, which consists of three main components: (1) LLM-driven factory
assignment assigns newly arrived jobs to factories by reasoning over the structured environment
prompt consisting of the global factories state and new jobs attributions. (2) Multi-agent collabo-
rative scheduling selects operation-machine pairs at within each factory based on the local observa-
tions st, and the trajectories are collected for training. (3) LLM-informed reward model generates
proxy rewards using a learned surrogate model fϕ, which leverages the evaluation function ϕ gen-
erated by LLM to decompose action contributions across multiple dimensions.

4.1 OVERVIEW

As shown in Figure 1, LaRL consists of three components. First, LaRL uses LLM to guide job-
factory assignment by encoding real-time states (e.g., load, availability, job features) into structured

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

prompts, and infers the most suitable factory via semantic reasoning. Second, factory-specific multi-
agent groups select operation-machine pairs based on local observations in a decentralized manner.
Third, to address sparse rewards, we introduce an LLM-informed reward model. Specifically, the
LLM defines a semantically interpretable evaluation function mapping state-action pairs to mul-
tidimensional factors. We then train a surrogate model to estimate proxy rewards. This enables
more accurate attribution of action contributions, facilitating stable and efficient policy learning.
Our approach leverages the contextual understanding of LLMs to connect linguistic knowledge with
symbolic decision-making, enhancing both effectiveness and generalization in DFJSP environments.

4.2 LLM-DRIVEN FACTORY ASSIGNMENT

To address the challenge of global coordination in DFJSP with new job arrivals, we propose an
LLM-driven factory assignment mechanism that leverages the contextual reasoning capabilities and
domain knowledge embedded in LLM. This mechanism determines the most suitable factory for
each new job based on the global state, which is achieved by the following two steps 1) and 2).

1) Environmental prompt: The environment prompt serves to encode task-specific knowledge and
contextual cues into a structured format, enabling the LLM to perform interpretable reasoning over
the system state for decision-making. To this end, we construct the prompt P , defined as P =
Concat(R,G,A), where R denotes the role instruction assigning a role to LLM and describing the
problem profile and objectives, G = G1, . . . , Gl presents the global states of all l factories (e.g.,
workload, machine availability, and estimated delay ratio), A encodes all attributions of the new job
(e.g., weights, due date, and expected time).

2) LLM-based factory assignment: Given the constructed prompt, the LLM can evaluate the re-
lationship between the new job and each factory based on the encoded information, and generate
factory assignments, where both the selected factory ID and its analysis are returned in JSON for-
mat. The assignment result is then passed to the downstream multi-agent collaborative scheduling.
Our design not only enables more effective global coordination but also improves interpretability
compared to shallow networks and heuristics.

4.3 MULTI-AGENT COLLABORATIVE SCHEDULING

To enable efficient scheduling within each factory, we formulate the factory-level scheduling prob-
lem as a multi-agent decision process. Each agent selects an operation-machine pair based on local
observations using a designed policy, while coordination is ensured through centralized training.
The local observation, policy, and actions are set as follows.

1) Local observation: At decision step t, the agent of each factory Ff receives Of
t ∈ Rm×d, where m

is the number of machines, d is the feature dimension. Each row in Of
t represents a ready operation

and consists of the processing time matrix Pt, the operation feature matrix F o
t , and the machine

feature matrix Fm
t , i.e., Of

t = [Pt, ||F o
t ||Fm

t]. To address the varying number of ready operations,
the input size is fixed to m. When more than m operations are ready, the top m candidates with the
earliest due dates are selected. Otherwise, we apply zero-padding with a binary mask to filter out
invalid rows. The details of the two feature matrices are provided in the Appendix B.

2) Policy: The policy π outputs a probability distribution over all actions to determine which ac-
tion is selected for execution. Considering the scheduling process is highly frequent and requires
rapid response, we adopt a graph attention network (GAT) (Veličković et al., 2018)-based policy
architecture rather than LLM, where all agents share the same policy architecture but maintain their
own learnable parameters to adapt to the factory-specific constraints. For each agent, given the lo-
cal observation Of

t , the policy computes the action distribution in three stages. First, GAT is used
to encode the raw features of each machine Mm with its compatible ready operations Nt(Mm)
into a v-dimensional embedding. By inputting Pt and Fm

t , GAT computes importance weights for
compatible operations and aggregates their features to update the machine embeddings as Eq. (1):

emt = σ(αmmWMFm
t +

∑
Oij∈Nt(Mm)

αijmWOF
o
t) (1)

where σ is an activation function, WM and WO are learnable matrices, αmm and αijm are the atten-
tion coefficients representing the importance of machines to themselves and compatible operations.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Second, we use a multi-layer perceptron (MLP) to map the raw feature vectors of the ready opera-
tions into v-dimensional embeddings, as shown in Eq (2):

eot = MLPω0(ELU [MLPω1(F
o
t)||

∑
m∈Mt(Oij)

(emt)]) (2)

where Mt(Oij) is the candidate machines of Oij , ω0 and ω1 are learnable parameters of the MLPs.

Finally, we derive the policy distribution over all feasible operation-machine pairs by concatenating
the learned operation and machine embeddings

[
eoij , e

c
ij

]
and passing them through another MLP

followed by a softmax layer in Eq. (3):

P (aft , O
f
t) = softmax(MLPω2(e

o
t ||emt)) (3)

where the MLPω2
with learnable parameters ω2 consists of two hidden layers and Tanh activation.

3) Action: A valid operation-machine pair from the ready set corresponding to each factor Ff .
Specifically, the action can be defined as aft = (Oij ,mh), which indicates that the operation Oij

from job Ji is assigned to an idle machine mh ∈ Mf . The action is selected from a masked proba-
bility distribution over the feasible operation-machine combinations, where infeasible actions (e.g.,
machines not in the candidate set) are masked out to ensure valid execution. Based on these deci-
sions, we collect the joint trajectories τ = {(St, at)}Tt=1 for all factories, where St = {O1

t , . . . , O
l
t}

and at = {a0t , . . . alt}. These trajectories are used for centralized training of the agent polices via
Proximal Policy Optimization. More training details are provided in Appendix D.

4.4 LLM-INFORMED REWARD MODEL

To enhance credit assignment in RL under sparse rewards, we propose an LLM-informed reward
model that leverages the prior knowledge and reasoning capabilities of LLMs. This model addresses
two key challenges: 1) how to effectively ask the LLM to produce helpful reward signals that are
reliable and consistent with symbolic in RL and DFJSP, and 2) how to use these signals to better
assign credit to actions taken at different time steps. To this end, the proposed LLM-informed reward
model comprises two core components, i.e., generating evaluation functions and training a surrogate
model for proxy rewards, as illustrated in Figure 1.

1) generating evaluation functions: Inspired by previous work (Qu et al., 2025), we adopt a two-
stage generation process consisting of LLM-based generation and self-evolution phases. In the
generation phase, we first construct a structured prompt by encoding the role instruction, problem
description, global scheduling state, and agent action formats, detailed in Appendix A. Then, the
prompt is passed to LLM to produce z candidate responses {ξi, . . . , ξz}, each of which involves
an executable code of an evaluation function φi. In the self-evolution phase, these functions are
reorganized into the prompt. It guides the LLM to summarize a refined function φ that integrates
the strengths of candidates while reducing redundancy and inconsistency, as shown in Eq. (4).

φ = LLM(problem, role, φ1, . . . , φz) (4)
Furthermore, to ensure the executability of φ, we perform a preliminary error check by testing φ
on a random state-action pair. If any runtime errors occur, the corresponding error logs err are
appended to the prompt to guide the LLM in refining the function again, as detailed in Eq. (5).

φ = LLM(problem, role, φ, err) (5)
This two-stage process ensures that φ not only captures semantically meaningful aspects of agent
actions, but is also syntactically executable and aligned with the underlying scheduling objectives.

2) Surrogate model for proxy reward: Considering φ is a symbolic and potentially non-differentiable
function, build a surrogate model fϕ parameterized by ϕ based on the return decomposition (Efroni
et al., 2021). This model can approximate the mapping from the observation-action pairs to scalar
rewards. Specifically, the model estimates a proxy reward r̂t from φ(s, a) as r̂t = fϕ(φ(s, a)). To
align the proxy rewards with the episodic returns R(τ) collected from trajectories τ , we train the
surrogate model by minimizing the loss function in Eq. (6).

ϕ∗ = argmin
ϕ

Eτ∼π[(R(τ)−
T∑

t=1

fϕ(φ(s, a)))
2] (6)

This design effectively bridges the symbolic reasoning of LLM and numerical reward of RL, im-
proving the learning efficiency of agents under sparse rewards, especially in large-scale scenarios.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.5 THEORETICAL ANALYSIS

To further justify the effectiveness and generation of the proposed LaRL algorithm, we provide a
theoretical analysis. Specifically, we analyze how well the learned surrogate model fϕ can approxi-
mate the true return R(τ) by leveraging the intermediate symbolic evaluation φ(s, a). We define the
approximation error and then provide an upper bound on this error.
Theorem 1 (Reward Approximation Bound).
Assuming that ∃f∗ : φ(s, a) 7→ r, such that the true reward r(s, a) = f∗(φ(s, a)). Define the least-
squares estimation error as ||r− r̂ϕ||Ak

, where Ak =
∑k

i=1 φ(si, ai)
⊤φ(si, ai)+λI . Then for any

δ ∈ (0, 1), with probability at least 1− δ, the estimation error satisfies the following concentration
bound:

||r − r̂ϕ||Ak
≤

√
TD log(1 +

kT 2

λδ
) +

√
λD (7)

where T is the episode length, D = dim(φ(s, a)) is the factor dimension of the evaluation function.
Theorem 2 (LLM-riven Factory Assignment Improves Global workload Balance).
Let LT = [L1

T , . . . , L
l
T] denote the cumulative workload over l factories after scheduling n jobs.

Suppose each job Ji arrives from a stationary distribution and has a bounded processing time pt ∈
[0, pmax]. If each job is assigned using an LLM-driven policy πLLM with bounded assignment error
ϵ, then the expected workload variance satisfies:

E[V ar(LT)] ≤
C

T
+ ϵ3 · p2max (8)

where C is a constant that represents the baseline workload variance caused by the job arrival distri-
bution. The proofs of Theorems 1 and 2 are provided in Appendix C.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

1) Datasets. To evaluate LaRL1, we conducted experiments on benchmark-based and simulation-
based datasets. The benchmark datasets are derived from Hurink (Hurink et al., 1994) and Brandi-
marte (Brandimarte, 1993) with two identical factories and varying jobs over 30, 50, 100, following
the convention (Zhang et al., 2024). The simulation-based datasets include 1,000/2,000/5,000 se-
quentially arriving jobs, following the practice (Zhang et al., 2024). Details are in Appendix E.
2) Peer competitors. We compare LaRL with six representative state-of-the-art algorithms from
three categories. The first includes three popular heuristics: random search (RS) (Zabinsky et al.,
2009), iterated greedy (PBIGA) (Zhao et al., 2025), and a dispatching rule (AR SPT) (Huang et al.,
2024b). The second is a representative metaheuristic, i.e., RMA (Zhu et al., 2024). The third is two
state-of-the-art RL-based algorithms: PPOS (Lei et al., 2024) and P-G (Wang et al., 2025b).
3) Parameter Settings. The training settings follow (Li et al., 2024) with the batch size 128 and the
initialized learning rate 1× 10−4 (decayed by 0.96/epoch). The policy employs a GAT with single-
head attention with ELU activation, and an output embedding dimension of eight. The surrogate
reward model is implemented as a three-layer MLP with ReLU activation and a hidden size of 256.
We use the public LLM, Qwen-max, for reasoning in LaRL. More details are in Appendix E.
4) Evaluation Criteria. We evaluate the performance using the average makespan (Mspan) over
instances of each dataset. To assess load balance, we report the workload ratio (WR), defined as the
ratio between the maximum and minimum total workloads across factories. Lower Mspan and WR
closer to one indicate better performance.

5.2 RESULTS AND ANALYSIS

In this section, we evaluate LaRL against peer competitors on DFJSP instances with varying scales.
The evaluation is based on the average makespan (Mspan) and workload ratio (WR) and statistical
significance is assessed using the Wilcoxon rank-sum test (p < 0.05), where symbols ‘+’, ‘=’, and
‘–’ indicate that LaRL performs significantly better, equivalent, or worse than the competitors.

1Code: https://anonymous.4open.science/r/LaRL-407B

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5.2.1 PERFORMANCE ON INSTANCES WITH TWO FACTORIES

Table 1 presents the comparative results of LaRL and six representative scheduling algorithms on
six datasets with varying scales. LaRL achieves the best WR on all datasets and outperforms all
baselines in makespan on four of six instances, demonstrating its strength in global coordination
and workload balancing. In terms of makespan, on small-scale instances (DFJSP-30/50/100), LaRL
performs on par with or better than P-G, and consistently surpasses heuristic and metaheuristic
baselines. On large-scale instances (DFJSP-1,000/2,000/5,000), it achieves the lowest makespan and
WR across the board. In terms of WR, LaRL reduces WR to near 1.0 on all instances, with 1.16 on
DFJSP-5,000, while others exceed 1.4, indicating superior workload balancing. All improvements
are statistically significant under the Wilcoxon signed-rank test (p < 0.05), indicating that LaRL
consistently outperforms existing algorithms in both makespan and workload balancing.

Table 1: Comparative study of different algorithms on instances with two factories.

Algorithm DFJSP-30 DFJSP-50 DFJSP-100 DFJSP-1,000 DFJSP-2,000 DFJSP-5,000

Mspan WR Mspan WR Mspan WR Mspan WR Mspan WR Mspan WR

RS 2885.35(+) 1.975(+) 3536.59(+) 2.17(+) 6912.34(+) 1.66(+) 56241.32(+) 1.85(+) 127401.85(+) 1.95(+) 268174.60(+) 2.07(+)
PBIGA 2434.51(+) 1.32(+) 3506.24(+) 1.13(=) 6895.34(+) 1.42(+) 52889.34(+) 1.40(+) 119447.74(+) 1.69(+) 277748.52(+) 1.62(+)
AR SPT 2696.47(+) 1.55(+) 3429.61(+) 1.50(+) 6599.55(+) 1.43(+) 53141.93(+) 1.36(+) 111066.90(+) 1.31(+) 267955.80(+) 1.96(+)

RMA 2422.35(+) 1.03(=) 3482.51(+) 1.31(+) 6382.62(+) 1.53(+) 53317.53(+) 1.48(+) 117374.21(+) 1.59(+) 277512.01(+) 1.69(+)
PPOS 2262.50(+) 1.79(+) 3229.15(+) 1.69(+) 6367.15(+) 1.55(+) 52994.87(+) 1.64(+) 111302.20(+) 1.53(+) 267729.40(+) 1.48(+)
P-G 2096.24(+) 1.41(+) 3176.34(=) 1.36(+) 6266.21(+) 1.36(=) 52581.76(=) 1.20(+) 112897.36(+) 1.65(+) 267684.27(+) 1.41(+)

LaRL (Ours) 2141.00 1.15 3180.22(=) 1.12 6254.50 1.31 52241.50 1.07 107374.00 1.03 266537.53 1.16

5.2.2 PERFORMANCE ON INSTANCES WITH MORE FACTORIES

To further evaluate the generalization of LaRL under different factory configurations, we evaluate
LaRL on scenarios with three factories. Table 2 reports the average makespan and workload rate of
all algorithms. Across all problem scales, LaRL consistently outperforms competitors in minimiz-
ing makespan, demonstrating its generalization ability when deployed in environments with more
distributed factories. Notably, LaRL maintains balanced workload distribution among factories, as
indicated by the reported workload rates, which remain close across factories. In contrast, peer com-
petitors often suffer from workload skew, especially in large-scale instances (e.g., 2,000 and 5,000
jobs). These results confirm that the reasoning-based assignment and scheduling mechanism can
effectively maintain both scheduling quality and workload balance in increasingly complex settings.

Table 2: Comparative study of different algorithms on instances with three factories.

Scale (f -m-n) (3-10-30) (3-10-50) (3-10-100) (3-10-1,000) (3-10-2,000) (3-10-5,000)

Algorithm Mspan WR Mspan WR Mspan WR Mspan WR Mspan WR Mspan WR

RS 2499.27(+) 2.67(+) 3036.62(+) 2.19(+) 6289.12(+) 3.32(+) 59253.71(+) 2.69(+) 119471.21(+) 2.91(+) 268174.60(+) 3.71(+)
PBIGA 2362.41(+) 1.45(+) 2911.34(+) 1.28(=) 6233.52(+) 1.46(+) 58756.86(+) 1.54(+) 120733.74(+) 1.34(+) 278450.33(+) 3.27(+)
AR SPT 2233.16(+) 2.15(+) 2925.52(+) 1.42(+) 5994.70(+) 1.24(+) 56886.37(+) 1.62(+) 119281.73(+) 1.47(+) 269655.73(+) 2.76(+)

RMA 2491.17(+) 1.58(+) 2999.46(+) 1.13(+) 6187.05(+) 1.53(+) 57898.27(+) 1.59(+) 121241.17(+) 1.39(+) 283474.71(+) 3.20(+)
PPOS 2143.27(+) 1.56(+) 2950.00(+) 1.38(+) 6050.71(+) 1.32(+) 57083.15(+) 1.47(+) 110362.09(+) 1.60(+) 269972.53(+) 2.09(+)
P-G 2096.24(+) 1.68(+) 2927.71(=) 1.29(+) 5996.05(+) 1.34(=) 56483.62(+) 1.37(+) 110210.47(+) 1.51(+) 269547.63(+) 1.83(+)

LaRL (Ours) 2048.50 1.22 2841.86 1.04 5820.06 1.17 55205.66 1.16 109648.66 1.12 268870.06 1.23

5.2.3 ROBUSTNESS TO THE FREQUENCY OF JOB ARRIVALS

To evaluate the robustness of LaRL under different frequencies of job arrivals, we vary the utilization
level from the default high-utilization setting (0.95) to a moderate level (0.85), which is commonly
adopted in the scheduling literature (Zhang et al., 2023b). Experiments are conducted on instances
with two factories, each equipped with 10 machines, and varying job sizes 1, 000, 2, 000, 5, 000.
The comparison results are summarized in Table 3. We can observe that across all scales, LaRL
consistently achieves lower makespan than peers, with particularly notable improvements in the
large-scale setting with 5, 000 jobs. These findings confirm that LaRL is not only effective under
high-pressure environments but also maintains superior when the frequency of job arrivals decreases.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Comparative study of different algorithms in the scenario with a utilization level of 0.85.

Method DFJSP-30 DFJSP-50 DFJSP-100 DFJSP-1,000 DFJSP-2,000 DFJSP-5,000

Mspan WR Mspan WR Mspan WR Mspan WR Mspan WR Mspan WR

RS 2215.73(+) 1.69(+) 3855.36(+) 1.35(+) 6062.15(+) 1.81(+) 60280.38(+) 2.91(+) 132015.47(+) 3.26(+) 320781.53(+) 2.26(+)
PBIGA 2090.34(+) 1.49(+) 3650.06(+) 1.14(=) 5801.75(+) 1.63(+) 61259.82(+) 2.41(+) 132154.22(+) 2.16(+) 325649.76(+) 1.98(+)
AR SPT 2696.47(+) 1.55(+) 3732.71(+) 1.30(+) 5948.28(+) 1.72(+) 60745.58(+) 1.96(+) 129916.15(+) 1.96(+) 319984.66(+) 1.87(+)

RMA 2178.26(+) 1.41(=) 3415.29(+) 1.21(+) 5868.10(+) 1.51(+) 62046.62(+) 2.33(+) 132516.37(+) 2.01(+) 328975.61(+) 2.09(+)
PPOS 2078.31(+) 1.51(+) 3370.29(+) 1.27(+) 5810.53(+) 1.35(+) 59251.58(+) 1.45(+) 165368.73(+) 1.59(+) 310786.91(+) 1.76(+)
P-G 2006.73(-) 1.02(-) 3227.20(+) 1.15(=) 5736.61(-) 1.31(=) 59259.95(=) 1.49(+) 122259.23(+) 1.76(+) 308276.36(+) 1.69(+)

LaRL (Ours) 2026.56 1.09 3180.66(=) 1.17 5764.36 1.28 58986.26 1.18 120126.65 1.11 293905.67 1.21

5.2.4 ABLATION STUDY OF THE PROPOSED LLM-DRIVEN FACTORY ASSIGNMENT

To evaluate the contribution of the LLM-driven factory assignment, we replace it with two alternative
strategies: (1) a heuristic-based method using the classic AR rule (Huang et al., 2024b), and (2) a
learned neural network that maps global factory states and job attributes to assignment decisions (Lei
et al., 2024). These two variants are referred to as LaRL AR and LaRL NN, respectively.

Workload of Factory 0
0.2 0.4 0.6 0.8 1.0

0.0
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0
Workload of Factory 0 Workload of Factory 0

W
o

rk
lo

ad
 o

f
 F

ac
to

ry
 1

LaRL LaRL_NN LaRL_AR

W
o

rk
lo

ad
 I

m
b

al
an

ce
 |F

0
-F

1
|

0.2

0.4

0.6

0.8

1.0--- 1:1 line --- 1:1 line--- 1:1 line

Figure 2: Comparison of workload between
LaRL with two variants on two factories.

DFJSP-30

15

25

20

10

5

0

×102
DFJSP-50

15

25

20

10

5

0

30

35

×102
DFJSP-1,000

2

4

3

1

7

0

5

6

×104

2

4

3

1

7

0

5

6

8

DFJSP-100
×103

DFJSP-2,000

4

8

6

2

14

0

10

12

×104
DFJSP-5,000

10

20

15

5

35

0

25

30

×104

V
al

id
at

io
n
 M

ak
es

p
an

LaRL LaRL_AR LaRL_NN

Figure 3: Comparison of makespan between
LaRL with two variants on six datasets.

Figure 2 visualizes the factory-level load distribution using scatter plots. Each subfigure shows the
normalized workload assigned to both factories on all instances, with the 1:1 diagonal line (gray
dashed) indicating perfect workload balance. The color intensity reflects the absolute difference of
workload (|F0−F1|), where darker colors indicate smaller differences between factories. LaRL ex-
hibits the most concentrated distribution along the diagonal line, reflecting highly superior balance.
In contrast, LaRL-AR shows frequent skewed allocations due to static rules, while LaRL-NN shows
moderate imbalance with less consistency. These results highlight the advantage of LLM-based as-
signment in leveraging global context and semantics to coordinate job allocation more effectively.
Figure 3 shows that LaRL achieves consistently lower average makespan and variance across six
datasets, indicating both superior performance and robustness. Notably, as the scale increases, the
variance of LaRL remains significantly lower, highlighting its stability under complex settings. This
suggests that the LLM can integrate diverse features and reason contextually, while rule-based or
shallow models often rely on limited criteria, yielding instability under large-scale instances.

5.2.5 ABLATION STUDY OF THE PROPOSED LLM-INFORMED REWARD MODEL

To evaluate the contribution of our LLM-informed reward model, we conduct an ablation study by
replacing it with a widely used handcrafted reward function based on makespan minimization (Lei
et al., 2024), denoted as LaRL-HR. Both variants share the same policy architecture and training
pipeline, differing only in the reward calculation.

Table 4 presents the comparative results between LaRL and its variant LaRL HR. Across all six
datasets with increasing problem scales, LaRL consistently achieves lower makespan and better or
comparable WR on all instances. In particular, the relative advantage of LaRL is more evident
in larger-scale settings. These results demonstrate that the multi-factor reward signals derived by
LLM enable more effective credit assignment during training, leading to improved scheduling per-
formance. Figure 4 illustrates the episodic return curves under two different shop utilization levels
(0.95 and 0.85). In both settings, LaRL consistently converges faster and exhibits more stable learn-
ing with narrower shaded regions compared to LaRL HR, indicating improved learning efficiency
and robustness. Notably, under a higher utilization level (i.e., more frequent job arrivals), LaRL

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Comparison of Mspan and WR be-
tween LaRL and LaRL HR on six datasets.

Testing
Datasets

LaRL LaRL HR
Mspan WR Mspan WR

DFJSP-30 2141.00 1.15 2198.72(+) 1.27(+)
DFJSP-50 3180.22 1.12 3210.64(+) 1.16(+)
DFJSP-100 6254.50 1.31 6379.46(+) 1.29(=)

DFJSP-1,000 52241.50 1.07 52976.96(+) 1.13(+)
DFJSP-2,000 107374.00 1.03 112951.21(+) 1.09(+)
DFJSP-5,000 266537.53 1.16 269792.68(+) 1.23(+)

E
p

is
o

d
ic

 R
et

u
rn

s

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.7

0.3

0.5

0.8

0 200 400 600 800 1000
Episodes

0 200 400 600 800 1000
Episodes

Utilization level = 0.95 Utilization level = 0.85

LaRL LaRL_HR Convergence line

Figure 4: Episodic return curves of LaRL and
LaRL HR under two utilization levels, with
smoothed returns (lines) and deviation (shade).

achieves faster convergence. This validates that our LLM-guided reward model not only enhances
credit assignment under sparse feedback but also adapts well to varying scheduling intensities.

5.2.6 IMPACT OF LLM CHOICE

To evaluate the impact of different LLMs on the performance of LaRL, we compare LaRL
using Qwen-max (default), DeepSeek-V3, and ChatGPT-3.5 on the benchmark-based datasets.

Table 5: Comparison of LaRL using different
LLMs on the benchmark-based datasets.

Datasets DFJSP-30 DFJSP-50 DFJSP-100

Algorithm Mspan WR Mspan WR Mspan WR

Deepseek-V3 2152.00 1.16 3190.88 1.12 6341.75 1.26
ChatGPT-3.5 2092.60 1.05 3079.00 1.13 6217.67 1.21
Qwen-max 2141.00 1.15 3180.22 1.12 6254.50 1.31

As shown in Table 5, although all variants
benefit from LLM, stronger models such as
ChatGPT-3.5 achieve lower average makespan
and balanced workload. Qwen-max, adopted
as the default because of its strong open-
source accessibility and stable reasoning qual-
ity, achieves competitive performance across all
settings. These results suggest that LaRL is ro-
bust to LLM choice and can further improve
when equipped with more powerful models,
highlighting its potential as a scalable frame-
work for practical deployment.

5.2.7 ANALYSIS OF TIME COMPLEXITY

Let n denote the number of jobs, m the number of machines per factory, l the number of factories,
d the average number of ready operations per machine, and v the embedding dimension. Heuristics
run in O(nlogn) to O(nm), while the metaheuristic RMA has a complexity of O(nmg) with g as
the population size. RL-based baselines typically involve per-step policy inference with complexity
O(v2) and O(lvn2). LaRL introduces additional cost from the LLM-based factory assignment and
GAT-based multi-agent scheduling, leading to an overall complexity of O(TLLM + ldv2). Despite
this, LaRL remains highly efficient in practice, as the LLM is only invoked when new jobs arrive,
and the scheduling decisions are made locally within each factory. More runtime cost comparisons
are provided in Appendix F.1.

5.2.8 MORE EXPERIMENTS ARE IN THE APPENDIX

More experiments include evaluations on fewer machines (i.e., five machines per factory)
(Appendix F.2), choice of GNN architectures(Appendix F.3), and interpretability of factory assign-
ment (Appendix F.4). Additionally, practical applications of LaRL are discussed in Appendix G.

6 CONCLUSION

This paper addresses two core challenges: limited effective global coordination and the difficulty of
credit assignment under sparse rewards. To this end, we propose an LLM-assisted RL algorithm,
LaRL, which leverages the reasoning capability and domain knowledge of LLMs to guide factory
assignment and construct multi-factor rewards. LaRL improves coordinated scheduling and efficient
training, yielding better makespan and workload balance across scales.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

All authors affirm that we have read and adhered to the ICLR Code of Ethics. Our study focuses on
algorithmic development for distributed flexible job-shop scheduling using reinforcement learning
and large language models. The datasets employed in our experiments are either publicly available
benchmark datasets (Hurink and Brandimarte) or simulation-based synthetic instances, which do
not involve human subjects, sensitive personal data, or identifiable information. No ethical concerns
related to privacy, security, discrimination, or fairness are raised by our research. The proposed
methods are intended to improve manufacturing efficiency in distributed scheduling environments
and are not designed for harmful applications. All experiments comply with principles of research
integrity, and no conflicts of interest or external sponsorships affect the reported results.

REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our work. All experimental setups,
parameter configurations, and evaluation criteria are described in Section 5.1 and Appendix E. The-
oretical assumptions and complete proofs of our main results are provided in Appendix C. Details
of feature design, prompt construction, and training procedures are documented in Appendix A–D.
To further support reproducibility, we release our full source code and experimental scripts via an
anonymous repository (link provided in the abstract). These resources collectively ensure that our
results can be independently verified and extended.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Stéphane Boucheron, Gábor Lugosi, and Olivier Bousquet. Concentration inequalities. In Summer
school on machine learning, pp. 208–240. Springer, 2003.

Paolo Brandimarte. Routing and scheduling in a flexible job shop by tabu search. Annals of Opera-
tions research, 41(3):157–183, 1993.

Yonathan Efroni, Nadav Merlis, and Shie Mannor. Reinforcement learning with trajectory feedback.
In Proceedings of the AAAI conference on artificial intelligence, volume 35, pp. 7288–7295, 2021.

Mohammed Sharafath Abdul Hameed and Andreas Schwung. Graph neural networks-based sched-
uler for production planning problems using reinforcement learning. Journal of Manufacturing
Systems, 69:91–102, 2023.

Jiang-Ping Huang, Liang Gao, and Xin-Yu Li. An end-to-end deep reinforcement learning method
based on graph neural network for distributed job-shop scheduling problem. Expert Systems with
Applications, 238:121756, 2024a.

Jiang-Ping Huang, Liang Gao, and Xin-Yu Li. A hierarchical multi-action deep reinforcement learn-
ing method for dynamic distributed job-shop scheduling problem with job arrivals. IEEE Trans-
actions on Automation Science and Engineering, 2024b.

Johann Hurink, Bernd Jurisch, and Monika Thole. Tabu search for the job-shop scheduling problem
with multi-purpose machines. Operations-Research-Spektrum, 15:205–215, 1994.

Shun Ito, Kazuho Kanahara, Tetsuya Oda, and Kengo Katayama. An extended neh based method for
permutation flowshop scheduling problem. In Proceedings of the 10th International Conference
on Computer and Communications Management, ICCCM ’22, pp. 252–256, New York, NY, USA,
2022. Association for Computing Machinery. ISBN 9781450396349.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
models for code generation. arXiv preprint arXiv:2406.00515, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Kun Lei, Peng Guo, Yi Wang, Jian Zhang, Xiangyin Meng, and Linmao Qian. Large-scale dynamic
scheduling for flexible job-shop with random arrivals of new jobs by hierarchical reinforcement
learning. IEEE Transactions on Industrial Informatics, 20(1):1007–1018, 2023.

Yong Lei, Qianwang Deng, Mengqi Liao, and Shuocheng Gao. Deep reinforcement learning for dy-
namic distributed job shop scheduling problem with transfers. Expert Systems with Applications,
251:123970, 2024.

Longkang Li, Siyuan Liang, Zihao Zhu, Chris Ding, Hongyuan Zha, and Baoyuan Wu. Learning to
optimize permutation flow shop scheduling via graph-based imitation learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 38, pp. 20185–20193, 2024.

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi Zhang, Joydeep Biswas, and Peter Stone.
Llm+ p: Empowering large language models with optimal planning proficiency. arXiv preprint
arXiv:2304.11477, 2023.

Yun Qu, Yuhang Jiang, Boyuan Wang, Yixiu Mao, Cheems Wang, Chang Liu, and Xiangyang
Ji. Latent reward: Llm-empowered credit assignment in episodic reinforcement learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pp. 20095–20103,
2025.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Donald L Snyder and Michael I Miller. Random point processes in time and space. Springer Science
& Business Media, 2012.

James H Stock. Asymptotic properties of least squares estimators of cointegrating vectors. Econo-
metrica: Journal of the Econometric Society, pp. 1035–1056, 1987.

Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati. On
the planning abilities of large language models - a critical investigation. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neu-
ral Information Processing Systems, volume 36, pp. 75993–76005. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/efb2072a358cefb75886a315a6fcf880-Paper-Conference.pdf.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=rJXMpikCZ.

Cuiyu Wang, Mengxi Wei, Qihao Liu, Xinjian Zhang, and Xinyu Li. An improved adaptive hybrid
algorithm for solving distributed flexible job shop scheduling problem. Swarm and Evolutionary
Computation, 94:101873, 2025a.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
Frontiers of Computer Science, 18(6):186345, 2024.

Rongkai Wang, Yiyang Jing, Chaojie Gu, Shibo He, and Jiming Chen. End-to-end multitarget
flexible job shop scheduling with deep reinforcement learning. IEEE Internet of Things Journal,
12(4):4420–4434, 2025b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Qi Yan, Hongfeng Wang, and Shengxiang Yang. A learning-assisted bi-population evolutionary
algorithm for distributed flexible job-shop scheduling with maintenance decisions. IEEE Trans-
actions on Evolutionary Computation, 2024.

Zelda B Zabinsky et al. Random search algorithms. Department of Industrial and Systems Engi-
neering, University of Washington, USA, pp. 34, 2009.

11

https://proceedings.neurips.cc/paper_files/paper/2023/file/efb2072a358cefb75886a315a6fcf880-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/efb2072a358cefb75886a315a6fcf880-Paper-Conference.pdf
https://openreview.net/forum?id=rJXMpikCZ

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Cong Zhang, Wen Song, Zhiguang Cao, Jie Zhang, Puay Siew Tan, and Xu Chi. Learning to
dispatch for job shop scheduling via deep reinforcement learning. Advances in neural information
processing systems, 33:1621–1632, 2020.

Danyang Zhang, Lu Chen, Situo Zhang, Hongshen Xu, Zihan Zhao, and Kai Yu. Large language
models are semi-parametric reinforcement learning agents. Advances in Neural Information Pro-
cessing Systems, 36:78227–78239, 2023a.

Fangfang Zhang, Yi Mei, and Mengjie Zhang. An investigation of terminal settings on multitask
multi-objective dynamic flexible job shop scheduling with genetic programming. In Proceedings
of the companion conference on genetic and evolutionary computation, pp. 259–262, 2023b.

Zhengpei Zhang, Yaping Fu, Kaizhou Gao, Quanke Pan, and Min Huang. A learning-driven multi-
objective cooperative artificial bee colony algorithm for distributed flexible job shop scheduling
problems with preventive maintenance and transportation operations. Computers & Industrial
Engineering, 196:110484, 2024.

Fuqing Zhao, Yuqing Du, Changxue Zhuang, Ling Wang, and Yang Yu. An iterative greedy al-
gorithm for solving a multiobjective distributed assembly flexible job shop scheduling problem
with fuzzy processing time. IEEE Transactions on Cybernetics, 55(5):2302–2315, 2025. doi:
10.1109/TCYB.2025.3538007.

Li Zhong, Zilong Wang, and Jingbo Shang. Debug like a human: A large language model debugger
via verifying runtime execution step by step. In Findings of the Association for Computational
Linguistics ACL 2024, pp. 851–870, 2024.

Nan Zhu, Guiliang Gong, Dian Lu, Dan Huang, Ningtao Peng, and Hao Qi. An effective re-
formative memetic algorithm for distributed flexible job-shop scheduling problem with order
cancellation. Expert Systems with Applications, 237:121205, 2024. ISSN 0957-4174. doi:
https://doi.org/10.1016/j.eswa.2023.121205. URL https://www.sciencedirect.com/
science/article/pii/S0957417423017074.

12

https://www.sciencedirect.com/science/article/pii/S0957417423017074
https://www.sciencedirect.com/science/article/pii/S0957417423017074

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A LLM PROMPTS AND RESPONSE

We design our prompt following the chain-of-thought technique Wei et al. (2022). Below are the
prompt templates and problem description in the LLM-driven factory assignment.

Prompt Template

ROLE INSTRUCTION:
You are an intelligent planner in a multi-factory scheduling system. Your task is to assign
a newly arrived job to one of several factories, based on the job and factory attributes. You
should first analyze the situation in natural language (briefly), and then choose the best factory.
Your output must be **a single valid JSON object**, with exactly two keys:
1. ‘Analysis’: a brief explanation of your reasoning
2. ‘Factory’: the selected factory ID

Important rules:
- Your output must start directly with the curly brace
- Do NOT include any Markdown, code blocks, or extra text
- Do NOT write ‘json’, ‘Answer:’, or anything before or after the JSON
Example format:
{ Analysis: Factory 1 has the most idle machines and shortest
delay, Factory: 1 }

PROBLEM DESCRIPTION:
You are tasked with making job-to-factory assignment decisions in a distributed production
environment. The goal is to assign each newly arrived job to the most appropriate factory,
balancing the workload, avoiding overload, and considering potential delay risks. You should
make decisions based on the following attributes:

NEW JOB ATTRIBUTIONS:
The newly arrived job has the following attributes:
0: task ID (int): The ID of the task to which this new arrival job belongs.
1: weight, due (int): the weight of the job is weight, e.g.,(0: normal, 1: urgency).
1: arrival time (float): the time the job arrived in the system.
2: due date (float): the time the job is due to be completed.
3: expected time (float): the expected processing time of the job.
4: num operations (int): the number of operations required to complete the job.

FACTORY ATTRIBUTIONS:
Each factory has the following attributes:
0: id (int): The ID of the factory.
1: number machines (int): the number of machines in the factory.
2: average utilization (float): the average utilization of the machines in the factory.
3: assigned jobs (int): the number of jobs currently assigned to the factory.
4: earliest start time (list): the earliest available time of each machine in this factory.
5: idle ratios (float): the current proportion of idle machines.
6: estimated delay ratio (float): the proportion of expected delayed jobs.

Note:

1. Your output must start directly with the curly brace.
2. Do NOT include any Markdown, code blocks, or extra text.
3. Do NOT write ‘json’, ‘Answer:’, or anything before or after the JSON.

Below are the prompt templates and problem description in the LLM-informed reward model.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Prompt Template

ROLE INSTRUCTION:
You are good at understanding job shop scheduling problems and writing Python code. You
should fully understand the provided task and describe the exact observation and action form
at the current decision point. Then, based on your understanding and the goal of the problem,
analyze potential positive and negative behaviours or statuses that can be reflected in the ob-
servation and action. Finally, write an evaluation function that returns factors evaluating the
current status from different aspects.
Note:

1. Do not use information you are not given!
2. Focus on the most relevant evaluation factors and use information in observation as

little as possible.
3. The code should be as generic, complete and not contain omissions!
4. Avoid dividing by zero!
5. The input variable ‘states’ is a 3D tensor with shape (batch size, num factories ×

m, 20), representing the concatenated local observations from all factories; the input
variable ‘actions’ is a 2D tensor with shape (batch size, num factories), where each
entry indicates the index of the selected operation-machine pair or 0 if no action is
taken; m means the number of machines in each factory.

6. Please return a list of several evaluation factor arrays, each in the form of (batch size,
1).

7. Avoid all kinds of index out-of-bound errors! Always check index validity before
indexing into the observation or action tensor.

Please think step by step and must adhere to the following JSON format (just replace the ()
with your answer):

{
U n d e r s t a n d : (your t h o u g h t s a b o u t t h e t a s k) ,
Analyze : (a n a l y z e b e h a v i o r / s t a t u s in o b s e r v a t i o n / a c t i o n) ,
F u n c t i o n s : (d e f i n e t h e Python f u n c t i o n)

}

SELF-PROMPTING: You have generated several evaluation functions. Please summarize
them and generate a new evaluation function that incorporates all the evaluation factors. If
there are other important evaluation factors, please include them as well.

Problem Information of DFJSP

PROBLEM DESCRIPTION:
This is a distributed flexible job shop scheduling (DFJSP) with new job arrivals, involving the
following components:
0. **Problem Overview**
- Multiple jobs arrive dynamically and need to be scheduled across multiple factories.
- Each factory contains a unique set of machines. Each job must be fully processed within a
single factory.
- Each operation in a job can be assigned to one of several candidate machines, each with
different processing times.
1. **Scheduling Goal**:
- Learn a global scheduling strategy that minimizes the makespan across all jobs in all tasks.
2. **Task Definition**:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

- A task contains a set of jobs that must be scheduled jointly to optimize an objective.
3. **Job Structure**:
- Each job consists of a sequence of dependent operations.
- Each job is associated with:
- **Arrival time**: when the job becomes available for processing.
- **Due date**: the deadline by which the job should ideally be completed.
- **Weight**: a scalar indicating the urgency of the job; higher weights imply higher priority.
- These attributes affect the reward function and scheduling decisions.
4. **Operation Characteristics**:
- Each operation is only ready after all its preceding operations are completed.
- Each operation can be processed by a subset of machines in a factory, each with a distinct
processing time.
5. **Machine Attributes**:
- Each machine can process only one operation at a time.
- Processing times vary per operation.
6. **Factory Constraints**:
- Each factory has a set of machines and can independently process entire jobs.
- All operations of a job must be executed within the same factory.
7. **Agent Policy Design**:
To minimize global makespan, we propose using a multi-agent reinforcement learning
framework, where each factory is equipped with its own scheduling agents. Each agent
represents a machine in a factory and is responsible for scheduling operations within its
local factory scope, while indirectly cooperating to minimize makespan (time to complete
all jobs). These agents may coordinate or operate independently to make real-time decisions
for operation assignments within their local factory scope, while indirectly cooperating to
minimize makespan (time to complete all jobs).

STATE FORM:
The state is concatenated from the observations of all agents at each decision point. The
observations of each agent S ∈ Rm×20 is a matrix representation at each decision point,
where m denotes the maximum number of ready operations in the system at that time step.
Each row s[i, :] corresponds to a specific ready operation, and encodes both operation-level
and machine-level information relevant to decision making.
- S[i, : m+ 6]: Each row represents one ready operation. A ready operation is an unprocessed
operation whose all predecessor operations have been completed. If s[i, :] is a zero vector (i.e.,
all elements are 0), it indicates a **padding row** used to maintain a fixed input shape when
the number of ready operations is less than m.
- S[:, 0 : m]: A machine-operation processing time matrix. Each entry S[i, j] denotes the
processing time of the i-th ready operation on machine j. A value of 0 indicates that the
operation cannot be processed on that machine. Each row represents one ready operation.

- S[:,m : m+ 6]: Operation-level features for each ready operation:

1. Job ID to which the operation belongs.
2. Job weight (priority) for the operation.
3. Average processing time of this operation across all candidate machines.
4. Number of machines that can process this operation.
5. Number of remaining unprocessed operations in the same job.
6. Estimated tardiness of the job.

- S[:,m+ 6 :]: Machine and factory-level features relevant to the operation:

1. Current utilization of the candidate machine.
2. Current workload of each machine.
3. Earliest available time of each machine.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

4. Factory ID to which the corresponding job has been assigned.

This unified representation captures both compatibility between ready operations and ma-
chines, as well as global scheduling context, enabling reinforcement learning agents to
make informed and efficient scheduling decisions under dynamic job arrivals and machine
disturbances.

ACTION FORM:
The dimensions of the multi-agent action are equal to the number of factories in the system.
Each dimension corresponds to a specific factory and represents the operation-machine
assignment selected by the agent within that factory at the current decision point. Specifically,
the value in each dimension is an integer between 0 and 101, where a non-zero value indicates
the index of the selected operation-machine pair to be processed, and 0 means that the agent
chooses not to process any operations at that decision point.

An example generated by LLM-informed reward model

Understand:
The task is a distributed flexible job shop scheduling problem with dynamic job arrivals,
aiming to minimize the global makespan. Observations include machine-operation compat-
ibility, job attributes, and factory constraints. Actions assign operations to machines within
factories. Evaluation should consider workload balance, machine utilization, prioritization
of high-weight jobs, tardiness minimization, and padding row ratios to assess system efficiency.

Summary:
Initial evaluation functions analyzed factors like workload variance across factories, average
weighted tardiness, machine utilization, and padding row ratios. These metrics reflect balanced
resource allocation, adherence to job urgency, operational efficiency, and underutilization of
ready operations. A comprehensive function should integrate these aspects while avoiding
redundancy and ensuring numerical stability.

Function:

def evaluation_func(states, actions):
batch_size, total_rows, features = states.shape
num_factories = actions.shape[1]
m = total_rows // num_factories
workload_variance = torch.zeros((batch_size, 1), dtype=torch.float32)
avg_weighted_tardiness = torch.zeros((batch_size, 1), dtype=torch.float32)
machine_utilization = torch.zeros((batch_size, 1), dtype=torch.float32)
padding_ratio = torch.zeros((batch_size, 1), dtype=torch.float32)
priority_alignment = torch.zeros((batch_size, 1), dtype=torch.float32)
for b in range(batch_size):

factory_workloads = []
total_padding = 0
total_operations = 0
weighted_tardiness_sum = 0
total_weights = 0
priority_sum = 0
for f in range(num_factories):

start_idx = f * m
end_idx = (f + 1) * m
factory_state = states[b, start_idx:end_idx, :]
padding_mask = torch.all(factory_state == 0, dim=1)
total_padding += torch.sum(padding_mask).item()
total_operations += m
if factory_state.shape[0] > 0:

machine_workload = torch.max(factory_state[:, m+6+2], dim=0)[0]
factory_workloads.append(machine_workload)

weights = factory_state[:, m+1]
tardiness = factory_state[:, m+5]
valid_mask = weights > 0

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

weighted_tardiness_sum += torch.sum(weights[valid_mask] * tardiness[
valid_mask]).item()

total_weights += torch.sum(weights[valid_mask]).item()
priority_sum += torch.sum(weights[valid_mask]).item()

if factory_workloads:
factory_workloads = torch.stack(factory_workloads)
workload_variance[b] = torch.var(factory_workloads)

if total_weights > 0:
avg_weighted_tardiness[b] = weighted_tardiness_sum / total_weights
priority_alignment[b] = priority_sum / total_weights

if total_operations > 0:
padding_ratio[b] = total_padding / total_operations
machine_utilization[b] = 1 - padding_ratio[b]

return [workload_variance, avg_weighted_tardiness, machine_utilization, padding_ratio
, priority_alignment]

B FEATURE MATRICES

At each step t, the operation feature matrix F o
y and machine featur matrix Fm

t are defined as follows:

The operation features matrix F o
y : For each ready operation, the feature vector has six elements:

1. job ID: the ID number of the ready operation to which the job belongs.
2. weight: the weight of the ready operation to which the job belongs.
3. processing time: the average processing time of the operation on its candidate machine.
4. number of candidate machines: the number of candidate machines for the ready operation.
5. number of unscheduled operation: the number of remaining unprocessed operations of the

job to which the operation belongs.
6. tardiness: expected tardiness probability of the job to which the ready operation belongs.

The machine feature matrix Fm
t : For each machine, the feature vector has three elements:

1. utilization: the ratio of the busy time of the machine to the total production time.
2. workload: the total processing time of all allocated operations to the machine.
3. available time: the time when the machine to complete the last operation assigned to it.
4. flag: the ID of the factory to which this machine belongs.

C PROOF

We follow a standard regularized regression generalization analysis using tools from concentration
inequalities Boucheron et al. (2003) and properties of least-squares estimators Stock (1987).

Notations. Let φ(s, a) ∈ RD be the symbolic evaluation vector derived from the LLM-informed
function, r(s, a) be the true reward for state-action pair (s, a). f∗ : R → R means the ground-truth
reward mapping over φ(s, a), i.e., r(s, a) = f∗(φ(s, a)). r̂ϕ = ϕ⊤φ(s, a) is the predicted reward
and ϕ ∈ RD is the parameters of the reward model.

Assumptions. We assume the true reward satisfies r(s, a) = f∗(φ(s, a)) = ϕ∗⊤φ(s, a), i.e., the
reward is a linear function of the evaluation factor vector φ(s, a).

Proof of Theorem 1: The proof can be divided into three main steps. In the first step, we collect a
dataset of k samples {(φi, ri)}ki=1, where φi := φ(si, ai), and train φ̂ via φ̂ = argminϕ

∑k
i=1(ri−

ϕ⊤φi)
2 + λ||ϕ||2. Then the solution can be obtained as shown in Eq. (9).

ϕ̂ = A−1
K (

k∑
i=1

φiri), Ak =

k∑
i=1

φiφi⊤+ λI (9)

where Ak ∈ RD×D is the regularized design matrix and λ > 0 is regularization coefficient.

In the second step, we can obtain the error vector over collected samples as ϵi := ri − r̂ϕ(si, ai) =

ϕ∗⊤φi − ϕ̂⊤φi, and then ϵ = (ϕ∗ − ϕ̂)⊤φi. Therefore, the squared weighted norm of the error is

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

shown in Eq.(10).
||r − r̂ϕ||2Ak

= (ϕ∗ − ϕ̂)⊤Ak(ϕ
∗ − ϕ̂) (10)

In the third step, let ||φs, a|| ≤ T and ||ϕ ∗ || ≤ 1 according to the bound for regularized linear
regression under bounded norm assumption, and then with probability at least 1− δ, we can obtain

||ϕ∗ − ϕ̂||Ak
≤

√
Dlog(1 + kT 2

λδ) +
√
λD. Based on this, we can yield the bound, as shown in Eq.

(11).

∥r − r̂ϕ∥Ak
≤ ∥ϕ∗ − ϕ̂∥Ak

· ∥φ∥ ≤
(√

D log
(
1 + kT 2

λδ

)
+

√
λD

)
· T (11)

To make the bound consistent with the units of accumulated reward over episodes of length T , we

apply a scaling factor to Eq. (11) and conclude ||r − r̂ϕ||Ak
≤

√
TD log(1 + kT 2

λδ) +
√
λD. This

completes the proof.

Notations. Let the system have n factories and the load vector at time t be Lt = [L1
t , . . . , L

n
t], where

each component represents the total remaining processing time at factory Fi. At each time t, a job
Jt is drawn from distribution DJ with p(Jt) ∈ [0, pmax. Let π∗(Jt) assign the job to the factory F ∗

with the lowest current load: F ∗ = argmini∈[n] L
i
t. Let πLLM (Jt) be the assignment produced by

the LLM via structured prompt reasoning, and the error indicator as δt = I[πLLM (Jt)] ̸= π∗(Jt)].

Assumptions. Assume that the misassignment rate is bounded in expectation, i.e., E[δt] ≤ ϵ. This
captures the cases where the LLM, while not always optimal, makes errors with controlled frequency
under the job distribution.

Proof of Theorem 2: The proof can be divided into two main steps. In the first step, let the factory
assignment at time t be ft = πLLM (Jt), then the workload can be updated as shown in Eq.(12):

Lft
t+1 = Lft

t + pt, L
i
t+1 = Li

t ∀i ̸= fi (12)

In the second step, we calculate the mean workload as L̄t =
1
n

∑n
i=1 L

i
t and define the variance as

V ar(Lt) =
1
n

∑n
i=1(L

i
t − L̄t)

2. Now, we consider two cases:

1. If πLLM (Jt) = π∗(Jt), then ft = f∗, and load variance decreases or stays constant (as the
most underloaded factory receives the new job);

2. If LLM chooses the wrong factory ft ̸= f∗, then the most loaded factory may be chosen,
increasing variance.

Based on the above cases, we analyze the expected change in variance as:

E[V ar(Lt+1)] = E[V ar(Lt)] + ∆t (13)

where ∆t ≤ ϵ · p2max − 1
T · Eπ∗ [V ar(Lt)− V ar(Lt+!)]. Over T time steps, the summing variance

increments can be obtained as Eq.(14).

E[V ar(Lt+1)] ≤ V ar(L0) + T · ϵ · p2max −
T∑

t=1

c

t
(14)

By the standard estimate of the harmonic series, we have
∑T

t=1
1
t = log T + γ + o(1), hence∑T

t=1
1
t ∼ log T . Based on this, we approximate E[V ar(LT)] ≤ C

T + ϵ3 · p2max. This completes
the proof.

D TRAINING DETAILS

We adopt Proximal Policy Optimization (PPO) (Schulman et al., 2017) as the policy learning algo-
rithm. The overall objective combines a clipped surrogate policy loss Lp(t), a value function loss
Lvalue(t), and an entropy regularization term H(πθ(·|st)), as defined in Eq. (15).

L = Et

[
Lp(t) + cv Lvalue(t)− ce H(πθ(·|st))

]
, (15)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

where cv and ce are the value loss and entropy coefficients, respectively. Lp(t) =

Et

[
min

(
rt(θ) Ât, clip(rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
. Here, rt(θ) =

πθ(at|st)
πθold

(at|st) is the probability ratio

between the current and previous policies, and Ât denotes the advantage estimate computed using
Generalized Advantage Estimation (GAE) to reduce variance and stabilize training. Lvalue(t) mea-
sures the mean squared error between predicted state values and target returns. Based on the PPO
objective defined above, the overall training process for LaRL is summarized in Algorithm 1.

Algorithm 1: Framework of the training process
1 πθ1 , . . . , πθl ← Initialize the agent policies for all factories;
2 Vψ ← Initialize the centralized critic network with parameters ψ;
3 fφ ← Initialize the surrogate model with learnable parameters φ;
4 B ← Initialize a replay buffer for storing experience data of agents;
5 for i← 1 to the maximum training episodes T do
6 for t← 1 to the maximum steps completing all jobs do
7 at ← Decide a joint action by the agent policies based on the current state st;
8 st+1 ← Execute at and transfer to new state;
9 rt ← Calculate the proxy reward by the surrogate model fφ;

10 Store the trajectory ⟨st, at, rt, st+1⟩ in B;
11 end
12 if the number of trajectories in B ≥ preset threshold then
13 Estimate value targets and advantages using Vψ;
14 Update the agent policies via policy gradient using eq. (15);
15 Update the critic network Vψ by minimizing value loss;
16 Update the surrogate model fφ;
17 end
18 end
19 return the optimal agent policies.

The training process begins by initializing the agent policies for all factories, the centralized critic,
and the surrogate model, together with a replay buffer for storing interaction data (lines 1-4). During
each episode, agents first select joint actions according to their current policies (line 7). Then, they
interact with the environment to obtain the next state and the proxy reward from the surrogate model
(lines 8-9). After that, the resulting trajectories are stored in the replay buffer (line 10). When the
buffer reaches the preset threshold, the agent policies and surrogate model are updated based on the
stored trajectories (lines 13-16). By repeating these steps, the optimal agent policies can be obtained.

E MORE DETAILS OF EXPERIMENT STEP

(1) Dataset Details

Benchmark-based dataset. Due to the absence of standard benchmarks specifically tailored for the
DFJSP with new job arrivals, we follow the established convention in the scheduling community Yan
et al. (2024) to adjust classical static benchmarks for our setting. In particular, we extend the well-
known Hurink Hurink et al. (1994) and Brandimarte Brandimarte (1993) benchmarks by introducing
stochastic job arrival processes and configuring multiple factories. Concretely, we simulate dynamic
arrivals by assuming jobs arrive according to a Poisson process, and jobs are dispatched to factories
with identical machine configurations. We construct three datasets, i.e., DFJSP-30, DFJSP-50, and
DFJSP-100, based on these benchmarks, where the number in the dataset name denotes the number
of dynamically arriving jobs.
Simulation-based datasets. To assess the scalability and generalization of our approach in large-
scale and multi-task environments, we construct three simulation-based datasets: DFJSP-1,000,
DFJSP-2,000, and DFJSP-5,000. There are 30 different instances with different seeds. In each
instance, all jobs arrive sequentially following a Poisson distribution Snyder & Miller (2012). Each
job consists of 1 to 10 operations, each operation can be processed by 1 to 10 candidate machines,
and processing times are randomly sampled from 1 to 99. The due date is determined as 1.5 times
the total processing time added to the arrival time Zhang et al. (2023b). Following standard prac-
tices Lei et al. (2023), we control the job arrival frequency and machine load via a utilization level
parameter, which is set to 0.75, 0.85, or 0.95 across different scenarios.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 6: All main hyperparameter settings used in our LaRL.

Component Value / Setting
Policy Training

Batch size 128
Learning rate (policy) 1× 10−4

Learning rate decay 0.96 per epoch
GAT output dimension 8
Optimizer Adam (β1=0.9, β2=0.99)

Reward Model

Hidden layer 3-layer MLP
Hidden size 256
Activation function ReLU
Reward model learning rate 5× 10−4

LLM Parameters

Model Qwen-max
LLM temperature (assignment) 0.0
LLM temperature (reward generation) 1.0
LLM temperature (self-evolution phase) 0.3

(2) More details of parameter settings

To ensure stable and consistent decision-making in job-factory assignment, we set the LLM tem-
perature to 0.0, preventing randomness in the output and promoting deterministic behavior across
similar prompts. In contrast, the LLM-based reward function generation leverages controlled ran-
domness to improve exploration. Specifically, we adopt a higher temperature of 1.0 in the initial
generation phase to encourage diverse evaluation factor proposals. During the self-evolution phase,
the temperature is reduced to 0.3 to guide the model toward convergence while retaining limited
variability. These configurations are in line with prior work on symbolic reasoning with LLMs Qu
et al. (2025). All detailed settings in LaRL are summarized in Table 6. All experiments were con-
ducted on a workstation equipped with an NVIDIA GeForce RTX 3090 GPU. The LLM API used
for both factory assignment and reward generation is Qwen-max, accessed via the official API. More
details are available at: https://anonymous.4open.science/r/LaRL-407B.

F MORE EXPERIMENTS

F.1 EVALUATION ON TIME COST

Table 7: Average training and evaluation time cost (in
seconds) for each algorithm on the instances with 100
jobs. 0 indicates the algorithms do not require training.

Method Training Time Evaluation Time
RS 0 0.29
PBIGA 0 77.97
AR SPT 0 0.24
RMA 0 76.39
PPOS 21.76 13.75
P-G 40.21 27.41
LaRL (w/o LLM) 39.83 11.83
LaRL (w/LLM) 269.95 299.02

To fairly evaluate computational effi-
ciency, we report both the full runtime,
including LLM communication over-
head (w/LLM), and the pure scheduling
time, excluding API latency (w/o LLM).
As shown in Table 7, LaRL achieves
a competitive runtime compared with
other RL-based algorithms in the w/o
LLM setting. Although its training time
is slightly higher than PPOS because
of an additional MLP-based surrogate
reward model, it remains comparable
to GNN-based algorithms such as P-G.
Regarding evaluation time, LaRL (w/o
LLM) is lower cost than P-G and close
to PPOS, demonstrating its efficiency in

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

inference and policy execution. The ad-
ditional time cost observed in the w/LLM configuration stems from remote LLM calls during factory
assignment. This overhead is largely external to the algorithmic design and can be substantially re-
duced in practical deployment via local hosting or caching. Notably, this cost enables globally
coordinated assignments and interpretable reward modeling, which conventional RL methods lack.
Therefore, the reported results indicate that LaRL achieves a reasonable trade-off between schedul-
ing performance and computational cost.

F.2 EFFECT OF VARYING THE NUMBER OF MACHINES

Table 8: Comparative results under the configuration of
two factories and five machines per factory.

No. of jobs 1,000 2,000 5,000

Algorithm Mspan WR Mspan WR Mspan WR

AR SPT 57294.13 1.67 116706.43 1.40 292208.52 1.78
RMA 57374.25 1.58 116279.55 1.97 302389.01 2.03
P-G 57140.22 1.29 114192.40 1.24 292882.45 1.71

LaRL(Ours) 57010.48 1.12 113258.88 1.18 289522.03 1.22

Table 8 reports the comparative results
on large-scale instances with the con-
figuration of five machines per factory.
We compare LaRL with three repre-
sentative algorithms, including AR SPT
(heuristic), RMA (metaheuristic), and
P-G (RL-based), all of which demon-
strate outstanding performance among
their categories. Even under limited
machine resources, LaRL consistently
outperforms or matches the baselines
across all instances in both makespan
and workload ratio. Notably, the advan-
tages of LaRL become more evident as the problem scale increases, demonstrating its superior scal-
ability in resource-constrained environments. The results also highlight the effectiveness of LaRL
in maintaining workload balance under tighter scheduling capacities.

F.3 IMPACT OF GNN CHOICE

R
el

at
iv

e
G

ap
 (

%
)

1

2

3

4

5

0

104

105

30 50 100 1,000 2,000 5,000
Number of Jobs

LaRL (GIN)

LaRL (GCN)

LaRL (GAT)

Gap (|GCN-GAT|)

Gap (|GIN-GAT|)

A
v

er
ag

e
M

ak
es

p
an

Figure 5: Comparison of LaRL variants with three
different GNN backbones (i.e., GCN, GIN, GAT)
on instances with varying scale.

Figure 5 presents the comparison between
LaRL (GAT) and its two variants using GCN
and GIN, where the left Y-axis (log scale)
shows the average makespan; the right Y-axis
shows the relative gap (%) to LaRL(GAT).
Across all scales, LaRL-GCN consistently
underperforms GAT, confirming that simple
message passing struggles to capture com-
plex operation-machine relations. LaRL-GIN
achieves marginal gains over GAT on DFJSP-
100 and DFJSP-2000, but falls behind on the
remaining instances, especially as problem size
increases. These results highlight that the at-
tention mechanism of GAT is more suitable
for distributed scheduling tasks, as it dynam-
ically weighs operation-machine compatibility
and supports selective information aggregation under large-scale environments.

F.4 INTERPRETABILITY ANALYSIS

To better understand the behavior of the proposed LLM-driven factory assignment module, we per-
form a qualitative and quantitative analysis of the reasoning generated by the LLM during new job
arrivals. We record the LLM-generated reasoning text along with the selected factory IDs. As shown
in Table 9, the LLM provides interpretable factory assignment decisions by explicitly reasoning over
key factors such as idle ratio, utilization, job urgency, and estimated delays. This highlights its ability
to transparently capture system dynamics and support human-understandable scheduling rationales,
validating the effectiveness of our prompt-based design in enhancing decision interpretability.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 9: Representative reasoning results from the LLM-based factory assignment.

Job ID Reasoning Summary Factory

J1 Factory 1 has the highest idle ratio (1.0) and no assigned jobs, making
it the most available for processing the new job without delay risks. F1

J66

Factory 0 has a low average utilization, a high idle ratio, and fewer
assigned jobs, making it better suited to handle the new job without
risking delays. Factory 1, although having some idle machines, already
has more assigned jobs and shows signs of potential future load.

F0

J100

Factory 0 has a higher idle ratio (0.8) compared to Factory 1 (0.7), in-
dicating more available capacity. Although both factories have similar
utilization, Factory 0 also has a lower estimated delay ratio (2.17 vs.
1.43 in Factory 1 is worse). However, the weight of the job is normal
and not urgent, so assigning it to the less loaded factory with better
availability makes sense for balanced workload distribution.

F0

G DISCUSSION

The integration of LLM into the scheduling pipeline, as demonstrated in LaRL, offers significant
performance improvements in makespan and workload balance. Although the use of LLMs intro-
duces additional inference overhead, LaRL remains practical for real-world manufacturing due to
its decision frequency and deployment flexibility. In many production settings, factory assignment
decisions are made at discrete intervals (e.g., upon new job arrivals), rather than at high frequency,
making the time cost of LLM reasoning acceptable in practice. More importantly, the semantic rea-
soning ability provided by LLM enables globally balanced job allocation and interpretable reward
shaping, which are critical for practical large-scale, dynamic environments. In addition, as LLMs
continue to evolve toward more lightweight and efficient variants, the proposed LaRL framework
offers a scalable foundation for intelligent scheduling systems in industrial applications.

H THE USE OF LARGE LANGUAGE MODELS

In preparing this manuscript, we used LLMs, specifically ChatGPT, as a writing assistant. The
LLM was employed to enhance the clarity, conciseness, and grammatical accuracy of the text, refine
phrasing, and ensure a consistent academic style across sections. It was also used to rephrase tech-
nical descriptions for better readability and to polish the final presentation of this work. LLMs were
not used for generating research ideas, designing algorithms, conducting experiments, or producing
theoretical results. All contributions were developed exclusively by the authors.

22

	Introduction
	Related Work
	Problem Definition
	Proposed Algorithm
	Overview
	LLM-Driven Factory Assignment
	Multi-Agent Collaborative Scheduling
	LLM-Informed Reward Model
	Theoretical Analysis

	Experiments
	Experimental Setup
	Results and Analysis
	Performance on instances with two factories
	Performance on instances with more factories
	Robustness to the frequency of job arrivals
	Ablation Study of the proposed LLM-driven factory assignment
	Ablation Study of the proposed LLM-informed reward model
	Impact of LLM choice
	Analysis of Time Complexity
	More Experiments Are in the Appendix

	Conclusion
	LLM Prompts and Response
	Feature Matrices
	Proof
	Training Details
	More Details of Experiment Step
	More Experiments
	Evaluation on Time Cost
	Effect of varying the number of machines
	Impact of GNN choice
	Interpretability analysis

	Discussion
	The use of large language models

