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ABSTRACT

The distributed flexible job-shop scheduling problem (DFJSP) involves coordinat-
ing job execution across distributed factories to achieve production goals. While
existing reinforcement learning (RL)-based scheduling methods have shown
promise in learning adaptive scheduling polices, they often rely on shallow net-
works and simple handcrafted rewards. These designs limit global state rea-
soning and accurate credit assignment under sparse rewards, thereby hindering
the ultimately balanced workload distribution and efficient policy learning. To
address these limitations, we propose a Large Language Model (LLM)-assisted
RL algorithm tailored for DFJSP by leveraging the contextual reasoning and
prior knowledge of LLM. Specifically, we propose an LLM-driven factory as-
signment mechanism that encodes global factory states and job features into
structured queries, enabling context-aware and effective coordination among fac-
tories. Furthermore, we design an LLM-informed reward model that encodes
scheduling-aware semantics into multi-dimensional proxy rewards for precise
credit assignment during training. Theoretically, we provide a bound on the re-
ward approximation error and prove that the proposed assignment strategy ef-
fectively reduces global workload variance. Extensive experiments conducted
on public benchmarks (i.e., Hurink and Brandimarte) and multiple simulated
DFJSP instances of varying scales demonstrate that our algorithm consistently
outperforms RL-based scheduling methods, achieving the average makespan im-
provement ranging from 0.61% up to 25.78%. Our source code is available at
https://anonymous.4open.science/r/LaRL-407B.

1 INTRODUCTION

Scheduling is a fundamental process that involves managing, coordinating, and optimizing the ex-
ecution of jobs and workload in a manufacturing system (Li et al., 2024). Among various schedul-
ing problems, the distributed flexible job-shop scheduling problem (DFJSP) has attracted signif-
icant attention because it supports geographically distributed production, aligning with modern
trends (Huang et al., 2024a). In DFJSP, a set of jobs is assigned to multiple factories to optimize
the desired objective (such as makespan or tardiness), after which each job is processed on a group
of machines within the assigned factory based on the predefined operation sequence (Zhang et al.,
2024). In practice, DFJSP is often subject to unexpected disturbances, especially in custom manu-
facturing companies, where flexible order placement leads to frequent new job arrivals (Huang et al.,
2024b). Therefore, it is critical for these companies to develop effective scheduling algorithms to
ensure production efficiency in uncertain environments.

Existing scheduling algorithms can generally be divided into three categories: metaheuristics,
heuristics, and reinforcement learning (RL)-based. Metaheuristics (Wang et al., 2025a) explore
approximate solutions by iteratively evolving a population of solutions. Heuristics (Ito et al., 2022)
obtain feasible solutions by assigning priorities to jobs and factories based on specific criteria. Al-
though the above algorithms can provide reasonable solutions, they typically rely on handcrafted
rules and struggle to generalize across different scenarios. Recently, reinforcement learning (RL)
has shown strong potential in eliminating handcrafted heuristics and enhancing adaptability in di-
verse scheduling scenarios (Zhang et al., 2020). RL-based scheduling algorithms can automatically
learn a scheduling policy from experience to optimize long-term performance (Lei et al., 2023). One
popular line is RL-based heuristic selection (Lei et al., 2024), which leverages RL to select among
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predefined heuristics based on states. Another line adopts end-to-end learning (Huang et al., 2024a),
where the policy is directly learned from raw features without relying on handcrafted heuristics.

While these RL-based algorithms demonstrate promising results, they still face critical challenges
in global coordination and reward design for solving DFJSP. First, how to enable global coordi-
nation under limited state reasoning? Most RL-based scheduling algorithms assume that factory
assignment is handled by shallow policy networks (Huang et al., 2024b) or simple heuristics (e.g.,
earliest available time and minimum transfer time) (Lei et al., 2024). These approaches lack suf-
ficient state reasoning capacity to capture the global relationships between factories, resulting in
poor coordination and load imbalance. Second, how to achieve effective credit assignment under
spare reward? Existing algorithms often manually design scalar rewards based on the scheduling
objectives (Hameed & Schwung, 2023; Lei et al., 2024). However, since these objectives typically
depend on a complete scheduling cycle, most intermediate actions receive no meaningful feedback
during execution. This leads to ambiguous credit assignment, making it difficult for the agent to
distinguish beneficial actions and hindering overall learning efficiency (Qu et al., 2025).

LLMs have shown strong capabilities in capturing global context and reasoning over structured in-
puts (Achiam et al., 2023), making them well-suited for effectively addressing the challenges of
coordination and credit assignment in complex scheduling tasks. Motivated by these, we propose an
LLM-assisted RL algorithm, LaRL, to facilitate global coordination among factories and adaptive
reward design for solving the DFJSP with new job arrivals. Our main contributions can be summa-
rized as follows: 1) We propose an LLM-driven factory assignment mechanism that leverages the
contextual reasoning of LLMs to dynamically allocate new jobs based on global factory workload
and job characteristics. This facilitates better global coordination and a more balanced workload of
factories compared to shallow networks and heuristics. 2) We propose an LLM-informed reward
model that exploits the prior knowledge of LLM to generate multifaceted proxy rewards for each
action. This allows timely and informative feedback during execution, enabling more precise credit
assignment under sparse reward compared to manual scalar rewards for scheduling. 3) We evaluate
LaRL on 167 DFJSP instances with six scales. The extensive experimental results demonstrate that
LaRL significantly outperforms state-of-the-art metaheuristics, heuristics, and RL algorithms, and
shows promising generalization to instances that are much larger than those used in training.

2 RELATED WORK

Scheduling algorithms for DFJSP. Exist scheduling algorithms for DFJSP include metaheuris-
tics, heuristics, and RL-based algorithms. Among them, metaheuristics, such as the memetic algo-
rithm (Zhu et al., 2024), search for high-quality schedules by balancing global exploration and local
exploitation. Over the last few years, various heuristics have been designed for DFJSP. For example,
random search (Zabinsky et al., 2009) explores the solution space by uniformly sampling feasible
solutions. Iterated greedy (Zhao et al., 2025) improves initial solutions through iterative destruction
and reconstruction mechanisms. Dispatching rules (Huang et al., 2024b) prioritize operations or
machines based on predefined rules. However, these methods often rely on handcrafted rules and
lack adaptability in dynamic environments. With the development of RL, researchers have shifted to
RL-based algorithms. Lei et al. (Lei et al., 2024) proposed a heuristic selection framework to choose
among predefined heuristics based on the current state. Wang et al. (Wang et al., 2025b) introduced
an end-to-end policy learning approach that directly maps raw environment features to scheduling
actions. However, these RL-based algorithms still face challenges in achieving global coordination
across factories and in credit assignment under sparse rewards. This paper addresses the challenges
via an end-to-end algorithm integrating global assignment and enhanced reward modeling.
LLMs-assisted decision-making. LLMs have recently emerged as powerful tools for com-
plex decision-making tasks because of their advanced reasoning abilities and rich prior knowl-
edge (Achiam et al., 2023). In particular, some recent studies have applied LLMs as planners to
make decisions through APIs or predefined skills (Wang et al., 2024; Zhang et al., 2023a). For
example, Liu et al. (Liu et al., 2023) encode problem descriptions into a formal prompt to achieve
long-horizon planning. Valmeekam et al. (Valmeekam et al., 2023) highlight the potential of LLMs
in structured planning tasks. Beyond their planning capabilities, LLMs possess remarkable code
generation ability that facilitates the automation of function design and decision (Jiang et al., 2024).
Recent works have shown that LLMs can generate, debug, and optimize code snippets, significantly
accelerating development cycles (Zhong et al., 2024). Inspired by these promising works, we pro-
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pose leveraging the dual strengths of LLMs in planning and code generation to assist RL in solving
DFJSP, aiming to improve effectiveness and learning efficiency in dynamic environments.

3 PROBLEM DEFINITION

In DFJSP with new job arrivals, there are n successively arriving jobs to be processed on l distributed
factories, to optimize a scheduling objective (e.g., makespan in this paper). Each factory Ff (0 ≤
f < l) is equipped with Mf machines, and each job Ji(1 ≤ i ≤ n) has a sequence of k operations.
Each operation Oij(1 ≤ j ≤ k) is assigned to one of its candidate machines, with its processing
time (pij) depending on the selected machine. Solving DFJSP involves three key tasks: 1) assigning
each new job to a specific factory; 2) selecting a machine for each operation within the assigned
factory; and 3) determining the processing sequence of operations on each machine. After the above
tasks, we can derive a schedule, i.e., the start times (Sij) of each operation and their corresponding
machine assignments, such that the makespan Cmax = maxij{Cij = Sij + pij} is minimized
subject to all constraints. In line with prior work (Lei et al., 2024), some assumptions are adopted
as follows: 1) The transfer time of jobs is neglected. 2) All factories and machines are available at
time zero. 3) Each machine can only process one operation at a time. 4) Each operation must be
processed without interruption. 5) Each operation cannot be started until its previous operation is
completed. In summary, DFJSP aims to assign new jobs to distributed factories and schedule their
operations on machines to minimize makespan. The dynamic and sequential nature of DFJSP makes
it well-suited for RL frameworks, which motivates our formalization as a Markov decision process.

4 PROPOSED ALGORITHM

This section presents the proposed LLM-assisted RL algorithm, LaRL, for DFJSP with new job
arrivals. We begin with an overview of LaRL, followed by its three components: LLM-driven
factory assignment, multi-agent collaborative scheduling, and LLM-informed reward model.

LLM-Driven 
Factory Assignment

LLM-Informed 
Reward Model

Multi-Agent 
Collaborative Scheduling
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Figure 1: Overview of LaRL, which consists of three main components: (1) LLM-driven factory
assignment assigns newly arrived jobs to factories by reasoning over the structured environment
prompt consisting of the global factories state and new jobs attributions. (2) Multi-agent collabo-
rative scheduling selects operation-machine pairs at within each factory based on the local observa-
tions st, and the trajectories are collected for training. (3) LLM-informed reward model generates
proxy rewards using a learned surrogate model fϕ, which leverages the evaluation function ϕ gen-
erated by LLM to decompose action contributions across multiple dimensions.

4.1 OVERVIEW

As shown in Figure 1, LaRL consists of three components. First, LaRL uses LLM to guide job-
factory assignment by encoding real-time states (e.g., load, availability, job features) into structured

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

prompts, and infers the most suitable factory via semantic reasoning. Second, factory-specific multi-
agent groups select operation-machine pairs based on local observations in a decentralized manner.
Third, to address sparse rewards, we introduce an LLM-informed reward model. Specifically, the
LLM defines a semantically interpretable evaluation function mapping state-action pairs to mul-
tidimensional factors. We then train a surrogate model to estimate proxy rewards. This enables
more accurate attribution of action contributions, facilitating stable and efficient policy learning.
Our approach leverages the contextual understanding of LLMs to connect linguistic knowledge with
symbolic decision-making, enhancing both effectiveness and generalization in DFJSP environments.

4.2 LLM-DRIVEN FACTORY ASSIGNMENT

To address the challenge of global coordination in DFJSP with new job arrivals, we propose an
LLM-driven factory assignment mechanism that leverages the contextual reasoning capabilities and
domain knowledge embedded in LLM. This mechanism determines the most suitable factory for
each new job based on the global state, which is achieved by the following two steps 1) and 2).

1) Environmental prompt: The environment prompt serves to encode task-specific knowledge and
contextual cues into a structured format, enabling the LLM to perform interpretable reasoning over
the system state for decision-making. To this end, we construct the prompt P , defined as P =
Concat(R,G,A), where R denotes the role instruction assigning a role to LLM and describing the
problem profile and objectives, G = G1, . . . , Gl presents the global states of all l factories (e.g.,
workload, machine availability, and estimated delay ratio), A encodes all attributions of the new job
(e.g., weights, due date, and expected time).

2) LLM-based factory assignment: Given the constructed prompt, the LLM can evaluate the re-
lationship between the new job and each factory based on the encoded information, and generate
factory assignments, where both the selected factory ID and its analysis are returned in JSON for-
mat. The assignment result is then passed to the downstream multi-agent collaborative scheduling.
Our design not only enables more effective global coordination but also improves interpretability
compared to shallow networks and heuristics.

4.3 MULTI-AGENT COLLABORATIVE SCHEDULING

To enable efficient scheduling within each factory, we formulate the factory-level scheduling prob-
lem as a multi-agent decision process. Each agent selects an operation-machine pair based on local
observations using a designed policy, while coordination is ensured through centralized training.
The local observation, policy, and actions are set as follows.

1) Local observation: At decision step t, the agent of each factory Ff receives Of
t ∈ Rm×d, where m

is the number of machines, d is the feature dimension. Each row in Of
t represents a ready operation

and consists of the processing time matrix Pt, the operation feature matrix F o
t , and the machine

feature matrix Fm
t , i.e., Of

t = [Pt, ||F o
t ||Fm

t ]. To address the varying number of ready operations,
the input size is fixed to m. When more than m operations are ready, the top m candidates with the
earliest due dates are selected. Otherwise, we apply zero-padding with a binary mask to filter out
invalid rows. The details of the two feature matrices are provided in the Appendix B.

2) Policy: The policy π outputs a probability distribution over all actions to determine which ac-
tion is selected for execution. Considering the scheduling process is highly frequent and requires
rapid response, we adopt a graph attention network (GAT) (Veličković et al., 2018)-based policy
architecture rather than LLM, where all agents share the same policy architecture but maintain their
own learnable parameters to adapt to the factory-specific constraints. For each agent, given the lo-
cal observation Of

t , the policy computes the action distribution in three stages. First, GAT is used
to encode the raw features of each machine Mm with its compatible ready operations Nt(Mm)
into a v-dimensional embedding. By inputting Pt and Fm

t , GAT computes importance weights for
compatible operations and aggregates their features to update the machine embeddings as Eq. (1):

emt = σ(αmmWMFm
t +

∑
Oij∈Nt(Mm)

αijmWOF
o
t ) (1)

where σ is an activation function, WM and WO are learnable matrices, αmm and αijm are the atten-
tion coefficients representing the importance of machines to themselves and compatible operations.
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Second, we use a multi-layer perceptron (MLP) to map the raw feature vectors of the ready opera-
tions into v-dimensional embeddings, as shown in Eq (2):

eot = MLPω0(ELU [MLPω1(F
o
t )||

∑
m∈Mt(Oij)

(emt )]) (2)

where Mt(Oij) is the candidate machines of Oij , ω0 and ω1 are learnable parameters of the MLPs.

Finally, we derive the policy distribution over all feasible operation-machine pairs by concatenating
the learned operation and machine embeddings

[
eoij , e

c
ij

]
and passing them through another MLP

followed by a softmax layer in Eq. (3):

P (aft , O
f
t ) = softmax(MLPω2(e

o
t ||emt )) (3)

where the MLPω2
with learnable parameters ω2 consists of two hidden layers and Tanh activation.

3) Action: A valid operation-machine pair from the ready set corresponding to each factor Ff .
Specifically, the action can be defined as aft = (Oij ,mh), which indicates that the operation Oij

from job Ji is assigned to an idle machine mh ∈ Mf . The action is selected from a masked proba-
bility distribution over the feasible operation-machine combinations, where infeasible actions (e.g.,
machines not in the candidate set) are masked out to ensure valid execution. Based on these deci-
sions, we collect the joint trajectories τ = {(St, at)}Tt=1 for all factories, where St = {O1

t , . . . , O
l
t}

and at = {a0t , . . . alt}. These trajectories are used for centralized training of the agent polices via
Proximal Policy Optimization. More training details are provided in Appendix D.

4.4 LLM-INFORMED REWARD MODEL

To enhance credit assignment in RL under sparse rewards, we propose an LLM-informed reward
model that leverages the prior knowledge and reasoning capabilities of LLMs. This model addresses
two key challenges: 1) how to effectively ask the LLM to produce helpful reward signals that are
reliable and consistent with symbolic in RL and DFJSP, and 2) how to use these signals to better
assign credit to actions taken at different time steps. To this end, the proposed LLM-informed reward
model comprises two core components, i.e., generating evaluation functions and training a surrogate
model for proxy rewards, as illustrated in Figure 1.

1) generating evaluation functions: Inspired by previous work (Qu et al., 2025), we adopt a two-
stage generation process consisting of LLM-based generation and self-evolution phases. In the
generation phase, we first construct a structured prompt by encoding the role instruction, problem
description, global scheduling state, and agent action formats, detailed in Appendix A. Then, the
prompt is passed to LLM to produce z candidate responses {ξi, . . . , ξz}, each of which involves
an executable code of an evaluation function φi. In the self-evolution phase, these functions are
reorganized into the prompt. It guides the LLM to summarize a refined function φ that integrates
the strengths of candidates while reducing redundancy and inconsistency, as shown in Eq. (4).

φ = LLM(problem, role, φ1, . . . , φz) (4)
Furthermore, to ensure the executability of φ, we perform a preliminary error check by testing φ
on a random state-action pair. If any runtime errors occur, the corresponding error logs err are
appended to the prompt to guide the LLM in refining the function again, as detailed in Eq. (5).

φ = LLM(problem, role, φ, err) (5)
This two-stage process ensures that φ not only captures semantically meaningful aspects of agent
actions, but is also syntactically executable and aligned with the underlying scheduling objectives.

2) Surrogate model for proxy reward: Considering φ is a symbolic and potentially non-differentiable
function, build a surrogate model fϕ parameterized by ϕ based on the return decomposition (Efroni
et al., 2021). This model can approximate the mapping from the observation-action pairs to scalar
rewards. Specifically, the model estimates a proxy reward r̂t from φ(s, a) as r̂t = fϕ(φ(s, a)). To
align the proxy rewards with the episodic returns R(τ) collected from trajectories τ , we train the
surrogate model by minimizing the loss function in Eq. (6).

ϕ∗ = argmin
ϕ

Eτ∼π[(R(τ)−
T∑

t=1

fϕ(φ(s, a)))
2] (6)

This design effectively bridges the symbolic reasoning of LLM and numerical reward of RL, im-
proving the learning efficiency of agents under sparse rewards, especially in large-scale scenarios.
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4.5 THEORETICAL ANALYSIS

To further justify the effectiveness and generation of the proposed LaRL algorithm, we provide a
theoretical analysis. Specifically, we analyze how well the learned surrogate model fϕ can approxi-
mate the true return R(τ) by leveraging the intermediate symbolic evaluation φ(s, a). We define the
approximation error and then provide an upper bound on this error.
Theorem 1 (Reward Approximation Bound).
Assuming that ∃f∗ : φ(s, a) 7→ r, such that the true reward r(s, a) = f∗(φ(s, a)). Define the least-
squares estimation error as ||r− r̂ϕ||Ak

, where Ak =
∑k

i=1 φ(si, ai)
⊤φ(si, ai)+λI . Then for any

δ ∈ (0, 1), with probability at least 1− δ, the estimation error satisfies the following concentration
bound:

||r − r̂ϕ||Ak
≤

√
TD log(1 +

kT 2

λδ
) +

√
λD (7)

where T is the episode length, D = dim(φ(s, a)) is the factor dimension of the evaluation function.
Theorem 2 (LLM-riven Factory Assignment Improves Global workload Balance).
Let LT = [L1

T , . . . , L
l
T ] denote the cumulative workload over l factories after scheduling n jobs.

Suppose each job Ji arrives from a stationary distribution and has a bounded processing time pt ∈
[0, pmax]. If each job is assigned using an LLM-driven policy πLLM with bounded assignment error
ϵ, then the expected workload variance satisfies:

E[V ar(LT )] ≤
C

T
+ ϵ3 · p2max (8)

where C is a constant that represents the baseline workload variance caused by the job arrival distri-
bution. The proofs of Theorems 1 and 2 are provided in Appendix C.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

1) Datasets. To evaluate LaRL1, we conducted experiments on benchmark-based and simulation-
based datasets. The benchmark datasets are derived from Hurink (Hurink et al., 1994) and Brandi-
marte (Brandimarte, 1993) with two identical factories and varying jobs over 30, 50, 100, following
the convention (Zhang et al., 2024). The simulation-based datasets include 1,000/2,000/5,000 se-
quentially arriving jobs, following the practice (Zhang et al., 2024). Details are in Appendix E.
2) Peer competitors. We compare LaRL with six representative state-of-the-art algorithms from
three categories. The first includes three popular heuristics: random search (RS) (Zabinsky et al.,
2009), iterated greedy (PBIGA) (Zhao et al., 2025), and a dispatching rule (AR SPT) (Huang et al.,
2024b). The second is a representative metaheuristic, i.e., RMA (Zhu et al., 2024). The third is two
state-of-the-art RL-based algorithms: PPOS (Lei et al., 2024) and P-G (Wang et al., 2025b).
3) Parameter Settings. The training settings follow (Li et al., 2024) with the batch size 128 and the
initialized learning rate 1× 10−4 (decayed by 0.96/epoch). The policy employs a GAT with single-
head attention with ELU activation, and an output embedding dimension of eight. The surrogate
reward model is implemented as a three-layer MLP with ReLU activation and a hidden size of 256.
We use the public LLM, Qwen-max, for reasoning in LaRL. More details are in Appendix E.
4) Evaluation Criteria. We evaluate the performance using the average makespan (Mspan) over
instances of each dataset. To assess load balance, we report the workload ratio (WR), defined as the
ratio between the maximum and minimum total workloads across factories. Lower Mspan and WR
closer to one indicate better performance.

5.2 RESULTS AND ANALYSIS

In this section, we evaluate LaRL against peer competitors on DFJSP instances with varying scales.
The evaluation is based on the average makespan (Mspan) and workload ratio (WR) and statistical
significance is assessed using the Wilcoxon rank-sum test (p < 0.05), where symbols ‘+’, ‘=’, and
‘–’ indicate that LaRL performs significantly better, equivalent, or worse than the competitors.

1Code: https://anonymous.4open.science/r/LaRL-407B

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5.2.1 PERFORMANCE ON INSTANCES WITH TWO FACTORIES

Table 1 presents the comparative results of LaRL and six representative scheduling algorithms on
six datasets with varying scales. LaRL achieves the best WR on all datasets and outperforms all
baselines in makespan on four of six instances, demonstrating its strength in global coordination
and workload balancing. In terms of makespan, on small-scale instances (DFJSP-30/50/100), LaRL
performs on par with or better than P-G, and consistently surpasses heuristic and metaheuristic
baselines. On large-scale instances (DFJSP-1,000/2,000/5,000), it achieves the lowest makespan and
WR across the board. In terms of WR, LaRL reduces WR to near 1.0 on all instances, with 1.16 on
DFJSP-5,000, while others exceed 1.4, indicating superior workload balancing. All improvements
are statistically significant under the Wilcoxon signed-rank test (p < 0.05), indicating that LaRL
consistently outperforms existing algorithms in both makespan and workload balancing.

Table 1: Comparative study of different algorithms on instances with two factories.

Algorithm DFJSP-30 DFJSP-50 DFJSP-100 DFJSP-1,000 DFJSP-2,000 DFJSP-5,000

Mspan WR Mspan WR Mspan WR Mspan WR Mspan WR Mspan WR

RS 2885.35(+) 1.975(+) 3536.59(+) 2.17(+) 6912.34(+) 1.66(+) 56241.32(+) 1.85(+) 127401.85(+) 1.95(+) 268174.60(+) 2.07(+)
PBIGA 2434.51(+) 1.32(+) 3506.24(+) 1.13(=) 6895.34(+) 1.42(+) 52889.34(+) 1.40(+) 119447.74(+) 1.69(+) 277748.52(+) 1.62(+)
AR SPT 2696.47(+) 1.55(+) 3429.61(+) 1.50(+) 6599.55(+) 1.43(+) 53141.93(+) 1.36(+) 111066.90(+) 1.31(+) 267955.80(+) 1.96(+)

RMA 2422.35(+) 1.03(=) 3482.51(+) 1.31(+) 6382.62(+) 1.53(+) 53317.53(+) 1.48(+) 117374.21(+) 1.59(+) 277512.01(+) 1.69(+)
PPOS 2262.50(+) 1.79(+) 3229.15(+) 1.69(+) 6367.15(+) 1.55(+) 52994.87(+) 1.64(+) 111302.20(+) 1.53(+) 267729.40(+) 1.48(+)
P-G 2096.24(+) 1.41(+) 3176.34(=) 1.36(+) 6266.21(+) 1.36(=) 52581.76(=) 1.20(+) 112897.36(+) 1.65(+) 267684.27(+) 1.41(+)

LaRL (Ours) 2141.00 1.15 3180.22(=) 1.12 6254.50 1.31 52241.50 1.07 107374.00 1.03 266537.53 1.16

5.2.2 PERFORMANCE ON INSTANCES WITH MORE FACTORIES

To further evaluate the generalization of LaRL under different factory configurations, we evaluate
LaRL on scenarios with three factories. Table 2 reports the average makespan and workload rate of
all algorithms. Across all problem scales, LaRL consistently outperforms competitors in minimiz-
ing makespan, demonstrating its generalization ability when deployed in environments with more
distributed factories. Notably, LaRL maintains balanced workload distribution among factories, as
indicated by the reported workload rates, which remain close across factories. In contrast, peer com-
petitors often suffer from workload skew, especially in large-scale instances (e.g., 2,000 and 5,000
jobs). These results confirm that the reasoning-based assignment and scheduling mechanism can
effectively maintain both scheduling quality and workload balance in increasingly complex settings.

Table 2: Comparative study of different algorithms on instances with three factories.

Scale (f -m-n) (3-10-30) (3-10-50) (3-10-100) (3-10-1,000) (3-10-2,000) (3-10-5,000)

Algorithm Mspan WR Mspan WR Mspan WR Mspan WR Mspan WR Mspan WR

RS 2499.27(+) 2.67(+) 3036.62(+) 2.19(+) 6289.12(+) 3.32(+) 59253.71(+) 2.69(+) 119471.21(+) 2.91(+) 268174.60(+) 3.71(+)
PBIGA 2362.41(+) 1.45(+) 2911.34(+) 1.28(=) 6233.52(+) 1.46(+) 58756.86(+) 1.54(+) 120733.74(+) 1.34(+) 278450.33(+) 3.27(+)
AR SPT 2233.16(+) 2.15(+) 2925.52(+) 1.42(+) 5994.70(+) 1.24(+) 56886.37(+) 1.62(+) 119281.73(+) 1.47(+) 269655.73(+) 2.76(+)

RMA 2491.17(+) 1.58(+) 2999.46(+) 1.13(+) 6187.05(+) 1.53(+) 57898.27(+) 1.59(+) 121241.17(+) 1.39(+) 283474.71(+) 3.20(+)
PPOS 2143.27(+) 1.56(+) 2950.00(+) 1.38(+) 6050.71(+) 1.32(+) 57083.15(+) 1.47(+) 110362.09(+) 1.60(+) 269972.53(+) 2.09(+)
P-G 2096.24(+) 1.68(+) 2927.71(=) 1.29(+) 5996.05(+) 1.34(=) 56483.62(+) 1.37(+) 110210.47(+) 1.51(+) 269547.63(+) 1.83(+)

LaRL (Ours) 2048.50 1.22 2841.86 1.04 5820.06 1.17 55205.66 1.16 109648.66 1.12 268870.06 1.23

5.2.3 ROBUSTNESS TO THE FREQUENCY OF JOB ARRIVALS

To evaluate the robustness of LaRL under different frequencies of job arrivals, we vary the utilization
level from the default high-utilization setting (0.95) to a moderate level (0.85), which is commonly
adopted in the scheduling literature (Zhang et al., 2023b). Experiments are conducted on instances
with two factories, each equipped with 10 machines, and varying job sizes 1, 000, 2, 000, 5, 000.
The comparison results are summarized in Table 3. We can observe that across all scales, LaRL
consistently achieves lower makespan than peers, with particularly notable improvements in the
large-scale setting with 5, 000 jobs. These findings confirm that LaRL is not only effective under
high-pressure environments but also maintains superior when the frequency of job arrivals decreases.
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Table 3: Comparative study of different algorithms in the scenario with a utilization level of 0.85.

Method DFJSP-30 DFJSP-50 DFJSP-100 DFJSP-1,000 DFJSP-2,000 DFJSP-5,000

Mspan WR Mspan WR Mspan WR Mspan WR Mspan WR Mspan WR

RS 2215.73(+) 1.69(+) 3855.36(+) 1.35(+) 6062.15(+) 1.81(+) 60280.38(+) 2.91(+) 132015.47(+) 3.26(+) 320781.53(+) 2.26(+)
PBIGA 2090.34(+) 1.49(+) 3650.06(+) 1.14(=) 5801.75(+) 1.63(+) 61259.82(+) 2.41(+) 132154.22(+) 2.16(+) 325649.76(+) 1.98(+)
AR SPT 2696.47(+) 1.55(+) 3732.71(+) 1.30(+) 5948.28(+) 1.72(+) 60745.58(+) 1.96(+) 129916.15(+) 1.96(+) 319984.66(+) 1.87(+)

RMA 2178.26(+) 1.41(=) 3415.29(+) 1.21(+) 5868.10(+) 1.51(+) 62046.62(+) 2.33(+) 132516.37(+) 2.01(+) 328975.61(+) 2.09(+)
PPOS 2078.31(+) 1.51(+) 3370.29(+) 1.27(+) 5810.53(+) 1.35(+) 59251.58(+) 1.45(+) 165368.73(+) 1.59(+) 310786.91(+) 1.76(+)
P-G 2006.73(-) 1.02(-) 3227.20(+) 1.15(=) 5736.61(-) 1.31(=) 59259.95(=) 1.49(+) 122259.23(+) 1.76(+) 308276.36(+) 1.69(+)

LaRL (Ours) 2026.56 1.09 3180.66(=) 1.17 5764.36 1.28 58986.26 1.18 120126.65 1.11 293905.67 1.21

5.2.4 ABLATION STUDY OF THE PROPOSED LLM-DRIVEN FACTORY ASSIGNMENT

To evaluate the contribution of the LLM-driven factory assignment, we replace it with two alternative
strategies: (1) a heuristic-based method using the classic AR rule (Huang et al., 2024b), and (2) a
learned neural network that maps global factory states and job attributes to assignment decisions (Lei
et al., 2024). These two variants are referred to as LaRL AR and LaRL NN, respectively.
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Figure 2: Comparison of workload between
LaRL with two variants on two factories.
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Figure 3: Comparison of makespan between
LaRL with two variants on six datasets.

Figure 2 visualizes the factory-level load distribution using scatter plots. Each subfigure shows the
normalized workload assigned to both factories on all instances, with the 1:1 diagonal line (gray
dashed) indicating perfect workload balance. The color intensity reflects the absolute difference of
workload (|F0−F1|), where darker colors indicate smaller differences between factories. LaRL ex-
hibits the most concentrated distribution along the diagonal line, reflecting highly superior balance.
In contrast, LaRL-AR shows frequent skewed allocations due to static rules, while LaRL-NN shows
moderate imbalance with less consistency. These results highlight the advantage of LLM-based as-
signment in leveraging global context and semantics to coordinate job allocation more effectively.
Figure 3 shows that LaRL achieves consistently lower average makespan and variance across six
datasets, indicating both superior performance and robustness. Notably, as the scale increases, the
variance of LaRL remains significantly lower, highlighting its stability under complex settings. This
suggests that the LLM can integrate diverse features and reason contextually, while rule-based or
shallow models often rely on limited criteria, yielding instability under large-scale instances.

5.2.5 ABLATION STUDY OF THE PROPOSED LLM-INFORMED REWARD MODEL

To evaluate the contribution of our LLM-informed reward model, we conduct an ablation study by
replacing it with a widely used handcrafted reward function based on makespan minimization (Lei
et al., 2024), denoted as LaRL-HR. Both variants share the same policy architecture and training
pipeline, differing only in the reward calculation.

Table 4 presents the comparative results between LaRL and its variant LaRL HR. Across all six
datasets with increasing problem scales, LaRL consistently achieves lower makespan and better or
comparable WR on all instances. In particular, the relative advantage of LaRL is more evident
in larger-scale settings. These results demonstrate that the multi-factor reward signals derived by
LLM enable more effective credit assignment during training, leading to improved scheduling per-
formance. Figure 4 illustrates the episodic return curves under two different shop utilization levels
(0.95 and 0.85). In both settings, LaRL consistently converges faster and exhibits more stable learn-
ing with narrower shaded regions compared to LaRL HR, indicating improved learning efficiency
and robustness. Notably, under a higher utilization level (i.e., more frequent job arrivals), LaRL
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Table 4: Comparison of Mspan and WR be-
tween LaRL and LaRL HR on six datasets.

Testing
Datasets

LaRL LaRL HR
Mspan WR Mspan WR

DFJSP-30 2141.00 1.15 2198.72(+) 1.27(+)
DFJSP-50 3180.22 1.12 3210.64(+) 1.16(+)
DFJSP-100 6254.50 1.31 6379.46(+) 1.29(=)

DFJSP-1,000 52241.50 1.07 52976.96(+) 1.13(+)
DFJSP-2,000 107374.00 1.03 112951.21(+) 1.09(+)
DFJSP-5,000 266537.53 1.16 269792.68(+) 1.23(+)
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Figure 4: Episodic return curves of LaRL and
LaRL HR under two utilization levels, with
smoothed returns (lines) and deviation (shade).

achieves faster convergence. This validates that our LLM-guided reward model not only enhances
credit assignment under sparse feedback but also adapts well to varying scheduling intensities.

5.2.6 IMPACT OF LLM CHOICE

To evaluate the impact of different LLMs on the performance of LaRL, we compare LaRL
using Qwen-max (default), DeepSeek-V3, and ChatGPT-3.5 on the benchmark-based datasets.

Table 5: Comparison of LaRL using different
LLMs on the benchmark-based datasets.

Datasets DFJSP-30 DFJSP-50 DFJSP-100

Algorithm Mspan WR Mspan WR Mspan WR

Deepseek-V3 2152.00 1.16 3190.88 1.12 6341.75 1.26
ChatGPT-3.5 2092.60 1.05 3079.00 1.13 6217.67 1.21
Qwen-max 2141.00 1.15 3180.22 1.12 6254.50 1.31

As shown in Table 5, although all variants
benefit from LLM, stronger models such as
ChatGPT-3.5 achieve lower average makespan
and balanced workload. Qwen-max, adopted
as the default because of its strong open-
source accessibility and stable reasoning qual-
ity, achieves competitive performance across all
settings. These results suggest that LaRL is ro-
bust to LLM choice and can further improve
when equipped with more powerful models,
highlighting its potential as a scalable frame-
work for practical deployment.

5.2.7 ANALYSIS OF TIME COMPLEXITY

Let n denote the number of jobs, m the number of machines per factory, l the number of factories,
d the average number of ready operations per machine, and v the embedding dimension. Heuristics
run in O(nlogn) to O(nm), while the metaheuristic RMA has a complexity of O(nmg) with g as
the population size. RL-based baselines typically involve per-step policy inference with complexity
O(v2) and O(lvn2). LaRL introduces additional cost from the LLM-based factory assignment and
GAT-based multi-agent scheduling, leading to an overall complexity of O(TLLM + ldv2). Despite
this, LaRL remains highly efficient in practice, as the LLM is only invoked when new jobs arrive,
and the scheduling decisions are made locally within each factory. More runtime cost comparisons
are provided in Appendix F.1.

5.2.8 MORE EXPERIMENTS ARE IN THE APPENDIX

More experiments include evaluations on fewer machines (i.e., five machines per factory)
(Appendix F.2), choice of GNN architectures(Appendix F.3), and interpretability of factory assign-
ment (Appendix F.4). Additionally, practical applications of LaRL are discussed in Appendix G.

6 CONCLUSION

This paper addresses two core challenges: limited effective global coordination and the difficulty of
credit assignment under sparse rewards. To this end, we propose an LLM-assisted RL algorithm,
LaRL, which leverages the reasoning capability and domain knowledge of LLMs to guide factory
assignment and construct multi-factor rewards. LaRL improves coordinated scheduling and efficient
training, yielding better makespan and workload balance across scales.
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A LLM PROMPTS AND RESPONSE

We design our prompt following the chain-of-thought technique Wei et al. (2022). Below are the
prompt templates and problem description in the LLM-driven factory assignment.

Prompt Template

ROLE INSTRUCTION:
You are an intelligent planner in a multi-factory scheduling system. Your task is to assign
a newly arrived job to one of several factories, based on the job and factory attributes. You
should first analyze the situation in natural language (briefly), and then choose the best factory.
Your output must be **a single valid JSON object**, with exactly two keys:
1. ‘Analysis’: a brief explanation of your reasoning
2. ‘Factory’: the selected factory ID

Important rules:
- Your output must start directly with the curly brace
- Do NOT include any Markdown, code blocks, or extra text
- Do NOT write ‘json’, ‘Answer:’, or anything before or after the JSON
Example format:
{ Analysis: Factory 1 has the most idle machines and shortest
delay, Factory: 1 }

PROBLEM DESCRIPTION:
You are tasked with making job-to-factory assignment decisions in a distributed production
environment. The goal is to assign each newly arrived job to the most appropriate factory,
balancing the workload, avoiding overload, and considering potential delay risks. You should
make decisions based on the following attributes:

NEW JOB ATTRIBUTIONS:
The newly arrived job has the following attributes:
0: task ID (int): The ID of the task to which this new arrival job belongs.
1: weight, due (int): the weight of the job is weight, e.g.,(0: normal, 1: urgency).
1: arrival time (float): the time the job arrived in the system.
2: due date (float): the time the job is due to be completed.
3: expected time (float): the expected processing time of the job.
4: num operations (int): the number of operations required to complete the job.

FACTORY ATTRIBUTIONS:
Each factory has the following attributes:
0: id (int): The ID of the factory.
1: number machines (int): the number of machines in the factory.
2: average utilization (float): the average utilization of the machines in the factory.
3: assigned jobs (int): the number of jobs currently assigned to the factory.
4: earliest start time (list): the earliest available time of each machine in this factory.
5: idle ratios (float): the current proportion of idle machines.
6: estimated delay ratio (float): the proportion of expected delayed jobs.

Note:

1. Your output must start directly with the curly brace.
2. Do NOT include any Markdown, code blocks, or extra text.
3. Do NOT write ‘json’, ‘Answer:’, or anything before or after the JSON.

Below are the prompt templates and problem description in the LLM-informed reward model.
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Prompt Template

ROLE INSTRUCTION:
You are good at understanding job shop scheduling problems and writing Python code. You
should fully understand the provided task and describe the exact observation and action form
at the current decision point. Then, based on your understanding and the goal of the problem,
analyze potential positive and negative behaviours or statuses that can be reflected in the ob-
servation and action. Finally, write an evaluation function that returns factors evaluating the
current status from different aspects.
Note:

1. Do not use information you are not given!
2. Focus on the most relevant evaluation factors and use information in observation as

little as possible.
3. The code should be as generic, complete and not contain omissions!
4. Avoid dividing by zero!
5. The input variable ‘states’ is a 3D tensor with shape (batch size, num factories ×

m, 20), representing the concatenated local observations from all factories; the input
variable ‘actions’ is a 2D tensor with shape (batch size, num factories), where each
entry indicates the index of the selected operation-machine pair or 0 if no action is
taken; m means the number of machines in each factory.

6. Please return a list of several evaluation factor arrays, each in the form of (batch size,
1).

7. Avoid all kinds of index out-of-bound errors! Always check index validity before
indexing into the observation or action tensor.

Please think step by step and must adhere to the following JSON format (just replace the ()
with your answer):

{
U n d e r s t a n d : ( your t h o u g h t s a b o u t t h e t a s k ) ,
Analyze : ( a n a l y z e b e h a v i o r / s t a t u s in o b s e r v a t i o n / a c t i o n ) ,
F u n c t i o n s : ( d e f i n e t h e Python f u n c t i o n )

}

SELF-PROMPTING: You have generated several evaluation functions. Please summarize
them and generate a new evaluation function that incorporates all the evaluation factors. If
there are other important evaluation factors, please include them as well.

Problem Information of DFJSP

PROBLEM DESCRIPTION:
This is a distributed flexible job shop scheduling (DFJSP) with new job arrivals, involving the
following components:
0. **Problem Overview**
- Multiple jobs arrive dynamically and need to be scheduled across multiple factories.
- Each factory contains a unique set of machines. Each job must be fully processed within a
single factory.
- Each operation in a job can be assigned to one of several candidate machines, each with
different processing times.
1. **Scheduling Goal**:
- Learn a global scheduling strategy that minimizes the makespan across all jobs in all tasks.
2. **Task Definition**:

14
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- A task contains a set of jobs that must be scheduled jointly to optimize an objective.
3. **Job Structure**:
- Each job consists of a sequence of dependent operations.
- Each job is associated with:
- **Arrival time**: when the job becomes available for processing.
- **Due date**: the deadline by which the job should ideally be completed.
- **Weight**: a scalar indicating the urgency of the job; higher weights imply higher priority.
- These attributes affect the reward function and scheduling decisions.
4. **Operation Characteristics**:
- Each operation is only ready after all its preceding operations are completed.
- Each operation can be processed by a subset of machines in a factory, each with a distinct
processing time.
5. **Machine Attributes**:
- Each machine can process only one operation at a time.
- Processing times vary per operation.
6. **Factory Constraints**:
- Each factory has a set of machines and can independently process entire jobs.
- All operations of a job must be executed within the same factory.
7. **Agent Policy Design**:
To minimize global makespan, we propose using a multi-agent reinforcement learning
framework, where each factory is equipped with its own scheduling agents. Each agent
represents a machine in a factory and is responsible for scheduling operations within its
local factory scope, while indirectly cooperating to minimize makespan (time to complete
all jobs). These agents may coordinate or operate independently to make real-time decisions
for operation assignments within their local factory scope, while indirectly cooperating to
minimize makespan (time to complete all jobs).

STATE FORM:
The state is concatenated from the observations of all agents at each decision point. The
observations of each agent S ∈ Rm×20 is a matrix representation at each decision point,
where m denotes the maximum number of ready operations in the system at that time step.
Each row s[i, :] corresponds to a specific ready operation, and encodes both operation-level
and machine-level information relevant to decision making.
- S[i, : m+ 6]: Each row represents one ready operation. A ready operation is an unprocessed
operation whose all predecessor operations have been completed. If s[i, :] is a zero vector (i.e.,
all elements are 0), it indicates a **padding row** used to maintain a fixed input shape when
the number of ready operations is less than m.
- S[:, 0 : m]: A machine-operation processing time matrix. Each entry S[i, j] denotes the
processing time of the i-th ready operation on machine j. A value of 0 indicates that the
operation cannot be processed on that machine. Each row represents one ready operation.

- S[:,m : m+ 6]: Operation-level features for each ready operation:

1. Job ID to which the operation belongs.
2. Job weight (priority) for the operation.
3. Average processing time of this operation across all candidate machines.
4. Number of machines that can process this operation.
5. Number of remaining unprocessed operations in the same job.
6. Estimated tardiness of the job.

- S[:,m+ 6 :]: Machine and factory-level features relevant to the operation:

1. Current utilization of the candidate machine.
2. Current workload of each machine.
3. Earliest available time of each machine.
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4. Factory ID to which the corresponding job has been assigned.

This unified representation captures both compatibility between ready operations and ma-
chines, as well as global scheduling context, enabling reinforcement learning agents to
make informed and efficient scheduling decisions under dynamic job arrivals and machine
disturbances.

ACTION FORM:
The dimensions of the multi-agent action are equal to the number of factories in the system.
Each dimension corresponds to a specific factory and represents the operation-machine
assignment selected by the agent within that factory at the current decision point. Specifically,
the value in each dimension is an integer between 0 and 101, where a non-zero value indicates
the index of the selected operation-machine pair to be processed, and 0 means that the agent
chooses not to process any operations at that decision point.

An example generated by LLM-informed reward model

Understand:
The task is a distributed flexible job shop scheduling problem with dynamic job arrivals,
aiming to minimize the global makespan. Observations include machine-operation compat-
ibility, job attributes, and factory constraints. Actions assign operations to machines within
factories. Evaluation should consider workload balance, machine utilization, prioritization
of high-weight jobs, tardiness minimization, and padding row ratios to assess system efficiency.

Summary:
Initial evaluation functions analyzed factors like workload variance across factories, average
weighted tardiness, machine utilization, and padding row ratios. These metrics reflect balanced
resource allocation, adherence to job urgency, operational efficiency, and underutilization of
ready operations. A comprehensive function should integrate these aspects while avoiding
redundancy and ensuring numerical stability.

Function:

def evaluation_func(states, actions):
batch_size, total_rows, features = states.shape
num_factories = actions.shape[1]
m = total_rows // num_factories
workload_variance = torch.zeros((batch_size, 1), dtype=torch.float32)
avg_weighted_tardiness = torch.zeros((batch_size, 1), dtype=torch.float32)
machine_utilization = torch.zeros((batch_size, 1), dtype=torch.float32)
padding_ratio = torch.zeros((batch_size, 1), dtype=torch.float32)
priority_alignment = torch.zeros((batch_size, 1), dtype=torch.float32)
for b in range(batch_size):

factory_workloads = []
total_padding = 0
total_operations = 0
weighted_tardiness_sum = 0
total_weights = 0
priority_sum = 0
for f in range(num_factories):

start_idx = f * m
end_idx = (f + 1) * m
factory_state = states[b, start_idx:end_idx, :]
padding_mask = torch.all(factory_state == 0, dim=1)
total_padding += torch.sum(padding_mask).item()
total_operations += m
if factory_state.shape[0] > 0:

machine_workload = torch.max(factory_state[:, m+6+2], dim=0)[0]
factory_workloads.append(machine_workload)

weights = factory_state[:, m+1]
tardiness = factory_state[:, m+5]
valid_mask = weights > 0
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weighted_tardiness_sum += torch.sum(weights[valid_mask] * tardiness[
valid_mask]).item()

total_weights += torch.sum(weights[valid_mask]).item()
priority_sum += torch.sum(weights[valid_mask]).item()

if factory_workloads:
factory_workloads = torch.stack(factory_workloads)
workload_variance[b] = torch.var(factory_workloads)

if total_weights > 0:
avg_weighted_tardiness[b] = weighted_tardiness_sum / total_weights
priority_alignment[b] = priority_sum / total_weights

if total_operations > 0:
padding_ratio[b] = total_padding / total_operations
machine_utilization[b] = 1 - padding_ratio[b]

return [workload_variance, avg_weighted_tardiness, machine_utilization, padding_ratio
, priority_alignment]

B FEATURE MATRICES

At each step t, the operation feature matrix F o
y and machine featur matrix Fm

t are defined as follows:

The operation features matrix F o
y : For each ready operation, the feature vector has six elements:

1. job ID: the ID number of the ready operation to which the job belongs.
2. weight: the weight of the ready operation to which the job belongs.
3. processing time: the average processing time of the operation on its candidate machine.
4. number of candidate machines: the number of candidate machines for the ready operation.
5. number of unscheduled operation: the number of remaining unprocessed operations of the

job to which the operation belongs.
6. tardiness: expected tardiness probability of the job to which the ready operation belongs.

The machine feature matrix Fm
t : For each machine, the feature vector has three elements:

1. utilization: the ratio of the busy time of the machine to the total production time.
2. workload: the total processing time of all allocated operations to the machine.
3. available time: the time when the machine to complete the last operation assigned to it.
4. flag: the ID of the factory to which this machine belongs.

C PROOF

We follow a standard regularized regression generalization analysis using tools from concentration
inequalities Boucheron et al. (2003) and properties of least-squares estimators Stock (1987).

Notations. Let φ(s, a) ∈ RD be the symbolic evaluation vector derived from the LLM-informed
function, r(s, a) be the true reward for state-action pair (s, a). f∗ : R → R means the ground-truth
reward mapping over φ(s, a), i.e., r(s, a) = f∗(φ(s, a)). r̂ϕ = ϕ⊤φ(s, a) is the predicted reward
and ϕ ∈ RD is the parameters of the reward model.

Assumptions. We assume the true reward satisfies r(s, a) = f∗(φ(s, a)) = ϕ∗⊤φ(s, a), i.e., the
reward is a linear function of the evaluation factor vector φ(s, a).

Proof of Theorem 1: The proof can be divided into three main steps. In the first step, we collect a
dataset of k samples {(φi, ri)}ki=1, where φi := φ(si, ai), and train φ̂ via φ̂ = argminϕ

∑k
i=1(ri−

ϕ⊤φi)
2 + λ||ϕ||2. Then the solution can be obtained as shown in Eq. (9).

ϕ̂ = A−1
K (

k∑
i=1

φiri), Ak =

k∑
i=1

φiφi⊤+ λI (9)

where Ak ∈ RD×D is the regularized design matrix and λ > 0 is regularization coefficient.

In the second step, we can obtain the error vector over collected samples as ϵi := ri − r̂ϕ(si, ai) =

ϕ∗⊤φi − ϕ̂⊤φi, and then ϵ = (ϕ∗ − ϕ̂)⊤φi. Therefore, the squared weighted norm of the error is
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shown in Eq.(10).
||r − r̂ϕ||2Ak

= (ϕ∗ − ϕ̂)⊤Ak(ϕ
∗ − ϕ̂) (10)

In the third step, let ||φs, a|| ≤ T and ||ϕ ∗ || ≤ 1 according to the bound for regularized linear
regression under bounded norm assumption, and then with probability at least 1− δ, we can obtain

||ϕ∗ − ϕ̂||Ak
≤

√
Dlog(1 + kT 2

λδ ) +
√
λD. Based on this, we can yield the bound, as shown in Eq.

(11).

∥r − r̂ϕ∥Ak
≤ ∥ϕ∗ − ϕ̂∥Ak

· ∥φ∥ ≤
(√

D log
(
1 + kT 2

λδ

)
+

√
λD

)
· T (11)

To make the bound consistent with the units of accumulated reward over episodes of length T , we

apply a scaling factor to Eq. (11) and conclude ||r − r̂ϕ||Ak
≤

√
TD log(1 + kT 2

λδ ) +
√
λD. This

completes the proof.

Notations. Let the system have n factories and the load vector at time t be Lt = [L1
t , . . . , L

n
t ], where

each component represents the total remaining processing time at factory Fi. At each time t, a job
Jt is drawn from distribution DJ with p(Jt) ∈ [0, pmax. Let π∗(Jt) assign the job to the factory F ∗

with the lowest current load: F ∗ = argmini∈[n] L
i
t. Let πLLM (Jt) be the assignment produced by

the LLM via structured prompt reasoning, and the error indicator as δt = I[πLLM (Jt)] ̸= π∗(Jt)].

Assumptions. Assume that the misassignment rate is bounded in expectation, i.e., E[δt] ≤ ϵ. This
captures the cases where the LLM, while not always optimal, makes errors with controlled frequency
under the job distribution.

Proof of Theorem 2: The proof can be divided into two main steps. In the first step, let the factory
assignment at time t be ft = πLLM (Jt), then the workload can be updated as shown in Eq.(12):

Lft
t+1 = Lft

t + pt, L
i
t+1 = Li

t ∀i ̸= fi (12)

In the second step, we calculate the mean workload as L̄t =
1
n

∑n
i=1 L

i
t and define the variance as

V ar(Lt) =
1
n

∑n
i=1(L

i
t − L̄t)

2. Now, we consider two cases:

1. If πLLM (Jt) = π∗(Jt), then ft = f∗, and load variance decreases or stays constant (as the
most underloaded factory receives the new job);

2. If LLM chooses the wrong factory ft ̸= f∗, then the most loaded factory may be chosen,
increasing variance.

Based on the above cases, we analyze the expected change in variance as:

E[V ar(Lt+1)] = E[V ar(Lt)] + ∆t (13)

where ∆t ≤ ϵ · p2max − 1
T · Eπ∗ [V ar(Lt)− V ar(Lt+!)]. Over T time steps, the summing variance

increments can be obtained as Eq.(14).

E[V ar(Lt+1)] ≤ V ar(L0) + T · ϵ · p2max −
T∑

t=1

c

t
(14)

By the standard estimate of the harmonic series, we have
∑T

t=1
1
t = log T + γ + o(1), hence∑T

t=1
1
t ∼ log T . Based on this, we approximate E[V ar(LT )] ≤ C

T + ϵ3 · p2max. This completes
the proof.

D TRAINING DETAILS

We adopt Proximal Policy Optimization (PPO) (Schulman et al., 2017) as the policy learning algo-
rithm. The overall objective combines a clipped surrogate policy loss Lp(t), a value function loss
Lvalue(t), and an entropy regularization term H(πθ(·|st)), as defined in Eq. (15).

L = Et

[
Lp(t) + cv Lvalue(t)− ce H(πθ(·|st))

]
, (15)
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where cv and ce are the value loss and entropy coefficients, respectively. Lp(t) =

Et

[
min

(
rt(θ) Ât, clip(rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
. Here, rt(θ) =

πθ(at|st)
πθold

(at|st) is the probability ratio

between the current and previous policies, and Ât denotes the advantage estimate computed using
Generalized Advantage Estimation (GAE) to reduce variance and stabilize training. Lvalue(t) mea-
sures the mean squared error between predicted state values and target returns. Based on the PPO
objective defined above, the overall training process for LaRL is summarized in Algorithm 1.

Algorithm 1: Framework of the training process
1 πθ1 , . . . , πθl ← Initialize the agent policies for all factories;
2 Vψ ← Initialize the centralized critic network with parameters ψ;
3 fφ ← Initialize the surrogate model with learnable parameters φ;
4 B ← Initialize a replay buffer for storing experience data of agents;
5 for i← 1 to the maximum training episodes T do
6 for t← 1 to the maximum steps completing all jobs do
7 at ← Decide a joint action by the agent policies based on the current state st;
8 st+1 ← Execute at and transfer to new state;
9 rt ← Calculate the proxy reward by the surrogate model fφ;

10 Store the trajectory ⟨st, at, rt, st+1⟩ in B;
11 end
12 if the number of trajectories in B ≥ preset threshold then
13 Estimate value targets and advantages using Vψ;
14 Update the agent policies via policy gradient using eq. (15);
15 Update the critic network Vψ by minimizing value loss;
16 Update the surrogate model fφ;
17 end
18 end
19 return the optimal agent policies.

The training process begins by initializing the agent policies for all factories, the centralized critic,
and the surrogate model, together with a replay buffer for storing interaction data (lines 1-4). During
each episode, agents first select joint actions according to their current policies (line 7). Then, they
interact with the environment to obtain the next state and the proxy reward from the surrogate model
(lines 8-9). After that, the resulting trajectories are stored in the replay buffer (line 10). When the
buffer reaches the preset threshold, the agent policies and surrogate model are updated based on the
stored trajectories (lines 13-16). By repeating these steps, the optimal agent policies can be obtained.

E MORE DETAILS OF EXPERIMENT STEP

(1) Dataset Details

Benchmark-based dataset. Due to the absence of standard benchmarks specifically tailored for the
DFJSP with new job arrivals, we follow the established convention in the scheduling community Yan
et al. (2024) to adjust classical static benchmarks for our setting. In particular, we extend the well-
known Hurink Hurink et al. (1994) and Brandimarte Brandimarte (1993) benchmarks by introducing
stochastic job arrival processes and configuring multiple factories. Concretely, we simulate dynamic
arrivals by assuming jobs arrive according to a Poisson process, and jobs are dispatched to factories
with identical machine configurations. We construct three datasets, i.e., DFJSP-30, DFJSP-50, and
DFJSP-100, based on these benchmarks, where the number in the dataset name denotes the number
of dynamically arriving jobs.
Simulation-based datasets. To assess the scalability and generalization of our approach in large-
scale and multi-task environments, we construct three simulation-based datasets: DFJSP-1,000,
DFJSP-2,000, and DFJSP-5,000. There are 30 different instances with different seeds. In each
instance, all jobs arrive sequentially following a Poisson distribution Snyder & Miller (2012). Each
job consists of 1 to 10 operations, each operation can be processed by 1 to 10 candidate machines,
and processing times are randomly sampled from 1 to 99. The due date is determined as 1.5 times
the total processing time added to the arrival time Zhang et al. (2023b). Following standard prac-
tices Lei et al. (2023), we control the job arrival frequency and machine load via a utilization level
parameter, which is set to 0.75, 0.85, or 0.95 across different scenarios.
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Table 6: All main hyperparameter settings used in our LaRL.

Component Value / Setting
Policy Training

Batch size 128
Learning rate (policy) 1× 10−4

Learning rate decay 0.96 per epoch
GAT output dimension 8
Optimizer Adam (β1=0.9, β2=0.99)

Reward Model

Hidden layer 3-layer MLP
Hidden size 256
Activation function ReLU
Reward model learning rate 5× 10−4

LLM Parameters

Model Qwen-max
LLM temperature (assignment) 0.0
LLM temperature (reward generation) 1.0
LLM temperature (self-evolution phase) 0.3

(2) More details of parameter settings

To ensure stable and consistent decision-making in job-factory assignment, we set the LLM tem-
perature to 0.0, preventing randomness in the output and promoting deterministic behavior across
similar prompts. In contrast, the LLM-based reward function generation leverages controlled ran-
domness to improve exploration. Specifically, we adopt a higher temperature of 1.0 in the initial
generation phase to encourage diverse evaluation factor proposals. During the self-evolution phase,
the temperature is reduced to 0.3 to guide the model toward convergence while retaining limited
variability. These configurations are in line with prior work on symbolic reasoning with LLMs Qu
et al. (2025). All detailed settings in LaRL are summarized in Table 6. All experiments were con-
ducted on a workstation equipped with an NVIDIA GeForce RTX 3090 GPU. The LLM API used
for both factory assignment and reward generation is Qwen-max, accessed via the official API. More
details are available at: https://anonymous.4open.science/r/LaRL-407B.

F MORE EXPERIMENTS

F.1 EVALUATION ON TIME COST

Table 7: Average training and evaluation time cost (in
seconds) for each algorithm on the instances with 100
jobs. 0 indicates the algorithms do not require training.

Method Training Time Evaluation Time
RS 0 0.29
PBIGA 0 77.97
AR SPT 0 0.24
RMA 0 76.39
PPOS 21.76 13.75
P-G 40.21 27.41
LaRL (w/o LLM) 39.83 11.83
LaRL (w/LLM) 269.95 299.02

To fairly evaluate computational effi-
ciency, we report both the full runtime,
including LLM communication over-
head (w/LLM), and the pure scheduling
time, excluding API latency (w/o LLM).
As shown in Table 7, LaRL achieves
a competitive runtime compared with
other RL-based algorithms in the w/o
LLM setting. Although its training time
is slightly higher than PPOS because
of an additional MLP-based surrogate
reward model, it remains comparable
to GNN-based algorithms such as P-G.
Regarding evaluation time, LaRL (w/o
LLM) is lower cost than P-G and close
to PPOS, demonstrating its efficiency in
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inference and policy execution. The ad-
ditional time cost observed in the w/LLM configuration stems from remote LLM calls during factory
assignment. This overhead is largely external to the algorithmic design and can be substantially re-
duced in practical deployment via local hosting or caching. Notably, this cost enables globally
coordinated assignments and interpretable reward modeling, which conventional RL methods lack.
Therefore, the reported results indicate that LaRL achieves a reasonable trade-off between schedul-
ing performance and computational cost.

F.2 EFFECT OF VARYING THE NUMBER OF MACHINES

Table 8: Comparative results under the configuration of
two factories and five machines per factory.

No. of jobs 1,000 2,000 5,000

Algorithm Mspan WR Mspan WR Mspan WR

AR SPT 57294.13 1.67 116706.43 1.40 292208.52 1.78
RMA 57374.25 1.58 116279.55 1.97 302389.01 2.03
P-G 57140.22 1.29 114192.40 1.24 292882.45 1.71

LaRL(Ours) 57010.48 1.12 113258.88 1.18 289522.03 1.22

Table 8 reports the comparative results
on large-scale instances with the con-
figuration of five machines per factory.
We compare LaRL with three repre-
sentative algorithms, including AR SPT
(heuristic), RMA (metaheuristic), and
P-G (RL-based), all of which demon-
strate outstanding performance among
their categories. Even under limited
machine resources, LaRL consistently
outperforms or matches the baselines
across all instances in both makespan
and workload ratio. Notably, the advan-
tages of LaRL become more evident as the problem scale increases, demonstrating its superior scal-
ability in resource-constrained environments. The results also highlight the effectiveness of LaRL
in maintaining workload balance under tighter scheduling capacities.

F.3 IMPACT OF GNN CHOICE
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Figure 5: Comparison of LaRL variants with three
different GNN backbones (i.e., GCN, GIN, GAT)
on instances with varying scale.

Figure 5 presents the comparison between
LaRL (GAT) and its two variants using GCN
and GIN, where the left Y-axis (log scale)
shows the average makespan; the right Y-axis
shows the relative gap (%) to LaRL(GAT).
Across all scales, LaRL-GCN consistently
underperforms GAT, confirming that simple
message passing struggles to capture com-
plex operation-machine relations. LaRL-GIN
achieves marginal gains over GAT on DFJSP-
100 and DFJSP-2000, but falls behind on the
remaining instances, especially as problem size
increases. These results highlight that the at-
tention mechanism of GAT is more suitable
for distributed scheduling tasks, as it dynam-
ically weighs operation-machine compatibility
and supports selective information aggregation under large-scale environments.

F.4 INTERPRETABILITY ANALYSIS

To better understand the behavior of the proposed LLM-driven factory assignment module, we per-
form a qualitative and quantitative analysis of the reasoning generated by the LLM during new job
arrivals. We record the LLM-generated reasoning text along with the selected factory IDs. As shown
in Table 9, the LLM provides interpretable factory assignment decisions by explicitly reasoning over
key factors such as idle ratio, utilization, job urgency, and estimated delays. This highlights its ability
to transparently capture system dynamics and support human-understandable scheduling rationales,
validating the effectiveness of our prompt-based design in enhancing decision interpretability.
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Table 9: Representative reasoning results from the LLM-based factory assignment.

Job ID Reasoning Summary Factory

J1 Factory 1 has the highest idle ratio (1.0) and no assigned jobs, making
it the most available for processing the new job without delay risks. F1

J66

Factory 0 has a low average utilization, a high idle ratio, and fewer
assigned jobs, making it better suited to handle the new job without
risking delays. Factory 1, although having some idle machines, already
has more assigned jobs and shows signs of potential future load.

F0

J100

Factory 0 has a higher idle ratio (0.8) compared to Factory 1 (0.7), in-
dicating more available capacity. Although both factories have similar
utilization, Factory 0 also has a lower estimated delay ratio (2.17 vs.
1.43 in Factory 1 is worse). However, the weight of the job is normal
and not urgent, so assigning it to the less loaded factory with better
availability makes sense for balanced workload distribution.

F0

G DISCUSSION

The integration of LLM into the scheduling pipeline, as demonstrated in LaRL, offers significant
performance improvements in makespan and workload balance. Although the use of LLMs intro-
duces additional inference overhead, LaRL remains practical for real-world manufacturing due to
its decision frequency and deployment flexibility. In many production settings, factory assignment
decisions are made at discrete intervals (e.g., upon new job arrivals), rather than at high frequency,
making the time cost of LLM reasoning acceptable in practice. More importantly, the semantic rea-
soning ability provided by LLM enables globally balanced job allocation and interpretable reward
shaping, which are critical for practical large-scale, dynamic environments. In addition, as LLMs
continue to evolve toward more lightweight and efficient variants, the proposed LaRL framework
offers a scalable foundation for intelligent scheduling systems in industrial applications.

H THE USE OF LARGE LANGUAGE MODELS

In preparing this manuscript, we used LLMs, specifically ChatGPT, as a writing assistant. The
LLM was employed to enhance the clarity, conciseness, and grammatical accuracy of the text, refine
phrasing, and ensure a consistent academic style across sections. It was also used to rephrase tech-
nical descriptions for better readability and to polish the final presentation of this work. LLMs were
not used for generating research ideas, designing algorithms, conducting experiments, or producing
theoretical results. All contributions were developed exclusively by the authors.
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