Under review as a conference paper at ICLR 2026

VISUAL PROGRAMMARBILITY: A GUIDE FOR CODE-AS-
THOUGHT IN CHART UNDERSTANDING

Anonymous authors
Paper under double-blind review

ABSTRACT

Chart understanding presents a critical test to the reasoning capabilities of Vision-
Language Models (VLMs). Prior approaches face critical limitations: some rely on
external tools, making them brittle and constrained by a predefined toolkit, while
others fine-tune specialist models that often adopt a single reasoning strategy, such
as text-based chain-of-thought (CoT). The intermediate steps of text-based rea-
soning are difficult to verify, which complicates the use of reinforcement-learning
signals that reward factual accuracy. To address this, we propose a Code-as-
Thought (CaT) approach to represent the visual information of a chart in a ver-
ifiable, symbolic format. Our key insight is that this strategy must be adaptive:
a fixed, code-only implementation consistently fails on complex charts where
symbolic representation is unsuitable. This finding leads us to introduce Visual
Programmability: a learnable property that determines if a chart-question pair is
better solved with code or direct visual analysis. We implement this concept in an
adaptive framework where a VLM learns to choose between the CaT pathway and
a direct visual reasoning pathway. The selection policy of the model is trained with
reinforcement learning using a novel dual-reward system. This system combines a
data-accuracy reward to ground the model in facts and prevent numerical halluci-
nation, with a decision reward that teaches the model when to use each strategy,
preventing it from defaulting to a single reasoning mode. Experiments demonstrate
strong and robust performance across diverse chart-understanding benchmarks.
Our work shows that VLMs can be taught not only fo reason but also how to reason,
dynamically selecting the optimal reasoning pathway for each task.

1 INTRODUCTION

(a) Previous Methods: Tool-Use Methods (b) Previous Methods Specialized Models

v gl &2 S
53 /m‘-»@ X

@@

g In-Domain Mo J Out-of-Domain
No Suitable Tools (Training Data) (Unseen Data Type)
Limited Predefined Toolkit Generalization Failure of Fixed Strategy
(c) Our Adaptive Methods

o =(B) _(HighVp) oo y _(towvp) | @ze (?)

= =T | Y TTT T .0 |=
I.lll C—.J | o of vim | &C C—J

s | o
</> Flizh ! Visual Programmability ______ _________ /
oo - (VP) Assessment !

(COUESASTING [ DI NSSSREC S &

(Native reasoning — no external dependencies)

Figure 1: Adaptive Reasoning vs. Fixed Strategies for Chart Understanding. Prevailing approaches are limited
by their rigid strategies. (a) Tool-Use Models are constrained by a predefined toolkit and fail on novel tasks.
(b) Specialized Models employ a single reasoning pattern (e.g., text-only or code-only), which limits their
generalization. In contrast, our (c) Adaptive Framework first assesses a task’s Visual Programmability. It then
dynamically selects the precise Code-as-Thought pathway for programmable tasks or the robust Direct Visual
Reasoning pathway for complex ones, achieving superior performance across all chart types.



Under review as a conference paper at ICLR 2026

The capabilities of Vision-Language Models (VLMs), built upon powerful Large Language Mod-
els Brown et al.|(2020); Touvron et al.| (2023)), have rapidly advanced multimodal understanding
(e.g.,Radford et al.|(2021); ILiu et al.| (2023); |Achiam et al.|(2023); (Comanici et al.| (2025); Bai et al.
(2025)). Among the many applications, chart understanding stands out as a critical benchmark |[Huang
et al.| (2024), testing an AI’s ability to connect low-level visual perception |Lee et al.| (2023) with
high-level logical inference. Despite significant progress with specialized models |Cheng et al.| (2023);
Masry et al.| (2023); [ Meng et al.|(2024)), a fundamental generalization problem remains: even state-
of-the-art VLMs show a stark performance decline on the complex, "in-the-wild" charts found in
real-world contexts Islam et al.| (2024)); Wang et al.| (2024).

Prevailing efforts to overcome this generalization challenge have largely followed two dominant
strategies, each with distinct drawbacks. The first approach treats the VLM as a controller for external
tools and APIsHuang et al.| (2025); \Gupta & Kembhavi (2023); |Suris et al.|(2023)) (see Figure Eh).
While powerful, their reliance on a predefined toolkit makes them brittle when encountering charts
that require capabilities beyond their predefined functions|Schick et al.[(2023)); Yao et al.[(2023b);
Patil et al.|(2024); Parisi et al.|(2022)). The second strategy involves fine-tuning specialized models on
chart-specific data|/Cheng et al.|(2023)); Masry et al.| (2023)); Meng et al.| (2024) (see Figure m)). These
models typically rely on a monolithic reasoning pattern—that is, they exclusively use a single mode
of thought, such as text-based Chain-of-Thought or code-based reasoning. This lack of flexibility
hinders their ability to generalize to out-of-distribution (OOD) visualizations, as no single reasoning
style is optimal for all chart types Wang et al.| (2024)); Xu et al.| (2023).

The limitations of predefined toolkits highlight the appeal of a more universal and flexible tool: code.
Unlike a fixed API, code can be dynamically generated to create novel tools tailored to the specific
visual complexities of any chart, a concept explored in recent agentic vision systems |Zhao et al.
(2025a)). However, the shared failure of rigid approaches motivates our core insight: the optimal
reasoning strategy depends on the task itself. Some charts are easily broken down into programmable
elements |Dat et al.[(2024), while others require a holistic visual analysis that code cannot capture.
This requires moving beyond refining a single reasoning chain |Wei et al.|(2022) to mastering strategy
selection—a shift that reflects a broader trend in Al towards deliberate problem-solving [Wang et al.
(2022);|Shinn et al.| (2023);|Yao et al.|(2023a) and adaptive computation Graves|(2016)). This principle
is also central to the design of frontier models like GPT-5 OpenAll (2025)), which aim to integrate
similar adaptive capabilities.

To address these challenges, we propose the concept of Visual Programmability: a learnable,
task-dependent property that indicates whether a given chart-question pair is best solved through pro-
grammatic reasoning or direct visual analysis. We implement this concept in an adaptive framework
that enables a VLM to autonomously choose its reasoning pathway. The model’s decision-making
policy is trained via reinforcement learning (RL)—specifically, using the Group Relative Policy
Optimization (GRPO) algorithm—guided by a novel dual-reward system. This system is carefully
designed to foster adaptive behavior: a data-accuracy reward ensures the generated code is factually
grounded to the chart’s content, thereby preventing numerical hallucination. In parallel, a dedicated
decision reward explicitly teaches the model the boundaries of programmability, preventing the policy
from collapsing into a single, suboptimal mode.

Experiments with Qwen2.5-VL Bai et al.|(2025) across diverse benchmarks validate our approach.
The adaptive model outperforms pure-vision and fixed code baselines by selecting its strategy—using
code when advantageous (>60%) and avoiding it when harmful (<10%). Ablations confirm that the
dual-reward design prevents mode collapse and promotes strategic diversity. Our contributions are
threefold:

* We introduce Visual Programmability, a novel concept to determine if a chart task is
suitable for code-based reasoning, serving as the foundation for adaptive strategy selection.

* Building on this concept, we develop an adaptive framework that learns to choose the
optimal reasoning path (code or vision). This framework is trained with a specialized
dual-reward RL system that promotes both factual accuracy and strategic flexibility.

* Our adaptive model demonstrates outstanding performance and generalization, consis-
tently outperforming rigid strategies across diverse benchmarks by intelligently switching
between reasoning modes.



Under review as a conference paper at ICLR 2026

2 RELATED WORK

Programmatic Reasoning and Its Limits. The field of chart understanding has seen a shift towards
programmatic reasoning. This includes VLMs acting as controllers for external tools |Gao et al.
(2023)); [Schick et al.|(2023)); Suris et al.| (2023)) and models that generate code as a form of symbolic
thought [Subramanian et al.| (2023)); |Chen et al.| (2023). While specialized models achieved high
scores on earlier benchmarks [Cheng et al.| (2023)); Masry et al| (2023), their success was often
misleading. They tended to learn benchmark-specific shortcuts, a weakness exposed by a new wave
of diverse and complex benchmarks Xia et al.|(2024); Wang et al.| (2024); [Xu et al.| (2023), where
even state-of-the-art models show a significant performance drop [Islam et al.|(2024); [Huang et al.
(2024). We argue that this generalization gap stems not from a lack of model capability, but from
strategic rigidity. Despite variations in approach—from Mixture-of-Experts Xu et al.|(2024) to visual
grounding techniques N1 et al.| (2025); [Huang et al.| (2025)—existing methods adhere to a fixed
reasoning pattern. Our work departs from this by reframing the challenge: instead of augmenting
VLMs with external tools, we teach them to recognize when to deploy their own code-like reasoning,
shifting the focus from tool use to strategic selection.

Adaptive Learning for Strategic Reasoning. Our framework builds on the idea of adaptive
computation, where a system alters its strategy based on the inputBengio et al.|(2015); [Kahneman
(2011)). In Al this is often implemented through methods like dynamic routing or Mixture-of-Experts
layers, which adapt how a model performs its computation [Sabour et al.|(2017); Jiang et al.| (2024)).
We apply this concept at a higher level: we teach a model to decide what reasoning process to use, a
skill we call strategic cognition. Reinforcement learning (RL) is well-suited for learning such a policy
from outcome-based feedback, a technique proven effective for tasks with verifiable answers Meng
et al.| (2025); |Su et al.[(2025); |Lightman et al.[(2023)). However, a simple accuracy reward can cause
the model to always default to a single, safe strategy—a problem known as mode collapse. Our key
contribution is a dual-reward system that combines an accuracy signal with a dedicated decision
reward. This design encourages strategic diversity, teaching the model not just to solve the task, but
how to choose the right reasoning tool for the job.

3  EXPLORING CODE-AS-THOUGHT AS A UNIVERSAL STRATEGY

The limitations of the fixed strategies discussed previously motivate us to explore whether a more
powerful, formal paradigm could serve as a universal solution for chart understanding. This line of
inquiry leads us to investigate Code-as-Thought (CaT) and to pose a foundational question:

Is Code-as-Thought a "silver bullet” for chart understanding?

Standard CoT + Base Standard CoT + SFT Standard CoT + RL
777 Code-as-Thought + Base B Code-as-Thought + SFT B Code-as-Thought + RL
80
+1.8
70— " +3.6
428 |
;\3 60— ___
T
& 50—
=1
]
< 40| -8.4 -18.8 -2.4
w
30 /
20—
% /
ChartX CharXiv

Figure 2: Performance of Fixed Strategies Highlights a Critical Trade-off. While the Code-as-Thought
(CaT) strategy excels on structured charts (ChartX), its performance collapses on complex, ’in-the-wild’ charts
(CharXiv). All values are accuracy (%).

To answer this, we first investigated the efficacy of a single, fixed CaT strategy. We trained a
specialist model on structured data and evaluated its generalization across four diverse benchmarks.



Under review as a conference paper at ICLR 2026

We discovered a core limitation that motivates our adaptive framework. Figure [2] visualizes the
results on two of these benchmarks—the highly structured ChartX and the complex, "in-the-wild"
CharXiv—which most clearly illustrate the performance trade-offs. A detailed description of the
setup and full results across all four benchmarks are provided in Appendix [A]

The results reveal a sharp dichotomy in generalization performance. As shown in Figure [2} the CaT
specialist (achieving 71.6% with SFT) excels on the structured ChartX data, confirming its power in
high-programmability scenarios. However, this rigid strategy proves brittle. On the complex charts
from CharXiyv, its accuracy collapses to a mere 18.4%. This failure is often driven by numerical
hallucination—where the model generates code from a flawed perception of the chart, then reasons
faithfully from this incorrect foundation. A case of this phenomenon is detailed in Appendix

Furthermore, we found that enhanced skill and policy optimization are not a panacea. The right side of
the figure illustrates that even after applying reinforcement learning (RL), the model’s performance on
CharXiv remains critically low, failing to resolve the core conflict. Results with extensive pre-training
(CPT+RL) exhibit the same trend and are provided in Appendix [A] The conclusion is clear: the
issue is not the model’s competence (how well it codes) but determining the strategy’s applicability
(whether it should code at all). These experiments confirm the potential of Code-as-Thought but
reveal that the optimal strategy is task-dependent, motivating our core thesis: an intelligent system
must learn when to use its tools, not just how.

4 ADAPTIVE CODE-BASED REASONING FRAMEWORK

Our framework enables a Vision-Language Model (VLM) to dynamically select the optimal reasoning
strategy for a given chart. As illustrated in Figure [3] it consists of three core parts: an adaptive
inference system, a training process based on reinforcement learning, and the underlying concept of
Visual Programmability that guides the model’s learning.

Visual Programmability Analysis

~
High Programmability Low Programmability
g. o
i.l/l o® J V' Visual Clarity @-® x Multi-Panel
U .I.l.ll. N R S5 X eereeenenenene
- )\

Unannotated Chart Image — Code-based reasoning — Direct visual reasoning

Adaptive Reasoning System

l._ll |5®| —{ Adaptive VLM J
ChartImage + Question
<CODE> High VP Strategy Low VP
Selectio Direct Visual Reasoning
—l—/ ' \ J ‘
( ﬁ Code Based CoT — @ Natural Language CoT

\Code-based Reasoning
GRPO RL Training Framework

| VP: Visual Programmability

<DIRECT>

5 ™~ Comprehensive Reward
Training Data 0 o] Function R
Chart Image I IS N 2
Question Q Policy Model | Race J [ Rde?"?""" __, Reward Signal
Ground Truth y (Accuracy) (Decision) R(y,y)

Programmability label 1/0 Sample G (
(

. R R
Data annotation <csv>...</csv> Gletia J [ [

Data Accuracy (Format)

GRPO Policy Update

Figure 3: Overview of our adaptive reasoning framework. (Top) We introduce the concept of Visual Programma-
bility and use it to guide data annotation. (Middle) At inference, our adaptive VLM selects a reasoning pathway
based on the perceived Visual Programmability (VP) of the task. (Bottom) The model’s selection policy is
trained using reinforcement learning with a multi-component reward function and the GRPO algorithm.



Under review as a conference paper at ICLR 2026

4.1 VISUAL PROGRAMMABILITY: UNDERSTANDING THE BOUNDARIES OF CODE

Not all charts are equally well-suited to analysis using Code-as-Thought. To address this, we introduce
the concept of Visual Programmability: a learnable, task-dependent property that serves as the
foundation for our adaptive reasoning system. It determines whether a chart-question pair can be
faithfully reasoned using code. This property is not a binary yes-or-no question; rather, it represents a
range of suitability influenced by a chart’s structural clarity, its visual complexity, and the query itself.
Figure ] provides several cases that illustrate this concept.

High vs. Low Programmability. The suitability of code-based reasoning varies widely. Some
charts exhibit high programmability. These are typically standard bar, line, or scatter plots with clean
layouts, where the underlying data can be programmatically extracted with high fidelity. Figure[d]
(a) shows a clear example: a standard line chart with explicitly marked data points, making it ideal
for precise computational analysis. In contrast, other charts have low programmability. As seen in
Figure d(b), these often include complex scientific visualizations where meaning is conveyed through
holistic patterns, such as data contours and distributions. For these charts, essential information is
often lost or distorted during symbolic translation.

The Critical Role of Task Dependency. Crucially, Visual Programmability is not an intrinsic chart
property alone; it is fundamentally dependent on the user’s query. This is demonstrated by the case in
Figure ] (c). For a simple counting task like, "How many distinct data series are plotted?", the chart
has high programmability, as the task only requires identifying discrete visual elements. However,
for a value-extraction task like, "What is the approximate value of the orange line (h/a = 1000) when
d = 7?", the same chart exhibits low programmability. The logarithmic scale makes precise data
extraction extremely difficult and error-prone. In this scenario, a Code-as-Thought approach would
likely yield a confidently incorrect answer, making direct visual reasoning a more reliable strategy.

A standard line chart with explicitly
marked data points

A chart with complex scientific
visualizations

Visual Programmability depends
on user's query

Te+07,

Energy Generation inthe United States in 2021
2001 o~ lectricity

Gas
1001 o Nuclear

le+06]

le+05F

le+04]

(K)/V(K)

5 1e+03f

V)

le+02
-

le+01g

(a) High Visual Programmability (b) Low Visual Programmability (c) Task-Dependent Programmability
(From ChartX) (From CharXiv) (From CharXiv)

Figure 4: Cases of Visual Programmability for different charts and tasks.

This dependency on both the chart and the question necessitates a dynamic reasoning system. An
intelligent agent cannot rely on a fixed strategy; it must learn to assess Visual Programmability to
select the most appropriate reasoning path. To enable this, we developed a framework to annotate
data for this property, providing the signal for learning this adaptive skill (see Appendix [C).

4.2 ADAPTIVE REASONING MECHANISM

We formulate the chart-understanding task as a policy learning problem. Given a chart image
I and a question Q, our model learns a policy 7y that generates a response y. This process is
explicitly factorized to first select a strategy token s € {<CODE>, <DIRECT>}, then generate the
corresponding reasoning and answer:

P(y|L,Q) = P(s|1,Q) - P(y|I,Q,s). (1)

This factorization is realized by building upon powerful base models (Qwen2.5-VL) and teaching
them to first commit to a strategy by generating a special token, which then dictates the subsequent
generation path:

Code-based Path (<CODE>): The model generates a Code-as-Thought (CaT) pathway. It writes
code to parse the chart into a structured format (e.g., a DataFrame) and then performs computations
to find the answer. This path is ideal for charts with high Visual Programmability.



Under review as a conference paper at ICLR 2026

Direct Path (<DIRECT>): The model generates a natural language CoT, performing reasoning based
on its holistic visual perception. This path is essential for charts with low Visual Programmability
where symbolic decomposition would lose critical information.

For automated evaluation, the final answer from both paths must be enclosed in \boxed{}.

4.3 TRAINING VIA REINFORCEMENT LEARNING

The crucial challenge is the absence of ground-truth labels for strategy selection. We overcome this
by formulating the training as a reinforcement learning problem, allowing the model to learn the
optimal policy from outcome-based reward signals.

4.3.1 GRPO PoLIicY UPDATE

We optimize the policy with Group Relative Policy Optimization (GRPO). For each input, we sample
a group of G rollouts from 7,4, score them with our reward, compute group-normalized advantages,
and apply a clipped-ratio update. We follow a KL-free configuration by setting 5=0. The full
objective, notation, and update details are provided in Appendix

4.3.2 COMPREHENSIVE REWARD FUNCTION

A naive reward function focused solely on answer accuracy would be insufficient and could lead
to mode collapse—where the model defaults to a single, suboptimal strategy. To prevent this and
guide the model toward true adaptive behavior, we designed a comprehensive reward function R as a
weighted sum of four specialized components:

R = WaceTace + WecisionTdecision T WdataTdata + WrormatT format - (2)

The components are:

Accuracy Reward (7,..): The primary reward, providing a binary signal (1.0 or 0.0) based on the
correctness of the final answer.

Decision Reward (7gecision): Our key innovation to prevent mode collapse. This reward explicitly
incentivizes selecting the correct strategy based on the chart’s pre-annotated Visual Programmability.
It gives a full reward for a correct answer via the correct strategy, a partial reward for a wrong answer
but using the correct strategy (to encourage exploration), and zero reward for using the wrong strategy.
This component is essential for teaching the model to learn the decision boundary.

DF g @ Column Match (Fuzzy Match) (@ Raw Count
Date Total Sales Category ‘ DF g4 ] Date ‘ Total Sales ‘ Category ‘ - =
2024-01-01 1000 A ‘ DFpred‘ Date ‘ sale total ‘ category ‘ Tcol = 2/3
2024-01-02 1500 B ] x J =0.6667 v Fraw=1.0
2024-01-03 1300 A
@ Value Accuracy (Compare Matched Columns)
DF gt DFpred DF g¢ DFpred
DFpred Date Date Category category
Date sale total category 2024-01-01 2024-01-01 V A A V’ -
2024-01-01 1000 A 2024-01-02 | 2024-01-02 J B B I Fogines =516
2024-01-02 1500 B 2024-01-03 | 2024-01-03 | A C x =0.8333
2024-01-03 1800 C

Tdata = @Tcol + BTraw + 0Tyalues

Figure 5: [llustration of the Data Accuracy Reward calculation.

Data Accuracy Reward (r4ata): Applied only to the <CODE> path, this reward tackles the issue
of code "hallucination." It programmatically compares the DataFrame generated by the model’s
code to a ground-truth data table, evaluating the fidelity of the extracted data. This ensures the
model generates code that is not just syntactically valid, but semantically faithful to the chart. The
calculation process is visualized in Figure 5]

Format Reward (7grmat): A small reward to enforce correct output structure (i.e., using \boxed{ }),
ensuring reliable parsing.

This multi-faceted reward design creates a nuanced optimization landscape that simultaneously
pushes the model toward accuracy and strategic intelligence. The detailed implementation of the
Data Accuracy Reward is provided in Appendix



Under review as a conference paper at ICLR 2026

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We train on ChartMimic |Yang et al.| (2024) augmented with automatically generated QA pairs
(Gemini-2.5-Flash; prompts in Appendix [F) to cover both programmable and non-programmable
chart—question pairs. We evaluate on four benchmarks spanning the Visual Programmability spectrum:
ChartX |Xia et al.| (2024), ChartBench (NQA) Xu et al.| (2023)), ChartQA Masry et al.| (2022)), and
CharXiv[Wang et al.|(2024). Our base is Qwen2.5-VL-7B trained with GRPO (EasyR1 |Zheng et al.
(2025))) under the dual-reward design in Eq.[2] Full dataset composition, sampling protocol, metric
definitions, and hyperparameters are detailed in Appendix D}

5.2 COMPARISON WITH FIXED-STRATEGY BASELINES

Table 1: Comparison with fixed-strategy baselines on four benchmarks. Our adaptive RL model achieves the
highest average accuracy by dynamically selecting its reasoning strategy. All values are accuracy (%).

Model Type Reasoning Strategy ChartX ChartBench ChartQA CharXiv Average
Standard CoT 59.2 50.1 84.9 384 58.2

Base Models (No RL) Code CoT (Fixed) 59.8 53.4 79.4 28.8 55.4
Adaptive 57.8 514 84.4 22.8 54.1
Standard CoT 61.5 52.8 86.6 43.8 61.2

RL Models Code CoT (Fixed) 64.0 54.0 86.7 41.9 61.7
Adaptive (Ours) 65.6 54.8 86.4 44.3 62.8

As shown in Table[l] our adaptive framework achieves the highest average accuracy (62.8%), outper-
forming all fixed-strategy baselines. This advantage stems from its learned ability to dynamically
select the optimal reasoning path.

Table 2] reveals this strategic behavior. On high-programmability benchmarks like ChartX and
ChartBench, our model favors the code-based path (76.0% and 66.6 % usage) to leverage its precision.
On the complex CharXiv benchmark, it astutely reduces code usage to just 10.1%, avoiding the
pitfalls of a rigid code-only approach and achieving the highest accuracy (44.3%). The results on
ChartQA further suggest that our Data Accuracy Reward improves not only when the model uses
code, but also how reliably it does so.

Qualitative examples (see Appendix I further highlight this strategic intelligence: our model correctly
selects the <CODE> path for precise calculations on structured charts and the <DIRECT> path for
complex plots, successfully navigating scenarios where fixed-strategy baselines fail.

Table 2: Code usage percentage across benchmarks for our adaptive model versus fixed strategies. The model
learns to apply code frequently on high-programmability charts and sparingly on low-programmability ones. All
values are percentages (%).

Model Type Reasoning Strategy ChartX ChartBench ChartQA CharXiv
Standard CoT 0.0 0.0 0.0 0.0

Base Models (No RL) Code CoT (Fixed) 98.9 100.0 98.3 99.5
Adaptive 99.7 99.6 98.8 92.9
Standard CoT 0.0 0.0 0.0 0.0

RL Models Code CoT (Fixed) 100.0 100.0 100.0 100.0
Adaptive (Ours) 76.0 66.6 98.3 10.1

5.3 COMPARISON WITH STATE-OF-THE-ART MODELS

To contextualize our results, we compare our adaptive framework against several state-of-the-art
(SOTA) models. All models, unless noted, were evaluated under our stringent protocol to ensure a
fair comparison. As shown in Table [3] our model achieves the highest average accuracy (62.8%),
significantly outperforming other SOTA models. This performance gap, especially on diverse
benchmarks like ChartX and CharXiv, underscores the advantage of our adaptive reasoning approach.



Under review as a conference paper at ICLR 2026

Table 3: Comparison with state-of-the-art models on four key generalization benchmarks. Our model demon-
strates outstanding performance, achieving the highest average accuracy. All values are percentages (%).

Model Parameters ChartX ChartBench ChartQA CharXiv Average
ChartVLM-Large Xia et al.|(2024) 8.3B 35.0 28.8 66.7 14.7 36.3
ChartGemma |[Masry et al.|(2024) 3B 28.7 27.5 69.0 20.3 36.4
ChartMoE [Xu et al.|(2024) 8B 33.6 29.5 74.2 28.3 414
Orsta-7B |Ma et al.|(2025) 7B 60.3 52.0 84.6 41.5 59.6
Point-RFT N1 et al.|(2025) 7B - - 90.04" 36.02* -
Thyme-VL|[Zhang et al.[(2025) 7B - - 86.1* - -
Ours (Adaptive) 7B 65.6 54.8 86.4 44.3 62.8

*Results are taken directly from the original paper.
In-domain evaluation result taken from the original paper.

5.4 ANALYSIS ON DIFFERENT MODEL SCALES

Our approach demonstrates strong scalability. On the 32B model (Table[d), our adaptive framework
achieves the highest average accuracy (61.0%) and top performance on the challenging ChartX and
CharXiv benchmarks. The results from the 3B model are more nuanced. While the fixed ‘Code
CoT* strategy yields the best average performance (56.5%), we hypothesize the adaptive strategy
is constrained by the smaller model. It is nonetheless striking that after RL, the ‘Standard CoT*
model’s performance collapses (from 31.9% to 20.4%), whereas both code-based strategies improve
substantially. This strongly indicates that our structured, code-centric reward system provides a more
stable and effective learning signal than a simple accuracy reward on free-form text.

Table 4: Performance comparison on 3B and 32B models. Our adaptive framework scales effectively to larger
models, achieving the best overall performance on the 32B scale. The best results in each RL-trained category
are highlighted in bold. All values are accuracy (%).

Model Size Training Reasoning Strategy  ChartX ChartBench ChartQA CharXiv Average
Standard CoT 48.0 39.2 13.8 26.7 31.9
Base Model (No RL) Code CoT (Fixed) 51.3 42.0 28.0 29.3 37.7
3B Adaptive 1.0 0.7 0.3 10.6 32
Standard CoT 9.3 9.3 41.8 21.3 20.4
RL-Trained Code CoT (Fixed) 58.5 48.5 82.3 36.7 56.5
Adaptive (Ours) 55.6 43.5 73.6 33.6 51.6
Standard CoT 53.7 47.2 83.4 36.3 55.2
Base Model (No RL) Code CoT (Fixed) 56.3 49.6 84.8 39.9 57.7
1B Adaptive 56.6 45.7 84.4 37.7 56.1
Standard CoT 54.7 479 84.6 359 55.8
RL-Trained Code CoT (Fixed) 59.6 49.5 87.9 44.5 60.4
Adaptive (Ours) 60.2 48.4 87.7 47.5 61.0

5.5 ABLATION STUDIES

5.5.1 DISSECTING THE REWARD FUNCTION

Tables [5|and E] show the effect of our reward components. The Decision Reward (7 gecision) prevents
mode collapse, without which the model defaults to a rigid 0/100% code usage. While 7gecision
teaches when to use code, the Data Accuracy Reward (rq,,) teaches how to use it well, preventing
over-caution. Together, they create a balanced policy for optimal performance.

Table 5: Ablation study on reward components. The full reward function is essential for achieving the highest
accuracy. All values are accuracy (%).

Reward Configuration ChartX ChartBench ChartQA CharXiv Average

Tace + Ttormat (Baseline)  62.2 522 86.5 43.6 61.1
+ Tdata (W/O Tdecision) 64.3 53.5 86.4 39.4 60.9
+ Tdecision (W/O Tqata) 63.6 524 86.3 433 61.4
Full Reward (Ours) 65.6 54.8 86.4 4.3 62.8




Under review as a conference paper at ICLR 2026

Table 6: Code usage percentage in the reward ablation study. The decision reward (7gecision) 1S critical for
preventing mode collapse and enabling adaptive behavior. All values are percentages (%).

Reward Configuration ChartX ChartBench ChartQA CharXiv

Tace + Tformae (Baseline) 0.0 0.0 0.0 0.0
+ T'data (W/O Tdecision) 100.0 100.0 100.0 100.0
+ Tdecision (W/O T'data) 50.4 11.0 87.4 0.7
Full Reward (Ours) 76.0 66.6 98.3 10.1

5.5.2 THE CRITICAL ROLE OF NUMERICAL FIDELITY

This analysis confirms the importance of our data accuracy reward. As shown in Table[7} there is
a direct and stark correlation between the fidelity of extracted data and the final answer accuracy.
High-fidelity extraction leads to an impressive 85.6% accuracy, demonstrating that correct data
extraction is a prerequisite for successful reasoning on programmable charts. As Figure[6]illustrates,
our data accuracy reward (74a,) grounds the model by teaching it to improve on high-fidelity tasks
while "unlearning" to guess on low-fidelity ones.

Table 7: The stark correlation on the ChartX benchmark between the accuracy of extracted numerical data and
final answer correctness. High-fidelity data extraction is demonstrably a prerequisite for success.

Numerical Accuracy Score (7gata) Final Answer Accuracy (%)

< 0.6 (Low Fidelity) 48.4
0.6 - 0.8 (Medium Fidelity) 60.5
> 0.8 (High Fidelity) 85.6

(a) Accuracy (b) Accuracy with High R-data (c) Accuracy with Low R-data

°
2
g
o
8

0.350 4

°
g

0.325 4

°

0.300 4

Accuracy

0.275 4

°
1S

0.250 4

Accuracy with High R-data
Accuracy with Low R-data
o

°

0.48 4 0.225 4

Raw Raw Raw
—— Smoothed 0.200 4 = Smoothed = Smoothed

°

Figure 6: Training dynamics on ChartX, illustrating the effect of the Data Accuracy Reward (rgaa). (Left)
Overall task accuracy increases. (Middle) Accuracy with high data fidelity (rga > 0.6) rises sharply. (Right)
Accuracy with low data fidelity (r4aa < 0.6) trends downward, as the model unlearns to guess.

6 CONCLUSION

We challenged the prevailing one-size-fits-all paradigm in visual reasoning. To this end, we introduced
Visual Programmability, a concept that explains why powerful Code-as-Thought (CaT) strategies
excel on structured charts but fail on complex ones. Building on this insight, we developed an
adaptive framework trained with a novel dual-reward system. Our model learns to dynamically select
between the precision of CaT and the robustness of direct visual reasoning, deploying the optimal
strategy for each task. The key insight from our work is that robust, general-purpose reasoning
emerges not from a superior monolithic strategy, but from the meta-cognitive skill of knowing one’s
own capabilities and limitations. This work provides a concrete blueprint for building more flexible
Al systems—systems that don’t just follow procedures, but strategically decide how to think. A
detailed discussion of limitations, future work, and broader implications is provided in Appendix



Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau, and Doina Precup. Conditional computation in
neural networks for faster models. arXiv preprint arXiv:1511.06297, 2015.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Zhenfang Chen, Rui Sun, Wenjun Liu, Yining Hong, and Chuang Gan. Genome: generative neuro-
symbolic visual reasoning by growing and reusing modules. arXiv preprint arXiv:2311.04901,
2023.

Zhi-Qi Cheng, Qi Dai, and Alexander G Hauptmann. Chartreader: A unified framework for chart
derendering and comprehension without heuristic rules. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 22202-22213, 2023.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
arXiv preprint arXiv:2507.06261, 2025.

Yue Dai, Soyeon Caren Han, and Wei Liu. Msg-chart: Multimodal scene graph for chartqa. In Pro-
ceedings of the 33rd ACM International Conference on Information and Knowledge Management,
pp- 3709-3713, 2024.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764-10799. PMLR, 2023.

Alex Graves. Adaptive computation time for recurrent neural networks. arXiv preprint
arXiv:1603.08983, 2016.

Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning
without training. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 1495314962, 2023.

Kung-Hsiang Huang, Hou Pong Chan, Yi R Fung, Haoyi Qiu, Mingyang Zhou, Shafiq Joty, Shih-Fu
Chang, and Heng Ji. From pixels to insights: A survey on automatic chart understanding in the era
of large foundation models. IEEE Transactions on Knowledge and Data Engineering, 2024.

Muye Huang, Lingling Zhang, Jie Ma, Han Lai, Fangzhi Xu, Yifei Li, Wenjun Wu, Yaqiang Wu, and
Jun Liu. Chartsketcher: Reasoning with multimodal feedback and reflection for chart understanding.
arXiv preprint arXiv:2505.19076, 2025.

Mohammed Saidul Islam, Raian Rahman, Ahmed Masry, Md Tahmid Rahman Laskar, Mir Tafseer
Nayeem, and Enamul Hoque. Are large vision language models up to the challenge of chart
comprehension and reasoning? an extensive investigation into the capabilities and limitations of
Ivlms. arXiv preprint arXiv:2406.00257, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Daniel Kahneman. Thinking, fast and slow. macmillan, 2011.

10



Under review as a conference paper at ICLR 2026

Kenton Lee, Mandar Joshi, Iulia Raluca Turc, Hexiang Hu, Fangyu Liu, Julian Martin Eisenschlos,
Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, and Kristina Toutanova. Pix2struct: Screenshot
parsing as pretraining for visual language understanding. In International Conference on Machine
Learning, pp. 18893-18912. PMLR, 2023.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances in
neural information processing systems, 36:34892-34916, 2023.

Yan Ma, Linge Du, Xuyang Shen, Shaoxiang Chen, Pengfei Li, Qibing Ren, Lizhuang Ma, Yuchao
Dai, Pengfei Liu, and Junjie Yan. One 1l to see them all: Visual triple unified reinforcement
learning. arXiv preprint arXiv:2505.18129, 2025.

Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. Chartqa: A bench-
mark for question answering about charts with visual and logical reasoning. arXiv preprint
arXiv:2203.10244, 2022.

Ahmed Masry, Parsa Kavehzadeh, Xuan Long Do, Enamul Hoque, and Shafiq Joty. Unichart: A
universal vision-language pretrained model for chart comprehension and reasoning. arXiv preprint
arXiv:2305.14761, 2023.

Ahmed Masry, Megh Thakkar, Aayush Bajaj, Aaryaman Kartha, Enamul Hoque, and Shafiq
Joty. Chartgemma: Visual instruction-tuning for chart reasoning in the wild. arXiv preprint
arXiv:2407.04172, 2024.

Fanging Meng, Wenqi Shao, Quanfeng Lu, Peng Gao, Kaipeng Zhang, Yu Qiao, and Ping Luo.
Chartassisstant: A universal chart multimodal language model via chart-to-table pre-training and
multitask instruction tuning. arXiv preprint arXiv:2401.02384, 2024.

Fanqing Meng, Lingxiao Du, Zongkai Liu, Zhixiang Zhou, Quanfeng Lu, Daocheng Fu, Tiancheng
Han, Botian Shi, Wenhai Wang, Junjun He, et al. Mm-eureka: Exploring the frontiers of multimodal
reasoning with rule-based reinforcement learning. arXiv preprint arXiv:2503.07365, 2025.

Minheng Ni, Zhengyuan Yang, Linjie Li, Chung-Ching Lin, Kevin Lin, Wangmeng Zuo, and Lijuan
Wang. Point-rft: Improving multimodal reasoning with visually grounded reinforcement finetuning.
arXiv preprint arXiv:2505.19702, 2025.

OpenAl. Gpt-5 system card. Technical report, OpenAl, 2025. URL https://openai.com/
index/gpt-5-system—card/. PDF available; Accessed: 2025-08-11.

Aaron Parisi, Yao Zhao, and Noah Fiedel. Talm: Tool augmented language models. arXiv preprint
arXiv:2205.12255, 2022.

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language
model connected with massive apis. Advances in Neural Information Processing Systems, 37:
126544-126565, 2024.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748-8763. PmLR, 2021.

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules. Advances
in neural information processing systems, 30, 2017.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke
Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
themselves to use tools. Advances in Neural Information Processing Systems, 36:68539—68551,
2023.

11


https://openai.com/index/gpt-5-system-card/
https://openai.com/index/gpt-5-system-card/

Under review as a conference paper at ICLR 2026

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634-8652, 2023.

Zhaochen Su, Linjie Li, Mingyang Song, Yunzhuo Hao, Zhengyuan Yang, Jun Zhang, Guanjie Chen,
Jiawei Gu, Juntao Li, Xiaoye Qu, et al. Openthinkimg: Learning to think with images via visual
tool reinforcement learning. arXiv preprint arXiv:2505.08617, 2025.

Sanjay Subramanian, Medhini Narasimhan, Kushal Khangaonkar, Kevin Yang, Arsha Nagrani,
Cordelia Schmid, Andy Zeng, Trevor Darrell, and Dan Klein. Modular visual question answering
via code generation. arXiv preprint arXiv:2306.05392, 2023.

Didac Suris, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python execution
for reasoning. In Proceedings of the IEEE/CVF international conference on computer vision, pp.
11888-11898, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Zirui Wang, Mengzhou Xia, Luxi He, Howard Chen, Yitao Liu, Richard Zhu, Kaiqu Liang, Xindi
Wau, Haotian Liu, Sadhika Malladi, et al. Charxiv: Charting gaps in realistic chart understanding in
multimodal 1lms. Advances in Neural Information Processing Systems, 37:113569-113697, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Rengqiu Xia, Bo Zhang, Hancheng Ye, Xiangchao Yan, Qi Liu, Hongbin Zhou, Zijun Chen, Peng Ye,
Min Dou, Botian Shi, et al. Chartx & chartvlm: A versatile benchmark and foundation model for
complicated chart reasoning. arXiv preprint arXiv:2402.12185, 2024.

Zhengzhuo Xu, Sinan Du, Yiyan Qi, Chengjin Xu, Chun Yuan, and Jian Guo. Chartbench: A
benchmark for complex visual reasoning in charts. arXiv preprint arXiv:2312.15915, 2023.

Zhengzhuo Xu, Bowen Qu, Yiyan Qi, Sinan Du, Chengjin Xu, Chun Yuan, and Jian Guo. Chart-
moe: Mixture of diversely aligned expert connector for chart understanding. arXiv preprint
arXiv:2409.03277, 2024.

Cheng Yang, Chufan Shi, Yaxin Liu, Bo Shui, Junjie Wang, Mohan Jing, Linran Xu, Xinyu Zhu,
Siheng Li, Yuxiang Zhang, et al. Chartmimic: Evaluating Imm’s cross-modal reasoning capability
via chart-to-code generation. arXiv preprint arXiv:2406.09961, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in neural
information processing systems, 36:11809-11822, 2023a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023b.

Yi-Fan Zhang, Xingyu Lu, Shukang Yin, Chaoyou Fu, Wei Chen, Xiao Hu, Bin Wen, Kaiyu Jiang,
Changyi Liu, Tianke Zhang, Haonan Fan, Kaibing Chen, Jiankang Chen, Haojie Ding, Kaiyu Tang,
Zhang Zhang, Liang Wang, Fan Yang, Tingting Gao, and Guorui Zhou. Thyme: Think beyond
images, 2025. URL https://arxiv.org/abs/2508.11630.

12


https://arxiv.org/abs/2508.11630

Under review as a conference paper at ICLR 2026

Shitian Zhao, Haoquan Zhang, Shaoheng Lin, Ming Li, Qilong Wu, Kaipeng Zhang, and Chen Wei.
Pyvision: Agentic vision with dynamic tooling. arXiv preprint arXiv:2507.07998, 2025a.

Xuanle Zhao, Xianzhen Luo, Qi Shi, Chi Chen, Shuo Wang, Zhiyuan Liu, and Maosong Sun.
Chartcoder: Advancing multimodal large language model for chart-to-code generation. arXiv
preprint arXiv:2501.06598, 2025b.

Yaowei Zheng, Junting Lu, Shenzhi Wang, Zhangchi Feng, Dongdong Kuang, and Yuwen Xiong.
Easyrl: An efficient, scalable, multi-modality rl training framework. https://github.com/
hiyouga/EasyR1, 2025. GitHub repository.

THE USE OF LARGE LANGUAGE MODELS

We used Gemini 2.5 Pro for the following limited purposes: (i) language polishing of paragraphs;
(ii) generating boilerplate code for plotting; and (iii) drafting figure captions. All scientific claims,
methods, and results were conceived, verified, and validated by the authors. We manually checked
and reproduced any outputs suggested by the LLM. No confidential or identifying information was
provided to the LLM service.

A DETAILED ANALYSIS OF FIXED-STRATEGY EXPERIMENTS

Experimental Setting. To create our specialist model, we fine-tuned Qwen2.5-VL-7B using a
Supervised Fine-Tuning (SFT) approach on the ChartX validation set|Xia et al.|(2024). This dataset
consists of approximately 4,800 highly structured charts well-suited for programmatic analysis. We
then evaluated this specialized model’s generalization ability across four diverse test suites, each
containing 500 samples designed to span a spectrum of difficulty and style:

* In-Domain (ChartX Xia et al.| (2024)): A stratified sample from the official test set,
ensuring equal representation of chart types (e.g., bar, line, pie). This measures performance
on data from the same distribution as the training set.

* Near-Domain (ChartBench Xu et al.[(2023)): A similarly stratified sample from Chart-
Bench. This benchmark, while out-of-domain (OOD), shares structural and stylistic similar-
ities with ChartX, testing for near-transfer capabilities.

* Far-Domain (ChartQA Masry et al.|(2022)): A random sample from the human-annotated
portion of the test set. These examples often require deeper, qualitative reasoning, posing a
rigorous challenge to purely quantitative methods.

* Far-Domain (CharXiv Wang et al. (2024)): A random sample from CharXiv, which
contains "in-the-wild" scientific charts with significant visual complexity and stylistic
diversity. This serves as a stress test for generalization.

This multi-faceted evaluation was designed to reveal how a strategy optimized for clean, struc-
tured data would perform when confronted with the ambiguities and complexities of real-world
visualizations.

Detailed Analysis. The results in Table[8|reveal a sharp dichotomy in generalization performance.
The code-based specialist (SFT, Code-based CoT) excelled on structured data, achieving an
impressive 71.6% on ChartX. However, this rigid strategy proved brittle when generalized, with
accuracy plummeting on complex charts like CharXiv to just 18.4%. This shows how reasoning
patterns effective for simple charts become detrimental when misapplied. Furthermore, this failure
is not a simple matter of competence that can be fixed with more training. Optimizing the policy
with reinforcement learning (RL) or maximizing coding skill on a vast dataset (CPT + RL) failed to
resolve this core conflict.

B CASE STUDY: FAILURE DUE TO NUMERICAL HALLUCINATION

As discussed in Section [3] a critical failure mode for rigid, code-based strategies is numerical
hallucination. This occurs when the model incorrectly perceives the visual information in a chart

13


https://github.com/hiyouga/EasyR1
https://github.com/hiyouga/EasyR1

Under review as a conference paper at ICLR 2026

Table 8: Detailed performance of "One-Size-Fits-All" Strategies. This table provides the full numerical data
visualized in Figure |Z| in the main text. All models are fine-tuned (SFT or RL) on the ChartX validation set.
The CPT model first undergoes continued pre-training on Chart2Code-160k [Zhao et al.|(2025b) to enhance its
core chart-to-code ability. Despite optimization, no single strategy excels across all benchmarks, revealing a
fundamental performance trade-off.

Prompt Strategy Training Method ChartX ChartBench ChartQA CharXiv Average
Base Model 59.8 51.6 80.4 38.2 58.7
Standard CoT SFT on ChartX 69.8 56.2 72.0 37.2 58.8
RL on ChartX 63.0 53.0 81.6 394 59.3
Base Model 62.6 53.4 74.8 29.8 55.2
Cod Thoucht SFT on ChartX 71.6 56.8 68.2 184 53.8
ode-as-Thouglt  RL on Chartx 66.6 55.8 78.0 37.0 59.4
CPT + RL on ChartX 69.2 54.0 68.6 320 56.0

and generates flawed code based on this misperception. The model then proceeds to execute its own
flawed logic, leading to an answer that is logically consistent with its internal (wrong) representation
but factually incorrect.

A 5 0.047 — trained B.a0 000 | B
] random Tos ~aoe® e o03s| o .
E g% 5 / 5
§ 0.031 O convolution o i § oon
£ Y¢ fully-connected ® 0.6 . tral.nse.t ;
g o —@— validation 5 0025
2 0.02 £ H
2 § 0.4 ©000000% £ 0020
. (7] 2
Eo.01 ® 02 oo
] O OOO*W 0'1 chance baseline ‘ﬁﬁ
135 7 9111315 1 3 5 7 8 111315 i . .
layers layers 5 5 iyers 6 & l
(a) (b)
[Question]: How many number of datapoints for convolution in the figure A?
[Ground Truth]: 26
[Answer]: The code is ***python\n{code}\n""". The total number of datapoints for convolution in the figure A is 8. \box{8}

Figure 7: Failure of a Rigid Code-Based Strategy on a CharXiv Example. The model is tasked with
analyzing the original chart (a) from the CharXiv dataset. It generates Python code (indicated in the red box) to
extract the data, but this code hallucinates an incorrect data structure. Chart (b) is the visualization produced by
executing the model’s flawed code. The model then faithfully reasons over its own erroneous chart (b) to arrive
at the answer ’8’, a stark deviation from the ground truth of 26. This case exemplifies how a rigid code-based
approach can fail by building logical conclusions on a foundation of numerical hallucination.

C ANNOTATION FRAMEWORK FOR VISUAL PROGRAMMABILITY

To train a model capable of recognizing Visual Programmability, we developed a rigorous annotation
framework grounded in expert human judgment. We chose this approach because the boundary
between visual and symbolic representation is fundamentally cognitive; it involves nuanced, tacit
knowledge that is difficult to capture with purely algorithmic rules.

C.1 GUIDING PRINCIPLE

We built our methodology around a single, functional question for annotators: "Does a code-based
representation preserve the essential information required to correctly answer this question?" This

principle ensures that every label is context-aware, reflecting how the task depends on both the chart’s
properties and the user’s specific query.

C.2 ASSESSMENT CRITERIA

Annotators evaluated each chart-question pair using a two-step assessment designed to mirror the
decision-making process we want our model to learn.

14



Under review as a conference paper at ICLR 2026

* Primary Assessment: Information Preservation. The core question was whether the
chart’s essential information could be faithfully translated into code. Annotators considered
if the underlying data could be reliably extracted from visual elements (e.g., bar heights, point
positions) and if this programmatic format would retain everything needed to answer the
question. If critical information was lost in this translation—such as the meaning conveyed
by complex annotations, visual metaphors, or specific color gradients—the instance was
marked as having low programmability for that task.

* Secondary Assessment: Reconstruction Feasibility. As a practical test, annotators per-
formed a "mental compilation." They envisioned how the chart might be programmatically
recreated using a standard plotting library like Matplotlib. If key visual elements or context
could not be captured in this hypothetical reconstruction, it served as a strong signal for low
programmability.

C.3 ANNOTATION PROCESS AND QUALITY CONTROL
To ensure the quality and consistency of our dataset, we followed a structured process.

» Binary Categorization. For practical model training, we classified each instance into
one of two categories: high programmability (suitable for code-based reasoning) or low
programmability (requires direct visual reasoning). This binary choice frames the model’s
learning objective as a clear, decisive action.

» Systematic Guidelines. All annotations were guided by a detailed rulebook. In ambiguous
or boundary cases, annotators were instructed to be conservative, prioritizing the integrity of
the visual information over forcing a programmatic representation.

* Quality Assurance. We regularly reviewed batches of annotated samples to ensure ad-
herence to our guidelines. This iterative validation process helped maintain high levels of
consistency and quality throughout the dataset.

By grounding our dataset in this human-centric process, we provide our model with a supervisory
signal that reflects the nuances of human cognition. This enables it to learn a flexible, adaptive policy
for chart understanding that moves beyond the limitations of rigid, rule-based systems.

D EXPERIMENTAL SETUP DETAILS

Training Data. Our training is based on the ChartMimic|Yang et al. (2024)) dataset, which contains
4,800 diverse chart—code pairs without QA. To support adaptive learning, we expand this dataset
by generating new question—answer pairs with Gemini-2.5-Flash [Comanici et al.| (2025)), using
the prompts in Appendix [F} This yields a balanced training set that includes charts well-suited for
code-based reasoning as well as those demanding direct visual interpretation.

Evaluation Benchmarks. We evaluate across four benchmarks chosen to span a wide range of
Visual Programmability:

» ChartX Xia et al.| (2024)): high-programmability charts (1,152 structured plots), ideal for
testing code-based reasoning.

e ChartBench (NQA) Xu et al.| (2023): numerical reasoning where data points are not
explicitly labeled; we use 2,000 NQA samples to test programmatic extraction from visual
cues.

* ChartQA Masry et al.| (2022): 2,396 real-world charts with human/template questions,
covering basic retrieval to multi-step reasoning.

* CharXiv Wang et al, (2024): low-programmability, in-the-wild scientific charts (1,323
plots) stressing robustness when code is unreliable.

Training Details. We initialize Qwen2.5-VL-7B and train it with EasyR1 Zheng et al.|(2025)) using

GRPO (objective in Appendix [G), guided by the multi-component reward in Eq. 2] After validation
tuning, weights are set to: answer accuracy w,..=0.8, decision appropriateness Wgecision=0.3, data

15



Under review as a conference paper at ICLR 2026

fidelity wgaa=0.15, and format compliance wWormar=0.05. All prompts appear in Appendix [F] A
complete list of hyperparameters and implementation specifics is provided in Appendix [J}

E DATA ACCURACY REWARD IMPLEMENTATION

The Data Accuracy Reward (74a,) 1S a critical component for ensuring that the model’s generated
code is not only syntactically correct but also faithfully extracts the data from the chart. This reward
is calculated by comparing the DataFrame generated by the model’s code against a ground-truth CSV.
The full process is detailed in Algorithm I}

Algorithm 1 Data Accuracy Reward Computation

Require: Generated code Cpreq, Ground truth CSV csvy,
Ensure: Data accuracy reward 74,
1: Extract DataFrame construction code from cpreq using AST parsing
DF,eq <~ CONSTRUCTDATAFRAME(extracted_data)
DF, - PARSECSV(csvy)
if DF}cq is None or DFg; is None then
return 0.0
end if
> Column Completeness Score

A A S ol

matched_cols < 0
9: for each column ¢t in DFy do
10: Crf™ <= NORMALIZE(Cref) > Remove spaces, lowercase
11: best_match < FUZZYMATCH(c ™, DFpeq.columns)
12: if match_score > 50 then
13: matched_cols <+ matched_cols + 1
14: end if
15: end for
16: 7¢o1 < matched_cols / len(DFg.columns)
17: > Row Completeness Score
18: rrow < W{len(DFpreq) = len(DFgy)]
19: > Value Accuracy Score
20: total_accuracy <— 0
21: compared_cols < 0
22: for each matched column pair (cpred, Cgt) do

23: correct_values < 0

24: for each row 4 in min(len(DFpeq), len(DF)) do

25: if COMPAREVALUES(DF req [Cprea] [#], DFg¢[cor][7]) then
26: correct_values <— correct_values + 1

27: end if

28: end for

29: col_accuracy < correct_values / num_comparisons

30: total_accuracy < total_accuracy + col_accuracy

31: compared_cols <— compared_cols + 1

32: end for

33: Tyaes < total_accuracy / compared_cols

34: > Combined Data Accuracy Score

35: Tgaa < 0.2 - 71 + 0.1 - Trow + 0.7 - Tyalues
36: return 7y,

The COMPAREVALUES function is designed to be robust. For numerical values, it uses a relative
tolerance of 10~2 to handle minor extraction or floating-point discrepancies. For textual values, it
performs case-insensitive, normalized string matching. It also correctly handles NaN values, returning
true only if both values are NaN.

16



Under review as a conference paper at ICLR 2026

F DETAILED PROMPT SPECIFICATIONS

This section details the key prompts used for data generation and model training. The prompt
for generating synthetic question-answer pairs is presented in Prompt [} The baseline prompts for
direct Chain-of-Thought and mandatory code-based reasoning are shown in Prompt [Fjand Prompt [F}
respectively. Finally, the master prompt that guides our adaptive model to learn strategy selection is
detailed in Prompt[F|

Prompt for Synthetic Question-Answer Pair Generation

You are a specialized generator of chart comprehension
questions.Using (i) a chart graphic and (ii) the Python

code that creates it, formulate x*onexx question with

its correct answer.

### Guidelines

1. Answers must come from chart observation and code
understanding

2. Provide exactly one brief, precise response with

**no additional detailsx*x

3. Avoid multiple choice, yes/no, or lengthy

descriptive formats

4. Emphasize questions requiring data interpretation expertise
5. Keep answers short (numbers, percentages, names, dates,
or brief terms)

### Question Categories

#### »+xNumerical Operationsx*x

- xxCounting Tasksxx: Enumerate items, groups, or elements
with properties

— xxBasic Mathematics*+*: Addition, subtraction, multiplication,
division

- *xDescriptive Statistics=**: Average, median, mode, range,
maximum, minimum

— xxRatio Analysisx*: Proportional relationships

between categories

— xxConditional Analysisx**: Elements meeting specific
requirements

- xxMulti-step Problems**: Combined computational

operations

#### ~+xObject Recognition=*x

- x*Ranking Identificationxx: Highest or lowest performing
entities

— xxPeak Value Location**: Items with extreme measurements

— x*xGroup Classification**: Category membership identification
— xxTime-based Analysisxx: Performance identification across
periods

— *x*xBenchmark Comparison**: Items relative to specific
standards

#### ~+xComparison Tasksxx

— x+xHead-to-head Analysis**: Direct comparison between entities
— xxPosition Rankingx*: Order determination in sequences

— xxVariation Analysisx*«*: Largest differences between items
#### ~+xTemporal Analysisx*x

- xxTrend Identification**: Increase/decrease periods

- *xChange Detection*x: Significant transition moments

— xxPattern Analysisxx: Cyclical or seasonal behaviors

### Answer Types

— x*Numeric**: ‘92%', ‘4.2, ‘17%"

— **Monetaryxx: ‘$2,100%', ‘£1,400"

17



Under review as a conference paper at ICLR 2026

- xxNames*x: ‘Samsung‘, ‘India‘, ‘2022"

- *xxCategoriesxx: ‘Transportation', ‘Media‘
- xxTimex*: ‘August‘, ‘Q4%', ‘2018"

- x*Ratios*x: ‘3:5', ‘1.7"

### Output Format

ANRURY

json
{{"question": "Question text here", "answer": "Short answer"}}
### Task

*xChart Imagex*x*: <image>
**Python Codexx: {python_files}
Develop one JSON question—-answer pair.

Baseline Chain-of-Thought (CoT) Prompt

Carefully examine this chart. Based on your observations,
answer the question. Let’s reason step by step,
then put your final answer under format \\boxed{}.

Code-based Chain-of-Thought (Code-CoT) Prompt

You must carefully examine the chart and the question. First
redraw the image using Python code. This code should aim to
focus on data accuracy and basic chart type representation.
The code must be runnable. Before any plotting, import pandas
and construct one ‘pandas.DataFrame' named ‘chart_data‘' that
contains all raw numerical data you will use. The DataFrame
must include appropriate column names and keep the original
row order. Then describe your step-by-step thought process
and answer the question using a single word or phrase and

put it under format \\boxed{}.

Master Prompt for the Adaptive Reasoning Framework

You are an expert at analyzing charts and answering questions
about them. You have two powerful approaches, with code-based
analysis being your preferred method when applicable.

## Core Principle

Code-based analysis is highly effective and should be your
first choice when charts contain extractable data. Code
provides precision, reproducibility, and often superior
accuracy compared to visual estimation.

## Approach Selection Examples

*xExample l:xx Bar chart with clear axis labels and readable
values

— Question: "What’s the average value across all bars?"

— Best Choice: <CODE> (Perfect for extracting values and
calculating precisely)

*+Example 2:%*x Complex 3D visualization or heavily artistic

infographic

— Question: "What trend does this show?"

— Best Choice: <DIRECT> (Data extraction would be unreliable
here)

18



Under review as a conference paper at ICLR 2026

## When to Use Each Approach

### Use <CODE> When Charts Are Analyzable:

- xxAny Standard Charts**: Bar, line, pie, scatter,
histogram - even if slightly messy

- *xReadable Data Pointsxx: If you can see numbers

or estimate from gridlines - x*use code!*x*

- *xClear Structurex*: Regular patterns, axes,

legends - perfect for code extraction

— x*xQuestions Needing Precision**: Calculations, comparisons,
trends - code gives exact answers

- *xModerate Complexity*x: Don’t avoid code just because
extraction takes effort - be brave!

### Use <DIRECT> Only When Code Is Truly Impractical:

- xxExtremely Artistic/Stylizedxx: Heavy design elements
completely obscure data structure

— *xNo Readable Scalexx: Completely missing or unintelligible
axes

— xxPure Qualitativexx: Questions only about general patterns,
not specific values

— xxSeverely Distortedx*: 3D effects or perspectives that make
extraction impossible

## xxDecision Frameworkxx

**Step 1l: Code Preference Checkxx

- Can I see any numerical data or gridlines? =+ **TRY <CODE>x=*

— Are there clear bars, lines, or data points? =+ *xTRY <CODE>xx
— Would precise calculations help answer this question? -

**TRY <CODE>x*x*

**%Step 2: Only if Step 1 failsx*x

— Is the chart purely artistic with no extractable structure?
-+ Use <DIRECT>

— Is the question purely qualitative? =+ Use <DIRECT>

## Response Format

*xFirst, make your choice with confidence:xx
- For code-assisted analysis: output <CODE>
— For direct analysis: output <DIRECT>

### If Using Code-Assisted Analysis (<CODE>) :

*xStart withxx: <CODE>

Then proceed with your analysis using code as helpful. Before
any coding, import pandas and construct one ‘pandas.DataFrame’
named ‘chart_data‘ that contains all raw numerical data you
will use. The DataFrame must include appropriate column names
and keep the original row order. You may:

- Redraw/recreate the chart data for comprehensive analysis

— Use code for calculations, comparisons, or data processing
— Combine visual observations with computational analysis

— Focus on the most relevant chart elements for the question

*Note: Choose the code approach that best fits the chart and
question - full redrawing, partial extraction, or targeted

calculations.*

### If Using Direct Analysis (<DIRECT>):

19



Under review as a conference paper at ICLR 2026

*xStart withxx: <DIRECT>

Then provide your reasoning and analysis in the most effective
way for the question. Consider:

— Key observations and findings from the chart

- Your reasoning process and logical steps

- Relevant patterns or trends you identify

## Final Answer Format
Every response MUST end with \\boxed{your_answer}

Now analyze the given chart and question. Choose your approach
based on the chart’s extractability and the question’s
requirements.

G GRPO OBJECTIVE AND UPDATE DETAILS

We employ Group Relative Policy Optimization (GRPO)|Shao et al.| (2024), a policy-gradient method
that leverages group-normalized advantages and PPO-style clipping. For each training instance x, we
sample a group of G responses {m}iG:1 from the previous policy 74, evaluate them with our reward
R, and update the current policy g by maximizing:

mo(ri|z) , o ( me(ri|z) 0
Jerpo (9 Zmln(ﬂ'old () Ai, Chp(%]d(n'x), 1—e, 14€) A; B Dxi(me || Trer) |
3)
where the group-normalized advantage is
4, = BOug) — mean({RE &) @

std({R(, )}E.,)

Here, € controls the clipping range, and 3 weights the KL penalty against a reference policy 7. In
our final configuration, we set =0 (KL-free), focusing purely on the group-relative signal.

Practical Notes.

* Sampling. For each z, draw G responses from 7,4; compute rewards and A; using the
group statistics.

* Clipped update. Define ratio p;, = mg(ri|x)/moa(r:|x) and apply
min (piAl-, clip(p;, 1—e, 1+6)A2-).
¢ No-KL setup. Use S=0; we found this configuration works well with verifiable rewards.

H BROADER IMPLICATIONS AND FUTURE DIRECTIONS

Our work on adaptive chart reasoning, while focused on a specific domain, offers insights into a
broader challenge in artificial intelligence: developing systems that can flexibly navigate between
different problem-solving strategies. Just as humans alternate between rapid, intuitive pattern
recognition and slower, deliberate symbolic reasoning |Kahneman| (201 1)), future Al systems must
master not only individual skills but also the meta-level ability to select the right tool for the job.

From Modality Fusion to Method Fusion. Much of the research in multimodal Al has centered
on modality fusion—the effective combination of information from different sensory channels. Our
framework points towards a complementary and perhaps equally important paradigm: method fusion.
This refers to the ability to select and combine different reasoning strategies (e.g., visual-perceptual
vs. symbolic-programmatic) even when operating within a single modality. The challenge is not
only to perceive the world through multiple senses but to think about it through multiple "lenses,"
fluidly shifting between holistic, pattern-based analysis and precise, step-by-step decomposition as
the problem demands.

20



Under review as a conference paper at ICLR 2026

Competence Awareness as a Foundational Capability. A key takeaway from our research is that
models can be trained to recognize the boundaries of their own competence with respect to specific
methods. This nascent form of meta-cognitive awareness—knowing not just sow to solve a problem,
but knowing which of its available methods is most likely to succeed—is a fundamental prerequisite
for robust and reliable AI. We foresee that future general-purpose systems will need to develop richer
internal models of their own capabilities, enabling them to make more dependable strategy selections
when faced with novel tasks.

Limitations and Key Future Directions. While our adaptive framework represents a significant
step, its current limitations highlight critical areas for future research that build directly upon our
findings.

* Granular and Hybrid Reasoning: The current decision-making process is a binary choice
between "code" and "direct" reasoning. This could be extended to a more granular hybrid
model, where code is used for reliable data extraction while visual reasoning concurrently
interprets qualitative patterns from the same chart. Furthermore, assessing programmability
at the chart-level is coarse; future models could learn to perform region-based assessment,
applying different strategies to different parts of a single complex figure.

* Expanding the Vocabulary of Formal Reasoning: Our model’s "Code as Thought" process
is currently centered on data analysis logic. A natural evolution is to expand the scope of this
native formal reasoning. Instead of orchestrating external tools, future work could enrich
the model’s internal symbolic language to encompass other formalisms, such as the logic of
signal processing for time-series charts or graph-theoretic principles for network diagrams.
This would extend the reach of the model’s innate symbolic capabilities, allowing it to
tackle a wider range of problems programmatically without breaking the "native reasoning"
paradigm.

¢ Self-Supervised Policy Learning: A key challenge is reducing the reliance on annotated
training data for programmability. A promising direction is developing self-supervised
methods where the model learns the decision boundary by correlating its choice of strategy
with final task success. This would effectively teach the model to recognize the reliable
application range of its own internal methods without requiring explicit human-provided
labels.

Towards Dynamic Strategy Composition. Looking further ahead, our current framework makes
a discrete selection between predefined strategies. A significant extension would be for future
systems to dynamically compose novel strategies from a set of primitive cognitive operations. For
instance, when analyzing a complex visualization, an advanced system might synthesize a hybrid
approach on the fly: invoking its internal graph-based logic for structural analysis while using its
time-series forecasting logic for temporal patterns. This compositional flexibility, guided by a learned
meta-policy, would represent a significant leap towards more human-like adaptability.

The Path Forward. The journey from narrow tools to general intelligence will likely require
architectural innovations that foster cognitive flexibility. Our adaptive framework, though applied to
chart understanding, provides a concrete instantiation of these principles. By teaching a model to
recognize when formal reasoning is a powerful asset versus a brittle liability, we take a tangible step
toward systems that reason not just powerfully, but appropriately. The ultimate goal is not to build
models that always default to their most complex methods, but ones that can gracefully match their
computational effort and reasoning style to the structure of the problem at hand—a hallmark of true
intelligence.

I DETAILED CASE STUDIES

This section provides the full visualizations and detailed model outputs for the qualitative analysis.
Each case includes the figure, the task details, and the verbatim model outputs from both a baseline
and our adaptive model.

21



Under review as a conference paper at ICLR 2026

1134

1135

1136 690000 Freight Volume by Month

1137 BN Air Freight

mm Sea Freight
1138 = Road Freight
B Rail Freight

1139

1140

1141

1142

1143

1144 =

1145 A

1146 3 345000

1147 ]

1148 :

1149

1150

1151

1152

1153

1154

1155 .

1156 January February  March April May June vonth July August P October December

157 [Question] How much did the sea freight volume increase from January to December?

1158 [ground_truth] 220000 kg

1159

1160 [CoT]

1161 To determine the increase in sea freight volume from January to December, we need to follow these
steps:\n1. Identify the sea freight volume in January.\n2. Identify the sea freight volume in December.

ez 3. Subtract the January volume from the December volume to find the increase.\n\nLet's start by

1163 estimating the sea freight volumes for January and December from the stacked area chart:\n\n- In

1164 January, the sea freight volume appears to be around 100,000 kg.\n- In December, the sea freight

1165 volume appears to be around 250,000 kg.\nNow, we calculate the increase:\n\n\[\n\text{Increase} =

1166 \text{December volume} - \text{January volume} = 250,000 \, \text{kg} - 100,000 \, \text{kg} =

1167 150,000 \, \text{kgl\n\]\n\nThus, the increase in sea freight volume from January to December is
\boxed{150000}.

1168

1169 [Adaptive(ours)]

1170 <CODE>\n\nFirst, let's reconstruct the chart data into a pandas DataFrame for

1171 analysis:\n\n""*python\nimport pandas as pd\n\ndata = {\n'Month': ['January', 'February', 'March’,

1172 'April', 'May', 'June', 'July', 'August', 'September', 'October’, '"November', 'December'],\n'Air Freight':
[100000, 120000, 140000, 160000, 180000, 200000, 220000, 240000, 260000, 280000, 300000,

173 320000],\n'Sea Freight': [150000, 170000, 190000, 210000, 230000, 250000, 270000, 290000,

1174 310000, 330000, 350000, 370000],\n'Road Freight': [70000, 80000, 90000, 100000, 110000, 120000,

1175 130000, 140000, 150000, 160000, 170000, 180000],\n'Rail Freight': [20000, 25000, 30000, 35000,

1176 40000, 45000, 50000, 55000, 60000, 65000, 70000, 750001, \nH\n\nchart_data =

1177 pd.DataFrame(data)\n"""\n\nNow, we will analyze the sea freight volume increase from January to
December.\n\nFrom the chart_data:\n- Sea Freight in January = 150000 kg\n- Sea Freight in December

e = 370000 kg\n\nThe increase in sea freight volume from January to December is:\n"""python\nincrease

1179 = chart_data.loc[chart_data['Month'] == 'December', 'Sea Freight'].values[0] -

1180 chart_data.loc[chart_data['Month'] == 'January', 'Sea

1181 Freight'].values[0]\nincrease\n"""\n\n</CODE>\n\n<DIRECT>\nThe sea freight volume in January is

1182 150000 kg and in December it is 370000 kg. The increase in sea freight volume from January to

1183 December is:\n\\[ 370000 - 150000 = 220000 \\text{ kg} \\]\n\n\\boxed{220000}\n

1184 . . .

1185 Figure 8: Case Study 1:. ngh-Programmablllty Chart from ChartX. On a standard stacked area chart from

. ChartX that required precise calculation, our adaptive model correctly chose the <CODE> path, extracting exact

data and computing the correct answer. In contrast, a fixed ‘Standard CoT* model relied on visual estimation
1187 and failed. This shows the model’s ability to leverage code for precision.

22



Under review as a conference paper at ICLR 2026

= N0 Adaptation Optimal Control Based Adaptation === Game Based Adaptation
0.8 0.8
o7f @01 0.7
S 06 S 06
) QL
~ 05 ~ o5
= =
2 04 2 0.4
= 03 £03
0.2 0.2
0.1 0.1
0 5 10 15 20 5 10 15 20

a=1.2

Infection Level
Infection Level

[Question] What is the value of the a of the subplot where the Optimal Control Based Adaptation and
Game Based Adaptation has most difference in Infection Level at t = 152
[ground_truth] 0.8

[Code-CoT]

First, let's create a DataFrame “chart_data” with the necessary data:\n\n"""python\nimport pandas as
pd\n\nchart_data = pd.DataFrame({\n'alpha': [0.1, 0.5, 0.8, 1.2],\n'no_adaptation': [0.7, 0.7, 0.7,
0.7],\n'optimal_control': [0.7, 0.7, 0.65, 0.45],\n'game_based': [0.7, 0.65, 0.55, 0.4]\n})\n"""\n\nNow,
let's plot the data using Matplotlib. Here is the code to create the plot:\n\n"""python\nimport
matplotlib.pyplot as plt\n\nfig, axs = plt.subplots(2, 2, figsize=(10, 8))\nfor ax, alpha, no_adaptation,
optimal_control, game_based in zip(axs.flatten(), chart_data['alpha'l, chart_data['no_adaptation'],
chart_data['optimal_control'], chart_data['game_based']):\nax.plot(chart_data['t'], no_adaptation,
label="No Adaptation', color='black')\nax.plot(chart_data['t'], optimal_control, label='Optimal Control
Based Adaptation’, color='green')\nax.plot(chart_data['t'l, game_based, label='Game Based Adaptation’,
color='blue')\nax.set_xlabel('t')\nax.set_ylabel('Infection
Level)\nax.set_title(f'a={alpha}')\nax.set_xlim(0, 20)\nax.set_ylim(0.1,
0.8)\nax.legend()\nplt.show()\n""\n\nNow, to answer the question: We need to find the value of a
where the difference between Optimal Control Based Adaptation and Game Based Adaptation is the
most significant at t = 15.\n\nFrom the plots:\n- At a = 0.1, the difference is minimal.\n- At a = 0.5, the
difference is moderate.\n- At a = 0.8, the difference is significant.\n- At a = 1.2, the difference is the
most significant.\n\nThus, the value of a where the difference is the most significant att =15
is:\n\n\\boxed{1.2}

[NNN

[Adaptive(ours)]

The question asks for the value of a where the difference between Optimal Control Based Adaptation
and Game Based Adaptation is most significant at t = 15. From the visual inspection of the subplots, it
appears that this difference is most pronounced in the subplot where a = 0.8.\n\n<DIRECT>\nAt t = 15,
the infection level for a = 0.8 is significantly different between the Optimal Control Based Adaptation
(green line) and the Game Based Adaptation (blue line). The green line (Optimal Control Based
Adaptation) is higher than the blue line (Game Based Adaptation) at this point.\n\n\\boxed{0.8}\n

Figure 9: Case Study 2: Low-Programmability Chart from CharXiv. Faced with a complex scientific plot from
CharXiv requiring qualitative comparison, a fixed code-based model failed by hallucinating a data table. Our
adaptive model, however, correctly identified the task’s low programmability and chose the <DIRECT> path.
It performed a robust visual comparison, leading to the correct answer and demonstrating its critical skill in

avoiding tools when they are unsuitable.

23



Under review as a conference paper at ICLR 2026

J  IMPLEMENTATION AND HYPERPARAMETER DETAILS

Our model was trained using the configuration and hyperparameters summarized in Table[9] We
used the EasyR1 [Zheng et al.| (2025)) framework for our reinforcement learning implementation. The
base model, Qwen2.5-VL-7B, was trained for 200 episodes. The vision tower of the model remained
frozen during training to preserve its pre-trained perceptual capabilities.

Table 9: Training Configuration Details

Configuration

Value

Model Configuration

Base Model Qwen2.5-VL-7B
Vision Tower Frozen
Precision BFloatl6

Max Prompt Length 5,120 tokens
Max Response Length 3,072 tokens
Data Configuration

Seed 42

Shuffle True

Filter Overlong Prompts True

Training Hyperparameters

Algorithm GRPO (without KL penalty)
Learning Rate 1.0 x 1076
Optimizer AdamW (BF16 variant)
Global Batch Size 64

Rollout Batch Size 256

Micro Batch Size (Update) 4

Micro Batch Size (Experience) 16

Training Episodes 4

Gradient Clipping 1.0

Rollout Configuration

Number of Rollouts (n) 5

Temperature 1.0

Top-p 0.99

Infrastructure

GPUs 8 x NVIDIA H800
Tensor Parallelism 1

FSDP Enabled

CPU Offloading Disabled

Gradient Checkpointing Enabled

Validation

Validation Batch Size 512

Validation Frequency Every 5 episodes
Validation before Training Yes

24



	Introduction
	Related Work
	Exploring Code-as-Thought as a Universal Strategy
	Adaptive Code-Based Reasoning Framework
	Visual Programmability: Understanding the Boundaries of Code
	Adaptive Reasoning Mechanism
	Training via Reinforcement Learning
	GRPO Policy Update
	Comprehensive Reward Function


	Experiments
	Experimental Setup
	Comparison with Fixed-Strategy Baselines
	Comparison with State-of-the-Art Models
	Analysis on Different Model Scales
	Ablation Studies
	Dissecting the Reward Function
	The Critical Role of Numerical Fidelity


	Conclusion
	Detailed Analysis of Fixed-Strategy Experiments
	Case Study: Failure due to Numerical Hallucination
	Annotation Framework for Visual Programmability
	Guiding Principle
	Assessment Criteria
	Annotation Process and Quality Control

	Experimental Setup Details
	Data Accuracy Reward Implementation
	Detailed Prompt Specifications
	GRPO Objective and Update Details
	Broader Implications and Future Directions
	Detailed Case Studies
	Implementation and Hyperparameter Details

