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Abstract

To better understand complexity in neural networks, we theoretically investigate1

the idealised phenomenon of lossless network compressibility, whereby an iden-2

tical function can be implemented with a smaller network. We give an efficient3

formal algorithm for optimal lossless compression in the setting of single-hidden-4

layer hyperbolic tangent networks. To measure lossless compressibility, we define5

the rank of a parameter as the minimum number of hidden units required to imple-6

ment the same function. Losslessly compressible parameters are atypical, but their7

existence has implications for nearby parameters. We define the proximate rank8

of a parameter as the rank of the most compressible parameter within a small L∞
9

neighbourhood. Unfortunately, detecting nearby losslessly compressible parame-10

ters is not so easy: we show that bounding the proximate rank is anNP-complete11

problem, using a reduction from Boolean satisfiability via a novel abstract clus-12

tering problem involving covering points with small squares. These results un-13

derscore the computational complexity of measuring neural network complexity,14

laying a foundation for future theoretical and empirical work in this direction.15

1 Introduction16

Learned neural networks often generalise well, depite the excessive expressive capacity of their ar-17

chitectures (Zhang et al., 2017, 2021). Moreover, learned neural networks are often approximately18

compressible, in that smaller networks can be found implementing similar functions (via, e.g., model19

distillation, Buciluǎ et al., 2006; Hinton et al., 2014; see, e.g., Sanh et al., 2019 for a large-scale ex-20

ample). In other words, learned neural networks are often simpler than they might seem. Advancing21

our understanding of neural network complexity is key to understanding deep learning.22

We propose studying the idealised phenomenon of lossless compressibility, whereby an identical23

function can be implemented with a smaller network.1 Classical functional equivalence results24

imply that, in many architectures, almost all parameters are incompressible in this lossless, unit-25

based sense (e.g., Sussmann, 1992; Chen et al., 1993; Fefferman, 1994; Phuong and Lampert, 2020).26

However, these results specifically exclude measure zero sets of parameters with more complex27

functional equivalence classes (Anonymous, 2023), some of which are losslessly compressible.28

We argue that, despite their atypicality, losslessly compressible parameters may be highly relevant29

to deep learning. The learning process exerts a non-random selection pressure on parameters, and30

losslessly compressible parameters are appealing solutions due to parsimony. Moreover, losslessly31

compressible parameters are a source of information singularities (cf. Fukumizu, 1996), highly rele-32

vant to statistical theories of deep learning (Watanabe, 2009; Wei et al., 2022).33

1We measure the size of a neural network for compression purposes by the number of units. Other conven-
tions are possible, such as counting the number of weights, or the description length of specific weights.
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Even if losslessly compressible parameters themselves are rare, their aggregate parametric neigh-34

bourhoods have nonzero measure. These neighbourhoods have a rich structure that reaches through-35

out the parameter space (Anonymous, 2023). The parameters in these neighbourhoods implement36

similar functions to their losslessly compressible neighbours, so they are necessarily approximately37

compressible. Their proximity to information singularities also has implications for local learning38

dynamics (Amari et al., 2006; Wei et al., 2008; Cousseau et al., 2008; Amari et al., 2018).39

In this paper, we study losslessly compressible parameters and their neighbours in the setting of40

single-hidden-layer hyperbolic tangent networks. While this architecture is not immediately relevant41

to modern deep learning, parts of the theory are generic to feed-forward architecture components. A42

comprehensive investigation of this simple and concrete case is a first step towards studying more43

modern architectures. To this end, we offer the following theoretical contributions.44

1. In Section 4, we give efficient formal algorithms for optimal lossless compression of single-45

hidden-layer hyperbolic tangent networks, and for computing the rank of a parameters—the46

minimum number of hidden units required to implement the same function.47

2. In Section 5, we define the proximate rank—the rank of the most compressible parameter48

within a small L∞ neighbourhood. We give a greedy algorithm for bounding this value.49

3. In Section 6, we show that bounding the proximate rank below a given value (that is, de-50

tecting proximity to parameters with a given maximum rank), is anNP-complete decision51

problem. The proof involves a reduction from Boolean satisfiability via a novel abstract52

decision problem involving clustering points in the plane into small squares.53

These results underscore the computational complexity of measuring neural network complexity:54

we show that while lossless network compression is easy, detecting highly-compressible networks55

near a given parameter can be very hard indeed (embedding any computational problem in NP).56

Our contributions lay a foundation for future theoretical and empirical work detecting proximity to57

losslessly compressible parameters in learned networks using modern architectures. In Section 7,58

we discuss these research directions, and limitations of the lossless compressibility framework.59

2 Related work2
60

Two neural network parameters are functionally equivalent if they implement the same function.61

In single-hidden-layer hyperbolic tangent networks, Sussmann (1992) showed that, for almost all62

parameters, two parameters are functionally equivalent if and only if they are related by simple oper-63

ations of exchanging and negating the weights of hidden units. Similar operations have been found64

for various architectures, including different nonlinearities (e.g., Albertini et al., 1993; Kůrková and65

Kainen, 1994), multiple hidden layers (e.g., Fefferman and Markel, 1993; Fefferman, 1994; Phuong66

and Lampert, 2020), and more complex connection graphs (Vlačić and Bölcskei, 2021, 2022).67

Lossless compressibility requires functionally equivalent parameters in smaller architectures. In68

all architectures where functional equivalence has been studied (cf. above), the simple operations69

identified do not change the number of units. However, all of these studies explicitly exclude from70

consideration certain measure zero subsets of parameters with richer functional equivalence classes.71

The clearest example of this crucial assumption comes from Sussmann (1992), whose result holds72

exactly for “minimal networks” (in our parlance, losslessly incompressible networks).73

Anonymous (2023) relaxes this assumption, studying functional equivalence for non-minimal single-74

hidden-layer hyperbolic tangent networks. Anonymous (2023) gives an algorithm for finding canon-75

ical equivalent parameters using various opportunities for eliminating or merging redundant units.376

This algorithm implements optimal lossless compression as a side-effect. We give a more direct and77

efficient lossless compression algorithm using similar techniques.78

Beyond lossless compression, there is a significant empirical literature on approximate compress-79

ibility and compression techniques in neural networks, including via network pruning, weight quan-80

tisation, and student–teacher learning (or model distillation). Approximate compressibility has also81

2We discuss related work in computational complexity throughout the paper (Section 6 and Appendix B).
3Patterns of unit redundancies have also been studied by Fukumizu and Amari (2000), Fukumizu et al.

(2019), and Şimşek et al. (2021), though from a dual perspective of cataloguing various ways of adding hidden
units to a neural network while preserving the implemented function (lossless expansion, so to speak).
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been proposed as a learning objective (see, e.g., Hinton and van Camp, 1993; Aytekin et al., 2019)82

and used as a basis for generalisation bounds (Suzuki et al., 2020a,b). For an overview, see Cheng83

et al. (2018, 2020) or Choudhary et al. (2020). Of particular interest is a recent empirical study of84

network pruning from Casper et al. (2021), who, while investigating the structure of learned neu-85

ral networks, found many instances of units with weak or correlated outputs. Casper et al. (2021)86

found that these units could be removed without a large effect on performance, using elimination87

and merging operations bearing a striking resemblance to those discussed by Anonymous (2023).88

3 Preliminaries89

We consider a family of fully-connected, feed-forward neural network architectures with one input90

unit, one biased output unit, and one hidden layer of h ∈ N biased hidden units with the hyperbolic91

tangent nonlinearity tanh(z) = (ez − e−z)/(ez + e−z). The weights and biases of the network92

are encoded in a parameter vector in the format w = (a1, b1, c1, . . . , ah, bh, ch, d) ∈ Wh = R
3h+1,93

where for each hidden unit i = 1, . . . , h there is an outgoing weight ai ∈ R, an incoming weight94

bi ∈ R, and a bias ci ∈ R; and d ∈ R is the output unit bias. Thus each parameter w ∈ Wh indexes95

a mathematical function fw : R → R such that fw(x) = d +
∑h

i=1 ai tanh(bix + ci). All of our96

results generalise to networks with multi-dimensional inputs and outputs.97

Two parameters w ∈ Wh, w
′ ∈ Wh′ are functionally equivalent if fw = fw′ as functions on R (∀x ∈98

R, fw(x) = fw′(x)). A parameter w ∈ Wh is (losslessly) compressible (or non-minimal) if and99

only if w is functionally equivalent to some w′ ∈ Wh′ with fewer hidden units h′ < h (otherwise,100

w is incompressible or minimal). Sussmann (1992) showed that a simple condition, reducibility, is101

necessary and sufficient for lossless compressibility. A parameter (a1, b1, c1, . . . , ah, bh, ch, d) ∈102

Wh is reducible if and only if it satisfies any of the following reducibility conditions:103

(i) ai = 0 for some i, or104

(ii) bi = 0 for some i, or105

(iii) (bi, ci) = (bj , cj) for some i ̸= j, or106

(iv) (bi, ci) = (−bj ,−cj) for some i ̸= j.107

Each reducibility condition suggests a simple operation to remove a hidden unit while preserving the108

function (Sussmann, 1992; Anonymous, 2023): (i) units with zero outgoing weight do not contribute109

to the function; (ii) units with zero incoming weight contribute a constant that can be incorporated110

into the output bias; and (iii), (iv) unit pairs with identical (negative) incoming weight and bias111

contribute in proportion (since the hyperbolic tangent is odd), and can be merged into a single unit112

with the sum (difference) of their outgoing weights.113

Define the uniform norm (or L∞ norm) of a vector v ∈ R
p as ∥v∥

∞
= maxpi=1 abs(vi), the largest114

absolute component of v. Define the uniform distance between v and u ∈ R
p as ∥u− v∥

∞
. Given115

a positive scalar ε ∈ R
+, define the closed uniform neighbourhood of v with radius ε, B̄∞(v; ε), as116

the set of vectors of distance at most ε from v: B̄∞(v; ε) = {u ∈ R
p : ∥u− v∥

∞
≤ ε }.117

A decision problem4 is a tuple (I, J) where I is a set of instances and J ⊆ I is a subset of affirmative118

instances. A solution is a deterministic algorithm that determines if any given instance i ∈ I is119

affirmative (i ∈ J). A reduction from one decision problem X = (I, J) to another Y = (I ′, J ′) is a120

deterministic polytime algorithm implementing a mapping φ : I → I ′ such that φ(i) ∈ J ′ ⇔ i ∈ J .121

If such a reduction exists, say X is reducible5 to Y and write X → Y . Reducibility is transitive.122

P is the class of decision problems with polytime solutions (polynomial in the instance size). NP123

is the class of decision problems for which a deterministic polytime algorithm can verify affirmative124

instances given a certificate. A decision problem Y isNP-hard if all problems inNP are reducible125

to Y (∀X ∈ NP , X → Y ). Y isNP-complete if Y ∈ NP and Y isNP-hard. Boolean satisfiabil-126

ity is a well-known NP-complete decision problem (Cook, 1971; Levin, 1973; see also Garey and127

Johnson, 1979). NP-complete decision problems have no known polytime exact solutions.128

4We informally review several basic notions from computational complexity theory. Consult Garey and
Johnson (1979) for a rigorous introduction (in terms of formal languages, encodings, and Turing machines).

5Context should suffice to distinguish reducibility between decision problems and of network parameters.
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4 Lossless compression and rank129

We consider the problem of lossless neural network compression: finding, given a compressible130

parameter, a functionally equivalent but incompressible parameter. The following algorithm solves131

this problem by eliminating units meeting reducibility conditions (i) and (ii), and merging unit pairs132

meeting reducibility conditions (iii) and (iv) in ways preserving functional equivalence.133

Algorithm 4.1 (Lossless neural network compression). Given h ∈ N, proceed:134

1: procedure COMPRESS(w = (a1, b1, c1, . . . , ah, bh, ch, d) ∈ Wh)135

2: ▷ Stage 1: Eliminate units with incoming weight zero (incorporate into new output bias δ) ◁136

3: I ← { i ∈ {1, . . . , h} : bi ̸= 0 }137

4: δ ← d+
∑

i/∈I tanh(ci) · ai138

5: ▷ Stage 2: Partition and merge remaining units by incoming weight and bias ◁139

6: Π1, . . . ,ΠJ ← partition I by the value of sign(bi) · (bi, ci)140

7: for j ← 1, . . . , J do141

8: αj ←
∑

i∈Πj
sign(bi) · ai142

9: βj , γj ← sign(bminΠj
) · (bminΠj

, cminΠj
)143

10: end for144

11: ▷ Stage 3: Eliminate merged units with outgoing weight zero ◁145

12: k1, . . . , kr ← { j ∈ {1, . . . , J} : αj ̸= 0 }146

13: ▷ Construct a new parameter with the remaining merged units ◁147

14: return (αk1
, βk1

, γk1
, . . . , αkr

, βkr
, γkr

, δ) ∈ Wr148

15: end procedure149

Theorem 4.1 (Algorithm 4.1 correctness). Given w ∈ Wh, compute w′ = COMPRESS(w) ∈ Wr.150

(i) fw′ = fw, and (ii) w′ is incompressible.151

Proof sketch (Full proof in Appendix A). For (i), note that units eliminated in Stage 1 contribute152

a constant ai tanh(ci), units merged in Stage 2 have proportional contributions (tanh is odd), and153

merged units eliminated in Stage 3 do not contribute. For (ii), by construction, w′ satisfies no154

reducibility conditions, so w′ is not reducible and thus incompressible by Sussmann (1992). ♦155

We define the rank6 of a neural network parameter w ∈ Wh, denoted rank(w), as the minimum num-156

ber of hidden units required to implement fw: rank(w) = min {h′ ∈ N : ∃w′ ∈ Wh′ ; fw = fw′ }.157

The rank is also the number of hidden units in COMPRESS(w), since Algorithm 4.1 produces an158

incompressible parameter, which is minimal by definition. Computing the rank is therefore a trivial159

matter of counting the units, after performing lossless compression. The following is a streamlined160

algorithm, following Algorithm 4.1 but removing steps that don’t influence the final count.161

Algorithm 4.2 (Rank of a neural network parameter). Given h ∈ N, proceed:162

1: procedure RANK(w = (a1, b1, c1, . . . , ah, bh, ch, d) ∈ Wh)163

2: ▷ Stage 1: Identify units with incoming weight nonzero ◁164

3: I ← { i ∈ {1, . . . , h} : bi ̸= 0 }165

4: ▷ Stage 2: Partition and compute outgoing weights for merged units ◁166

5: Π1, . . . ,ΠJ ← partition I by the value of sign(bi) · (bi, ci)167

6: αj ←
∑

i∈Πj
sign(bi) · ai for j ← 1, . . . , J168

7: ▷ Stage 3: Count merged units with outgoing weight nonzero ◁169

8: return |{ j ∈ {1, . . . , J} : αj ̸= 0 }| ▷ |S| denotes set cardinality170

9: end procedure171

Theorem 4.2 (Algorithm 4.2 correctness). Given w ∈ Wh, rank(w) = RANK(w).172

Proof. Let r be the number of hidden units in COMPRESS(w). Then r = rank(w) by Theorem 4.1.173

Moreover, comparing Algorithms 4.1 and 4.2, observe RANK(w) = r.174

Remark 4.3. Both Algorithms 4.1 and 4.2 require O(h log h) time if the partitioning step is per-175

formed by first sorting the units by lexicographically non-decreasing sign(bi) · (bi, ci).176

6In the multi-dimensional case, our notion of rank generalises the familiar notion from linear algebra, where
the rank of a linear transformation corresponds to the minimum number of hidden units required to implement
the transformation with an unbiased linear neural network (cf. Piziak and Odell, 1999). Unlike in the linear
case, our non-linear rank is not bound by the input and output dimensionalities.
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5 Proximity to low-rank parameters177

Given a neural network parameter w ∈ Wh and a positive radius ε ∈ R
+, we define the proximate178

rank of w at radius ε, denoted prankε(w), as the rank of the lowest-rank parameter within a closed179

uniform (L∞) neighbourhood of w with radius ε. That is,180

prankε(w) = min
{

rank(u) ∈ N : u ∈ B̄∞(w; ε)
}

.

The proximate rank measures the proximity of w to the set of parameters with a given rank bound,181

that is, sufficiently losslessly compressible parameters.182

The following greedy algorithm computes an upper bound on the proximate rank. The algorithm183

replaces each of the three stages of Algorithm 4.2 with a relaxed version, as follows.184

1. Instead of eliminating units with zero incoming weight, eliminate units with near zero185

incoming weight (there is a nearby parameter where these are zero).186

2. Instead of partitioning the remaining units by sign(bi) · (bi, ci), cluster them by nearby187

sign(bi) · (bi, ci) (there is a nearby parameter where they have the same sign(bi) · (bi, ci)).188

3. Instead of eliminating merged units with zero outgoing weight, eliminate merged units with189

near zero outgoing weight (there is a nearby parameter where these are zero).190

Step (2) is non-trivial, we use a greedy approach, described separately as Algorithm 5.2.191

Algorithm 5.1 (Greedy bound for proximate rank). Given h ∈ N, proceed:192

1: procedure BOUND(ε ∈ R
+, w = (a1, b1, c1, . . . , ah, bh, ch, d) ∈ Wh)193

2: ▷ Stage 1: Identify units with incoming weight not near zero ◁194

3: I ← { i ∈ {1, . . . , h} : abs(bi) > ε }195

4: ▷ Stage 2: Compute outgoing weights for nearly-mergeable units ◁196

5: Π1, . . . ,ΠJ ← APPROXPARTITION(ε, sign(bi) · (bi, ci) for i ∈ I) ▷ Algorithm 5.2197

6: αj ←
∑

i∈Πj
sign(bi) · ai for j ← 1, . . . , J198

7: ▷ Stage 3: Count nearly-mergeable units with outgoing weight not near zero ◁199

8: return |{ j ∈ {1, . . . , J} : abs(αj) > ε · |Πj | }| ▷ |S| denotes set cardinality200

9: end procedure201

Algorithm 5.2 (Greedy approximate partition). Given h ∈ N, proceed:202

1: procedure APPROXPARTITION(ε ∈ R
+, u1, . . . , uh ∈ R

2)203

2: J ← 0204

3: for i← 1, . . . , h do205

4: if for some j ∈ {1, . . . , J}, ∥ui − vj∥∞ ≤ ε then206

5: Πj ← Πj ∪ {i} ▷ If near a group-starter, join that group.207

6: else208

7: J, vJ+1,ΠJ+1 ← J + 1, ui, {i} ▷ Else, start a new group with this vector.209

8: end if210

9: end for211

10: return Π1, . . . ,ΠJ212

11: end procedure213

Theorem 5.1 (Algorithm 5.1 correctness). For w ∈ Wh and ε ∈ R
+, prankε(w) ≤ BOUND(ε, w).214

Proof sketch (Full proof in Appendix A). Trace the algorithm to construct a parameter u ∈ B̄∞(w; ε)215

with rank(u) = BOUND(ε, w). During Stage 1, set the nearly-eliminable incoming weights to216

zero. Use the group-starting vectors v1, . . . , vJ from Algorithm 5.2 to construct mergeable incoming217

weights and biases during Stage 2. During Stage 3, subtract or add a fraction of the merged unit218

outgoing weight from the outgoing weights of the original units. ♦219

Remark 5.2. Both Algorithms 5.1 and 5.2 have worst-case runtime complexity O(h2).220

Remark 5.3. Algorithm 5.1 does not compute the proximate rank—merely an upper bound. There221

may exist a more efficient approximate partition than the one found by Algorithm 5.2. It turns out222

that this suboptimality is fundamental—computing a smallest approximate partition is NP-hard,223

and can be reduced to computing the proximate rank. We formally prove this observation below.224
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6 Computational complexity of proximate rank225

Remark 5.3 alludes to an essential difficulty in computing the proximate rank: grouping units with226

similar (up to sign) incoming weight and bias pairs for merging. The following abstract decision227

problem, Problem UPC, captures the related task of clustering points in the plane into groups with a228

fixed maximum uniform radius.7229

Given h source points x1, . . . , xh ∈ R
2, define an (r, ε)-cover, a collection of r covering points230

y1, . . . , yr ∈ R
2 such that the uniform distance between each source point and its nearest covering231

point is at most ε (that is, ∀i ∈ {1, . . . , h} , ∃j ∈ {1, . . . , r} , ∥xi − yj∥∞ ≤ ε).232

Problem UPC. Uniform point cover, or UPC, is a decision problem. The instances are tuples of the233

form (h, r, ε,X) where h, r ∈ N; ε ∈ R
+; and X is a list of h source points in R

2. The affirmative234

instances are all tuples (h, r, ε,X) for which there exists an (r, ε)-cover of the h points in X .235

Theorem 6.1. Problem UPC is NP-complete.236

Proof sketch (Full proof in Appendix C). The main task is to show that UPC isNP-hard (∀X ∈ NP ,237

X → UPC). Since reducibility is transitive, it suffices to give a reduction from the well-known NP-238

complete problem Boolean satisfiability (Cook, 1971; Levin, 1973). Actually, to simplify the proof,239

we consider an NP-complete variant of Boolean satisfiability, restricted to formulas with (i) two or240

three literals per clause, (ii) one negative occurrence and one or two positive occurrences per literal,241

and (iii) a planar bipartite clause–variable incidence graph.242

From such a formula we must construct a UPC instance, affirmative if and only if the formula is243

satisfiable. Due to the restrictions, the bipartite clause–variable is planar with maximum degree 3,244

and can be embedded onto an integer grid (Valiant, 1981, §IV). We divide the embedded graph into245

unit-width tiles of finitely many types, and we replace each tile with an arrangement of source points246

based on its type. The aggregate collection of source points mirrors the structure of the original for-247

mula. The variable tile arrangements can be covered essentially in either of two ways, corresponding248

to “true” and “false” in a satisfying assignment. The edge tile arrangements transfer these assign-249

ments to the clause tiles, where the cover can only be completed if all clauses have at least one true250

positive literal or false negative literal. Figure 1 shows one example of this construction. ♦251

(a) (b) (c)

variables: v1, . . . , v6

clauses:
(v̄1 ∨ v̄3 ∨ v4)

(v1 ∨ v̄2 ∨ v5)

(v3 ∨ v̄4 ∨ v6)

(v2 ∨ v̄5)

(v5 ∨ v6)

(v4 ∨ v̄6)

+

−

+

− +−

+
−

+

+

+−

+

+ −

+ −

+ − +− +−+

+ +− ++−

+ −

+ − +− +−+

+ +− ++−

ε

(d) (e) (f)

Figure 1: Example of reduction from restricted Boolean satisfiability to Problem UPC. (a) A satisfi-
able restricted Boolean formula. (b) The formula’s planar bipartite variable–clause invidence graph
(circles: variables, squares: clauses, edges: ± literals). (c) The graph embedded onto an integer grid.
(d) The embedding divided into unit tiles of various types. (e) The h = 68 source points aggregated
from each of the tiles. (f) Existence of a (34, 1/8)-cover of the source points (coloured points are
covering points, with uniform neighbourhoods of radius 1/8 shown). General case in Appendix C.

7Problem UPC is reminiscent of known hard clustering problems such as planar k-means (Mahajan et al.,
2012) and vertex k-center (Hakimi, 1964; Kariv and Hakimi, 1979). Supowit (1981, §4.3.2) showed that a
Euclidean-distance version is NP-complete. Problem UPC is also related to clique partition on unit disk graphs,
which is NP-complete (Cerioli et al., 2004, 2011). We discuss these and other relations in Appendix B.
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The following decision problem formalises the task of bounding the proximate rank, or equivalently,252

detecting nearby low-rank parameters. It is NP-complete by reduction from Problem UPC.253

Problem PR. Bounding proximate rank, or PR, is a decision problem. Each instance comprises a254

number of hidden units h ∈ N, a parameter w ∈ Wh, a uniform radius ε ∈ R
+, and a maximum255

rank r ∈ N. The affirmative instances are those instances where prankε(w) ≤ r.256

Theorem 6.2. Problem PR is NP-complete.257

Proof. Since UPC is NP-complete (Theorem 6.1), it suffices to show UPC→ PR and PR ∈ NP .258

(UPC → PR, the reduction): Given an instance of Problem UPC, allocate one hidden unit per source259

point, and construct a parameter using the source point coordinates as incoming weights and biases.260

Actually, to avoid issues with zeros and signs, first translate the source points well into the positive261

quadrant. Likewise, set the outgoing weights to a positive value. Figure 2 gives an example.262

Formally, let h, r ∈ N, ε ∈ R
+, and x1, . . . , xh ∈ R

2. In linear time construct a PR instance with h263

hidden units, uniform radius ε, maximum rank r, and parameter w ∈ Wh as follows.264

1. Define xmin =
(

minhi=1 xi,1,minhi=1 xi,2

)

∈ R
2, containing the minimum first and second265

coordinates among all source points (minimising over each dimension independently).266

2. Define a translation T : R2 → R
2 such that T (x) = x− xmin + (2ε, 2ε).267

3. Translate the source points x1, . . . , xh to x′

1, . . . , x
′

h where x′

i = T (xi). Note (for later)268

that all components of the translated source points are at least 2ε by step (1).269

4. Construct the neural network parameter w = (2ε, x′

1,1, x
′

1,2, . . . , 2ε, x
′

h,1, x
′

h,2, 0) ∈ Wh.270

In other words, for i = 1, . . . , h, set ai = 2ε, bi = x′

i,1, and ci = x′

i,2; and set d = 0.271

(UPC → PR, equivalence): It remains to show that the constructed instance of PR is affirmative if272

and only if the given instance of UPC is affirmative, that is, there exists an (r, ε)-cover of the source273

points if and only if the constructed parameter has prankε(w) ≤ r.274

(⇒): If there is a small cover of the source points, then the hidden units can be perturbed so that275

they match up with the (translated) covering points. Since there are few covering points, many units276

can now be merged, so the original parameter has low proximate rank.277

Formally, suppose there exists an (r, ε)-cover y1, . . . , yr. Define ρ : {1, . . . , h} → {1, . . . , r} such278

that the nearest covering point to each source point xi is yρ(i) (breaking ties arbitrarily). Then for279

j = 1, . . . , r, define y′j = T (yj) where T is the translation defined in step (2) of the construction.280

Finally, define a parameter w⋆ = (2ε, y′ρ(1),1, y
′

ρ(1),2, . . . , 2ε, y
′

ρ(h),1, y
′

ρ(h),2, 0) ∈ Wh (in other281

words, for i = 1, . . . , h, a⋆i = 2ε, b⋆i = y′ρ(i),1, and c⋆i = y′ρ(i),2; and d⋆ = 0).282

Then rank(w⋆) ≤ r, since there are at most r distinct incoming weight and bias pairs (namely283

y′1, . . . , y
′

r). Moreover, ∥w − w⋆∥
∞
≤ ε, since both parameters have the same output bias and284

outgoing weights, and, by the defining property of the cover, for i = 1, . . . , h,285

∥(bi, ci)− (b⋆i , c
⋆
i )∥∞ =

∥

∥

∥
x′

i − y′ρ(i)

∥

∥

∥

∞

=
∥

∥T (xi)− T (yρ(i))
∥

∥

∞
=

∥

∥xi − yρ(i)
∥

∥

∞
≤ ε.

Therefore prankε(w) ≤ rank(w⋆) ≤ r.286

ε

x1

x2

x3

x4

x5

x6

x7

x8

x9

xmin

2ε

2ε

x′

i

xi

T

(bi, ci)

bi 2ε
ci

(a) (b) (c) (d)

Figure 2: Illustrative example of the parameter construction. (a) A set of source points x1, . . . , x9.
(b) Transformation T translates all points into the positive quadrant by a margin of 2ε. (c,d) The
coordinates of the transformed points become the incoming weights and biases of the parameter.
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(⇐): Conversely, since all of the weights and biases are at least 2ε, any nearby low-rank parameter287

implies the approximate mergeability of some units. Therefore, if the parameter has low proximate288

rank, there is a small cover of the translated points, and, in turn, of the original points.289

Formally, suppose prankε(w) ≤ r, with w⋆ ∈ B̄∞(w; ε) such that rank(w⋆) = r⋆ ≤ r. In general,290

the only ways that w⋆ could have reduced rank compared to w are the following (cf. Algorithm 4.1):291

1. Some incoming weight bi could be perturbed to zero, allowing its unit to be eliminated.292

2. Two units i, j with (bi, ci) and (bj , cj) within 2ε could be perturbed to have identical in-293

coming weight and bias, allowing them to be merged.294

3. Two units i, j with (bi, ci) and −(bj , cj) within 2ε could be perturbed to have identically295

negative weight and bias, again allowing them to be merged.296

4. Some group of m ≥ 1 units, merged through the above options, with total outgoing weight297

within mε of zero, could have their outgoing weights perturbed to make the total zero.298

By construction, all ai, bi, ci ≥ 2ε > 0, immediately ruling out (1) and (3). Option (4) is also ruled299

out because any such total outgoing weight is 2mε > mε. This leaves option (2) alone responsible.300

Thus, there are exactly r⋆ distinct incoming weight and bias pairs among the units of w⋆. Denote301

these pairs y′1, . . . , y
′

r⋆—they constitute an (r⋆, ε)-cover of the incoming weight and bias vectors of302

w, x′

1, . . . , x
′

h (as w⋆ ∈ B̄∞(w; ε)). Finally, invert T to produce an (r⋆, ε)-cover of x1, . . . , xh, and303

add r − r⋆ arbitrary covering points to extend this to the desired (r, ε)-cover.304

(PR ∈ NP): We must show that an affirmative instance of PR can be verified in polynomial time,305

given a certificate. Consider an instance h, r ∈ N, ε ∈ R
+, and w = (a1, b1, c1, . . . , ah, bh, ch, d) ∈306

Wh. Use as a certificate a partition8 Π1, . . . ,ΠJ of { i ∈ {1, . . . , h} : abs(bi) > ε }, such that307

(1) for each Πj , for each i, k ∈ Πj , ∥sign(bi) · (bi, ci)− sign(bk) · (bk, ck)∥∞ ≤ 2ε; and (2) at308

most r of the Πj satisfy
∑

i∈Πj
sign(bi) · ai > ε · |Πj |. The validity of such a certificate can be309

verified in polynomial time by checking each of these conditions directly.310

It remains to show that such a certificate exists if and only if the instance is affirmative. If311

prankε(w) ≤ r, then there exists a parameter w⋆ ∈ B̄∞(w; ε) with rank(w⋆) ≤ r. The partition312

computed from Stage 2 of COMPRESS(w⋆) satisfies the required properties for w ∈ B̄∞(w⋆; ε).313

Conversely, given such a partition, for each Πj , define vj ∈ R
2 as the centroid of the bounding314

rectangle of the set of points { sign(bi) · (bi, ci) : i ∈ Πj }, that is,315

vj =
1

2

(

max
i∈Πj

abs(bi) + min
i∈Πj

abs(bi), max
i∈Πj

sign(bi) · ci + min
i∈Πj

sign(bi) · ci

)

.

All of the points within these bounding rectangles are at most uniform distance ε from their centroids.316

To construct a nearby low-rank parameter, follow the proof of Theorem 5.1 using Π1, . . . ,ΠJ and317

v1, . . . , vJ in place of their namesakes from Algorithms 5.1 and 5.2. Thus prankε(w) ≤ r.318

7 Discussion319

In this paper, we have studied losslessly compressible neural network parameters, measuring the320

size of a network by the number of hidden units. Losslessly compressible parameters comprise a321

measure zero subset of the parameter space, but this is a rich subset that stretches throughout the322

entire parameter space (Anonymous, 2023). Moreover, the neighbourhood of this region has nonzero323

measure and comprises approximately compressible parameters.324

It’s possible that part of the empirical success of deep learning can be explained by the proximity325

of learned neural networks to losslessly compressible parameters. Our theoretical and algorithmic326

contributions, namely the notions of rank and proximate rank and their associated algorithms, serve327

as a foundation for future research in this direction. In this section, we outline promising next steps328

for future work and discuss limitations of our approach.329

8It would seem simpler to use a nearby low-rank parameter itself as the certificate, which exists exactly in
affirmative cases by definition of the proximate rank. Unfortunately, an arbitrary nearby low-rank parameter is
unsuitable because the parameter could have unbounded description length, leading to the certificate not being
verifiable in polynomial time. By using instead this partition we essentially establish that in such cases there is
always also a nearby low-rank parameter with polynomial description length.
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Limitations of the lossless compressibility framework. Section 4 offers efficient algorithms for330

optimal lossless compression and computing the rank of neural network parameters. However, the331

rank is an idealised notion, serving as a basis for the theory of proximate rank. One would not332

expect to find compressible parameters in practice, since numerical imprecision is likely to prevent333

the observation of identically equal, negative, or zero weights in practice. Moreover, the number334

of units is not the only measure of a network’s description length. For example, the sparsity and335

precision of weights may be relevant axes of parsimony in neural network modelling.336

Returning to the deep learning context—there is a gap between lossless compressibility and phe-337

nomena of approximate compressibility. In practical applications and empirical investigations, the338

neural networks in question are only approximately preserved the function, and moreover the degree339

of approximation may deteriorate for unlikely inputs. Considering the neighbourhoods of losslessly340

compressible parameters helps bridge this gap, but there are approximately compressible neural341

networks beyond the proximity of losslessly compressible parameters, which are not accounted for342

in this approach. More broadly, a comprehensive account of neural network compressibility must343

consider architectural redundancy as well as redundancy in the parameter.344

Tractable detection of proximity to low-rank parameters. An important direction for future345

work is to empirically investigate the proximity of low-rank neural networks to the neural networks346

that arise during the course of successful deep learning. Unfortunately, our main result (Theo-347

rem 6.2) suggests that detecting such proximity is computationally intractable in general, due to348

the complex structure of the neighbourhoods of low-rank parameters.349

There is still hope for empirically investigating the proximate rank of learned networks. Firstly,350

NP-completeness does not preclude efficient approximation algorithms, and approximations are351

still useful as a one-sided test of proximity to low-rank parameters. Algorithm 5.1 provides a naive352

approximation, with room for improvement in future work. Secondly, Theorem 6.2 is a worst-case353

analysis—Section 6 essentially constructs pathological parameters poised between nearby low-rank354

regions such that choosing the optimal direction of perturbation involves solving (a hard instance of)355

Boolean satisfiability. Such instances might be rare in practice (cf. the related problem of k-means356

clustering; Daniely et al., 2012). As an extreme example, detecting proximity to merely compress-357

ible parameters (r = h− 1) permits a polytime solution based on the reducibility conditions.358

Towards lossless compressibility theory in modern architectures. We have studied lossless359

compressibility in the simple, concrete setting of single-hidden-layer hyperbolic tangent networks.360

Several elements of our approach will be useful for future work on more modern architectures. At361

the core of our analysis are structural redundancies arising from zero, constant, or proportional units362

(cf. reducibility conditions (i)–(iii)). In particular, the computational difficulty of bounding the prox-363

imate rank is due to the approximate merging embedding a hard clustering problem. These features364

are not due to the specifics of the hyperbolic tangent, rather they are generic features of any layer in365

a feed-forward network component.366

In more complex architectures there will be additional or similar opportunities for compression.367

While unit negation symmetries are characteristic of odd nonlinearities, other nonlinearities will368

exhibit their own affine symmetries which can be handled analogously. Further redundancies will369

arise from interactions between layers or from specialised computational structures.370

8 Conclusion371

Towards a better understanding of complexity and compressibility in learned neural networks, we372

have developed a theoretical and algorithmic framework for lossless compressibility in single-373

hidden-layer hyperbolic tangent networks. The rank is a measure of a parameter’s lossless com-374

pressibility. Section 4 offers efficient algorithms for performing optimal lossless compression and375

computing the rank. The proximate rank is a measure of proximity to low-rank parameters. Sec-376

tion 5 offers an efficient algorithm for approximately bounding the proximate rank. In Section 6, we377

show that optimally bounding the proximate rank, or, equivalently, detecting proximity to low-rank378

parameters, is NP-complete, by reduction from Boolean satisfiability via a novel hard clustering379

problem. These results underscore the complexity of losslessly compressible regions of the param-380

eter space and lay a foundation for future theoretical and empirical work on detecting losslessly381

compressibile parameters arising while learning with more complex architectures.382
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